Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | /*** Translated to the C language by N. Kyriazis 20 Aug 2003 *** |
| 2 | |||
| 3 | Program NEC(input,tape5=input,output,tape11,tape12,tape13,tape14, |
||
| 4 | tape15,tape16,tape20,tape21) |
||
| 5 | |||
| 6 | Numerical Electromagnetics Code (NEC2) developed at Lawrence |
||
| 7 | Livermore lab., Livermore, CA. (contact G. Burke at 415-422-8414 |
||
| 8 | for problems with the NEC code. For problems with the vax implem- |
||
| 9 | entation, contact J. Breakall at 415-422-8196 or E. Domning at 415 |
||
| 10 | 422-5936) |
||
| 11 | file created 4/11/80. |
||
| 12 | |||
| 13 | ***********Notice********** |
||
| 14 | This computer code material was prepared as an account of work |
||
| 15 | sponsored by the United States government. Neither the United |
||
| 16 | States nor the United States Department Of Energy, nor any of |
||
| 17 | their employees, nor any of their contractors, subcontractors, |
||
| 18 | or their employees, makes any warranty, express or implied, or |
||
| 19 | assumes any legal liability or responsibility for the accuracy, |
||
| 20 | completeness or usefulness of any information, apparatus, product |
||
| 21 | or process disclosed, or represents that its use would not infringe |
||
| 22 | privately-owned rights. |
||
| 23 | |||
| 24 | *******************************************************************/ |
||
| 25 | |||
| 26 | #include "nec2c.h" |
||
| 27 | |||
| 28 | /* pointers to input/output files */ |
||
| 29 | extern FILE *input_fp, *output_fp, *plot_fp; |
||
| 30 | |||
| 31 | /* common /data/ */ |
||
| 32 | extern data_t data; |
||
| 33 | |||
| 34 | /* common /dataj/ */ |
||
| 35 | extern dataj_t dataj; |
||
| 36 | |||
| 37 | /* common /incom/ */ |
||
| 38 | incom_t incom; |
||
| 39 | ; |
||
| 40 | |||
| 41 | /* common /gwav/ */ |
||
| 42 | extern gwav_t gwav; |
||
| 43 | |||
| 44 | /* common /gnd/ */ |
||
| 45 | extern gnd_t gnd; |
||
| 46 | |||
| 47 | /*-------------------------------------------------------------------*/ |
||
| 48 | |||
| 49 | /* segment to obtain the total field due to ground. the method of */ |
||
| 50 | /* variable interval width romberg integration is used. there are 9 */ |
||
| 51 | /* field components - the x, y, and z components due to constant, */ |
||
| 52 | /* sine, and cosine current distributions. */ |
||
| 53 | void rom2 (double a, double b, complex double *sum, double dmin) |
||
| 54 | { |
||
| 55 | int i, ns, nt, flag = TRUE; |
||
| 56 | int nts = 4, nx = 1, n = 9; |
||
| 57 | double ze, ep, zend, dz = 0., dzot = 0., tmag1, tmag2, tr, ti; |
||
| 58 | double z, s; /***also global***/ |
||
| 59 | double rx = 1.0e-4; |
||
| 60 | complex double g1[9], g2[9], g3[9], g4[9], g5[9]; |
||
| 61 | complex double t00, t01[9], t10[9], t02, t11, t20[9]; |
||
| 62 | |||
| 63 | z = a; |
||
| 64 | ze = b; |
||
| 65 | s = b - a; |
||
| 66 | |||
