Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | /*** Translated to the C language by N. Kyriazis 20 Aug 2003 *** |
| 2 | |||
| 3 | Program NEC(input,tape5=input,output,tape11,tape12,tape13,tape14, |
||
| 4 | tape15,tape16,tape20,tape21) |
||
| 5 | |||
| 6 | Numerical Electromagnetics Code (NEC2) developed at Lawrence |
||
| 7 | Livermore lab., Livermore, CA. (contact G. Burke at 415-422-8414 |
||
| 8 | for problems with the NEC code. For problems with the vax implem- |
||
| 9 | entation, contact J. Breakall at 415-422-8196 or E. Domning at 415 |
||
| 10 | 422-5936) |
||
| 11 | file created 4/11/80. |
||
| 12 | |||
| 13 | ***********Notice********** |
||
| 14 | This computer code material was prepared as an account of work |
||
| 15 | sponsored by the United States government. Neither the United |
||
| 16 | States nor the United States Department Of Energy, nor any of |
||
| 17 | their employees, nor any of their contractors, subcontractors, |
||
| 18 | or their employees, makes any warranty, express or implied, or |
||
| 19 | assumes any legal liability or responsibility for the accuracy, |
||
| 20 | completeness or usefulness of any information, apparatus, product |
||
| 21 | or process disclosed, or represents that its use would not infringe |
||
| 22 | privately-owned rights. |
||
| 23 | |||
| 24 | *******************************************************************/ |
||
| 25 | |||
| 26 | #include "nec2c.h" |
||
| 27 | |||
| 28 | #include <omp.h> |
||
| 29 | |||
| 30 | /* common /data/ */ |
||
| 31 | extern data_t data; |
||
| 32 | |||
| 33 | /* common /dataj/ */ |
||
| 34 | extern dataj_t dataj; |
||
| 35 | |||
| 36 | /* common /matpar/ */ |
||
| 37 | extern matpar_t matpar; |
||
| 38 | |||
| 39 | /* common /segj/ */ |
||
| 40 | extern segj_t segj; |
||
| 41 | |||
| 42 | /* common /zload/ */ |
||
| 43 | extern zload_t zload; |
||
| 44 | |||
| 45 | /* common /smat/ */ |
||
| 46 | extern smat_t smat; |
||
| 47 | |||
| 48 | /* common /gnd/ */ |
||
| 49 | extern gnd_t gnd; |
||
| 50 | |||
| 51 | /* common /vsorc/ */ |
||
| 52 | extern vsorc_t vsorc; |
||
| 53 | |||
| 54 | /* pointers to input/output files */ |
||
| 55 | extern FILE *input_fp, *output_fp, *plot_fp; |
||
| 56 | |||
| 57 | /*-------------------------------------------------------------------*/ |
||
| 58 | |||
| 59 | /* cmset sets up the complex structure matrix in the array cm */ |
||
| 60 | void cmset (int nrow, complex double *cm, double rkhx, int iexkx) |
||
| 61 | { |
||
| 62 | int mp2, neq, npeq, it, i, j, i1, i2, in2; |
||
| 63 | // int iout; |
||
| 64 | int im1, im2, ist, ij, ipr, jss, jm1, jm2, jst, k, ka, kk; |
||
| 65 | complex double zaj, deter, *scm = NULL; |
||
| 66 | |||
| 67 | mp2 = 2 * data.mp; |
||
| 68 | npeq = data.np + mp2; |
||
| 69 | neq = data.n + 2 * data.m; |
||
| 70 | smat.nop = neq / npeq; |
||
| 71 | |||
| 72 | dataj.rkh = rkhx; |
||
| 73 | dataj.iexk = iexkx; |
||
| 74 | // iout=2* matpar.npblk* nrow; |
||
| 75 | it = matpar.nlast; |
||
| 76 | |||
| 77 | for (i = 0; i < nrow; i++) |
||
| 78 | for (j = 0; j < it; j++) |
||
| 79 | cm[i + j * nrow] = CPLX_00; |
||
| 80 | |||
| 81 | i1 = 1; |
||
| 82 | i2 = it; |
||
| 83 | in2 = i2; |
||
| 84 | |||
| 85 | if (in2 > data.np) |
||
| 86 | in2 = data.np; |
||
| 87 | |||
| 88 | im1 = i1 - data.np; |
||
| 89 | im2 = i2 - data.np; |
||
| 90 | |||
| 91 | if (im1 < 1) |
||
| 92 | im1 = 1; |
||
| 93 | |||
| 94 | ist = 1; |
||
| 95 | if (i1 <= data.np) |
||
| 96 | ist = data.np - i1 + 2; |
||
| 97 | |||
| 98 | /* wire source loop */ |
||
| 99 | if (data.n != 0) |
||
| 100 | { |
||
| 101 | for (j = 1; j <= data.n; j++) |
||
| 102 | { |
||
| 103 | trio (j); |
||
| 104 | for (i = 0; i < segj.jsno; i++) |
||
| 105 | { |
||
| 106 | ij = segj.jco[i]; |
||
| 107 | segj.jco[i] = ((ij - 1) / data.np) * mp2 + ij; |
||
| 108 | } |
||
| 109 | |||
| 110 | if (i1 <= in2) |
||
| 111 | cmww (j, i1, in2, cm, nrow, cm, nrow, 1); |
||
| 112 | |||
| 113 | if (im1 <= im2) |
||
| 114 | cmws (j, im1, im2, &cm[(ist - 1) * nrow], nrow, cm, nrow, 1); |
||
| 115 | |||
| 116 | /* matrix elements modified by loading */ |
||
| 117 | if (zload.nload == 0) |
||
| 118 | continue; |
||
| 119 | |||
| 120 | if (j > data.np) |
||
| 121 | continue; |
||
| 122 | |||
| 123 | ipr = j; |
||
| 124 | if ((ipr < 1) || (ipr > it)) |
||
| 125 | continue; |
||
| 126 | |||
| 127 | zaj = zload.zarray[j - 1]; |
||
| 128 | |||
| 129 | for (i = 0; i < segj.jsno; i++) |
||
| 130 | { |
||
| 131 | jss = segj.jco[i]; |
||
| 132 | cm[(jss - 1) + (ipr - 1) * nrow] -= |
||
| 133 | (segj.ax[i] + segj.cx[i]) * zaj; |
||
| 134 | } |
||
| 135 | |||
| 136 | } /* for( j = 1; j <= n; j++ ) */ |
||
| 137 | |||
| 138 | } /* if( n != 0) */ |
||
| 139 | |||
| 140 | if (data.m != 0) |
||
| 141 | { |
||
| 142 | /* matrix elements for patch current sources */ |
||
| 143 | jm1 = 1 - data.mp; |
||
| 144 | jm2 = 0; |
||
| 145 | jst = 1 - mp2; |
||
| 146 | |||
| 147 | for (i = 0; i < smat.nop; i++) |
||
| 148 | { |
||
| 149 | jm1 += data.mp; |
||
| 150 | jm2 += data.mp; |
||
| 151 | jst += npeq; |
||
| 152 | |||
| 153 | if (i1 <= in2) |
||
| 154 | cmsw (jm1, jm2, i1, in2, &cm[(jst - 1)], cm, 0, nrow, 1); |
||
| 155 | |||
| 156 | if (im1 <= im2) |
||
| 157 | cmss ( |
||
| 158 | jm1, |
||
| 159 | jm2, |
||
| 160 | im1, |
||
| 161 | im2, |
||
| 162 | &cm[(jst - 1) + (ist - 1) * nrow], |
||
| 163 | nrow, |
||
| 164 | 1); |
||
| 165 | } |
||
| 166 | |||
| 167 | } /* if( m != 0) */ |
||
| 168 | |||
| 169 | if (matpar.icase == 1) |
||
| 170 | return; |
||
| 171 | |||
| 172 | /* Allocate to scratch memory */ |
||
| 173 | mem_alloc ((void *) &scm, data.np2m * sizeof (complex double)); |
||
| 174 | |||
| 175 | /* combine elements for symmetry modes */ |
||
| 176 | for (i = 0; i < it; i++) |
||
| 177 | { |
||
| 178 | for (j = 0; j < npeq; j++) |
||
| 179 | { |
||
| 180 | for (k = 0; k < smat.nop; k++) |
||
| 181 | { |
||
| 182 | ka = j + k * npeq; |
||
| 183 | scm[k] = cm[ka + i * nrow]; |
||
| 184 | } |
||
| 185 | |||
| 186 | deter = scm[0]; |
||
| 187 | |||
| 188 | for (kk = 1; kk < smat.nop; kk++) |
||
| 189 | deter += scm[kk]; |
||
| 190 | |||
| 191 | cm[j + i * nrow] = deter; |
||
| 192 | |||
| 193 | for (k = 1; k < smat.nop; k++) |
||
| 194 | { |
||
| 195 | ka = j + k * npeq; |
||
| 196 | deter = scm[0]; |
||
