Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /*** Translated to the C language by N. Kyriazis 20 Aug 2003 *** |
2 | |||
3 | Program NEC(input,tape5=input,output,tape11,tape12,tape13,tape14, |
||
4 | tape15,tape16,tape20,tape21) |
||
5 | |||
6 | Numerical Electromagnetics Code (NEC2) developed at Lawrence |
||
7 | Livermore lab., Livermore, CA. (contact G. Burke at 415-422-8414 |
||
8 | for problems with the NEC code. For problems with the vax implem- |
||
9 | entation, contact J. Breakall at 415-422-8196 or E. Domning at 415 |
||
10 | 422-5936) |
||
11 | file created 4/11/80. |
||
12 | |||
13 | ***********Notice********** |
||
14 | This computer code material was prepared as an account of work |
||
15 | sponsored by the United States government. Neither the United |
||
16 | States nor the United States Department Of Energy, nor any of |
||
17 | their employees, nor any of their contractors, subcontractors, |
||
18 | or their employees, makes any warranty, express or implied, or |
||
19 | assumes any legal liability or responsibility for the accuracy, |
||
20 | completeness or usefulness of any information, apparatus, product |
||
21 | or process disclosed, or represents that its use would not infringe |
||
22 | privately-owned rights. |
||
23 | |||
24 | *******************************************************************/ |
||
25 | |||
26 | #include "nec2c.h" |
||
27 | |||
28 | #include <omp.h> |
||
29 | |||
30 | /* common /data/ */ |
||
31 | extern data_t data; |
||
32 | |||
33 | /* common /dataj/ */ |
||
34 | extern dataj_t dataj; |
||
35 | |||
36 | /* common /matpar/ */ |
||
37 | extern matpar_t matpar; |
||
38 | |||
39 | /* common /segj/ */ |
||
40 | extern segj_t segj; |
||
41 | |||
42 | /* common /zload/ */ |
||
43 | extern zload_t zload; |
||
44 | |||
45 | /* common /smat/ */ |
||
46 | extern smat_t smat; |
||
47 | |||
48 | /* common /gnd/ */ |
||
49 | extern gnd_t gnd; |
||
50 | |||
51 | /* common /vsorc/ */ |
||
52 | extern vsorc_t vsorc; |
||
53 | |||
54 | /* pointers to input/output files */ |
||
55 | extern FILE *input_fp, *output_fp, *plot_fp; |
||
56 | |||
57 | /*-------------------------------------------------------------------*/ |
||
58 | |||
59 | /* cmset sets up the complex structure matrix in the array cm */ |
||
60 | void cmset (int nrow, complex double *cm, double rkhx, int iexkx) |
||
61 | { |
||
62 | int mp2, neq, npeq, it, i, j, i1, i2, in2; |
||
63 | // int iout; |
||
64 | int im1, im2, ist, ij, ipr, jss, jm1, jm2, jst, k, ka, kk; |
||
65 | complex double zaj, deter, *scm = NULL; |
||
66 | |||
67 | mp2 = 2 * data.mp; |
||
68 | npeq = data.np + mp2; |
||
69 | neq = data.n + 2 * data.m; |
||
70 | smat.nop = neq / npeq; |
||
71 | |||
72 | dataj.rkh = rkhx; |
||
73 | dataj.iexk = iexkx; |
||
74 | // iout=2* matpar.npblk* nrow; |
||
75 | it = matpar.nlast; |
||
76 | |||
77 | for (i = 0; i < nrow; i++) |
||
78 | for (j = 0; j < it; j++) |
||
79 | cm[i + j * nrow] = CPLX_00; |
||
80 | |||
81 | i1 = 1; |
||
82 | i2 = it; |
||
83 | in2 = i2; |
||
84 | |||
85 | if (in2 > data.np) |
||
86 | in2 = data.np; |
||
87 | |||
88 | im1 = i1 - data.np; |
||
89 | im2 = i2 - data.np; |
||
90 | |||
91 | if (im1 < 1) |
||
92 | im1 = 1; |
||
93 | |||
94 | ist = 1; |
||
95 | if (i1 <= data.np) |
||
96 | ist = data.np - i1 + 2; |
||
97 | |||
98 | /* wire source loop */ |
||
99 | if (data.n != 0) |
||
100 | { |
||
101 | for (j = 1; j <= data.n; j++) |
||
102 | { |
||
103 | trio (j); |
||
104 | for (i = 0; i < segj.jsno; i++) |
||
105 | { |
||
106 | ij = segj.jco[i]; |
||
107 | segj.jco[i] = ((ij - 1) / data.np) * mp2 + ij; |
||
108 | } |
||
109 | |||
110 | if (i1 <= in2) |
||
111 | cmww (j, i1, in2, cm, nrow, cm, nrow, 1); |
||
112 | |||
113 | if (im1 <= im2) |
||
114 | cmws (j, im1, im2, &cm[(ist - 1) * nrow], nrow, cm, nrow, 1); |
||
115 | |||
116 | /* matrix elements modified by loading */ |
||
117 | if (zload.nload == 0) |
||
118 | continue; |
||
119 | |||
120 | if (j > data.np) |
||
121 | continue; |
||
122 | |||
123 | ipr = j; |
||
124 | if ((ipr < 1) || (ipr > it)) |
||
125 | continue; |
||
126 | |||
127 | zaj = zload.zarray[j - 1]; |
||
128 | |||
129 | for (i = 0; i < segj.jsno; i++) |
||
130 | { |
||
131 | jss = segj.jco[i]; |
||
132 | cm[(jss - 1) + (ipr - 1) * nrow] -= |
||
133 | (segj.ax[i] + segj.cx[i]) * zaj; |
||
134 | } |
||
135 | |||
136 | } /* for( j = 1; j <= n; j++ ) */ |
||
137 | |||
138 | } /* if( n != 0) */ |
||
139 | |||
140 | if (data.m != 0) |
||
141 | { |
||
142 | /* matrix elements for patch current sources */ |
||
143 | jm1 = 1 - data.mp; |
||
144 | jm2 = 0; |
||
145 | jst = 1 - mp2; |
||
146 | |||
147 | for (i = 0; i < smat.nop; i++) |
||
148 | { |
||
149 | jm1 += data.mp; |
||
150 | jm2 += data.mp; |
||
151 | jst += npeq; |
||
152 | |||
153 | if (i1 <= in2) |
||
154 | cmsw (jm1, jm2, i1, in2, &cm[(jst - 1)], cm, 0, nrow, 1); |
||
155 | |||
156 | if (im1 <= im2) |
||
157 | cmss ( |
||
158 | jm1, |
||
159 | jm2, |
||
160 | im1, |
||
161 | im2, |
||
162 | &cm[(jst - 1) + (ist - 1) * nrow], |
||
163 | nrow, |
||
164 | 1); |
||
165 | } |
||
166 | |||
167 | } /* if( m != 0) */ |
||
168 | |||
169 | if (matpar.icase == 1) |
||
170 | return; |
||
171 | |||
172 | /* Allocate to scratch memory */ |
||
173 | mem_alloc ((void *) &scm, data.np2m * sizeof (complex double)); |
||
174 | |||
175 | /* combine elements for symmetry modes */ |
||
176 | for (i = 0; i < it; i++) |
||
177 | { |
||
178 | for (j = 0; j < npeq; j++) |
||
179 | { |
||
180 | for (k = 0; k < smat.nop; k++) |
||
181 | { |
||
182 | ka = j + k * npeq; |
||
183 | scm[k] = cm[ka + i * nrow]; |
||
184 | } |
||
185 | |||
186 | deter = scm[0]; |
||
187 | |||
188 | for (kk = 1; kk < smat.nop; kk++) |
||
189 | deter += scm[kk]; |
||
190 | |||
191 | cm[j + i * nrow] = deter; |
||
192 | |||
193 | for (k = 1; k < smat.nop; k++) |
||
194 | { |
||
195 | ka = j + k * npeq; |
||
196 | deter = scm[0]; |
