Rev 8 | Rev 12 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
6 | mjames | 1 | /* |
2 | * timer2.c |
||
3 | * |
||
4 | * Created on: 2 Apr 2018 |
||
5 | * Author: Mike |
||
6 | */ |
||
7 | |||
8 | #include "ch.h" // needs for all ChibiOS programs |
||
9 | #include "hal.h" // hardware abstraction layer header |
||
10 | |||
11 | #include "timer2.h" |
||
12 | #define MICROSECS_PULSE 10 |
||
13 | |||
14 | |||
15 | // with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000 |
||
16 | // freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the |
||
17 | // first pulse longer than 1/300 of a second as being a proper closure . |
||
18 | // the TIM2 counter counts in 10uS increments, |
||
19 | #define BREAKER_COUNT_MIN (1E6/(MICROSECS_PULSE * 300)) |
||
20 | |||
21 | #define SAMPLE_BUFF_SIZE 256 |
||
22 | uint16_t halfRot; |
||
23 | uint16_t nominal = 0; |
||
24 | uint16_t phase10 = 100; // 10 degrees |
||
25 | volatile uint16_t sampleCount = 0; |
||
26 | uint16_t outSampleCount = 0; |
||
27 | volatile uint16_t sampleBuff[SAMPLE_BUFF_SIZE]; |
||
11 | mjames | 28 | typedef enum { WAIT_GAP, SKIP_BOUNCE, HAVE_SAMPLE } sampleState_t ; |
6 | mjames | 29 | sampleState_t sampleState = WAIT_GAP; |
11 | mjames | 30 | // difference between samples |
31 | volatile uint16_t deltaTime; |
||
6 | mjames | 32 | |
33 | |||
34 | uint16_t rpm; |
||
35 | |||
36 | void initTimer2() |
||
37 | { |
||
38 | rccEnableTIM2(FALSE); |
||
39 | rccResetTIM2(); |
||
40 | |||
41 | TIM2->PSC = 72*MICROSECS_PULSE; |
||
42 | TIM2->ARR = 60000; |
||
43 | TIM2->CR1 = ~TIM_CR1_CKD & (TIM_CR1_CEN | |
||
44 | TIM_CR1_ARPE ); |
||
45 | |||
7 | mjames | 46 | /// pulse width 200 uS |
47 | TIM2->CCR1 = 200/MICROSECS_PULSE; |
||
6 | mjames | 48 | |
11 | mjames | 49 | TIM2->CCER = TIM_CCER_CC1E | TIM_CCER_CC1P ; //enabled and active high |
6 | mjames | 50 | |
11 | mjames | 51 | TIM2->CCMR1 = TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2 | |
6 | mjames | 52 | TIM_CCMR1_OC1PE ; |
53 | |||
54 | |||
55 | TIM2->CR2 = TIM_CR2_MMS_1 ; // trigger out is 010 = update |
||
56 | |||
57 | |||
58 | // change the TIM2 CC2 to TIM3 CC1 |
||
59 | rccEnableTIM3(FALSE); |
||
60 | rccResetTIM3(); |
||
61 | // TIM3 on the PA6 ... pins : remap code 00 |
||
62 | AFIO->MAPR &= ~ AFIO_MAPR_TIM3_REMAP; |
||
63 | |||
64 | TIM3->PSC = 72*MICROSECS_PULSE; |
||
65 | TIM3->ARR = 0xFFFF; |
||
66 | |||
67 | |||
68 | TIM3->CCMR1 = TIM_CCMR1_CC1S_0 /* | TIM_CCMR1_IC1F_0 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_2 */ ; // filter 16, input |
||
69 | |||
70 | TIM3->CCER = TIM_CCER_CC1E; |
||
71 | |||
72 | // link TIM3 ITR1 to TIM2 reload |
||
73 | // use CCR3 |
||
74 | TIM3->CCMR2 = TIM_CCMR2_CC3S_1 | TIM_CCMR2_CC3S_0 ; // The |
||
75 | |||
76 | |||
77 | TIM3->CR1 = ~TIM_CR1_CKD & (TIM_CR1_CEN | TIM_CR1_ARPE ); |
||
78 | |||
79 | |||
80 | nvicEnableVector(TIM3_IRQn, |
||
7 | mjames | 81 | 4); |
6 | mjames | 82 | |
83 | |||
84 | |||
85 | TIM3->DIER |= TIM_DIER_CC1IE ; |
||
86 | } |
||
87 | |||
88 | |||
89 | void recalcPhase(void) |
||
90 | { |
||
91 | nominal = halfRot * (long) (phase10)/ 1800; |
||
92 | } |
||
93 | |||
94 | void adjustRPM(void) |
||
95 | { |
||
96 | if(rpm < 600) |
||
97 | rpm = 600; |
||
98 | if(rpm > 5000) |
||
99 | rpm = 5000; |
||
100 | |||
101 | |||
102 | float pulseSec = rpm /30; |
||
103 | |||
104 | halfRot = 1e6 / (pulseSec * MICROSECS_PULSE) ; |
||
105 | |||
106 | TIM2->ARR = halfRot; |
||
107 | recalcPhase(); |
||
108 | } |
||
109 | |||
110 | uint16_t setRPM(uint16_t rpm_ ) |
||
111 | { |
||
112 | if(rpm_ >= 600 && rpm_ < 5000) |
||
113 | { |
||
114 | rpm = rpm_; |
||
115 | adjustRPM(); |
||
116 | } |