| 197 | |||
| 198 | for (kk = 1; kk < smat.nop; kk++) |
||
| 199 | { |
||
| 200 | deter += scm[kk] * smat.ssx[k + kk * smat.nop]; |
||
| 201 | cm[ka + i * nrow] = deter; |
||
| 202 | } |
||
| 203 | |||
| 204 | } /* for( k = 1; k < smat.nop; k++ ) */ |
||
| 205 | |||
| 206 | } /* for( j = 0; j < npeq; j++ ) */ |
||
| 207 | |||
| 208 | } /* for( i = 0; i < it; i++ ) */ |
||
| 209 | |||
| 210 | free_ptr ((void *) &scm); |
||
| 211 | |||
| 212 | return; |
||
| 213 | } |
||
| 214 | |||
| 215 | /*-----------------------------------------------------------------------*/ |
||
| 216 | |||
| 217 | /* cmss computes matrix elements for surface-surface interactions. */ |
||
| 218 | void cmss (int j1, int j2, int im1, int im2, complex double *cm, int nrow, int itrp) |
||
| 219 | { |
||
| 220 | int i1, i2, icomp, ii1, i, il, ii2, jj1, j, jl, jj2; |
||
| 221 | double t1xi, t1yi, t1zi, t2xi, t2yi, t2zi, xi, yi, zi; |
||
| 222 | complex double g11, g12, g21, g22; |
||
| 223 | |||
| 224 | i1 = (im1 + 1) / 2; |
||
| 225 | i2 = (im2 + 1) / 2; |
||
| 226 | icomp = i1 * 2 - 3; |
||
| 227 | ii1 = -2; |
||
| 228 | if (icomp + 2 < im1) |
||
| 229 | ii1 = -3; |
||
| 230 | |||
| 231 | /* loop over observation patches */ |
||
| 232 | il = -1; |
||
| 233 | for (i = i1; i <= i2; i++) |
||
| 234 | { |
||
| 235 | il++; |
||
| 236 | icomp += 2; |
||
| 237 | ii1 += 2; |
||
| 238 | ii2 = ii1 + 1; |
||
| 239 | |||
| 240 | t1xi = data.t1x[il] * data.psalp[il]; |
||
| 241 | t1yi = data.t1y[il] * data.psalp[il]; |
||
| 242 | t1zi = data.t1z[il] * data.psalp[il]; |
||
| 243 | t2xi = data.t2x[il] * data.psalp[il]; |
||
| 244 | t2yi = data.t2y[il] * data.psalp[il]; |
||
| 245 | t2zi = data.t2z[il] * data.psalp[il]; |
||
| 246 | xi = data.px[il]; |
||
| 247 | yi = data.py[il]; |
||
| 248 | zi = data.pz[il]; |
||
| 249 | |||
| 250 | /* loop over source patches */ |
||
| 251 | jj1 = -2; |
||
| 252 | for (j = j1; j <= j2; j++) |
||
| 253 | { |
||
| 254 | jl = j - 1; |
||
| 255 | jj1 += 2; |
||
| 256 | jj2 = jj1 + 1; |
||
| 257 | |||
| 258 | dataj.s = data.pbi[jl]; |
||
| 259 | dataj.xj = data.px[jl]; |
||
| 260 | dataj.yj = data.py[jl]; |
||
| 261 | dataj.zj = data.pz[jl]; |
||
| 262 | dataj.t1xj = data.t1x[jl]; |
||
| 263 | dataj.t1yj = data.t1y[jl]; |
||
| 264 | dataj.t1zj = data.t1z[jl]; |
||
| 265 | dataj.t2xj = data.t2x[jl]; |
||
| 266 | dataj.t2yj = data.t2y[jl]; |
||
| 267 | dataj.t2zj = data.t2z[jl]; |
||
| 268 | |||
| 269 | hintg (xi, yi, zi); |
||
| 270 | |||
| 271 | g11 = -(t2xi * dataj.exk + t2yi * dataj.eyk + t2zi * dataj.ezk); |
||
| 272 | g12 = -(t2xi * dataj.exs + t2yi * dataj.eys + t2zi * dataj.ezs); |
||
| 273 | g21 = -(t1xi * dataj.exk + t1yi * dataj.eyk + t1zi * dataj.ezk); |
||
| 274 | g22 = -(t1xi * dataj.exs + t1yi * dataj.eys + t1zi * dataj.ezs); |
||
| 275 | |||
| 276 | if (i == j) |
||
| 277 | { |
||
| 278 | g11 -= .5; |
||
| 279 | g22 += .5; |
||
| 280 | } |
||
| 281 | |||
| 282 | /* normal fill */ |
||
| 283 | if (itrp == 0) |
||
| 284 | { |
||
| 285 | if (icomp >= im1) |
||
| 286 | { |
||
| 287 | cm[ii1 + jj1 * nrow] = g11; |
||
| 288 | cm[ii1 + jj2 * nrow] = g12; |
||
| 289 | } |
||
| 290 | |||
| 291 | if (icomp >= im2) |
||
| 292 | continue; |
||
| 293 | |||
| 294 | cm[ii2 + jj1 * nrow] = g21; |
||
| 295 | cm[ii2 + jj2 * nrow] = g22; |
||
| 296 | continue; |
||
| 297 | |||
| 298 | } /* if( itrp == 0) */ |
||
| 299 | |||
| 300 | /* transposed fill */ |
||
| 301 | if (icomp >= im1) |
||
| 302 | { |
||
| 303 | cm[jj1 + ii1 * nrow] = g11; |
||
| 304 | cm[jj2 + ii1 * nrow] = g12; |
||
| 305 | } |
||
| 306 | |||
| 307 | if (icomp >= im2) |
||
| 308 | continue; |
||
| 309 | |||
| 310 | cm[jj1 + ii2 * nrow] = g21; |
||
| 311 | cm[jj2 + ii2 * nrow] = g22; |
||
| 312 | |||
| 313 | } /* for( j = j1; j <= j2; j++ ) */ |
||
| 314 | |||
| 315 | } /* for( i = i1; i <= i2; i++ ) */ |
||
| 316 | |||
| 317 | return; |
||
| 318 | } |
||
| 319 | |||
| 320 | /*-----------------------------------------------------------------------*/ |
||
| 321 | |||
| 322 | /* computes matrix elements for e along wires due to patch current */ |
||
| 323 | void cmsw ( |
||
| 324 | int j1, |
||
| 325 | int j2, |
||
| 326 | int i1, |
||
| 327 | int i2, |
||
| 328 | complex double *cm, |
||
| 329 | complex double *cw, |
||
| 330 | int ncw, |
||
| 331 | int nrow, |
||
| 332 | int itrp) |
||
| 333 | { |
||
| 334 | // int neqs; |
||
| 335 | int k, icgo, i, ipch, jl, j, js, il, ip; |
||
| 336 | int jsnox; /* -1 offset to "jsno" for array indexing */ |
||
| 337 | double xi, yi, zi, cabi, sabi, salpi, fsign = 1., pyl, pxl; |
||
| 338 | complex double emel[9]; |
||
| 339 | |||
| 340 | // neqs= data.np2m; |
||
| 341 | jsnox = segj.jsno - 1; |
||
| 342 | |||
| 343 | if (itrp >= 0) |
||
| 344 | { |
||
| 345 | k = -1; |
||
| 346 | icgo = 0; |
||
| 347 | |||
| 348 | /* observation loop */ |
||
| 349 | for (i = i1 - 1; i < i2; i++) |
||
| 350 | { |
||
| 351 | k++; |
||
| 352 | xi = data.x[i]; |
||
| 353 | yi = data.y[i]; |
||
| 354 | zi = data.z[i]; |
||
| 355 | cabi = data.cab[i]; |
||
| 356 | sabi = data.sab[i]; |
||
| 357 | salpi = data.salp[i]; |
||
| 358 | ipch = 0; |
||
| 359 | |||
| 360 | if (data.icon1[i] >= PCHCON) |
||
| 361 | { |
||
| 362 | ipch = data.icon1[i] - PCHCON; |
||
| 363 | fsign = -1.; |
||
| 364 | } |
||
| 365 | |||
| 366 | if (data.icon2[i] >= PCHCON) |
||
| 367 | { |
||
| 368 | ipch = data.icon2[i] - PCHCON; |
||
| 369 | fsign = 1.; |
||
| 370 | } |
||
| 371 | |||
| 372 | /* source loop */ |
||
| 373 | jl = -1; |
||
| 374 | for (j = j1; j <= j2; j++) |
||
| 375 | { |
||
| 376 | jl += 2; |
||
| 377 | js = j - 1; |
||
| 378 | dataj.t1xj = data.t1x[js]; |
||
| 379 | dataj.t1yj = data.t1y[js]; |
||
| 380 | dataj.t1zj = data.t1z[js]; |
||
| 381 | dataj.t2xj = data.t2x[js]; |
||
| 382 | dataj.t2yj = data.t2y[js]; |
||
| 383 | dataj.t2zj = data.t2z[js]; |
||
| 384 | dataj.xj = data.px[js]; |
||
| 385 | dataj.yj = data.py[js]; |
||
| 386 | dataj.zj = data.pz[js]; |
||
| 387 | dataj.s = data.pbi[js]; |
||
| 388 | |||
| 389 | /* ground loop */ |
||
| 390 | for (ip = 1; ip <= gnd.ksymp; ip++) |
||
| 391 | { |
||
| 392 | dataj.ipgnd = ip; |
||
| 393 | |||
| 394 | if (((ipch == j) || (icgo != 0)) && (ip != 2)) |
||
| 395 | { |
||
| 396 | if (icgo <= 0) |
||
| 397 | { |
||
| 398 | pcint ( |
||
| 399 | xi, |
||
| 400 | yi, |
