Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | // code to compute RPM |
2 | #include "stdint.h" |
||
3 | |||
4 | #include "libIgnTiming/rpm.h" |
||
5 | #if defined RPMTIMER |
||
6 | |||
7 | extern "C" |
||
8 | { |
||
9 | typedef enum |
||
10 | { |
||
11 | PULSE_LOW = 1, |
||
12 | PULSE_HIGH = 2, |
||
13 | PULSE_BOTH = 3 |
||
14 | } pulseState_t; |
||
15 | // with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000 |
||
16 | // freq = 5000/60 * 2 = 166Hz. |
||
17 | // the TIM2 counter counts in 10uS increments, |
||
18 | // Need to accumulate low level for a 400th of a second before accepting it as a pulse |
||
19 | const uint16_t ACCUM_MAX = (RPM_COUNT_RATE / 400); |
||
20 | |||
21 | // shared variables used in calculation - a pipeline of samples |
||
22 | static volatile unsigned long RPM_Time[RPM_SAMPLES]; // sampled on both edges |
||
23 | static volatile unsigned long RPM_Count; // incremented every reading |
||
24 | |||
25 | void TIMER_IRQ_HANDLER(void) |
||
26 | { |
||
27 | static char level = 0; |
||
28 | char valid = 0; |
||
29 | uint16_t high_count = 0; |
||
30 | uint16_t low_count = 0; |
||
31 | // rising edge CB pulse |
||
32 | if (__HAL_TIM_GET_FLAG(&TIMER_HANDLE, TIM_FLAG_CC1)) |
||
33 | { |
||
34 | __HAL_TIM_CLEAR_FLAG(&TIMER_HANDLE, TIM_FLAG_CC1); |
||
35 | low_count = __HAL_TIM_GET_COMPARE(&TIMER_HANDLE, TIM_CHANNEL_1); |
||
36 | valid = PULSE_LOW; // record we have a low_count val |
||
37 | |||
38 | // trigger any other event at rising edge |
||
39 | AUXILIARY_HIGH; |
||
40 | } |
||
41 | // falling edge trigger CB pulse |
||
42 | if (__HAL_TIM_GET_FLAG(&TIMER_HANDLE, TIM_FLAG_CC2)) |
||
43 | { |
||
44 | __HAL_TIM_CLEAR_FLAG(&TIMER_HANDLE, TIM_FLAG_CC2); |
||
45 | |||
46 | high_count = __HAL_TIM_GET_COMPARE(&TIMER_HANDLE, TIM_CHANNEL_2); |
||
47 | valid |= PULSE_HIGH; |
||
48 | // trigger any other event at falling edge |
||
49 | AUXILIARY_LOW; |
||
50 | } |
||
51 | |||
52 | switch (valid) |
||
53 | { |
||
54 | case pulseState_t::PULSE_LOW: |
||
55 | // count width of a low period |
||
56 | RPM_Time[RPM_Count] = low_count; |
||
57 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
58 | level = 0; // remember level |
||
59 | break; |
||
60 | case pulseState_t::PULSE_HIGH: |
||
61 | // count width of a high period |
||
62 | RPM_Time[RPM_Count] = high_count | RPM_FLAG; |
||
63 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
64 | level = 1; // remember level |
||
65 | break; |
||
66 | // there has been both a high level and a low level |
||
67 | case pulseState_t::PULSE_BOTH: |
||
68 | if (level == 1) // next level = 0 ,then 1 again |
||
69 | { |
||
70 | RPM_Time[RPM_Count] = low_count; |
||
71 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
72 | RPM_Time[RPM_Count] = high_count | RPM_FLAG; |
||
73 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
74 | } |
||
75 | else |
||
76 | { |
||
77 | RPM_Time[RPM_Count] = high_count | RPM_FLAG; |
||
78 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
79 | RPM_Time[RPM_Count] = low_count; |
||
80 | RPM_Count = (RPM_Count + 1) % RPM_SAMPLES; |
||
81 | } |
||
82 | break; |
||
83 | default: |
||