||
197 | |||
198 | for (kk = 1; kk < smat.nop; kk++) |
||
199 | { |
||
200 | deter += scm[kk] * smat.ssx[k + kk * smat.nop]; |
||
201 | cm[ka + i * nrow] = deter; |
||
202 | } |
||
203 | |||
204 | } /* for( k = 1; k < smat.nop; k++ ) */ |
||
205 | |||
206 | } /* for( j = 0; j < npeq; j++ ) */ |
||
207 | |||
208 | } /* for( i = 0; i < it; i++ ) */ |
||
209 | |||
210 | free_ptr ((void *) &scm); |
||
211 | |||
212 | return; |
||
213 | } |
||
214 | |||
215 | /*-----------------------------------------------------------------------*/ |
||
216 | |||
217 | /* cmss computes matrix elements for surface-surface interactions. */ |
||
218 | void cmss (int j1, int j2, int im1, int im2, complex double *cm, int nrow, int itrp) |
||
219 | { |
||
220 | int i1, i2, icomp, ii1, i, il, ii2, jj1, j, jl, jj2; |
||
221 | double t1xi, t1yi, t1zi, t2xi, t2yi, t2zi, xi, yi, zi; |
||
222 | complex double g11, g12, g21, g22; |
||
223 | |||
224 | i1 = (im1 + 1) / 2; |
||
225 | i2 = (im2 + 1) / 2; |
||
226 | icomp = i1 * 2 - 3; |
||
227 | ii1 = -2; |
||
228 | if (icomp + 2 < im1) |
||
229 | ii1 = -3; |
||
230 | |||
231 | /* loop over observation patches */ |
||
232 | il = -1; |
||
233 | for (i = i1; i <= i2; i++) |
||
234 | { |
||
235 | il++; |
||
236 | icomp += 2; |
||
237 | ii1 += 2; |
||
238 | ii2 = ii1 + 1; |
||
239 | |||
240 | t1xi = data.t1x[il] * data.psalp[il]; |
||
241 | t1yi = data.t1y[il] * data.psalp[il]; |
||
242 | t1zi = data.t1z[il] * data.psalp[il]; |
||
243 | t2xi = data.t2x[il] * data.psalp[il]; |
||
244 | t2yi = data.t2y[il] * data.psalp[il]; |
||
245 | t2zi = data.t2z[il] * data.psalp[il]; |
||
246 | xi = data.px[il]; |
||
247 | yi = data.py[il]; |
||
248 | zi = data.pz[il]; |
||
249 | |||
250 | /* loop over source patches */ |
||
251 | jj1 = -2; |
||
252 | for (j = j1; j <= j2; j++) |
||
253 | { |
||
254 | jl = j - 1; |
||
255 | jj1 += 2; |
||
256 | jj2 = jj1 + 1; |
||
257 | |||
258 | dataj.s = data.pbi[jl]; |
||
259 | dataj.xj = data.px[jl]; |
||
260 | dataj.yj = data.py[jl]; |
||
261 | dataj.zj = data.pz[jl]; |
||
262 | dataj.t1xj = data.t1x[jl]; |
||
263 | dataj.t1yj = data.t1y[jl]; |
||
264 | dataj.t1zj = data.t1z[jl]; |
||
265 | dataj.t2xj = data.t2x[jl]; |
||
266 | dataj.t2yj = data.t2y[jl]; |
||
267 | dataj.t2zj = data.t2z[jl]; |
||
268 | |||
269 | hintg (xi, yi, zi); |
||
270 | |||
271 | g11 = -(t2xi * dataj.exk + t2yi * dataj.eyk + t2zi * dataj.ezk); |
||
272 | g12 = -(t2xi * dataj.exs + t2yi * dataj.eys + t2zi * dataj.ezs); |
||
273 | g21 = -(t1xi * dataj.exk + t1yi * dataj.eyk + t1zi * dataj.ezk); |
||
274 | g22 = -(t1xi * dataj.exs + t1yi * dataj.eys + t1zi * dataj.ezs); |
||
275 | |||
276 | if (i == j) |
||
277 | { |
||
278 | g11 -= .5; |
||
279 | g22 += .5; |
||
280 | } |
||
281 | |||
282 | /* normal fill */ |
||
283 | if (itrp == 0) |
||
284 | { |
||
285 | if (icomp >= im1) |
||
286 | { |
||
287 | cm[ii1 + jj1 * nrow] = g11; |
||
288 | cm[ii1 + jj2 * nrow] = g12; |
||
289 | } |
||
290 | |||
291 | if (icomp >= im2) |
||
292 | continue; |
||
293 | |||
294 | cm[ii2 + jj1 * nrow] = g21; |
||
295 | cm[ii2 + jj2 * nrow] = g22; |
||
296 | continue; |
||
297 | |||
298 | } /* if( itrp == 0) */ |
||
299 | |||
300 | /* transposed fill */ |
||
301 | if (icomp >= im1) |
||
302 | { |
||
303 | cm[jj1 + ii1 * nrow] = g11; |
||
304 | cm[jj2 + ii1 * nrow] = g12; |
||
305 | } |
||
306 | |||
307 | if (icomp >= im2) |
||
308 | continue; |
||
309 | |||
310 | cm[jj1 + ii2 * nrow] = g21; |
||
311 | cm[jj2 + ii2 * nrow] = g22; |
||
312 | |||
313 | } /* for( j = j1; j <= j2; j++ ) */ |
||
314 | |||
315 | } /* for( i = i1; i <= i2; i++ ) */ |
||
316 | |||
317 | return; |
||
318 | } |
||
319 | |||
320 | /*-----------------------------------------------------------------------*/ |
||
321 | |||
322 | /* computes matrix elements for e along wires due to patch current */ |
||
323 | void cmsw ( |
||
324 | int j1, |
||
325 | int j2, |
||
326 | int i1, |
||
327 | int i2, |
||
328 | complex double *cm, |
||
329 | complex double *cw, |
||
330 | int ncw, |
||
331 | int nrow, |
||
332 | int itrp) |
||
333 | { |
||
334 | // int neqs; |
||
335 | int k, icgo, i, ipch, jl, j, js, il, ip; |
||
336 | int jsnox; /* -1 offset to "jsno" for array indexing */ |
||
337 | double xi, yi, zi, cabi, sabi, salpi, fsign = 1., pyl, pxl; |
||
338 | complex double emel[9]; |
||
339 | |||
340 | // neqs= data.np2m; |
||
341 | jsnox = segj.jsno - 1; |
||
342 | |||
343 | if (itrp >= 0) |
||
344 | { |
||
345 | k = -1; |
||
346 | icgo = 0; |
||
347 | |||
348 | /* observation loop */ |
||
349 | for (i = i1 - 1; i < i2; i++) |
||
350 | { |
||
351 | k++; |
||
352 | xi = data.x[i]; |
||
353 | yi = data.y[i]; |
||
354 | zi = data.z[i]; |
||
355 | cabi = data.cab[i]; |
||
356 | sabi = data.sab[i]; |
||
357 | salpi = data.salp[i]; |
||
358 | ipch = 0; |
||
359 | |||
360 | if (data.icon1[i] >= PCHCON) |
||
361 | { |
||
362 | ipch = data.icon1[i] - PCHCON; |
||
363 | fsign = -1.; |
||
364 | } |
||
365 | |||
366 | if (data.icon2[i] >= PCHCON) |
||
367 | { |
||
368 | ipch = data.icon2[i] - PCHCON; |
||
369 | fsign = 1.; |
||
370 | } |
||
371 | |||
372 | /* source loop */ |
||
373 | jl = -1; |
||
374 | for (j = j1; j <= j2; j++) |
||
375 | { |
||
376 | jl += 2; |
||
377 | js = j - 1; |
||
378 | dataj.t1xj = data.t1x[js]; |
||
379 | dataj.t1yj = data.t1y[js]; |
||
380 | dataj.t1zj = data.t1z[js]; |
||
381 | dataj.t2xj = data.t2x[js]; |
||
382 | dataj.t2yj = data.t2y[js]; |
||
383 | dataj.t2zj = data.t2z[js]; |
||
384 | dataj.xj = data.px[js]; |
||
385 | dataj.yj = data.py[js]; |
||
386 | dataj.zj = data.pz[js]; |
||
387 | dataj.s = data.pbi[js]; |
||
388 | |||
389 | /* ground loop */ |
||
390 | for (ip = 1; ip <= gnd.ksymp; ip++) |
||
391 | { |
||
392 | dataj.ipgnd = ip; |
||
393 | |||
394 | if (((ipch == j) || (icgo != 0)) && (ip != 2)) |
||
395 | { |
||
396 | if (icgo <= 0) |
||
397 | { |
||
398 | pcint ( |
||
399 | xi, |
||
400 | yi, |