||
| 401 | zi, |
||
| 402 | cabi, |
||
| 403 | sabi, |
||
| 404 | salpi, |
||
| 405 | emel); |
||
| 406 | |||
| 407 | pyl = PI * data.si[i] * fsign; |
||
| 408 | pxl = sinl (pyl); |
||
| 409 | pyl = cosl (pyl); |
||
| 410 | dataj.exc = emel[8] * fsign; |
||
| 411 | |||
| 412 | trio (i + 1); |
||
| 413 | |||
| 414 | il = i - ncw; |
||
| 415 | if (i < data.np) |
||
| 416 | il += (il / data.np) * 2 * |
||
| 417 | data.mp; |
||
| 418 | |||
| 419 | if (itrp == 0) |
||
| 420 | cw[k + il * nrow] += |
||
| 421 | dataj.exc * |
||
| 422 | (segj.ax[jsnox] + |
||
| 423 | segj.bx[jsnox] * pxl + |
||
| 424 | segj.cx[jsnox] * pyl); |
||
| 425 | else |
||
| 426 | cw[il + k * nrow] += |
||
| 427 | dataj.exc * |
||
| 428 | (segj.ax[jsnox] + |
||
| 429 | segj.bx[jsnox] * pxl + |
||
| 430 | segj.cx[jsnox] * pyl); |
||
| 431 | |||
| 432 | } /* if( icgo <= 0 ) */ |
||
| 433 | |||
| 434 | if (itrp == 0) |
||
| 435 | { |
||
| 436 | cm[k + (jl - 1) * nrow] = emel[icgo]; |
||
| 437 | cm[k + jl * nrow] = emel[icgo + 4]; |
||
| 438 | } |
||
| 439 | else |
||
| 440 | { |
||
| 441 | cm[(jl - 1) + k * nrow] = emel[icgo]; |
||
| 442 | cm[jl + k * nrow] = emel[icgo + 4]; |
||
| 443 | } |
||
| 444 | |||
| 445 | icgo++; |
||
| 446 | if (icgo == 4) |
||
| 447 | icgo = 0; |
||
| 448 | |||
| 449 | continue; |
||
| 450 | |||
| 451 | } /* if( ((ipch == (j+1)) || (icgo != 0)) && (ip != 2) |
||
| 452 | ) */ |
||
| 453 | |||
| 454 | unere (xi, yi, zi); |
||
| 455 | |||
| 456 | /* normal fill */ |
||
| 457 | if (itrp == 0) |
||
| 458 | { |
||
| 459 | cm[k + (jl - 1) * nrow] += dataj.exk * cabi + |
||
| 460 | dataj.eyk * sabi + |
||
| 461 | dataj.ezk * salpi; |
||
| 462 | cm[k + jl * nrow] += dataj.exs * cabi + |
||
| 463 | dataj.eys * sabi + |
||
| 464 | dataj.ezs * salpi; |
||
| 465 | continue; |
||
| 466 | } |
||
| 467 | |||
| 468 | /* transposed fill */ |
||
| 469 | cm[(jl - 1) + k * nrow] += dataj.exk * cabi + |
||
| 470 | dataj.eyk * sabi + |
||
| 471 | dataj.ezk * salpi; |
||
| 472 | cm[jl + k * nrow] += dataj.exs * cabi + |
||
| 473 | dataj.eys * sabi + |
||
| 474 | dataj.ezs * salpi; |
||
| 475 | |||
| 476 | } /* for( ip = 1; ip <= gnd.ksymp; ip++ ) */ |
||
| 477 | |||
| 478 | } /* for( j = j1; j <= j2; j++ ) */ |
||
| 479 | |||
| 480 | } /* for( i = i1-1; i < i2; i++ ) */ |
||
| 481 | |||
| 482 | } /* if( itrp >= 0) */ |
||
| 483 | |||
| 484 | return; |
||
| 485 | } |
||
| 486 | |||
| 487 | /*-----------------------------------------------------------------------*/ |
||
| 488 | |||
| 489 | /* cmws computes matrix elements for wire-surface interactions */ |
||
| 490 | void cmws ( |
||
| 491 | int j, int i1, int i2, complex double *cm, int nr, complex double *cw, int nw, int itrp) |
||
| 492 | { |
||
| 493 | int ipr, i, ipatch, ik, js = 0, ij, jx; |
||
| 494 | double xi, yi, zi, tx, ty, tz; |
||
| 495 | complex double etk, ets, etc; |
||
| 496 | i = nw; |
||
| 497 | j--; |
||
| 498 | dataj.s = data.si[j]; |
||
| 499 | dataj.b = data.bi[j]; |
||
| 500 | dataj.xj = data.x[j]; |
||
| 501 | dataj.yj = data.y[j]; |
||
| 502 | dataj.zj = data.z[j]; |
||
| 503 | dataj.cabj = data.cab[j]; |
||
| 504 | dataj.sabj = data.sab[j]; |
||
| 505 | dataj.salpj = data.salp[j]; |
||
| 506 | |||
| 507 | /* observation loop */ |
||
| 508 | ipr = -1; |
||
| 509 | for (i = i1; i <= i2; i++) |
||
| 510 | { |
||
| 511 | ipr++; |
||
| 512 | ipatch = (i + 1) / 2; |
||
| 513 | ik = i - (i / 2) * 2; |
||
| 514 | |||
| 515 | if ((ik != 0) || (ipr == 0)) |
||
| 516 | { |
||
| 517 | js = ipatch - 1; |
||
| 518 | xi = data.px[js]; |
||
| 519 | yi = data.py[js]; |
||
| 520 | zi = data.pz[js]; |
||
| 521 | hsfld (xi, yi, zi, 0.); |
||
| 522 | |||
| 523 | if (ik != 0) |
||
| 524 | { |
||
| 525 | tx = data.t2x[js]; |
||
| 526 | ty = data.t2y[js]; |
||
| 527 | tz = data.t2z[js]; |
||
| 528 | } |
||
| 529 | else |
||
| 530 | { |
||
| 531 | tx = data.t1x[js]; |
||
| 532 | ty = data.t1y[js]; |
||
| 533 | tz = data.t1z[js]; |
||
| 534 | } |
||
| 535 | |||
| 536 | } /* if( (ik != 0) || (ipr == 0) ) */ |
||
| 537 | else |
||
| 538 | { |
||
| 539 | tx = data.t1x[js]; |
||
| 540 | ty = data.t1y[js]; |
||
| 541 | tz = data.t1z[js]; |
||
| 542 | |||
| 543 | } /* if( (ik != 0) || (ipr == 0) ) */ |
||
| 544 | |||
| 545 | etk = -(dataj.exk * tx + dataj.eyk * ty + dataj.ezk * tz) * data.psalp[js]; |
||
| 546 | ets = -(dataj.exs * tx + dataj.eys * ty + dataj.ezs * tz) * data.psalp[js]; |
||
| 547 | etc = -(dataj.exc * tx + dataj.eyc * ty + dataj.ezc * tz) * data.psalp[js]; |
||
| 548 | |||
| 549 | /* fill matrix elements. element locations */ |
||
| 550 | /* determined by connection data. */ |
||
| 551 | |||
| 552 | /* normal fill */ |
||
| 553 | if (itrp == 0) |
||
| 554 | { |
||
| 555 | for (ij = 0; ij < segj.jsno; ij++) |
||
| 556 | { |
||
| 557 | jx = segj.jco[ij] - 1; |
||
| 558 | cm[ipr + jx * nr] += |
||
| 559 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
| 560 | } |
||
| 561 | |||
| 562 | continue; |
||
| 563 | } /* if( itrp == 0) */ |
||
| 564 | |||
| 565 | /* transposed fill */ |
||
| 566 | if (itrp != 2) |
||
| 567 | { |
||
| 568 | for (ij = 0; ij < segj.jsno; ij++) |
||
| 569 | { |
||
| 570 | jx = segj.jco[ij] - 1; |
||
| 571 | cm[jx + ipr * nr] += |
||
| 572 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
| 573 | } |
||
| 574 | |||
| 575 | continue; |
||
| 576 | } /* if( itrp != 2) */ |
||
| 577 | |||
| 578 | /* transposed fill - c(ws) and d(ws)prime (=cw) */ |
||
| 579 | for (ij = 0; ij < segj.jsno; ij++) |
||
| 580 | { |
||
| 581 | jx = segj.jco[ij] - 1; |
||
| 582 | if (jx < nr) |
||
| 583 | cm[jx + ipr * nr] += |
||
| 584 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
| 585 | else |
||
| 586 | { |
||
| 587 | jx -= nr; |
||
| 588 | cw[jx + ipr * nr] += |
||
| 589 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
| 590 | } |
||
| 591 | } /* for( ij = 0; ij < segj.jsno; ij++ ) */ |
||
| 592 | |||
| 593 | } /* for( i = i1; i <= i2; i++ ) */ |
||
| 594 | |||
| 595 | return; |
||
| 596 | } |
||
| 597 | |||
| 598 | /*-----------------------------------------------------------------------*/ |
||
| 599 | |||
| 600 | /* cmww computes matrix elements for wire-wire interactions */ |
||
| 601 | void cmww ( |
||
| 602 | int j, int i1, int i2, complex double *cm, int nr, complex double *cw, int nw, int itrp) |
||