| 67 | if (s < 0.) |
||
| 68 | { |
||
| 69 | fprintf (output_fp, "\n ERROR - B LESS THAN A IN ROM2"); |
||
| 70 | stop (-1); |
||
| 71 | } |
||
| 72 | |||
| 73 | ep = s / (1.e4 * data.npm); |
||
| 74 | zend = ze - ep; |
||
| 75 | |||
| 76 | for (i = 0; i < n; i++) |
||
| 77 | sum[i] = CPLX_00; |
||
| 78 | |||
| 79 | ns = nx; |
||
| 80 | nt = 0; |
||
| 81 | sflds (z, g1); |
||
| 82 | |||
| 83 | while (TRUE) |
||
| 84 | { |
||
| 85 | if (flag) |
||
| 86 | { |
||
| 87 | dz = s / ns; |
||
| 88 | if (z + dz > ze) |
||
| 89 | { |
||
| 90 | dz = ze - z; |
||
| 91 | if (dz <= ep) |
||
| 92 | return; |
||
| 93 | } |
||
| 94 | |||
| 95 | dzot = dz * .5; |
||
| 96 | sflds (z + dzot, g3); |
||
| 97 | sflds (z + dz, g5); |
||
| 98 | |||
| 99 | } /* if( flag ) */ |
||
| 100 | |||
| 101 | tmag1 = 0.; |
||
| 102 | tmag2 = 0.; |
||
| 103 | |||
| 104 | /* evaluate 3 point romberg result and test convergence. */ |
||
| 105 | for (i = 0; i < n; i++) |
||
| 106 | { |
||
| 107 | t00 = (g1[i] + g5[i]) * dzot; |
||
| 108 | t01[i] = (t00 + dz * g3[i]) * .5; |
||
| 109 | t10[i] = (4. * t01[i] - t00) / 3.; |
||
| 110 | if (i > 2) |
||
| 111 | continue; |
||
| 112 | |||
| 113 | tr = creal (t01[i]); |
||
| 114 | ti = cimag (t01[i]); |
||
| 115 | tmag1 = tmag1 + tr * tr + ti * ti; |
||
| 116 | tr = creal (t10[i]); |
||
| 117 | ti = cimag (t10[i]); |
||
| 118 | tmag2 = tmag2 + tr * tr + ti * ti; |
||
| 119 | |||
| 120 | } /* for( i = 0; i < n; i++ ) */ |
||
| 121 | |||
| 122 | tmag1 = sqrtl (tmag1); |
||
| 123 | tmag2 = sqrtl (tmag2); |
||
| 124 | test (tmag1, tmag2, &tr, 0., 0., &ti, dmin); |
||
| 125 | |||
| 126 | if (tr <= rx) |
||
| 127 | { |
||
| 128 | for (i = 0; i < n; i++) |
||
| 129 | sum[i] += t10[i]; |
||
| 130 | nt += 2; |
||
| 131 | |||
| 132 | z += dz; |
||
| 133 | if (z > zend) |
||
| 134 | return; |
||
| 135 | |||
| 136 | for (i = 0; i < n; i++) |
||
| 137 | g1[i] = g5[i]; |
||
| 138 | |||
| 139 | if ((nt >= nts) && (ns > nx)) |
||
| 140 | { |
||
| 141 | ns = ns / 2; |
||
| 142 | nt = 1; |
||
| 143 | } |
||
| 144 | flag = TRUE; |
||
| 145 | continue; |
||
| 146 | |||
| 147 | } /* if( tr <= rx) */ |
||
| 148 | |||
| 149 | sflds (z + dz * .25, g2); |
||
| 150 | sflds (z + dz * .75, g4); |
||
| 151 | tmag1 = 0.; |
||
| 152 | tmag2 = 0.; |
||
| 153 | |||
| 154 | /* evaluate 5 point romberg result and test convergence. */ |
||
| 155 | for (i = 0; i < n; i++) |
||
| 156 | { |
||
| 157 | t02 = (t01[i] + dzot * (g2[i] + g4[i])) * .5; |
||
| 158 | t11 = (4.0 * t02 - t01[i]) / 3.; |
||
| 159 | t20[i] = (16. * t11 - t10[i]) / 15.; |
||
| 160 | if (i > 2) |
||
| 161 | continue; |
||
| 162 | |||
| 163 | tr = creal (t11); |
||
| 164 | ti = cimag (t11); |
||
| 165 | tmag1 = tmag1 + tr * tr + ti * ti; |
||
| 166 | tr = creal (t20[i]); |
||
| 167 | ti = cimag (t20[i]); |
||
| 168 | tmag2 = tmag2 + tr * tr + ti * ti; |
||
| 169 | |||
| 170 | } /* for( i = 0; i < n; i++ ) */ |
||
| 171 | |||
