Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | // code to compute RPM |
| 2 | #include "stdint.h" |
||
| 3 | |||
| 4 | #include "libIgnTiming/rpm.h" |
||
| 5 | #if defined RPMTIMER |
||
| 6 | |||
| 7 | extern "C" |
||
| 8 | { |
||
| 9 | typedef enum |
||
| 10 | { |
||
| 11 | PULSE_LOW = 1, |
||
| 12 | PULSE_HIGH = 2, |
||
| 13 | PULSE_BOTH = 3 |
||
| 14 | } pulseState_t; |
||
| 15 | // with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000 |
||
| 16 | // freq = 5000/60 * 2 = 166Hz. |
||
| 17 | // the TIM2 counter counts in 10uS increments, |
||
| 18 | // Need to accumulate low level for a 400th of a second before accepting it as a pulse |
||
| 19 | const uint16_t ACCUM_MAX = (RPM_COUNT_RATE / 400); |
||
| 20 | |||
| 21 | // shared variables used in calculation - a pipeline of samples |
||
| 22 | static volatile unsigned long RPM_Time[RPM_SAMPLES]; // sampled on both edges |
||
| 23 | static volatile unsigned long RPM_Count; // incremented every reading |
||
| 24 | |||
| 25 | void TIMER_IRQ_HANDLER(void) |
||
| 26 | { |
||
| 27 | static char level = 0; |
||
| 28 | char valid = 0; |
||
| 29 | uint16_t high_count = 0; |
||
| 30 | uint16_t low_count = 0; |
||
| 31 | // rising edge CB pulse |
||
| 32 | if (__HAL_TIM_GET_FLAG(&TIMER_HANDLE, TIM_FLAG_CC1)) |
||
| 33 | { |
||
| 34 | __HAL_TIM_CLEAR_FLAG(&TIMER_HANDLE, TIM_FLAG_CC1); |
||
| 35 | low_count = __HAL_TIM_GET_COMPARE(&TIMER_HANDLE, TIM_CHANNEL_1); |
||
| 36 | valid = PULSE_LOW; // record we have a low_count val |
||
| 37 | |||
| 38 | // trigger any other event at rising edge |
||
| 39 | AUXILIARY_HIGH; |
||
| 40 | } |
||
| 41 | // falling edge trigger CB pulse |
||
| 42 | if (__HAL_TIM_GET_FLAG(&TIMER_HANDLE, TIM_FLAG_CC2)) |
||
| 43 | { |
||
| 44 | __HAL_TIM_CLEAR_FLAG(&TIMER_HANDLE, TIM_FLAG_CC2); |
||
| 45 | |||
| 46 | high_count = __HAL_TIM_GET_COMPARE(&TIMER_HANDLE, TIM_CHANNEL_2); |
||
| 47 | valid |= PULSE_HIGH; |
||
| 48 | // trigger any other event at falling edge |
||
| 49 | AUXILIARY_LOW; |
||
| 50 | } |
||
| 51 | |||
| 52 | switch (valid) |
||
| 53 | { |
||
| 54 | case pulseState_t::PULSE_LOW: |
||
| 55 | // count width of a low period |
||
| 56 | RPM_Time[RPM_Count] = low_count; |
||
| 57 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
| 58 | level = 0; // remember level |
||
| 59 | break; |
||
| 60 | case pulseState_t::PULSE_HIGH: |
||
| 61 | // count width of a high period |
||
| 62 | RPM_Time[RPM_Count] = high_count | RPM_FLAG; |
||
| 63 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
| 64 | level = 1; // remember level |
||
| 65 | break; |
||
| 66 | // there has been both a high level and a low level |
||
| 67 | case pulseState_t::PULSE_BOTH: |
||
| 68 | if (level == 1) // next level = 0 ,then 1 again |
||
| 69 | { |
||
| 70 | RPM_Time[RPM_Count] = low_count; |
||
| 71 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
| 72 | RPM_Time[RPM_Count] = high_count | RPM_FLAG; |
||
| 73 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
| 74 | } |
||
| 75 | else |
||
| 76 | { |
||
| 77 | RPM_Time[RPM_Count] = high_count | RPM_FLAG; |
||
| 78 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
| 79 | RPM_Time[RPM_Count] = low_count; |
||
| 80 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
| 81 | } |
||
| 82 | break; |
||
| 83 | default: |
||
| 84 | break; |
||
| 85 | } |
||
| 86 | } |
||
| 87 | |||