| 603 | { |
||
| 604 | int ipr, iprx, i, ij, jx; |
||
| 605 | double xi, yi, zi, ai, cabi, sabi, salpi; |
||
| 606 | complex double etk, ets, etc; |
||
| 607 | |||
| 608 | /* set source segment parameters */ |
||
| 609 | jx = j; |
||
| 610 | j--; |
||
| 611 | dataj.s = data.si[j]; |
||
| 612 | dataj.b = data.bi[j]; |
||
| 613 | dataj.xj = data.x[j]; |
||
| 614 | dataj.yj = data.y[j]; |
||
| 615 | dataj.zj = data.z[j]; |
||
| 616 | dataj.cabj = data.cab[j]; |
||
| 617 | dataj.sabj = data.sab[j]; |
||
| 618 | dataj.salpj = data.salp[j]; |
||
| 619 | |||
| 620 | /* decide whether ext. t.w. approx. can be used */ |
||
| 621 | if (dataj.iexk != 0) |
||
| 622 | { |
||
| 623 | ipr = data.icon1[j]; |
||
| 624 | if (ipr > PCHCON) |
||
| 625 | dataj.ind1 = 0; |
||
| 626 | else if (ipr < 0) |
||
| 627 | { |
||
| 628 | ipr = -ipr; |
||
| 629 | iprx = ipr - 1; |
||
| 630 | |||
| 631 | if (-data.icon1[iprx] != jx) |
||
| 632 | dataj.ind1 = 2; |
||
| 633 | else |
||
| 634 | { |
||
| 635 | xi = fabsl ( |
||
| 636 | dataj.cabj * data.cab[iprx] + dataj.sabj * data.sab[iprx] + |
||
| 637 | dataj.salpj * data.salp[iprx]); |
||
| 638 | if ((xi < 0.999999) || |
||
| 639 | (fabsl (data.bi[iprx] / dataj.b - 1.) > 1.e-6)) |
||
| 640 | dataj.ind1 = 2; |
||
| 641 | else |
||
| 642 | dataj.ind1 = 0; |
||
| 643 | |||
| 644 | } /* if( -data.icon1[iprx] != jx ) */ |
||
| 645 | |||
| 646 | } /* if( ipr < 0 ) */ |
||
| 647 | else |
||
| 648 | { |
||
| 649 | iprx = ipr - 1; |
||
| 650 | if (ipr == 0) |
||
| 651 | dataj.ind1 = 1; |
||
| 652 | else |
||
| 653 | { |
||
| 654 | if (ipr != jx) |
||
| 655 | { |
||
| 656 | if (data.icon2[iprx] != jx) |
||
| 657 | dataj.ind1 = 2; |
||
| 658 | else |
||
| 659 | { |
||
| 660 | xi = fabsl ( |
||
| 661 | dataj.cabj * data.cab[iprx] + |
||
| 662 | dataj.sabj * data.sab[iprx] + |
||
| 663 | dataj.salpj * data.salp[iprx]); |
||
| 664 | if ((xi < 0.999999) || |
||
| 665 | (fabsl (data.bi[iprx] / dataj.b - 1.) > |
||
| 666 | 1.e-6)) |
||
| 667 | dataj.ind1 = 2; |
||
| 668 | else |
||
| 669 | dataj.ind1 = 0; |
||
| 670 | |||
| 671 | } /* if( data.icon2[iprx] != jx ) */ |
||
| 672 | |||
| 673 | } /* if( ipr != jx ) */ |
||
| 674 | else if ( |
||
| 675 | dataj.cabj * dataj.cabj + dataj.sabj * dataj.sabj > 1.e-8) |
||
| 676 | dataj.ind1 = 2; |
||
| 677 | else |
||
| 678 | dataj.ind1 = 0; |
||
| 679 | |||
| 680 | } /* if( ipr == 0 ) */ |
||
| 681 | |||
| 682 | } /* if( ipr < 0 ) */ |
||
| 683 | |||
| 684 | ipr = data.icon2[j]; |
||
| 685 | if (ipr > PCHCON) |
||
| 686 | dataj.ind2 = 2; |
||
| 687 | else if (ipr < 0) |
||
| 688 | { |
||
| 689 | ipr = -ipr; |
||
| 690 | iprx = ipr - 1; |
||
| 691 | if (-data.icon2[iprx] != jx) |
||
| 692 | dataj.ind2 = 2; |
||
| 693 | else |
||
| 694 | { |
||
| 695 | xi = fabsl ( |
||
| 696 | dataj.cabj * data.cab[iprx] + dataj.sabj * data.sab[iprx] + |
||
| 697 | dataj.salpj * data.salp[iprx]); |
||
| 698 | if ((xi < 0.999999) || |
||
| 699 | (fabsl (data.bi[iprx] / dataj.b - 1.) > 1.e-6)) |
||
| 700 | dataj.ind2 = 2; |
||
| 701 | else |
||
| 702 | dataj.ind2 = 0; |
||
| 703 | |||
| 704 | } /* if( -data.icon1[iprx] != jx ) */ |
||
| 705 | |||
| 706 | } /* if( ipr < 0 ) */ |
||
| 707 | else |
||
| 708 | { |
||
| 709 | iprx = ipr - 1; |
||
| 710 | if (ipr == 0) |
||
| 711 | dataj.ind2 = 1; |
||
| 712 | else |
||
| 713 | { |
||
| 714 | if (ipr != jx) |
||
| 715 | { |
||
| 716 | if (data.icon1[iprx] != jx) |
||
| 717 | dataj.ind2 = 2; |
||
| 718 | else |
||
| 719 | { |
||
| 720 | xi = fabsl ( |
||
| 721 | dataj.cabj * data.cab[iprx] + |
||
| 722 | dataj.sabj * data.sab[iprx] + |
||
| 723 | dataj.salpj * data.salp[iprx]); |
||
| 724 | if ((xi < 0.999999) || |
||
| 725 | (fabsl (data.bi[iprx] / dataj.b - 1.) > |
||
| 726 | 1.e-6)) |
||
| 727 | dataj.ind2 = 2; |
||
| 728 | else |
||
| 729 | dataj.ind2 = 0; |
||
| 730 | |||
| 731 | } /* if( data.icon2[iprx] != jx ) */ |
||
| 732 | |||
| 733 | } /* if( ipr != jx ) */ |
||
| 734 | else if ( |
||
| 735 | dataj.cabj * dataj.cabj + dataj.sabj * dataj.sabj > 1.e-8) |
||
| 736 | dataj.ind2 = 2; |
||
| 737 | else |
||
| 738 | dataj.ind2 = 0; |
||
| 739 | |||
| 740 | } /* if( ipr == 0 ) */ |
||
| 741 | |||
| 742 | } /* if( ipr < 0 ) */ |
||
| 743 | |||
| 744 | } /* if( dataj.iexk != 0) */ |
||
| 745 | |||
| 746 | /* observation loop */ |
||
| 747 | ipr = -1; |
||
| 748 | for (i = i1 - 1; i < i2; i++) |
||
| 749 | { |
||
| 750 | ipr++; |
||
| 751 | ij = i - j; |
||
| 752 | xi = data.x[i]; |
||
| 753 | yi = data.y[i]; |
||
| 754 | zi = data.z[i]; |
||
| 755 | ai = data.bi[i]; |
||
| 756 | cabi = data.cab[i]; |
||
| 757 | sabi = data.sab[i]; |
||
| 758 | salpi = data.salp[i]; |
||
| 759 | |||
| 760 | efld (xi, yi, zi, ai, ij); |
||
| 761 | |||
| 762 | etk = dataj.exk * cabi + dataj.eyk * sabi + dataj.ezk * salpi; |
||
| 763 | ets = dataj.exs * cabi + dataj.eys * sabi + dataj.ezs * salpi; |
||
| 764 | etc = dataj.exc * cabi + dataj.eyc * sabi + dataj.ezc * salpi; |
||
| 765 | |||
| 766 | /* fill matrix elements. element locations */ |
||
| 767 | /* determined by connection data. */ |
||
| 768 | |||
| 769 | /* normal fill */ |
||
| 770 | if (itrp == 0) |
||
| 771 | { |
||
| 772 | for (ij = 0; ij < segj.jsno; ij++) |
||
| 773 | { |
||
| 774 | jx = segj.jco[ij] - 1; |
||
| 775 | cm[ipr + jx * nr] += |
||
| 776 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
| 777 | } |
||
| 778 | continue; |
||
| 779 | } |
||
| 780 | |||
| 781 | /* transposed fill */ |
||
| 782 | if (itrp != 2) |
||
| 783 | { |
||
| 784 | for (ij = 0; ij < segj.jsno; ij++) |
||
| 785 | { |
||
| 786 | jx = segj.jco[ij] - 1; |
||
| 787 | cm[jx + ipr * nr] += |
||
| 788 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
| 789 | } |
||
| 790 | continue; |
||
| 791 | } |
||
| 792 | |||
| 793 | /* trans. fill for c(ww) - test for elements for d(ww)prime. (=cw) */ |
||
| 794 | for (ij = 0; ij < segj.jsno; ij++) |
||
| 795 | { |
||
| 796 | jx = segj.jco[ij] - 1; |
||
| 797 | if (jx < nr) |
||
| 798 | cm[jx + ipr * nr] += |
||
| 799 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
| 800 | else |
||
| 801 | { |
||
| 802 | jx -= nr; |
||
| 803 | cw[jx * ipr * nw] += |
||
| 804 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
| 805 | } |
||
| 806 | |||
| 807 | } /* for( ij = 0; ij < segj.jsno; ij++ ) */ |
||
| 808 | |||