84 | break; |
||
85 | } |
||
86 | } |
||
87 | |||
88 | int CalculateRPM(void) |
||
89 | { |
||
90 | // compute the timer values |
||
91 | // snapshot timers |
||
92 | |||
93 | // Next state of pulse high/low |
||
94 | static unsigned char RPM_State = 1; |
||
95 | // Current state of pulse high/low |
||
96 | static unsigned char RPM_State_Curr = 1; |
||
97 | |||
98 | // variables used in calculation of RPM value |
||
99 | static uint16_t last_dwell_end = 0; |
||
100 | static uint16_t RPM_Period[RPM_AVERAGE]; |
||
101 | static unsigned int RPM_Period_Ptr = 0; |
||
102 | |||
103 | static uint16_t RPM_Count_Latch = 0; |
||
104 | |||
105 | // accumulators |
||
106 | static int16_t RPM_Pulsecount = 0; |
||
107 | |||
108 | __disable_irq(); // copy the counter value |
||
109 | // current RPM pulse next slot index |
||
110 | uint16_t RPM_Count_Val = RPM_Count; |
||
111 | __enable_irq(); |
||
112 | // do calculations |
||
113 | |||
114 | // if there is only one entry, cannot get difference |
||
115 | if (RPM_Count_Latch != RPM_Count_Val) |
||
116 | { |
||
117 | while (1) |
||
118 | { |
||
119 | unsigned int base_time; |
||
120 | unsigned int new_time; |
||
121 | // if we are at N-1, stop. |
||
122 | unsigned int next_count = (RPM_Count_Latch + 1) % RPM_SAMPLES; |
||
123 | if (next_count == RPM_Count_Val) |
||
124 | { |
||
125 | break; // completed loop |
||
126 | } |
||
127 | char pulse_level = (RPM_Time[RPM_Count_Latch] & RPM_FLAG) ? 1 : 0; |
||
128 | base_time = RPM_Time[RPM_Count_Latch] & ~RPM_FLAG; |
||
129 | new_time = RPM_Time[next_count] & ~RPM_FLAG; |
||
130 | RPM_Count_Latch = next_count; |
||
131 | |||
132 | uint16_t RPM_Pulsewidth = new_time - base_time; |
||
133 | |||
134 | if (pulse_level == 0 && (RPM_Pulsewidth > ACCUM_MAX)) |
||
135 | RPM_State = 1; |
||
136 | if (pulse_level == 1) |
||
137 | RPM_State = 0; |
||
138 | |||
139 | // low pulse has reached at least minimum width, count it. |
||
140 | if ((RPM_State == 1) && (RPM_State_Curr == 0)) |
||
141 | { |
||
142 | // Rev counter processing from original RevCounter Project |
||
143 | uint16_t RPM_Diff = new_time - last_dwell_end; |
||
144 | |||
145 | RPM_Period[RPM_Period_Ptr] = RPM_Diff; |
||
146 | RPM_Period_Ptr = (RPM_Period_Ptr + 1) % RPM_AVERAGE; |
||
147 | if (RPM_Pulsecount < RPM_AVERAGE) |
||
148 | RPM_Pulsecount++; // count one pulse |
||
149 | last_dwell_end = new_time; |
||
150 | } |
||
151 | RPM_State_Curr = RPM_State; |
||
152 | } |
||
153 | } |
||
154 | |||
155 | if (RPM_Pulsecount == RPM_AVERAGE) |
||
156 | { |
||
157 | // now have time for N pulses in clocks |
||
158 | // 1Hz is 30 RPM |
||
159 | int i; |
||
160 | unsigned int RPM_FilteredWidth = 0; |
||
161 | for (i = 0; i < RPM_AVERAGE; i++) |
||
162 | RPM_FilteredWidth += RPM_Period[i]; |
||
163 | |||
164 | #if !defined MY_DEBUG |
||
165 | // reset here unless we want to debug |
||
166 | RPM_Pulsecount = 0; |
||
167 | #endif |
||
168 | return (Scale * 30.0 * RPM_AVERAGE * RPM_COUNT_RATE) / (RPM_FilteredWidth); |
||
169 | } |
||
170 | else |
||
171 | { |
||
172 | return -1; // flag no reading |
||
173 | } |
||
174 | } |
||
175 | } |
||
176 | #endif // RPMTIMER |