||
401 | zi, |
||
402 | cabi, |
||
403 | sabi, |
||
404 | salpi, |
||
405 | emel); |
||
406 | |||
407 | pyl = PI * data.si[i] * fsign; |
||
408 | pxl = sinl (pyl); |
||
409 | pyl = cosl (pyl); |
||
410 | dataj.exc = emel[8] * fsign; |
||
411 | |||
412 | trio (i + 1); |
||
413 | |||
414 | il = i - ncw; |
||
415 | if (i < data.np) |
||
416 | il += (il / data.np) * 2 * |
||
417 | data.mp; |
||
418 | |||
419 | if (itrp == 0) |
||
420 | cw[k + il * nrow] += |
||
421 | dataj.exc * |
||
422 | (segj.ax[jsnox] + |
||
423 | segj.bx[jsnox] * pxl + |
||
424 | segj.cx[jsnox] * pyl); |
||
425 | else |
||
426 | cw[il + k * nrow] += |
||
427 | dataj.exc * |
||
428 | (segj.ax[jsnox] + |
||
429 | segj.bx[jsnox] * pxl + |
||
430 | segj.cx[jsnox] * pyl); |
||
431 | |||
432 | } /* if( icgo <= 0 ) */ |
||
433 | |||
434 | if (itrp == 0) |
||
435 | { |
||
436 | cm[k + (jl - 1) * nrow] = emel[icgo]; |
||
437 | cm[k + jl * nrow] = emel[icgo + 4]; |
||
438 | } |
||
439 | else |
||
440 | { |
||
441 | cm[(jl - 1) + k * nrow] = emel[icgo]; |
||
442 | cm[jl + k * nrow] = emel[icgo + 4]; |
||
443 | } |
||
444 | |||
445 | icgo++; |
||
446 | if (icgo == 4) |
||
447 | icgo = 0; |
||
448 | |||
449 | continue; |
||
450 | |||
451 | } /* if( ((ipch == (j+1)) || (icgo != 0)) && (ip != 2) |
||
452 | ) */ |
||
453 | |||
454 | unere (xi, yi, zi); |
||
455 | |||
456 | /* normal fill */ |
||
457 | if (itrp == 0) |
||
458 | { |
||
459 | cm[k + (jl - 1) * nrow] += dataj.exk * cabi + |
||
460 | dataj.eyk * sabi + |
||
461 | dataj.ezk * salpi; |
||
462 | cm[k + jl * nrow] += dataj.exs * cabi + |
||
463 | dataj.eys * sabi + |
||
464 | dataj.ezs * salpi; |
||
465 | continue; |
||
466 | } |
||
467 | |||
468 | /* transposed fill */ |
||
469 | cm[(jl - 1) + k * nrow] += dataj.exk * cabi + |
||
470 | dataj.eyk * sabi + |
||
471 | dataj.ezk * salpi; |
||
472 | cm[jl + k * nrow] += dataj.exs * cabi + |
||
473 | dataj.eys * sabi + |
||
474 | dataj.ezs * salpi; |
||
475 | |||
476 | } /* for( ip = 1; ip <= gnd.ksymp; ip++ ) */ |
||
477 | |||
478 | } /* for( j = j1; j <= j2; j++ ) */ |
||
479 | |||
480 | } /* for( i = i1-1; i < i2; i++ ) */ |
||
481 | |||
482 | } /* if( itrp >= 0) */ |
||
483 | |||
484 | return; |
||
485 | } |
||
486 | |||
487 | /*-----------------------------------------------------------------------*/ |
||
488 | |||
489 | /* cmws computes matrix elements for wire-surface interactions */ |
||
490 | void cmws ( |
||
491 | int j, int i1, int i2, complex double *cm, int nr, complex double *cw, int nw, int itrp) |
||
492 | { |
||
493 | int ipr, i, ipatch, ik, js = 0, ij, jx; |
||
494 | double xi, yi, zi, tx, ty, tz; |
||
495 | complex double etk, ets, etc; |
||
496 | i = nw; |
||
497 | j--; |
||
498 | dataj.s = data.si[j]; |
||
499 | dataj.b = data.bi[j]; |
||
500 | dataj.xj = data.x[j]; |
||
501 | dataj.yj = data.y[j]; |
||
502 | dataj.zj = data.z[j]; |
||
503 | dataj.cabj = data.cab[j]; |
||
504 | dataj.sabj = data.sab[j]; |
||
505 | dataj.salpj = data.salp[j]; |
||
506 | |||
507 | /* observation loop */ |
||
508 | ipr = -1; |
||
509 | for (i = i1; i <= i2; i++) |
||
510 | { |
||
511 | ipr++; |
||
512 | ipatch = (i + 1) / 2; |
||
513 | ik = i - (i / 2) * 2; |
||
514 | |||
515 | if ((ik != 0) || (ipr == 0)) |
||
516 | { |
||
517 | js = ipatch - 1; |
||
518 | xi = data.px[js]; |
||
519 | yi = data.py[js]; |
||
520 | zi = data.pz[js]; |
||
521 | hsfld (xi, yi, zi, 0.); |
||
522 | |||
523 | if (ik != 0) |
||
524 | { |
||
525 | tx = data.t2x[js]; |
||
526 | ty = data.t2y[js]; |
||
527 | tz = data.t2z[js]; |
||
528 | } |
||
529 | else |
||
530 | { |
||
531 | tx = data.t1x[js]; |
||
532 | ty = data.t1y[js]; |
||
533 | tz = data.t1z[js]; |
||
534 | } |
||
535 | |||
536 | } /* if( (ik != 0) || (ipr == 0) ) */ |
||
537 | else |
||
538 | { |
||
539 | tx = data.t1x[js]; |
||
540 | ty = data.t1y[js]; |
||
541 | tz = data.t1z[js]; |
||
542 | |||
543 | } /* if( (ik != 0) || (ipr == 0) ) */ |
||
544 | |||
545 | etk = -(dataj.exk * tx + dataj.eyk * ty + dataj.ezk * tz) * data.psalp[js]; |
||
546 | ets = -(dataj.exs * tx + dataj.eys * ty + dataj.ezs * tz) * data.psalp[js]; |
||
547 | etc = -(dataj.exc * tx + dataj.eyc * ty + dataj.ezc * tz) * data.psalp[js]; |
||
548 | |||
549 | /* fill matrix elements. element locations */ |
||
550 | /* determined by connection data. */ |
||
551 | |||
552 | /* normal fill */ |
||
553 | if (itrp == 0) |
||
554 | { |
||
555 | for (ij = 0; ij < segj.jsno; ij++) |
||
556 | { |
||
557 | jx = segj.jco[ij] - 1; |
||
558 | cm[ipr + jx * nr] += |
||
559 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
560 | } |
||
561 | |||
562 | continue; |
||
563 | } /* if( itrp == 0) */ |
||
564 | |||
565 | /* transposed fill */ |
||
566 | if (itrp != 2) |
||
567 | { |
||
568 | for (ij = 0; ij < segj.jsno; ij++) |
||
569 | { |
||
570 | jx = segj.jco[ij] - 1; |
||
571 | cm[jx + ipr * nr] += |
||
572 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
573 | } |
||
574 | |||
575 | continue; |
||
576 | } /* if( itrp != 2) */ |
||
577 | |||
578 | /* transposed fill - c(ws) and d(ws)prime (=cw) */ |
||
579 | for (ij = 0; ij < segj.jsno; ij++) |
||
580 | { |
||
581 | jx = segj.jco[ij] - 1; |
||
582 | if (jx < nr) |
||
583 | cm[jx + ipr * nr] += |
||
584 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
585 | else |
||
586 | { |
||
587 | jx -= nr; |
||
588 | cw[jx + ipr * nr] += |
||
589 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
590 | } |
||
591 | } /* for( ij = 0; ij < segj.jsno; ij++ ) */ |
||
592 | |||
593 | } /* for( i = i1; i <= i2; i++ ) */ |
||
594 | |||
595 | return; |
||
596 | } |
||
597 | |||
598 | /*-----------------------------------------------------------------------*/ |
||
599 | |||
600 | /* cmww computes matrix elements for wire-wire interactions */ |
||
601 | void cmww ( |
||
602 | int j, int i1, int i2, complex double *cm, int nr, complex double *cw, int nw, int itrp) |
||
603 | { |
||