| 809 | } /* for( i = i1-1; i < i2; i++ ) */ |
||
| 810 | |||
| 811 | return; |
||
| 812 | } |
||
| 813 | |||
| 814 | /*-----------------------------------------------------------------------*/ |
||
| 815 | |||
| 816 | /* etmns fills the array e with the negative of the */ |
||
| 817 | /* electric field incident on the structure. e is the */ |
||
| 818 | /* right hand side of the matrix equation. */ |
||
| 819 | void etmns ( |
||
| 820 | double p1, |
||
| 821 | double p2, |
||
| 822 | double p3, |
||
| 823 | double p4, |
||
| 824 | double p5, |
||
| 825 | double p6, |
||
| 826 | int ipr, |
||
| 827 | complex double *e) |
||
| 828 | { |
||
| 829 | int i, is, i1, i2 = 0, neq; |
||
| 830 | double cth, sth, cph, sph, cet, set, pxl, pyl, pzl, wx; |
||
| 831 | double wy, wz, qx, qy, qz, arg, ds, dsh, rs, r; |
||
| 832 | complex double cx, cy, cz, er, et, ezh, erh, rrv = CPLX_00, rrh = CPLX_00, tt1, tt2; |
||
| 833 | |||
| 834 | neq = data.n + 2 * data.m; |
||
| 835 | vsorc.nqds = 0; |
||
| 836 | |||
| 837 | /* applied field of voltage sources for transmitting case */ |
||
| 838 | if ((ipr == 0) || (ipr == 5)) |
||
| 839 | { |
||
| 840 | for (i = 0; i < neq; i++) |
||
| 841 | e[i] = CPLX_00; |
||
| 842 | |||
| 843 | if (vsorc.nsant != 0) |
||
| 844 | { |
||
| 845 | for (i = 0; i < vsorc.nsant; i++) |
||
| 846 | { |
||
| 847 | is = vsorc.isant[i] - 1; |
||
| 848 | e[is] = -vsorc.vsant[i] / (data.si[is] * data.wlam); |
||
| 849 | } |
||
| 850 | } |
||
| 851 | |||
| 852 | if (vsorc.nvqd == 0) |
||
| 853 | return; |
||
| 854 | |||
| 855 | for (i = 0; i < vsorc.nvqd; i++) |
||
| 856 | { |
||
| 857 | is = vsorc.ivqd[i]; |
||
| 858 | qdsrc (is, vsorc.vqd[i], e); |
||
| 859 | } |
||
| 860 | return; |
||
| 861 | |||
| 862 | } /* if( (ipr == 0) || (ipr == 5) ) */ |
||
| 863 | |||
| 864 | /* incident plane wave, linearly polarized. */ |
||
| 865 | if (ipr <= 3) |
||
| 866 | { |
||
| 867 | cth = cosl (p1); |
||
| 868 | sth = sinl (p1); |
||
| 869 | cph = cosl (p2); |
||
| 870 | sph = sinl (p2); |
||
| 871 | cet = cosl (p3); |
||
| 872 | set = sinl (p3); |
||
| 873 | pxl = cth * cph * cet - sph * set; |
||
| 874 | pyl = cth * sph * cet + cph * set; |
||
| 875 | pzl = -sth * cet; |
||
| 876 | wx = -sth * cph; |
||
| 877 | wy = -sth * sph; |
||
| 878 | wz = -cth; |
||
| 879 | qx = wy * pzl - wz * pyl; |
||
| 880 | qy = wz * pxl - wx * pzl; |
||
| 881 | qz = wx * pyl - wy * pxl; |
||
| 882 | |||
| 883 | if (gnd.ksymp != 1) |
||
| 884 | { |
||
| 885 | if (gnd.iperf != 1) |
||
| 886 | { |
||
| 887 | rrv = csqrtl (1. - gnd.zrati * gnd.zrati * sth * sth); |
||
| 888 | rrh = gnd.zrati * cth; |
||
| 889 | rrh = (rrh - rrv) / (rrh + rrv); |
||
| 890 | rrv = gnd.zrati * rrv; |
||
| 891 | rrv = -(cth - rrv) / (cth + rrv); |
||
| 892 | } |
||
| 893 | else |
||
| 894 | { |
||
| 895 | rrv = -CPLX_10; |
||
| 896 | rrh = -CPLX_10; |
||
| 897 | } /* if( gnd.iperf != 1) */ |
||
| 898 | |||
| 899 | } /* if( gnd.ksymp != 1) */ |
||
| 900 | |||
| 901 | if (ipr == 1) |
||
| 902 | { |
||
| 903 | if (data.n != 0) |
||
| 904 | { |
||
| 905 | for (i = 0; i < data.n; i++) |
||
| 906 | { |
||
| 907 | arg = -TP * (wx * data.x[i] + wy * data.y[i] + |
||
| 908 | wz * data.z[i]); |
||
| 909 | e[i] = -(pxl * data.cab[i] + pyl * data.sab[i] + |
||
| 910 | pzl * data.salp[i]) * |
||
| 911 | cmplx (cosl (arg), sinl (arg)); |
||
| 912 | } |
||
| 913 | |||
| 914 | if (gnd.ksymp != 1) |
||
| 915 | { |
||
| 916 | tt1 = (pyl * cph - pxl * sph) * (rrh - rrv); |
||
| 917 | cx = rrv * pxl - tt1 * sph; |
||
| 918 | cy = rrv * pyl + tt1 * cph; |
||
| 919 | cz = -rrv * pzl; |
||
| 920 | |||
| 921 | for (i = 0; i < data.n; i++) |
||
| 922 | { |
||
| 923 | arg = -TP * (wx * data.x[i] + wy * data.y[i] - |
||
| 924 | wz * data.z[i]); |
||
| 925 | e[i] = e[i] - |
||
| 926 | (cx * data.cab[i] + cy * data.sab[i] + |
||
| 927 | cz * data.salp[i]) * |
||
| 928 | cmplx (cosl (arg), sinl (arg)); |
||
| 929 | } |
||
| 930 | |||
| 931 | } /* if( gnd.ksymp != 1) */ |
||
| 932 | |||
| 933 | } /* if( data.n != 0) */ |
||
| 934 | |||
| 935 | if (data.m == 0) |
||
| 936 | return; |
||
| 937 | |||
| 938 | i = -1; |
||
| 939 | i1 = data.n - 2; |
||
| 940 | for (is = 0; is < data.m; is++) |
||
| 941 | { |
||
| 942 | i++; |
||
| 943 | i1 += 2; |
||
| 944 | i2 = i1 + 1; |
||
| 945 | arg = -TP * |
||
| 946 | (wx * data.px[i] + wy * data.py[i] + wz * data.pz[i]); |
||
| 947 | tt1 = cmplx (cosl (arg), sinl (arg)) * data.psalp[i] * RETA; |
||
| 948 | e[i2] = |
||
| 949 | (qx * data.t1x[i] + qy * data.t1y[i] + qz * data.t1z[i]) * |
||
| 950 | tt1; |
||
| 951 | e[i1] = |
||
| 952 | (qx * data.t2x[i] + qy * data.t2y[i] + qz * data.t2z[i]) * |
||
| 953 | tt1; |
||
| 954 | } |
||
| 955 | |||
| 956 | if (gnd.ksymp == 1) |
||
| 957 | return; |
||
| 958 | |||
| 959 | tt1 = (qy * cph - qx * sph) * (rrv - rrh); |
||
| 960 | cx = -(rrh * qx - tt1 * sph); |
||
| 961 | cy = -(rrh * qy + tt1 * cph); |
||
| 962 | cz = rrh * qz; |
||
| 963 | |||
| 964 | i = -1; |
||
| 965 | i1 = data.n - 2; |
||
| 966 | for (is = 0; is < data.m; is++) |
||
| 967 | { |
||
| 968 | i++; |
||
| 969 | i1 += 2; |
||
| 970 | i2 = i1 + 1; |
||
| 971 | arg = -TP * |
||
| 972 | (wx * data.px[i] + wy * data.py[i] - wz * data.pz[i]); |
||
| 973 | tt1 = cmplx (cosl (arg), sinl (arg)) * data.psalp[i] * RETA; |
||
| 974 | e[i2] = e[i2] + (cx * data.t1x[i] + cy * data.t1y[i] + |
||
| 975 | cz * data.t1z[i]) * |
||
| 976 | tt1; |
||
| 977 | e[i1] = e[i1] + (cx * data.t2x[i] + cy * data.t2y[i] + |
||
| 978 | cz * data.t2z[i]) * |
||
| 979 | tt1; |
||
| 980 | } |
||
| 981 | return; |
||
| 982 | |||
| 983 | } /* if( ipr == 1) */ |
||
| 984 | |||
| 985 | /* incident plane wave, elliptic polarization. */ |
||
| 986 | tt1 = -(CPLX_01) *p6; |
||
| 987 | if (ipr == 3) |
||
| 988 | tt1 = -tt1; |
||
| 989 | |||
| 990 | if (data.n != 0) |
||
| 991 | { |
||
| 992 | cx = pxl + tt1 * qx; |
||
| 993 | cy = pyl + tt1 * qy; |
||
| 994 | cz = pzl + tt1 * qz; |
||
| 995 | |||
| 996 | for (i = 0; i < data.n; i++) |
||
| 997 | { |
||
| 998 | arg = -TP * (wx * data.x[i] + wy * data.y[i] + wz * data.z[i]); |
||
| 999 | e[i] = -(cx * data.cab[i] + cy * data.sab[i] + |
||
| 1000 | cz * data.salp[i]) * |
||
| 1001 | cmplx (cosl (arg), sinl (arg)); |
||
| 1002 | } |
||
| 1003 | |||
| 1004 | if (gnd.ksymp != 1) |
||
| 1005 | { |
||