| 172 | tmag1 = sqrtl (tmag1); |
||
| 173 | tmag2 = sqrtl (tmag2); |
||
| 174 | test (tmag1, tmag2, &tr, 0., 0., &ti, dmin); |
||
| 175 | |||
| 176 | if (tr > rx) |
||
| 177 | { |
||
| 178 | nt = 0; |
||
| 179 | if (ns < data.npm) |
||
| 180 | { |
||
| 181 | ns = ns * 2; |
||
| 182 | dz = s / ns; |
||
| 183 | dzot = dz * .5; |
||
| 184 | |||
| 185 | for (i = 0; i < n; i++) |
||
| 186 | { |
||
| 187 | g5[i] = g3[i]; |
||
| 188 | g3[i] = g2[i]; |
||
| 189 | } |
||
| 190 | |||
| 191 | flag = FALSE; |
||
| 192 | continue; |
||
| 193 | |||
| 194 | } /* if( ns < npm) */ |
||
| 195 | |||
| 196 | fprintf (output_fp, "\n ROM2 -- STEP SIZE LIMITED AT Z = %12.5le", z); |
||
| 197 | |||
| 198 | } /* if( tr > rx) */ |
||
| 199 | |||
| 200 | for (i = 0; i < n; i++) |
||
| 201 | sum[i] = sum[i] + t20[i]; |
||
| 202 | nt = nt + 1; |
||
| 203 | |||
| 204 | z = z + dz; |
||
| 205 | if (z > zend) |
||
| 206 | return; |
||
| 207 | |||
| 208 | for (i = 0; i < n; i++) |
||
| 209 | g1[i] = g5[i]; |
||
| 210 | |||
| 211 | flag = TRUE; |
||
| 212 | if ((nt < nts) || (ns <= nx)) |
||
| 213 | continue; |
||
| 214 | |||
| 215 | ns = ns / 2; |
||
| 216 | nt = 1; |
||
| 217 | |||
| 218 | } /* while( TRUE ) */ |
||
| 219 | } |
||
| 220 | |||
| 221 | /*-----------------------------------------------------------------------*/ |
||
| 222 | |||
| 223 | /* sfldx returns the field due to ground for a current element on */ |
||
| 224 | /* the source segment at t relative to the segment center. */ |
||
| 225 | void sflds (double t, complex double *e) |
||
| 226 | { |
||
| 227 | double xt, yt, zt, rhx, rhy, rhs, rho, phx, phy; |
||
| 228 | double cph, sph, zphs, r2s, rk, sfac, thet; |
||
| 229 | complex double erv, ezv, erh, ezh, eph, er, et, hrv, hzv, hrh; |
||
| 230 | |||
| 231 | xt = dataj.xj + t * dataj.cabj; |
||
| 232 | yt = dataj.yj + t * dataj.sabj; |
||
| 233 | zt = dataj.zj + t * dataj.salpj; |
||
| 234 | rhx = incom.xo - xt; |
||
| 235 | rhy = incom.yo - yt; |
||
| 236 | rhs = rhx * rhx + rhy * rhy; |
||
| 237 | rho = sqrtl (rhs); |
||
| 238 | |||
| 239 | if (rho <= 0.) |
||
| 240 | { |
||
| 241 | rhx = 1.; |
||
| 242 | rhy = 0.; |
||
| 243 | phx = 0.; |
||
| 244 | phy = 1.; |
||
| 245 | } |
||
| 246 | else |
||
| 247 | { |
||
| 248 | rhx = rhx / rho; |
||
| 249 | rhy = rhy / rho; |
||
| 250 | phx = -rhy; |
||
| 251 | phy = rhx; |
||
| 252 | } |
||
| 253 | |||
| 254 | cph = rhx * incom.xsn + rhy * incom.ysn; |
||
| 255 | sph = rhy * incom.xsn - rhx * incom.ysn; |
||
| 256 | |||
| 257 | if (fabsl (cph) < 1.0e-10) |
||
| 258 | cph = 0.; |
||
| 259 | if (fabsl (sph) < 1.0e-10) |
||
| 260 | sph = 0.; |
||
| 261 | |||
| 262 | gwav.zph = incom.zo + zt; |
||
| 263 | zphs = gwav.zph * gwav.zph; |
||
| 264 | r2s = rhs + zphs; |
||
| 265 | gwav.r2 = sqrtl (r2s); |
||
| 266 | rk = gwav.r2 * TP; |
||
| 267 | gwav.xx2 = cmplx (cosl (rk), -sinl (rk)); |
||
| 268 | |||