604 | int ipr, iprx, i, ij, jx; |
||
605 | double xi, yi, zi, ai, cabi, sabi, salpi; |
||
606 | complex double etk, ets, etc; |
||
607 | |||
608 | /* set source segment parameters */ |
||
609 | jx = j; |
||
610 | j--; |
||
611 | dataj.s = data.si[j]; |
||
612 | dataj.b = data.bi[j]; |
||
613 | dataj.xj = data.x[j]; |
||
614 | dataj.yj = data.y[j]; |
||
615 | dataj.zj = data.z[j]; |
||
616 | dataj.cabj = data.cab[j]; |
||
617 | dataj.sabj = data.sab[j]; |
||
618 | dataj.salpj = data.salp[j]; |
||
619 | |||
620 | /* decide whether ext. t.w. approx. can be used */ |
||
621 | if (dataj.iexk != 0) |
||
622 | { |
||
623 | ipr = data.icon1[j]; |
||
624 | if (ipr > PCHCON) |
||
625 | dataj.ind1 = 0; |
||
626 | else if (ipr < 0) |
||
627 | { |
||
628 | ipr = -ipr; |
||
629 | iprx = ipr - 1; |
||
630 | |||
631 | if (-data.icon1[iprx] != jx) |
||
632 | dataj.ind1 = 2; |
||
633 | else |
||
634 | { |
||
635 | xi = fabsl ( |
||
636 | dataj.cabj * data.cab[iprx] + dataj.sabj * data.sab[iprx] + |
||
637 | dataj.salpj * data.salp[iprx]); |
||
638 | if ((xi < 0.999999) || |
||
639 | (fabsl (data.bi[iprx] / dataj.b - 1.) > 1.e-6)) |
||
640 | dataj.ind1 = 2; |
||
641 | else |
||
642 | dataj.ind1 = 0; |
||
643 | |||
644 | } /* if( -data.icon1[iprx] != jx ) */ |
||
645 | |||
646 | } /* if( ipr < 0 ) */ |
||
647 | else |
||
648 | { |
||
649 | iprx = ipr - 1; |
||
650 | if (ipr == 0) |
||
651 | dataj.ind1 = 1; |
||
652 | else |
||
653 | { |
||
654 | if (ipr != jx) |
||
655 | { |
||
656 | if (data.icon2[iprx] != jx) |
||
657 | dataj.ind1 = 2; |
||
658 | else |
||
659 | { |
||
660 | xi = fabsl ( |
||
661 | dataj.cabj * data.cab[iprx] + |
||
662 | dataj.sabj * data.sab[iprx] + |
||
663 | dataj.salpj * data.salp[iprx]); |
||
664 | if ((xi < 0.999999) || |
||
665 | (fabsl (data.bi[iprx] / dataj.b - 1.) > |
||
666 | 1.e-6)) |
||
667 | dataj.ind1 = 2; |
||
668 | else |
||
669 | dataj.ind1 = 0; |
||
670 | |||
671 | } /* if( data.icon2[iprx] != jx ) */ |
||
672 | |||
673 | } /* if( ipr != jx ) */ |
||
674 | else if ( |
||
675 | dataj.cabj * dataj.cabj + dataj.sabj * dataj.sabj > 1.e-8) |
||
676 | dataj.ind1 = 2; |
||
677 | else |
||
678 | dataj.ind1 = 0; |
||
679 | |||
680 | } /* if( ipr == 0 ) */ |
||
681 | |||
682 | } /* if( ipr < 0 ) */ |
||
683 | |||
684 | ipr = data.icon2[j]; |
||
685 | if (ipr > PCHCON) |
||
686 | dataj.ind2 = 2; |
||
687 | else if (ipr < 0) |
||
688 | { |
||
689 | ipr = -ipr; |
||
690 | iprx = ipr - 1; |
||
691 | if (-data.icon2[iprx] != jx) |
||
692 | dataj.ind2 = 2; |
||
693 | else |
||
694 | { |
||
695 | xi = fabsl ( |
||
696 | dataj.cabj * data.cab[iprx] + dataj.sabj * data.sab[iprx] + |
||
697 | dataj.salpj * data.salp[iprx]); |
||
698 | if ((xi < 0.999999) || |
||
699 | (fabsl (data.bi[iprx] / dataj.b - 1.) > 1.e-6)) |
||
700 | dataj.ind2 = 2; |
||
701 | else |
||
702 | dataj.ind2 = 0; |
||
703 | |||
704 | } /* if( -data.icon1[iprx] != jx ) */ |
||
705 | |||
706 | } /* if( ipr < 0 ) */ |
||
707 | else |
||
708 | { |
||
709 | iprx = ipr - 1; |
||
710 | if (ipr == 0) |
||
711 | dataj.ind2 = 1; |
||
712 | else |
||
713 | { |
||
714 | if (ipr != jx) |
||
715 | { |
||
716 | if (data.icon1[iprx] != jx) |
||
717 | dataj.ind2 = 2; |
||
718 | else |
||
719 | { |
||
720 | xi = fabsl ( |
||
721 | dataj.cabj * data.cab[iprx] + |
||
722 | dataj.sabj * data.sab[iprx] + |
||
723 | dataj.salpj * data.salp[iprx]); |
||
724 | if ((xi < 0.999999) || |
||
725 | (fabsl (data.bi[iprx] / dataj.b - 1.) > |
||
726 | 1.e-6)) |
||
727 | dataj.ind2 = 2; |
||
728 | else |
||
729 | dataj.ind2 = 0; |
||
730 | |||
731 | } /* if( data.icon2[iprx] != jx ) */ |
||
732 | |||
733 | } /* if( ipr != jx ) */ |
||
734 | else if ( |
||
735 | dataj.cabj * dataj.cabj + dataj.sabj * dataj.sabj > 1.e-8) |
||
736 | dataj.ind2 = 2; |
||
737 | else |
||
738 | dataj.ind2 = 0; |
||
739 | |||
740 | } /* if( ipr == 0 ) */ |
||
741 | |||
742 | } /* if( ipr < 0 ) */ |
||
743 | |||
744 | } /* if( dataj.iexk != 0) */ |
||
745 | |||
746 | /* observation loop */ |
||
747 | ipr = -1; |
||
748 | for (i = i1 - 1; i < i2; i++) |
||
749 | { |
||
750 | ipr++; |
||
751 | ij = i - j; |
||
752 | xi = data.x[i]; |
||
753 | yi = data.y[i]; |
||
754 | zi = data.z[i]; |
||
755 | ai = data.bi[i]; |
||
756 | cabi = data.cab[i]; |
||
757 | sabi = data.sab[i]; |
||
758 | salpi = data.salp[i]; |
||
759 | |||
760 | efld (xi, yi, zi, ai, ij); |
||
761 | |||
762 | etk = dataj.exk * cabi + dataj.eyk * sabi + dataj.ezk * salpi; |
||
763 | ets = dataj.exs * cabi + dataj.eys * sabi + dataj.ezs * salpi; |
||
764 | etc = dataj.exc * cabi + dataj.eyc * sabi + dataj.ezc * salpi; |
||
765 | |||
766 | /* fill matrix elements. element locations */ |
||
767 | /* determined by connection data. */ |
||
768 | |||
769 | /* normal fill */ |
||
770 | if (itrp == 0) |
||
771 | { |
||
772 | for (ij = 0; ij < segj.jsno; ij++) |
||
773 | { |
||
774 | jx = segj.jco[ij] - 1; |
||
775 | cm[ipr + jx * nr] += |
||
776 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
777 | } |
||
778 | continue; |
||
779 | } |
||
780 | |||
781 | /* transposed fill */ |
||
782 | if (itrp != 2) |
||
783 | { |
||
784 | for (ij = 0; ij < segj.jsno; ij++) |
||
785 | { |
||
786 | jx = segj.jco[ij] - 1; |
||
787 | cm[jx + ipr * nr] += |
||
788 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
789 | } |
||
790 | continue; |
||
791 | } |
||
792 | |||
793 | /* trans. fill for c(ww) - test for elements for d(ww)prime. (=cw) */ |
||
794 | for (ij = 0; ij < segj.jsno; ij++) |
||
795 | { |
||
796 | jx = segj.jco[ij] - 1; |
||
797 | if (jx < nr) |
||
798 | cm[jx + ipr * nr] += |
||
799 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
800 | else |
||
801 | { |
||
802 | jx -= nr; |
||
803 | cw[jx * ipr * nw] += |
||
804 | etk * segj.ax[ij] + ets * segj.bx[ij] + etc * segj.cx[ij]; |
||
805 | } |
||
806 | |||
807 | } /* for( ij = 0; ij < segj.jsno; ij++ ) */ |
||
808 | |||
809 | } /* for( i = i1-1; i < i2; i++ ) */ |