| 1006 | tt2 = (cy * cph - cx * sph) * (rrh - rrv); |
||
| 1007 | cx = rrv * cx - tt2 * sph; |
||
| 1008 | cy = rrv * cy + tt2 * cph; |
||
| 1009 | cz = -rrv * cz; |
||
| 1010 | |||
| 1011 | for (i = 0; i < data.n; i++) |
||
| 1012 | { |
||
| 1013 | arg = -TP * (wx * data.x[i] + wy * data.y[i] - |
||
| 1014 | wz * data.z[i]); |
||
| 1015 | e[i] = e[i] - (cx * data.cab[i] + cy * data.sab[i] + |
||
| 1016 | cz * data.salp[i]) * |
||
| 1017 | cmplx (cosl (arg), sinl (arg)); |
||
| 1018 | } |
||
| 1019 | |||
| 1020 | } /* if( gnd.ksymp != 1) */ |
||
| 1021 | |||
| 1022 | } /* if( n != 0) */ |
||
| 1023 | |||
| 1024 | if (data.m == 0) |
||
| 1025 | return; |
||
| 1026 | |||
| 1027 | cx = qx - tt1 * pxl; |
||
| 1028 | cy = qy - tt1 * pyl; |
||
| 1029 | cz = qz - tt1 * pzl; |
||
| 1030 | |||
| 1031 | i = -1; |
||
| 1032 | i1 = data.n - 2; |
||
| 1033 | for (is = 0; is < data.m; is++) |
||
| 1034 | { |
||
| 1035 | i++; |
||
| 1036 | i1 += 2; |
||
| 1037 | i2 = i1 + 1; |
||
| 1038 | arg = -TP * (wx * data.px[i] + wy * data.py[i] + wz * data.pz[i]); |
||
| 1039 | tt2 = cmplx (cosl (arg), sinl (arg)) * data.psalp[i] * RETA; |
||
| 1040 | e[i2] = (cx * data.t1x[i] + cy * data.t1y[i] + cz * data.t1z[i]) * tt2; |
||
| 1041 | e[i1] = (cx * data.t2x[i] + cy * data.t2y[i] + cz * data.t2z[i]) * tt2; |
||
| 1042 | } |
||
| 1043 | |||
| 1044 | if (gnd.ksymp == 1) |
||
| 1045 | return; |
||
| 1046 | |||
| 1047 | tt1 = (cy * cph - cx * sph) * (rrv - rrh); |
||
| 1048 | cx = -(rrh * cx - tt1 * sph); |
||
| 1049 | cy = -(rrh * cy + tt1 * cph); |
||
| 1050 | cz = rrh * cz; |
||
| 1051 | |||
| 1052 | i = -1; |
||
| 1053 | i1 = data.n - 2; |
||
| 1054 | for (is = 0; is < data.m; is++) |
||
| 1055 | { |
||
| 1056 | i++; |
||
| 1057 | i1 += 2; |
||
| 1058 | i2 = i1 + 1; |
||
| 1059 | arg = -TP * (wx * data.px[i] + wy * data.py[i] - wz * data.pz[i]); |
||
| 1060 | tt1 = cmplx (cosl (arg), sinl (arg)) * data.psalp[i] * RETA; |
||
| 1061 | e[i2] = e[i2] + |
||
| 1062 | (cx * data.t1x[i] + cy * data.t1y[i] + cz * data.t1z[i]) * tt1; |
||
| 1063 | e[i1] = e[i1] + |
||
| 1064 | (cx * data.t2x[i] + cy * data.t2y[i] + cz * data.t2z[i]) * tt1; |
||
| 1065 | } |
||
| 1066 | |||
| 1067 | return; |
||
| 1068 | |||
| 1069 | } /* if( ipr <= 3) */ |
||
| 1070 | |||
| 1071 | /* incident field of an elementary current source. */ |
||
| 1072 | wz = cosl (p4); |
||
| 1073 | wx = wz * cosl (p5); |
||
| 1074 | wy = wz * sinl (p5); |
||
| 1075 | wz = sinl (p4); |
||
| 1076 | ds = p6 * 59.958; |
||
| 1077 | dsh = p6 / (2. * TP); |
||
| 1078 | |||
| 1079 | is = 0; |
||
| 1080 | i1 = data.n - 2; |
||
| 1081 | for (i = 0; i < data.npm; i++) |
||
| 1082 | { |
||
| 1083 | if (i >= data.n) |
||
| 1084 | { |
||
| 1085 | i1 += 2; |
||
| 1086 | i2 = i1 + 1; |
||
| 1087 | pxl = data.px[is] - p1; |
||
| 1088 | pyl = data.py[is] - p2; |
||
| 1089 | pzl = data.pz[is] - p3; |
||
| 1090 | } |
||
| 1091 | else |
||
| 1092 | { |
||
| 1093 | pxl = data.x[i] - p1; |
||
| 1094 | pyl = data.y[i] - p2; |
||
| 1095 | pzl = data.z[i] - p3; |
||
| 1096 | } |
||
| 1097 | |||
| 1098 | rs = pxl * pxl + pyl * pyl + pzl * pzl; |
||
| 1099 | if (rs < 1.0e-30) |
||
| 1100 | continue; |
||
| 1101 | |||
| 1102 | r = sqrtl (rs); |
||
| 1103 | pxl = pxl / r; |
||
| 1104 | pyl = pyl / r; |
||
| 1105 | pzl = pzl / r; |
||
| 1106 | cth = pxl * wx + pyl * wy + pzl * wz; |
||
| 1107 | sth = sqrtl (1. - cth * cth); |
||
| 1108 | qx = pxl - wx * cth; |
||
| 1109 | qy = pyl - wy * cth; |
||
| 1110 | qz = pzl - wz * cth; |
||
| 1111 | |||
| 1112 | arg = sqrtl (qx * qx + qy * qy + qz * qz); |
||
| 1113 | if (arg >= 1.e-30) |
||
| 1114 | { |
||
| 1115 | qx = qx / arg; |
||
| 1116 | qy = qy / arg; |
||
| 1117 | qz = qz / arg; |
||
| 1118 | } |
||
| 1119 | else |
||
| 1120 | { |
||
| 1121 | qx = 1.; |
||
| 1122 | qy = 0.; |
||
| 1123 | qz = 0.; |
||
| 1124 | |||
| 1125 | } /* if( arg >= 1.e-30) */ |
||
| 1126 | |||
| 1127 | arg = -TP * r; |
||
| 1128 | tt1 = cmplx (cosl (arg), sinl (arg)); |
||
| 1129 | |||
| 1130 | if (i < data.n) |
||
| 1131 | { |
||
| 1132 | tt2 = cmplx (1.0, -1.0 / (r * TP)) / rs; |
||
| 1133 | er = ds * tt1 * tt2 * cth; |
||
| 1134 | et = .5 * ds * tt1 * ((CPLX_01) *TP / r + tt2) * sth; |
||
| 1135 | ezh = er * cth - et * sth; |
||
| 1136 | erh = er * sth + et * cth; |
||
| 1137 | cx = ezh * wx + erh * qx; |
||
| 1138 | cy = ezh * wy + erh * qy; |
||
| 1139 | cz = ezh * wz + erh * qz; |
||
| 1140 | e[i] = -(cx * data.cab[i] + cy * data.sab[i] + cz * data.salp[i]); |
||
| 1141 | } |
||
| 1142 | else |
||
| 1143 | { |
||
| 1144 | pxl = wy * qz - wz * qy; |
||
| 1145 | pyl = wz * qx - wx * qz; |
||
| 1146 | pzl = wx * qy - wy * qx; |
||
| 1147 | tt2 = dsh * tt1 * cmplx (1. / r, TP) / r * sth * data.psalp[is]; |
||
| 1148 | cx = tt2 * pxl; |
||
| 1149 | cy = tt2 * pyl; |
||
| 1150 | cz = tt2 * pzl; |
||
| 1151 | e[i2] = cx * data.t1x[is] + cy * data.t1y[is] + cz * data.t1z[is]; |
||
| 1152 | e[i1] = cx * data.t2x[is] + cy * data.t2y[is] + cz * data.t2z[is]; |
||
| 1153 | is++; |
||
| 1154 | } /* if( i < data.n) */ |
||
| 1155 | |||
| 1156 | } /* for( i = 0; i < npm; i++ ) */ |
||
| 1157 | |||
| 1158 | return; |
||
| 1159 | } |
||
| 1160 | |||
| 1161 | /*-----------------------------------------------------------------------*/ |
||
| 1162 | |||
| 1163 | /* subroutine to factor a matrix into a unit lower triangular matrix */ |
||
| 1164 | /* and an upper triangular matrix using the gauss-doolittle algorithm */ |
||
| 1165 | /* presented on pages 411-416 of a. ralston--a first course in */ |
||
| 1166 | /* numerical analysis. comments below refer to comments in ralstons */ |
||
| 1167 | /* text. (matrix transposed.) */ |
||
| 1168 | |||
| 1169 | void factr (int n, complex double *a, int *ip, int ndim) |
||
| 1170 | { |
||
| 1171 | int r, rm1, rp1, pj, pr, iflg, k, j, jp1, i; |
||
| 1172 | double dmax, elmag; |
||
| 1173 | complex double arj, *scm = NULL; |
||
| 1174 | |||
| 1175 | /* Allocate to scratch memory */ |
||
| 1176 | mem_alloc ((void *) &scm, data.np2m * sizeof (complex double)); |
||
| 1177 | |||
| 1178 | /* Un-transpose the matrix for Gauss elimination */ |
||
| 1179 | for (i = 1; i < n; i++) |
||
| 1180 | for (j = 0; j < i; j++) |
||
| 1181 | { |
||
| 1182 | arj = a[i + j * ndim]; |
||
| 1183 | a[i + j * ndim] = a[j + i * ndim]; |
||