| 269 | /* use norton approximation for field due to ground. current is */ |
||
| 270 | /* lumped at segment center with current moment for constant, sine, */ |
||
| 271 | /* or cosine distribution. */ |
||
| 272 | if (incom.isnor != 1) |
||
| 273 | { |
||
| 274 | gwav.zmh = 1.; |
||
| 275 | gwav.r1 = 1.; |
||
| 276 | gwav.xx1 = 0.; |
||
| 277 | gwave (&erv, &ezv, &erh, &ezh, &eph); |
||
| 278 | |||
| 279 | et = -CONST1 * gnd.frati * gwav.xx2 / (r2s * gwav.r2); |
||
| 280 | er = 2. * et * cmplx (1.0, rk); |
||
| 281 | et = et * cmplx (1.0 - rk * rk, rk); |
||
| 282 | hrv = (er + et) * rho * gwav.zph / r2s; |
||
| 283 | hzv = (zphs * er - rhs * et) / r2s; |
||
| 284 | hrh = (rhs * er - zphs * et) / r2s; |
||
| 285 | erv = erv - hrv; |
||
| 286 | ezv = ezv - hzv; |
||
| 287 | erh = erh + hrh; |
||
| 288 | ezh = ezh + hrv; |
||
| 289 | eph = eph + et; |
||
| 290 | erv = erv * dataj.salpj; |
||
| 291 | ezv = ezv * dataj.salpj; |
||
| 292 | erh = erh * incom.sn * cph; |
||
| 293 | ezh = ezh * incom.sn * cph; |
||
| 294 | eph = eph * incom.sn * sph; |
||
| 295 | erh = erv + erh; |
||
| 296 | e[0] = (erh * rhx + eph * phx) * dataj.s; |
||
| 297 | e[1] = (erh * rhy + eph * phy) * dataj.s; |
||
| 298 | e[2] = (ezv + ezh) * dataj.s; |
||
| 299 | e[3] = 0.; |
||
| 300 | e[4] = 0.; |
||
| 301 | e[5] = 0.; |
||
| 302 | sfac = PI * dataj.s; |
||
| 303 | sfac = sinl (sfac) / sfac; |
||
| 304 | e[6] = e[0] * sfac; |
||
| 305 | e[7] = e[1] * sfac; |
||
| 306 | e[8] = e[2] * sfac; |
||
| 307 | |||
| 308 | return; |
||
| 309 | } /* if( smat.isnor != 1) */ |
||
| 310 | |||
| 311 | /* interpolate in sommerfeld field tables */ |
||
| 312 | if (rho >= 1.0e-12) |
||
| 313 | thet = atanl (gwav.zph / rho); |
||
| 314 | else |
||
| 315 | thet = POT; |
||
| 316 | |||
| 317 | /* combine vertical and horizontal components and convert */ |
||
| 318 | /* to x,y,z components. multiply by exp(-jkr)/r. */ |
||
| 319 | intrp (gwav.r2, thet, &erv, &ezv, &erh, &eph); |
||
| 320 | gwav.xx2 = gwav.xx2 / gwav.r2; |
||
| 321 | sfac = incom.sn * cph; |
||
| 322 | erh = gwav.xx2 * (dataj.salpj * erv + sfac * erh); |
||
| 323 | ezh = gwav.xx2 * (dataj.salpj * ezv - sfac * erv); |
||
| 324 | /* x,y,z fields for constant current */ |
||
| 325 | eph = incom.sn * sph * gwav.xx2 * eph; |
||
| 326 | e[0] = erh * rhx + eph * phx; |
||
| 327 | e[1] = erh * rhy + eph * phy; |
||
| 328 | e[2] = ezh; |
||
| 329 | /* x,y,z fields for sine current */ |
||
| 330 | rk = TP * t; |
||
| 331 | sfac = sinl (rk); |
||
| 332 | e[3] = e[0] * sfac; |
||
| 333 | e[4] = e[1] * sfac; |
||
| 334 | /* x,y,z fields for cosine current */ |
||
| 335 | e[5] = e[2] * sfac; |
||
| 336 | sfac = cosl (rk); |
||
| 337 | e[6] = e[0] * sfac; |
||
| 338 | e[7] = e[1] * sfac; |
||
| 339 | e[8] = e[2] * sfac; |
||
| 340 | |||
| 341 | return; |
||
| 342 | } |
||
| 343 | |||
| 344 | /*-----------------------------------------------------------------------*/ |