||
810 | |||
811 | return; |
||
812 | } |
||
813 | |||
814 | /*-----------------------------------------------------------------------*/ |
||
815 | |||
816 | /* etmns fills the array e with the negative of the */ |
||
817 | /* electric field incident on the structure. e is the */ |
||
818 | /* right hand side of the matrix equation. */ |
||
819 | void etmns ( |
||
820 | double p1, |
||
821 | double p2, |
||
822 | double p3, |
||
823 | double p4, |
||
824 | double p5, |
||
825 | double p6, |
||
826 | int ipr, |
||
827 | complex double *e) |
||
828 | { |
||
829 | int i, is, i1, i2 = 0, neq; |
||
830 | double cth, sth, cph, sph, cet, set, pxl, pyl, pzl, wx; |
||
831 | double wy, wz, qx, qy, qz, arg, ds, dsh, rs, r; |
||
832 | complex double cx, cy, cz, er, et, ezh, erh, rrv = CPLX_00, rrh = CPLX_00, tt1, tt2; |
||
833 | |||
834 | neq = data.n + 2 * data.m; |
||
835 | vsorc.nqds = 0; |
||
836 | |||
837 | /* applied field of voltage sources for transmitting case */ |
||
838 | if ((ipr == 0) || (ipr == 5)) |
||
839 | { |
||
840 | for (i = 0; i < neq; i++) |
||
841 | e[i] = CPLX_00; |
||
842 | |||
843 | if (vsorc.nsant != 0) |
||
844 | { |
||
845 | for (i = 0; i < vsorc.nsant; i++) |
||
846 | { |
||
847 | is = vsorc.isant[i] - 1; |
||
848 | e[is] = -vsorc.vsant[i] / (data.si[is] * data.wlam); |
||
849 | } |
||
850 | } |
||
851 | |||
852 | if (vsorc.nvqd == 0) |
||
853 | return; |
||
854 | |||
855 | for (i = 0; i < vsorc.nvqd; i++) |
||
856 | { |
||
857 | is = vsorc.ivqd[i]; |
||
858 | qdsrc (is, vsorc.vqd[i], e); |
||
859 | } |
||
860 | return; |
||
861 | |||
862 | } /* if( (ipr == 0) || (ipr == 5) ) */ |
||
863 | |||
864 | /* incident plane wave, linearly polarized. */ |
||
865 | if (ipr <= 3) |
||
866 | { |
||
867 | cth = cosl (p1); |
||
868 | sth = sinl (p1); |
||
869 | cph = cosl (p2); |
||
870 | sph = sinl (p2); |
||
871 | cet = cosl (p3); |
||
872 | set = sinl (p3); |
||
873 | pxl = cth * cph * cet - sph * set; |
||
874 | pyl = cth * sph * cet + cph * set; |
||
875 | pzl = -sth * cet; |
||
876 | wx = -sth * cph; |
||
877 | wy = -sth * sph; |
||
878 | wz = -cth; |
||
879 | qx = wy * pzl - wz * pyl; |
||
880 | qy = wz * pxl - wx * pzl; |
||
881 | qz = wx * pyl - wy * pxl; |
||
882 | |||
883 | if (gnd.ksymp != 1) |
||
884 | { |
||
885 | if (gnd.iperf != 1) |
||
886 | { |
||
887 | rrv = csqrtl (1. - gnd.zrati * gnd.zrati * sth * sth); |
||
888 | rrh = gnd.zrati * cth; |
||
889 | rrh = (rrh - rrv) / (rrh + rrv); |
||
890 | rrv = gnd.zrati * rrv; |
||
891 | rrv = -(cth - rrv) / (cth + rrv); |
||
892 | } |
||
893 | else |
||
894 | { |
||
895 | rrv = -CPLX_10; |
||
896 | rrh = -CPLX_10; |
||
897 | } /* if( gnd.iperf != 1) */ |
||
898 | |||
899 | } /* if( gnd.ksymp != 1) */ |
||
900 | |||
901 | if (ipr == 1) |
||
902 | { |
||
903 | if (data.n != 0) |
||
904 | { |
||
905 | for (i = 0; i < data.n; i++) |
||
906 | { |
||
907 | arg = -TP * (wx * data.x[i] + wy * data.y[i] + |
||
908 | wz * data.z[i]); |
||
909 | e[i] = -(pxl * data.cab[i] + pyl * data.sab[i] + |
||
910 | pzl * data.salp[i]) * |
||
911 | cmplx (cosl (arg), sinl (arg)); |
||
912 | } |
||
913 | |||
914 | if (gnd.ksymp != 1) |
||
915 | { |
||
916 | tt1 = (pyl * cph - pxl * sph) * (rrh - rrv); |
||
917 | cx = rrv * pxl - tt1 * sph; |
||
918 | cy = rrv * pyl + tt1 * cph; |
||
919 | cz = -rrv * pzl; |
||
920 | |||
921 | for (i = 0; i < data.n; i++) |
||
922 | { |
||
923 | arg = -TP * (wx * data.x[i] + wy * data.y[i] - |
||
924 | wz * data.z[i]); |
||
925 | e[i] = e[i] - |
||
926 | (cx * data.cab[i] + cy * data.sab[i] + |
||
927 | cz * data.salp[i]) * |
||
928 | cmplx (cosl (arg), sinl (arg)); |
||
929 | } |
||
930 | |||
931 | } /* if( gnd.ksymp != 1) */ |
||
932 | |||
933 | } /* if( data.n != 0) */ |
||
934 | |||
935 | if (data.m == 0) |
||
936 | return; |
||
937 | |||
938 | i = -1; |
||
939 | i1 = data.n - 2; |
||
940 | for (is = 0; is < data.m; is++) |
||
941 | { |
||
942 | i++; |
||
943 | i1 += 2; |
||
944 | i2 = i1 + 1; |
||
945 | arg = -TP * |
||
946 | (wx * data.px[i] + wy * data.py[i] + wz * data.pz[i]); |
||
947 | tt1 = cmplx (cosl (arg), sinl (arg)) * data.psalp[i] * RETA; |
||
948 | e[i2] = |
||
949 | (qx * data.t1x[i] + qy * data.t1y[i] + qz * data.t1z[i]) * |
||
950 | tt1; |
||
951 | e[i1] = |
||
952 | (qx * data.t2x[i] + qy * data.t2y[i] + qz * data.t2z[i]) * |
||
953 | tt1; |
||
954 | } |
||
955 | |||
956 | if (gnd.ksymp == 1) |
||
957 | return; |
||
958 | |||
959 | tt1 = (qy * cph - qx * sph) * (rrv - rrh); |
||
960 | cx = -(rrh * qx - tt1 * sph); |
||
961 | cy = -(rrh * qy + tt1 * cph); |
||
962 | cz = rrh * qz; |
||
963 | |||
964 | i = -1; |
||
965 | i1 = data.n - 2; |
||
966 | for (is = 0; is < data.m; is++) |
||
967 | { |
||
968 | i++; |
||
969 | i1 += 2; |
||
970 | i2 = i1 + 1; |
||
971 | arg = -TP * |
||
972 | (wx * data.px[i] + wy * data.py[i] - wz * data.pz[i]); |
||
973 | tt1 = cmplx (cosl (arg), sinl (arg)) * data.psalp[i] * RETA; |
||
974 | e[i2] = e[i2] + (cx * data.t1x[i] + cy * data.t1y[i] + |
||
975 | cz * data.t1z[i]) * |
||
976 | tt1; |
||
977 | e[i1] = e[i1] + (cx * data.t2x[i] + cy * data.t2y[i] + |
||
978 | cz * data.t2z[i]) * |
||
979 | tt1; |
||
980 | } |
||
981 | return; |
||
982 | |||
983 | } /* if( ipr == 1) */ |
||
984 | |||
985 | /* incident plane wave, elliptic polarization. */ |
||
986 | tt1 = -(CPLX_01) *p6; |
||
987 | if (ipr == 3) |
||
988 | tt1 = -tt1; |
||
989 | |||
990 | if (data.n != 0) |
||
991 | { |
||
992 | cx = pxl + tt1 * qx; |
||
993 | cy = pyl + tt1 * qy; |
||
994 | cz = pzl + tt1 * qz; |
||
995 | |||
996 | for (i = 0; i < data.n; i++) |
||
997 | { |
||
998 | arg = -TP * (wx * data.x[i] + wy * data.y[i] + wz * data.z[i]); |
||
999 | e[i] = -(cx * data.cab[i] + cy * data.sab[i] + |
||
1000 | cz * data.salp[i]) * |
||
1001 | cmplx (cosl (arg), sinl (arg)); |
||
1002 | } |
||
1003 | |||
1004 | if (gnd.ksymp != 1) |
||
1005 | { |
||
1006 | tt2 = (cy * cph - cx * sph) * (rrh - rrv); |