| 1184 | a[j + i * ndim] = arj; |
||
| 1185 | } |
||
| 1186 | |||
| 1187 | iflg = FALSE; |
||
| 1188 | /* step 1 */ |
||
| 1189 | for (r = 0; r < n; r++) |
||
| 1190 | { |
||
| 1191 | for (k = 0; k < n; k++) |
||
| 1192 | scm[k] = a[k + r * ndim]; |
||
| 1193 | |||
| 1194 | /* steps 2 and 3 */ |
||
| 1195 | rm1 = r; |
||
| 1196 | if (rm1 > 0) |
||
| 1197 | { |
||
| 1198 | for (j = 0; j < rm1; j++) |
||
| 1199 | { |
||
| 1200 | pj = ip[j] - 1; |
||
| 1201 | arj = scm[pj]; |
||
| 1202 | a[j + r * ndim] = arj; |
||
| 1203 | scm[pj] = scm[j]; |
||
| 1204 | jp1 = j + 1; |
||
| 1205 | |||
| 1206 | for (i = jp1; i < n; i++) |
||
| 1207 | scm[i] -= a[i + j * ndim] * arj; |
||
| 1208 | |||
| 1209 | } /* for( j = 0; j < rm1; j++ ) */ |
||
| 1210 | |||
| 1211 | } /* if( rm1 >= 0.) */ |
||
| 1212 | |||
| 1213 | /* step 4 */ |
||
| 1214 | dmax = creal (scm[r] * conjl (scm[r])); |
||
| 1215 | |||
| 1216 | rp1 = r + 1; |
||
| 1217 | ip[r] = rp1; |
||
| 1218 | if (rp1 < n) |
||
| 1219 | { |
||
| 1220 | for (i = rp1; i < n; i++) |
||
| 1221 | { |
||
| 1222 | elmag = creal (scm[i] * conjl (scm[i])); |
||
| 1223 | if (elmag >= dmax) |
||
| 1224 | { |
||
| 1225 | dmax = elmag; |
||
| 1226 | ip[r] = i + 1; |
||
| 1227 | } |
||
| 1228 | } |
||
| 1229 | } /* if( rp1 < n) */ |
||
| 1230 | |||
| 1231 | if (dmax < 1.e-10) |
||
| 1232 | iflg = TRUE; |
||
| 1233 | |||
| 1234 | pr = ip[r] - 1; |
||
| 1235 | a[r + r * ndim] = scm[pr]; |
||
| 1236 | scm[pr] = scm[r]; |
||
| 1237 | |||
| 1238 | /* step 5 */ |
||
| 1239 | if (rp1 < n) |
||
| 1240 | { |
||
| 1241 | arj = 1. / a[r + r * ndim]; |
||
| 1242 | |||
| 1243 | for (i = rp1; i < n; i++) |
||
| 1244 | a[i + r * ndim] = scm[i] * arj; |
||
| 1245 | } |
||
| 1246 | |||
| 1247 | if (iflg == TRUE) |
||
| 1248 | { |
||
| 1249 | fprintf (output_fp, "\n PIVOT(%d)= %16.8E", r, dmax); |
||
| 1250 | iflg = FALSE; |
||
| 1251 | } |
||
| 1252 | |||
| 1253 | } /* for( r=0; r < n; r++ ) */ |
||
| 1254 | |||
| 1255 | free_ptr ((void *) &scm); |
||
| 1256 | |||
| 1257 | return; |
||
| 1258 | } |
||
| 1259 | |||
| 1260 | /*-----------------------------------------------------------------------*/ |
||
| 1261 | |||
| 1262 | /* factrs, for symmetric structure, transforms submatricies to form */ |
||
| 1263 | /* matricies of the symmetric modes and calls routine to factor */ |
||
| 1264 | /* matricies. if no symmetry, the routine is called to factor the */ |
||
| 1265 | /* complete matrix. */ |
||
| 1266 | void factrs (int np, int nrow, complex double *a, int *ip) |
||
| 1267 | { |
||
| 1268 | int kk, ka; |
||
| 1269 | |||
| 1270 | smat.nop = nrow / np; |
||
| 1271 | for (kk = 0; kk < smat.nop; kk++) |
||
| 1272 | { |
||
| 1273 | ka = kk * np; |
||
| 1274 | factr (np, &a[ka], &ip[ka], nrow); |
||
| 1275 | } |
||
| 1276 | return; |
||
| 1277 | } |
||
| 1278 | |||
| 1279 | /*-----------------------------------------------------------------------*/ |
||
| 1280 | |||
| 1281 | /* fblock sets parameters for out-of-core */ |
||
| 1282 | /* solution for the primary matrix (a) */ |
||
| 1283 | void fblock (int nrow, int ncol, int imax, int ipsym) |
||
| 1284 | { |
||
| 1285 | int i, j, k, ka, kk; |
||
| 1286 | double phaz, arg; |
||
| 1287 | complex double deter; |
||
| 1288 | |||
| 1289 | if (nrow * ncol <= imax) |
||
| 1290 | { |
||
| 1291 | matpar.npblk = nrow; |
||
| 1292 | matpar.nlast = nrow; |
||
| 1293 | matpar.imat = nrow * ncol; |
||
| 1294 | |||
| 1295 | if (nrow == ncol) |
||
| 1296 | { |
||
| 1297 | matpar.icase = 1; |
||
| 1298 | return; |
||
| 1299 | } |
||
| 1300 | else |
||
| 1301 | matpar.icase = 2; |
||
| 1302 | |||
| 1303 | } /* if( nrow*ncol <= imax) */ |
||
| 1304 | |||
| 1305 | smat.nop = ncol / nrow; |
||
| 1306 | if (smat.nop * nrow != ncol) |
||
| 1307 | { |
||
| 1308 | fprintf (output_fp, "\n SYMMETRY ERROR - NROW: %d NCOL: %d", nrow, ncol); |
||
| 1309 | stop (-1); |
||
| 1310 | } |
||
| 1311 | |||
| 1312 | /* set up smat.ssx matrix for rotational symmetry. */ |
||
| 1313 | if (ipsym <= 0) |
||
| 1314 | { |
||
| 1315 | phaz = TP / smat.nop; |
||
| 1316 | |||
| 1317 | for (i = 1; i < smat.nop; i++) |
||
| 1318 | { |
||
| 1319 | for (j = i; j < smat.nop; j++) |
||
| 1320 | { |
||
| 1321 | arg = phaz * (double) i * (double) j; |
||
| 1322 | smat.ssx[i + j * smat.nop] = cmplx (cosl (arg), sinl (arg)); |
||
| 1323 | smat.ssx[j + i * smat.nop] = smat.ssx[i + j * smat.nop]; |
||
| 1324 | } |
||
| 1325 | } |
||
| 1326 | return; |
||
| 1327 | |||
| 1328 | } /* if( ipsym <= 0) */ |
||
| 1329 | |||
| 1330 | /* set up smat.ssx matrix for plane symmetry */ |
||
| 1331 | kk = 1; |
||
| 1332 | smat.ssx[0] = CPLX_10; |
||
| 1333 | |||
| 1334 | k = 2; |
||
| 1335 | for (ka = 1; k != smat.nop; ka++) |
||
| 1336 | k *= 2; |
||
| 1337 | |||
| 1338 | for (k = 0; k < ka; k++) |
||
| 1339 | { |
||
| 1340 | for (i = 0; i < kk; i++) |
||
| 1341 | { |
||
| 1342 | for (j = 0; j < kk; j++) |
||
| 1343 | { |
||
| 1344 | deter = smat.ssx[i + j * smat.nop]; |
||
| 1345 | smat.ssx[i + (j + kk) * smat.nop] = deter; |
||
| 1346 | smat.ssx[i + kk + (j + kk) * smat.nop] = -deter; |
||
| 1347 | smat.ssx[i + kk + j * smat.nop] = deter; |
||
| 1348 | } |
||
| 1349 | } |
||
| 1350 | kk *= 2; |
||
| 1351 | |||
| 1352 | } /* for( k = 0; k < ka; k++ ) */ |
||
| 1353 | |||
| 1354 | return; |
||
| 1355 | } |
||
| 1356 | |||
| 1357 | /*-----------------------------------------------------------------------*/ |
||
| 1358 | |||
| 1359 | /* subroutine to solve the matrix equation lu*x=b where l is a unit */ |
||
| 1360 | /* lower triangular matrix and u is an upper triangular matrix both */ |
||
| 1361 | /* of which are stored in a. the rhs vector b is input and the */ |
||
| 1362 | /* solution is returned through vector b. (matrix transposed. */ |
||
| 1363 | void solve (int n, complex double *a, int *ip, complex double *b, int ndim) |
||
| 1364 | { |
||
| 1365 | int i, ip1, j, k, pia; |
||
| 1366 | complex double sum, *scm = NULL; |
||
| 1367 | |||
| 1368 | /* Allocate to scratch memory */ |
||
| 1369 | mem_alloc ((void *) &scm, data.np2m * sizeof (complex double)); |
||
| 1370 | |||
| 1371 | /* forward substitution */ |
||
| 1372 | for (i = 0; i < n; i++) |
||
| 1373 | { |
||
| 1374 | pia = ip[i] - 1; |
||
| 1375 | scm[i] = b[pia]; |
||
| 1376 | b[pia] = b[i]; |
||
| 1377 | ip1 = i + 1; |
||
| 1378 | |||