||
117 | return halfRot; |
||
118 | } |
||
119 | |||
120 | uint16_t getRPM(void) |
||
121 | { |
||
122 | return rpm; |
||
123 | } |
||
124 | |||
11 | mjames | 125 | uint16_t getDelta(void) |
126 | { |
||
127 | return deltaTime; |
||
128 | } |
||
129 | |||
6 | mjames | 130 | uint16_t wrapIndex(uint16_t index) |
131 | { |
||
11 | mjames | 132 | if (index >= SAMPLE_BUFF_SIZE) |
6 | mjames | 133 | index -= SAMPLE_BUFF_SIZE; |
134 | return index; |
||
135 | } |
||
136 | |||
137 | |||
138 | // allows for wrapping |
||
139 | uint16_t getSampleBuff(uint16_t index) |
||
140 | { |
||
11 | mjames | 141 | chSysLock(); |
6 | mjames | 142 | return sampleBuff[wrapIndex(index)]; |
11 | mjames | 143 | chSysUnlock(); |
6 | mjames | 144 | } |
145 | |||
11 | mjames | 146 | |
147 | // waits for ignition pulse , debounces readings, |
||
148 | // returns the pulse time, skips debounce time |
||
6 | mjames | 149 | uint16_t getNextPulse(void) |
150 | { |
||
11 | mjames | 151 | static uint16_t lastSampleIndex = 0; |
152 | while(1) |
||
6 | mjames | 153 | { |
11 | mjames | 154 | while (outSampleCount == sampleCount) |
155 | chThdSleep(10); |
||
6 | mjames | 156 | |
11 | mjames | 157 | uint16_t thisTime = getSampleBuff(outSampleCount); |
6 | mjames | 158 | |
11 | mjames | 159 | outSampleCount = wrapIndex(outSampleCount + 1); |
160 | while (outSampleCount == sampleCount) |
||
161 | chThdSleep(10); |
||
6 | mjames | 162 | |
163 | uint16_t nextTime = getSampleBuff(outSampleCount); |
||
164 | |||
165 | // calculate wrapped time delta : should be > than bounce time to allow |
||
11 | mjames | 166 | uint16_t diffTime = nextTime - thisTime; |
6 | mjames | 167 | |
11 | mjames | 168 | if(diffTime > BREAKER_COUNT_MIN) |
6 | mjames | 169 | { |
11 | mjames | 170 | lastSampleIndex = outSampleCount; |
171 | return nextTime; |
||
6 | mjames | 172 | } |
173 | |||
174 | } |
||
11 | mjames | 175 | return 0; |
176 | } |
||
6 | mjames | 177 | |
11 | mjames | 178 | |
179 | void processNextPulse(uint16_t retVal) |
||
180 | { |
||
181 | |||
182 | static uint16_t lastVal = 0; |
||
6 | mjames | 183 | // at this point we should try to phase lock |
11 | mjames | 184 | deltaTime = retVal - lastVal; |
6 | mjames | 185 | |
11 | mjames | 186 | |
187 | |||
188 | if(deltaTime > 10000) |
||
189 | { |
||
190 | __asm(" BKPT #0"); |
||
191 | } |
||
192 | |||
6 | mjames | 193 | lastVal = retVal; |
194 | |||
195 | |||
11 | mjames | 196 | |
197 | |||
198 | |||
199 | float nomRPM = 30E6 / (MICROSECS_PULSE * deltaTime) ; |
||
200 | |||
6 | mjames | 201 | rpm = rpm + (nomRPM -rpm)/10; |
202 | |||
203 | |||
204 | |||
205 | |||
206 | uint16_t skew = 32768 - nominal; |
||
207 | |||
208 | long delta = (retVal+skew) - (nominal+skew); |
||
209 | |||
210 | if(delta > 10) |
||
211 | rpm = rpm - 1; |
||
212 | if(delta -10) |
||
213 | rpm = rpm + 1; |
||
214 | |||
215 | // rpm += delta / 256; |
||
216 | |||
217 | adjustRPM(); |
||
11 | mjames | 218 | } |
6 | mjames | 219 | |
220 | |||
221 | |||
11 | mjames | 222 | |
6 | mjames | 223 | // set the timing advance from reference to |
224 | void setAdvance(int16_t deg10) |
||
225 | { |
||
226 | phase10 = deg10; |
||
227 | recalcPhase(); |
||
228 | |||
229 | } |
||
230 | |||
231 | // timer 3 interrupt |
||
232 | void VectorB4(void) |
||
233 | { |
||
234 | uint16_t stat = TIM3->SR; |
||
235 | if(stat & TIM_SR_CC1IF) |
||
236 | { |
||
237 | TIM3->SR &= ~TIM_SR_CC1IF; |
||
238 | uint16_t sample = TIM3->CCR1; |
||
239 | sampleBuff[sampleCount++] = sample; |
||
11 | mjames | 240 | if (sampleCount >= SAMPLE_BUFF_SIZE) |
6 | mjames | 241 | sampleCount = 0; |
242 | } |
||
243 | } |
||
244 | |||
245 | |||
246 |