| 88 | int CalculateRPM(void) |
||
| 89 | { |
||
| 90 | // compute the timer values |
||
| 91 | // snapshot timers |
||
| 92 | |||
| 93 | // Next state of pulse high/low |
||
| 94 | static unsigned char RPM_State = 1; |
||
| 95 | // Current state of pulse high/low |
||
| 96 | static unsigned char RPM_State_Curr = 1; |
||
| 97 | |||
| 98 | // variables used in calculation of RPM value |
||
| 99 | static uint16_t last_dwell_end = 0; |
||
| 100 | static uint16_t RPM_Period[RPM_AVERAGE]; |
||
| 101 | static unsigned int RPM_Period_Ptr = 0; |
||
| 102 | |||
| 103 | static uint16_t RPM_Count_Latch = 0; |
||
| 104 | |||
| 105 | // accumulators |
||
| 106 | static int16_t RPM_Pulsecount = 0; |
||
| 107 | |||
| 108 | __disable_irq(); // copy the counter value |
||
| 109 | // current RPM pulse next slot index |
||
| 110 | uint16_t RPM_Count_Val = RPM_Count; |
||
| 111 | __enable_irq(); |
||
| 112 | // do calculations |
||
| 113 | |||
| 114 | // if there is only one entry, cannot get difference |
||
| 115 | if (RPM_Count_Latch != RPM_Count_Val) |
||
| 116 | { |
||
| 117 | while (1) |
||
| 118 | { |
||
| 119 | unsigned int base_time; |
||
| 120 | unsigned int new_time; |
||
| 121 | // if we are at N-1, stop. |
||
| 122 | unsigned int next_count = (RPM_Count_Latch + 1) % RPM_SAMPLES; |
||
| 123 | if (next_count == RPM_Count_Val) |
||
| 124 | { |
||
| 125 | break; // completed loop |
||
| 126 | } |
||
| 127 | char pulse_level = (RPM_Time[RPM_Count_Latch] & RPM_FLAG) ? 1 : 0; |
||
| 128 | base_time = RPM_Time[RPM_Count_Latch] & ~RPM_FLAG; |
||
| 129 | new_time = RPM_Time[next_count] & ~RPM_FLAG; |
||
| 130 | RPM_Count_Latch = next_count; |
||
| 131 | |||
| 132 | uint16_t RPM_Pulsewidth = new_time - base_time; |
||
| 133 | |||
| 134 | if (pulse_level == 0 && (RPM_Pulsewidth > ACCUM_MAX)) |
||
| 135 | RPM_State = 1; |
||
| 136 | if (pulse_level == 1) |
||
| 137 | RPM_State = 0; |
||
| 138 | |||
| 139 | // low pulse has reached at least minimum width, count it. |
||
| 140 | if ((RPM_State == 1) && (RPM_State_Curr == 0)) |
||
| 141 | { |
||
| 142 | // Rev counter processing from original RevCounter Project |
||
| 143 | uint16_t RPM_Diff = new_time - last_dwell_end; |
||
| 144 | |||
| 145 | RPM_Period[RPM_Period_Ptr] = RPM_Diff; |
||
| 146 | RPM_Period_Ptr = (RPM_Period_Ptr + 1) % RPM_AVERAGE; |
||
| 147 | if (RPM_Pulsecount < RPM_AVERAGE) |
||
| 148 | RPM_Pulsecount++; // count one pulse |
||
| 149 | last_dwell_end = new_time; |
||
| 150 | } |
||
| 151 | RPM_State_Curr = RPM_State; |
||
| 152 | } |
||
| 153 | } |
||
| 154 | |||
| 155 | if (RPM_Pulsecount == RPM_AVERAGE) |
||
| 156 | { |
||
| 157 | // now have time for N pulses in clocks |
||
| 158 | // 1Hz is 30 RPM |
||
| 159 | int i; |
||
| 160 | unsigned int RPM_FilteredWidth = 0; |
||
| 161 | for (i = 0; i < RPM_AVERAGE; i++) |
||
| 162 | RPM_FilteredWidth += RPM_Period[i]; |
||
| 163 | |||
| 164 | #if !defined MY_DEBUG |
||
| 165 | // reset here unless we want to debug |
||
| 166 | RPM_Pulsecount = 0; |
||
| 167 | #endif |
||
| 168 | return (Scale * 30.0 * RPM_AVERAGE * RPM_COUNT_RATE) / (RPM_FilteredWidth); |
||
| 169 | } |
||
| 170 | else |
||
| 171 | { |
||
| 172 | return -1; // flag no reading |
||
| 173 | } |
||
| 174 | } |
||
| 175 | } |
||
| 9 | mjames | 176 | #else |
| 177 | |||
| 178 | int CalculateRPM(void) { return 0; }; |
||
| 179 | |||
| 2 | mjames | 180 | #endif // RPMTIMER |