| 1379 | if (ip1 < n) |
||
| 1380 | for (j = ip1; j < n; j++) |
||
| 1381 | b[j] -= a[j + i * ndim] * scm[i]; |
||
| 1382 | } |
||
| 1383 | |||
| 1384 | /* backward substitution */ |
||
| 1385 | for (k = 0; k < n; k++) |
||
| 1386 | { |
||
| 1387 | i = n - k - 1; |
||
| 1388 | sum = CPLX_00; |
||
| 1389 | ip1 = i + 1; |
||
| 1390 | |||
| 1391 | if (ip1 < n) |
||
| 1392 | for (j = ip1; j < n; j++) |
||
| 1393 | sum += a[i + j * ndim] * b[j]; |
||
| 1394 | |||
| 1395 | b[i] = (scm[i] - sum) / a[i + i * ndim]; |
||
| 1396 | } |
||
| 1397 | |||
| 1398 | free_ptr ((void *) &scm); |
||
| 1399 | |||
| 1400 | return; |
||
| 1401 | } |
||
| 1402 | |||
| 1403 | /*-----------------------------------------------------------------------*/ |
||
| 1404 | |||
| 1405 | /* subroutine solves, for symmetric structures, handles the */ |
||
| 1406 | /* transformation of the right hand side vector and solution */ |
||
| 1407 | /* of the matrix eq. */ |
||
| 1408 | void solves ( |
||
| 1409 | complex double *a, |
||
| 1410 | int *ip, |
||
| 1411 | complex double *b, |
||
| 1412 | int neq, |
||
| 1413 | int nrh, |
||
| 1414 | int np, |
||
| 1415 | int n, |
||
| 1416 | int mp, |
||
| 1417 | int m) |
||
| 1418 | { |
||
| 1419 | int npeq, nrow, ic, i, kk, ia, ib, j, k; |
||
| 1420 | double fnop, fnorm; |
||
| 1421 | complex double sum, *scm = NULL; |
||
| 1422 | |||
| 1423 | npeq = np + 2 * mp; |
||
| 1424 | smat.nop = neq / npeq; |
||
| 1425 | fnop = smat.nop; |
||
| 1426 | fnorm = 1. / fnop; |
||
| 1427 | nrow = neq; |
||
| 1428 | |||
| 1429 | /* Allocate to scratch memory */ |
||
| 1430 | mem_alloc ((void *) &scm, data.np2m * sizeof (complex double)); |
||
| 1431 | |||
| 1432 | if (smat.nop != 1) |
||
| 1433 | { |
||
| 1434 | for (ic = 0; ic < nrh; ic++) |
||
| 1435 | { |
||
| 1436 | if ((n != 0) && (m != 0)) |
||
| 1437 | { |
||
| 1438 | for (i = 0; i < neq; i++) |
||
| 1439 | scm[i] = b[i + ic * neq]; |
||
| 1440 | |||
| 1441 | kk = 2 * mp; |
||
| 1442 | ia = np - 1; |
||
| 1443 | ib = n - 1; |
||
| 1444 | j = np - 1; |
||
| 1445 | |||
| 1446 | for (k = 0; k < smat.nop; k++) |
||
| 1447 | { |
||
| 1448 | if (k != 0) |
||
| 1449 | { |
||
| 1450 | for (i = 0; i < np; i++) |
||
| 1451 | { |
||
| 1452 | ia++; |
||
| 1453 | j++; |
||
| 1454 | b[j + ic * neq] = scm[ia]; |
||
| 1455 | } |
||
| 1456 | |||
| 1457 | if (k == (smat.nop - 1)) |
||
| 1458 | continue; |
||
| 1459 | |||
| 1460 | } /* if( k != 0 ) */ |
||
| 1461 | |||
| 1462 | for (i = 0; i < kk; i++) |
||
| 1463 | { |
||
| 1464 | ib++; |
||
| 1465 | j++; |
||
| 1466 | b[j + ic * neq] = scm[ib]; |
||
| 1467 | } |
||
| 1468 | |||
| 1469 | } /* for( k = 0; k < smat.nop; k++ ) */ |
||
| 1470 | |||
| 1471 | } /* if( (n != 0) && (m != 0) ) */ |
||
| 1472 | |||
| 1473 | /* transform matrix eq. rhs vector according to symmetry modes */ |
||
| 1474 | for (i = 0; i < npeq; i++) |
||
| 1475 | { |
||
| 1476 | for (k = 0; k < smat.nop; k++) |
||
| 1477 | { |
||
| 1478 | ia = i + k * npeq; |
||
| 1479 | scm[k] = b[ia + ic * neq]; |
||
| 1480 | } |
||
| 1481 | |||
| 1482 | sum = scm[0]; |
||
| 1483 | for (k = 1; k < smat.nop; k++) |
||
| 1484 | sum += scm[k]; |
||
| 1485 | |||
| 1486 | b[i + ic * neq] = sum * fnorm; |
||
| 1487 | |||
| 1488 | for (k = 1; k < smat.nop; k++) |
||
| 1489 | { |
||
| 1490 | ia = i + k * npeq; |
||
| 1491 | sum = scm[0]; |
||
| 1492 | |||
| 1493 | for (j = 1; j < smat.nop; j++) |
||
| 1494 | sum += scm[j] * |
||
| 1495 | conjl (smat.ssx[k + j * smat.nop]); |
||
| 1496 | |||
| 1497 | b[ia + ic * neq] = sum * fnorm; |
||
| 1498 | } |
||
| 1499 | |||
| 1500 | } /* for( i = 0; i < npeq; i++ ) */ |
||
| 1501 | |||
| 1502 | } /* for( ic = 0; ic < nrh; ic++ ) */ |
||
| 1503 | |||
| 1504 | } /* if( smat.nop != 1) */ |
||
| 1505 | |||
| 1506 | /* solve each mode equation */ |
||
| 1507 | for (kk = 0; kk < smat.nop; kk++) |
||
| 1508 | { |
||
| 1509 | ia = kk * npeq; |
||
| 1510 | ib = ia; |
||
| 1511 | |||
| 1512 | for (ic = 0; ic < nrh; ic++) |
||
| 1513 | solve (npeq, &a[ib], &ip[ia], &b[ia + ic * neq], nrow); |
||
| 1514 | |||
| 1515 | } /* for( kk = 0; kk < smat.nop; kk++ ) */ |
||
| 1516 | |||
| 1517 | if (smat.nop == 1) |
||
| 1518 | { |
||
| 1519 | free_ptr ((void *) &scm); |
||
| 1520 | return; |
||
| 1521 | } |
||
| 1522 | |||
| 1523 | /* inverse transform the mode solutions */ |
||
| 1524 | for (ic = 0; ic < nrh; ic++) |
||
| 1525 | { |
||
| 1526 | for (i = 0; i < npeq; i++) |
||
| 1527 | { |
||
| 1528 | for (k = 0; k < smat.nop; k++) |
||
| 1529 | { |
||
| 1530 | ia = i + k * npeq; |
||
| 1531 | scm[k] = b[ia + ic * neq]; |
||
| 1532 | } |
||
| 1533 | |||
| 1534 | sum = scm[0]; |
||
| 1535 | for (k = 1; k < smat.nop; k++) |
||
| 1536 | sum += scm[k]; |
||
| 1537 | |||
| 1538 | b[i + ic * neq] = sum; |
||
| 1539 | for (k = 1; k < smat.nop; k++) |
||
| 1540 | { |
||
| 1541 | ia = i + k * npeq; |
||
| 1542 | sum = scm[0]; |
||
| 1543 | |||
| 1544 | for (j = 1; j < smat.nop; j++) |
||
| 1545 | sum += scm[j] * smat.ssx[k + j * smat.nop]; |
||
| 1546 | |||
| 1547 | b[ia + ic * neq] = sum; |
||
| 1548 | } |
||
| 1549 | |||
| 1550 | } /* for( i = 0; i < npeq; i++ ) */ |
||
| 1551 | |||
| 1552 | if ((n == 0) || (m == 0)) |
||
| 1553 | continue; |
||
| 1554 | |||
| 1555 | for (i = 0; i < neq; i++) |
||
| 1556 | scm[i] = b[i + ic * neq]; |
||
| 1557 | |||
| 1558 | kk = 2 * mp; |
||
| 1559 | ia = np - 1; |
||
| 1560 | ib = n - 1; |
||
| 1561 | j = np - 1; |
||
| 1562 | |||
| 1563 | for (k = 0; k < smat.nop; k++) |
||
| 1564 | { |
||
| 1565 | if (k != 0) |
||
| 1566 | { |
||
| 1567 | for (i = 0; i < np; i++) |
||
| 1568 | { |
||
| 1569 | ia++; |
||
| 1570 | j++; |
||
| 1571 | b[ia + ic * neq] = scm[j]; |
||
| 1572 | } |
||
| 1573 | |||
| 1574 | if (k == smat.nop) |
||
| 1575 | continue; |
||
| 1576 | |||
| 1577 | } /* if( k != 0 ) */ |
||
| 1578 | |||
| 1579 | for (i = 0; i < kk; i++) |
||
| 1580 | { |
||
| 1581 | ib++; |
||
| 1582 | j++; |
||
| 1583 | b[ib + ic * neq] = scm[j]; |
||
| 1584 | } |
||
| 1585 | |||
| 1586 | } /* for( k = 0; k < smat.nop; k++ ) */ |
||
| 1587 | |||
| 1588 | } /* for( ic = 0; ic < nrh; ic++ ) */ |
||
| 1589 | |||
| 1590 | free_ptr ((void *) &scm); |
||
| 1591 | |||
| 1592 | return; |
||
| 1593 | } |
||
| 1594 | |||
| 1595 | /*-----------------------------------------------------------------------*/ |