||
1007 | cx = rrv * cx - tt2 * sph; |
||
1008 | cy = rrv * cy + tt2 * cph; |
||
1009 | cz = -rrv * cz; |
||
1010 | |||
1011 | for (i = 0; i < data.n; i++) |
||
1012 | { |
||
1013 | arg = -TP * (wx * data.x[i] + wy * data.y[i] - |
||
1014 | wz * data.z[i]); |
||
1015 | e[i] = e[i] - (cx * data.cab[i] + cy * data.sab[i] + |
||
1016 | cz * data.salp[i]) * |
||
1017 | cmplx (cosl (arg), sinl (arg)); |
||
1018 | } |
||
1019 | |||
1020 | } /* if( gnd.ksymp != 1) */ |
||
1021 | |||
1022 | } /* if( n != 0) */ |
||
1023 | |||
1024 | if (data.m == 0) |
||
1025 | return; |
||
1026 | |||
1027 | cx = qx - tt1 * pxl; |
||
1028 | cy = qy - tt1 * pyl; |
||
1029 | cz = qz - tt1 * pzl; |
||
1030 | |||
1031 | i = -1; |
||
1032 | i1 = data.n - 2; |
||
1033 | for (is = 0; is < data.m; is++) |
||
1034 | { |
||
1035 | i++; |
||
1036 | i1 += 2; |
||
1037 | i2 = i1 + 1; |
||
1038 | arg = -TP * (wx * data.px[i] + wy * data.py[i] + wz * data.pz[i]); |
||
1039 | tt2 = cmplx (cosl (arg), sinl (arg)) * data.psalp[i] * RETA; |
||
1040 | e[i2] = (cx * data.t1x[i] + cy * data.t1y[i] + cz * data.t1z[i]) * tt2; |
||
1041 | e[i1] = (cx * data.t2x[i] + cy * data.t2y[i] + cz * data.t2z[i]) * tt2; |
||
1042 | } |
||
1043 | |||
1044 | if (gnd.ksymp == 1) |
||
1045 | return; |
||
1046 | |||
1047 | tt1 = (cy * cph - cx * sph) * (rrv - rrh); |
||
1048 | cx = -(rrh * cx - tt1 * sph); |
||
1049 | cy = -(rrh * cy + tt1 * cph); |
||
1050 | cz = rrh * cz; |
||
1051 | |||
1052 | i = -1; |
||
1053 | i1 = data.n - 2; |
||
1054 | for (is = 0; is < data.m; is++) |
||
1055 | { |
||
1056 | i++; |
||
1057 | i1 += 2; |
||
1058 | i2 = i1 + 1; |
||
1059 | arg = -TP * (wx * data.px[i] + wy * data.py[i] - wz * data.pz[i]); |
||
1060 | tt1 = cmplx (cosl (arg), sinl (arg)) * data.psalp[i] * RETA; |
||
1061 | e[i2] = e[i2] + |
||
1062 | (cx * data.t1x[i] + cy * data.t1y[i] + cz * data.t1z[i]) * tt1; |
||
1063 | e[i1] = e[i1] + |
||
1064 | (cx * data.t2x[i] + cy * data.t2y[i] + cz * data.t2z[i]) * tt1; |
||
1065 | } |
||
1066 | |||
1067 | return; |
||
1068 | |||
1069 | } /* if( ipr <= 3) */ |
||
1070 | |||
1071 | /* incident field of an elementary current source. */ |
||
1072 | wz = cosl (p4); |
||
1073 | wx = wz * cosl (p5); |
||
1074 | wy = wz * sinl (p5); |
||
1075 | wz = sinl (p4); |
||
1076 | ds = p6 * 59.958; |
||
1077 | dsh = p6 / (2. * TP); |
||
1078 | |||
1079 | is = 0; |
||
1080 | i1 = data.n - 2; |
||
1081 | for (i = 0; i < data.npm; i++) |
||
1082 | { |
||
1083 | if (i >= data.n) |
||
1084 | { |
||
1085 | i1 += 2; |
||
1086 | i2 = i1 + 1; |
||
1087 | pxl = data.px[is] - p1; |
||
1088 | pyl = data.py[is] - p2; |
||
1089 | pzl = data.pz[is] - p3; |
||
1090 | } |
||
1091 | else |
||
1092 | { |
||
1093 | pxl = data.x[i] - p1; |
||
1094 | pyl = data.y[i] - p2; |
||
1095 | pzl = data.z[i] - p3; |
||
1096 | } |
||
1097 | |||
1098 | rs = pxl * pxl + pyl * pyl + pzl * pzl; |
||
1099 | if (rs < 1.0e-30) |
||
1100 | continue; |
||
1101 | |||
1102 | r = sqrtl (rs); |
||
1103 | pxl = pxl / r; |
||
1104 | pyl = pyl / r; |
||
1105 | pzl = pzl / r; |
||
1106 | cth = pxl * wx + pyl * wy + pzl * wz; |
||
1107 | sth = sqrtl (1. - cth * cth); |
||
1108 | qx = pxl - wx * cth; |
||
1109 | qy = pyl - wy * cth; |
||
1110 | qz = pzl - wz * cth; |
||
1111 | |||
1112 | arg = sqrtl (qx * qx + qy * qy + qz * qz); |
||
1113 | if (arg >= 1.e-30) |
||
1114 | { |
||
1115 | qx = qx / arg; |
||
1116 | qy = qy / arg; |
||
1117 | qz = qz / arg; |
||
1118 | } |
||
1119 | else |
||
1120 | { |
||
1121 | qx = 1.; |
||
1122 | qy = 0.; |
||
1123 | qz = 0.; |
||
1124 | |||
1125 | } /* if( arg >= 1.e-30) */ |
||
1126 | |||
1127 | arg = -TP * r; |
||
1128 | tt1 = cmplx (cosl (arg), sinl (arg)); |
||
1129 | |||
1130 | if (i < data.n) |
||
1131 | { |
||
1132 | tt2 = cmplx (1.0, -1.0 / (r * TP)) / rs; |
||
1133 | er = ds * tt1 * tt2 * cth; |
||
1134 | et = .5 * ds * tt1 * ((CPLX_01) *TP / r + tt2) * sth; |
||
1135 | ezh = er * cth - et * sth; |
||
1136 | erh = er * sth + et * cth; |
||
1137 | cx = ezh * wx + erh * qx; |
||
1138 | cy = ezh * wy + erh * qy; |
||
1139 | cz = ezh * wz + erh * qz; |
||
1140 | e[i] = -(cx * data.cab[i] + cy * data.sab[i] + cz * data.salp[i]); |
||
1141 | } |
||
1142 | else |
||
1143 | { |
||
1144 | pxl = wy * qz - wz * qy; |
||
1145 | pyl = wz * qx - wx * qz; |
||
1146 | pzl = wx * qy - wy * qx; |
||
1147 | tt2 = dsh * tt1 * cmplx (1. / r, TP) / r * sth * data.psalp[is]; |
||
1148 | cx = tt2 * pxl; |
||
1149 | cy = tt2 * pyl; |
||
1150 | cz = tt2 * pzl; |
||
1151 | e[i2] = cx * data.t1x[is] + cy * data.t1y[is] + cz * data.t1z[is]; |
||
1152 | e[i1] = cx * data.t2x[is] + cy * data.t2y[is] + cz * data.t2z[is]; |
||
1153 | is++; |
||
1154 | } /* if( i < data.n) */ |
||
1155 | |||
1156 | } /* for( i = 0; i < npm; i++ ) */ |
||
1157 | |||
1158 | return; |
||
1159 | } |
||
1160 | |||
1161 | /*-----------------------------------------------------------------------*/ |
||
1162 | |||
1163 | /* subroutine to factor a matrix into a unit lower triangular matrix */ |
||
1164 | /* and an upper triangular matrix using the gauss-doolittle algorithm */ |
||
1165 | /* presented on pages 411-416 of a. ralston--a first course in */ |
||
1166 | /* numerical analysis. comments below refer to comments in ralstons */ |
||
1167 | /* text. (matrix transposed.) */ |
||
1168 | |||
1169 | void factr (int n, complex double *a, int *ip, int ndim) |
||
1170 | { |
||
1171 | int r, rm1, rp1, pj, pr, iflg, k, j, jp1, i; |
||
1172 | double dmax, elmag; |
||
1173 | complex double arj, *scm = NULL; |
||
1174 | |||
1175 | /* Allocate to scratch memory */ |
||
1176 | mem_alloc ((void *) &scm, data.np2m * sizeof (complex double)); |
||
1177 | |||
1178 | /* Un-transpose the matrix for Gauss elimination */ |
||
1179 | for (i = 1; i < n; i++) |
||
1180 | for (j = 0; j < i; j++) |
||
1181 | { |
||
1182 | arj = a[i + j * ndim]; |
||
1183 | a[i + j * ndim] = a[j + i * ndim]; |
||
1184 | a[j + i * ndim] = arj; |
||
1185 | } |
||
1186 | |||
1187 | iflg = FALSE; |
||
1188 | /* step 1 */ |
||
1189 | for (r = 0; r < n; r++) |
||
1190 | { |
||
1191 | for (k = 0; k < n; k++) |
||
1192 | scm[k] = a[k + r * ndim]; |
||
1193 | |||
1194 | /* steps 2 and 3 */ |
||
1195 | rm1 = r; |
||
1196 | if (rm1 > 0) |
||
1197 | { |
||
1198 | for (j = 0; j < rm1; j++) |
||
1199 | { |
||
1200 | pj = ip[j] - 1; |
||
1201 | arj = scm[pj]; |
||
1202 | a[j + r * ndim] = arj; |
||
1203 | scm[pj] = scm[j]; |
||
1204 | jp1 = j + 1; |
||
1205 | |||
1206 | for (i = jp1; i < n; i++) |
||
1207 | scm[i] -= a[i + j * ndim] * arj; |
||
1208 | |||
1209 | } /* for( j = 0; j < rm1; j++ ) */ |
||
1210 | |||
1211 | } /* if( rm1 >= 0.) */ |
||
1212 | |||
1213 | /* step 4 */ |
||
1214 | dmax = creal (scm[r] * conjl (scm[r])); |
||
1215 | |||
1216 | rp1 = r + 1; |
||
1217 | ip[r] = rp1; |
||
1218 | if (rp1 < n) |
||
1219 | { |
||
1220 | for (i = rp1; i < n; i++) |
||
1221 | { |
||
1222 | elmag = creal (scm[i] * conjl (scm[i])); |
||
1223 | if (elmag >= dmax) |
||
1224 | { |
||
1225 | dmax = elmag; |
||
1226 | ip[r] = i + 1; |
||
1227 | } |
||
1228 | } |
||
1229 | } /* if( rp1 < n) */ |
||
1230 | |||
1231 | if (dmax < 1.e-10) |
||
1232 | iflg = TRUE; |
||
1233 | |||
1234 | pr = ip[r] - 1; |
||
1235 | a[r + r * ndim] = scm[pr]; |
||
1236 | scm[pr] = scm[r]; |
||
1237 | |||
1238 | /* step 5 */ |
||
1239 | if (rp1 < n) |
||
1240 | { |
||
1241 | arj = 1. / a[r + r * ndim]; |
||
1242 | |||
1243 | for (i = rp1; i < n; i++) |
||
1244 | a[i + r * ndim] = scm[i] * arj; |
||
1245 | } |
||
1246 | |||
1247 | if (iflg == TRUE) |
||
1248 | { |
||
1249 | fprintf (output_fp, "\n PIVOT(%d)= %16.8E", r, dmax); |
||
1250 | iflg = FALSE; |
||
1251 | } |
||
1252 | |||
1253 | } /* for( r=0; r < n; r++ ) */ |
||
1254 | |||
1255 | free_ptr ((void *) &scm); |
||
1256 | |||
1257 | return; |
||
1258 | } |
||
1259 | |||
1260 | /*-----------------------------------------------------------------------*/ |
||
1261 | |||
1262 | /* factrs, for symmetric structure, transforms submatricies to form */ |
||
1263 | /* matricies of the symmetric modes and calls routine to factor */ |
||
1264 | /* matricies. if no symmetry, the routine is called to factor the */ |
||
1265 | /* complete matrix. */ |
||
1266 | void factrs (int np, int nrow, complex double *a, int *ip) |
||
1267 | { |
||
1268 | int kk, ka; |
||
1269 | |||
1270 | smat.nop = nrow / np; |
||
1271 | for (kk = 0; kk < smat.nop; kk++) |
||
1272 | { |
||
1273 | ka = kk * np; |
||
1274 | factr (np, &a[ka], &ip[ka], nrow); |
||
1275 | } |
||
1276 | return; |
||
1277 | } |
||
1278 | |||
1279 | /*-----------------------------------------------------------------------*/ |
||
1280 | |||
1281 | /* fblock sets parameters for out-of-core */ |
||
1282 | /* solution for the primary matrix (a) */ |
||
1283 | void fblock (int nrow, int ncol, int imax, int ipsym) |
||
1284 | { |
||
1285 | int i, j, k, ka, kk; |
||
1286 | double phaz, arg; |
||
1287 | complex double deter; |
||
1288 | |||
1289 | if (nrow * ncol <= imax) |
||
1290 | { |
||
1291 | matpar.npblk = nrow; |
||
1292 | matpar.nlast = nrow; |
||
1293 | matpar.imat = nrow * ncol; |
||
1294 | |||
1295 | if (nrow == ncol) |
||
1296 | { |
||
1297 | matpar.icase = 1; |
||
1298 | return; |
||
1299 | } |
||
1300 | else |
||
1301 | matpar.icase = 2; |
||
1302 | |||
1303 | } /* if( nrow*ncol <= imax) */ |
||
1304 | |||
1305 | smat.nop = ncol / nrow; |
||
1306 | if (smat.nop * nrow != ncol) |
||
1307 | { |
||
1308 | fprintf (output_fp, "\n SYMMETRY ERROR - NROW: %d NCOL: %d", nrow, ncol); |
||
1309 | stop (-1); |
||
1310 | } |
||
1311 | |||
1312 | /* set up smat.ssx matrix for rotational symmetry. */ |
||
1313 | if (ipsym <= 0) |
||
1314 | { |
||
1315 | phaz = TP / smat.nop; |
||
1316 | |||
1317 | for (i = 1; i < smat.nop; i++) |
||
1318 | { |
||
1319 | for (j = i; j < smat.nop; j++) |
||
1320 | { |
||
1321 | arg = phaz * (double) i * (double) j; |
||
1322 | smat.ssx[i + j * smat.nop] = cmplx (cosl (arg), sinl (arg)); |
||
1323 | smat.ssx[j + i * smat.nop] = smat.ssx[i + j * smat.nop]; |
||
1324 | } |
||
1325 | } |
||
1326 | return; |
||
1327 | |||
1328 | } /* if( ipsym <= 0) */ |
||
1329 | |||
1330 | /* set up smat.ssx matrix for plane symmetry */ |
||
1331 | kk = 1; |
||
1332 | smat.ssx[0] = CPLX_10; |
||
1333 | |||
1334 | k = 2; |
||
1335 | for (ka = 1; k != smat.nop; ka++) |
||
1336 | k *= 2; |
||
1337 | |||
1338 | for (k = 0; k < ka; k++) |
||
1339 | { |
||
1340 | for (i = 0; i < kk; i++) |
||
1341 | { |
||
1342 | for (j = 0; j < kk; j++) |
||
1343 | { |
||
1344 | deter = smat.ssx[i + j * smat.nop]; |
||
1345 | smat.ssx[i + (j + kk) * smat.nop] = deter; |
||
1346 | smat.ssx[i + kk + (j + kk) * smat.nop] = -deter; |
||
1347 | smat.ssx[i + kk + j * smat.nop] = deter; |
||
1348 | } |
||
1349 | } |
||
1350 | kk *= 2; |
||
1351 | |||
1352 | } /* for( k = 0; k < ka; k++ ) */ |
||
1353 | |||
1354 | return; |
||
1355 | } |
||
1356 | |||
1357 | /*-----------------------------------------------------------------------*/ |
||
1358 | |||
1359 | /* subroutine to solve the matrix equation lu*x=b where l is a unit */ |
||
1360 | /* lower triangular matrix and u is an upper triangular matrix both */ |
||
1361 | /* of which are stored in a. the rhs vector b is input and the */ |
||
1362 | /* solution is returned through vector b. (matrix transposed. */ |
||
1363 | void solve (int n, complex double *a, int *ip, complex double *b, int ndim) |
||
1364 | { |
||
1365 | int i, ip1, j, k, pia; |
||
1366 | complex double sum, *scm = NULL; |
||
1367 | |||
1368 | /* Allocate to scratch memory */ |
||
1369 | mem_alloc ((void *) &scm, data.np2m * sizeof (complex double)); |
||
1370 | |||
1371 | /* forward substitution */ |
||
1372 | for (i = 0; i < n; i++) |
||
1373 | { |
||
1374 | pia = ip[i] - 1; |
||
1375 | scm[i] = b[pia]; |
||
1376 | b[pia] = b[i]; |
||
1377 | ip1 = i + 1; |
||
1378 | |||
1379 | if (ip1 < n) |
||
1380 | for (j = ip1; j < n; j++) |
||
1381 | b[j] -= a[j + i * ndim] * scm[i]; |
||
1382 | } |
||
1383 | |||
1384 | /* backward substitution */ |
||
1385 | for (k = 0; k < n; k++) |
||
1386 | { |
||
1387 | i = n - k - 1; |
||
1388 | sum = CPLX_00; |
||
1389 | ip1 = i + 1; |
||
1390 | |||
1391 | if (ip1 < n) |
||
1392 | for (j = ip1; j < n; j++) |
||
1393 | sum += a[i + j * ndim] * b[j]; |
||
1394 | |||
1395 | b[i] = (scm[i] - sum) / a[i + i * ndim]; |
||
1396 | } |
||
1397 | |||
1398 | free_ptr ((void *) &scm); |
||
1399 | |||
1400 | return; |
||
1401 | } |
||
1402 | |||
1403 | /*-----------------------------------------------------------------------*/ |
||
1404 | |||
1405 | /* subroutine solves, for symmetric structures, handles the */ |
||
1406 | /* transformation of the right hand side vector and solution */ |
||
1407 | /* of the matrix eq. */ |
||
1408 | void solves ( |
||
1409 | complex double *a, |
||
1410 | int *ip, |
||
1411 | complex double *b, |
||
1412 | int neq, |
||
1413 | int nrh, |
||
1414 | int np, |
||
1415 | int n, |
||
1416 | int mp, |
||
1417 | int m) |
||
1418 | { |
||
1419 | int npeq, nrow, ic, i, kk, ia, ib, j, k; |
||
1420 | double fnop, fnorm; |
||
1421 | complex double sum, *scm = NULL; |
||
1422 | |||
1423 | npeq = np + 2 * mp; |
||
1424 | smat.nop = neq / npeq; |
||
1425 | fnop = smat.nop; |
||
1426 | fnorm = 1. / fnop; |
||
1427 | nrow = neq; |
||
1428 | |||
1429 | /* Allocate to scratch memory */ |
||
1430 | mem_alloc ((void *) &scm, data.np2m * sizeof (complex double)); |
||
1431 | |||
1432 | if (smat.nop != 1) |
||
1433 | { |
||
1434 | for (ic = 0; ic < nrh; ic++) |
||
1435 | { |
||
1436 | if ((n != 0) && (m != 0)) |
||
1437 | { |
||
1438 | for (i = 0; i < neq; i++) |
||
1439 | scm[i] = b[i + ic * neq]; |
||
1440 | |||
1441 | kk = 2 * mp; |
||
1442 | ia = np - 1; |
||
1443 | ib = n - 1; |
||
1444 | j = np - 1; |
||
1445 | |||
1446 | for (k = 0; k < smat.nop; k++) |
||
1447 | { |
||
1448 | if (k != 0) |
||
1449 | { |
||
1450 | for (i = 0; i < np; i++) |
||
1451 | { |
||
1452 | ia++; |
||
1453 | j++; |
||
1454 | b[j + ic * neq] = scm[ia]; |
||
1455 | } |
||
1456 | |||
1457 | if (k == (smat.nop - 1)) |
||
1458 | continue; |
||
1459 | |||
1460 | } /* if( k != 0 ) */ |
||
1461 | |||
1462 | for (i = 0; i < kk; i++) |
||
1463 | { |
||
1464 | ib++; |
||
1465 | j++; |
||
1466 | b[j + ic * neq] = scm[ib]; |
||
1467 | } |
||
1468 | |||
1469 | } /* for( k = 0; k < smat.nop; k++ ) */ |
||
1470 | |||
1471 | } /* if( (n != 0) && (m != 0) ) */ |
||
1472 | |||
1473 | /* transform matrix eq. rhs vector according to symmetry modes */ |
||
1474 | for (i = 0; i < npeq; i++) |
||
1475 | { |
||
1476 | for (k = 0; k < smat.nop; k++) |
||
1477 | { |
||
1478 | ia = i + k * npeq; |
||
1479 | scm[k] = b[ia + ic * neq]; |
||
1480 | } |
||
1481 | |||
1482 | sum = scm[0]; |
||
1483 | for (k = 1; k < smat.nop; k++) |
||
1484 | sum += scm[k]; |
||
1485 | |||
1486 | b[i + ic * neq] = sum * fnorm; |
||
1487 | |||
1488 | for (k = 1; k < smat.nop; k++) |
||
1489 | { |
||
1490 | ia = i + k * npeq; |
||
1491 | sum = scm[0]; |
||
1492 | |||
1493 | for (j = 1; j < smat.nop; j++) |
||
1494 | sum += scm[j] * |
||
1495 | conjl (smat.ssx[k + j * smat.nop]); |
||
1496 | |||
1497 | b[ia + ic * neq] = sum * fnorm; |
||
1498 | } |
||
1499 | |||
1500 | } /* for( i = 0; i < npeq; i++ ) */ |
||
1501 | |||
1502 | } /* for( ic = 0; ic < nrh; ic++ ) */ |
||
1503 | |||
1504 | } /* if( smat.nop != 1) */ |
||
1505 | |||
1506 | /* solve each mode equation */ |
||
1507 | for (kk = 0; kk < smat.nop; kk++) |
||
1508 | { |
||
1509 | ia = kk * npeq; |
||
1510 | ib = ia; |
||
1511 | |||
1512 | for (ic = 0; ic < nrh; ic++) |
||
1513 | solve (npeq, &a[ib], &ip[ia], &b[ia + ic * neq], nrow); |
||
1514 | |||
1515 | } /* for( kk = 0; kk < smat.nop; kk++ ) */ |
||
1516 | |||
1517 | if (smat.nop == 1) |
||
1518 | { |
||
1519 | free_ptr ((void *) &scm); |
||
1520 | return; |
||
1521 | } |
||
1522 | |||
1523 | /* inverse transform the mode solutions */ |
||
1524 | for (ic = 0; ic < nrh; ic++) |
||
1525 | { |
||
1526 | for (i = 0; i < npeq; i++) |
||
1527 | { |
||
1528 | for (k = 0; k < smat.nop; k++) |
||
1529 | { |
||
1530 | ia = i + k * npeq; |
||
1531 | scm[k] = b[ia + ic * neq]; |
||
1532 | } |
||
1533 | |||
1534 | sum = scm[0]; |
||
1535 | for (k = 1; k < smat.nop; k++) |
||
1536 | sum += scm[k]; |
||
1537 | |||
1538 | b[i + ic * neq] = sum; |
||
1539 | for (k = 1; k < smat.nop; k++) |
||
1540 | { |
||
1541 | ia = i + k * npeq; |
||
1542 | sum = scm[0]; |
||
1543 | |||
1544 | for (j = 1; j < smat.nop; j++) |
||
1545 | sum += scm[j] * smat.ssx[k + j * smat.nop]; |
||
1546 | |||
1547 | b[ia + ic * neq] = sum; |
||
1548 | } |
||
1549 | |||
1550 | } /* for( i = 0; i < npeq; i++ ) */ |
||
1551 | |||
1552 | if ((n == 0) || (m == 0)) |
||
1553 | continue; |
||
1554 | |||
1555 | for (i = 0; i < neq; i++) |
||
1556 | scm[i] = b[i + ic * neq]; |
||
1557 | |||
1558 | kk = 2 * mp; |
||
1559 | ia = np - 1; |
||
1560 | ib = n - 1; |
||
1561 | j = np - 1; |
||
1562 | |||
1563 | for (k = 0; k < smat.nop; k++) |
||
1564 | { |
||
1565 | if (k != 0) |
||
1566 | { |
||
1567 | for (i = 0; i < np; i++) |
||
1568 | { |
||
1569 | ia++; |
||
1570 | j++; |
||
1571 | b[ia + ic * neq] = scm[j]; |
||
1572 | } |
||
1573 | |||
1574 | if (k == smat.nop) |
||
1575 | continue; |
||
1576 | |||
1577 | } /* if( k != 0 ) */ |
||
1578 | |||
1579 | for (i = 0; i < kk; i++) |
||
1580 | { |
||
1581 | ib++; |
||
1582 | j++; |
||
1583 | b[ib + ic * neq] = scm[j]; |
||
1584 | } |
||
1585 | |||
1586 | } /* for( k = 0; k < smat.nop; k++ ) */ |
||
1587 | |||
1588 | } /* for( ic = 0; ic < nrh; ic++ ) */ |
||
1589 | |||
1590 | free_ptr ((void *) &scm); |
||
1591 | |||
1592 | return; |
||
1593 | } |
||
1594 | |||
1595 | /*-----------------------------------------------------------------------*/ |