Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /********************************************************************* |
2 | This is a library for our Monochrome OLEDs based on SSD1306 drivers |
||
3 | |||
4 | Pick one up today in the adafruit shop! |
||
5 | ------> http://www.adafruit.com/category/63_98 |
||
6 | |||
7 | These displays use SPI to communicate, 4 or 5 pins are required to |
||
8 | interface |
||
9 | |||
10 | Adafruit invests time and resources providing this open source code, |
||
11 | please support Adafruit and open-source hardware by purchasing |
||
12 | products from Adafruit! |
||
13 | |||
14 | Written by Limor Fried/Ladyada for Adafruit Industries. |
||
15 | BSD license, check license.txt for more information |
||
16 | All text above, and the splash screen below must be included in any redistribution |
||
17 | |||
18 | This code is taken from the ADAfruit library - it is used for playing with an OLED screen |
||
19 | |||
20 | *********************************************************************/ |
||
21 | #include <stdint.h> |
||
22 | #include <string.h> |
||
23 | #include "libSSD1306/SSD1306.h" |
||
24 | // pick up gpio settings |
||
25 | #include "main.h" |
||
26 | |||
27 | |||
28 | #define swap(x,y) { typeof(x)t = x; x=y; y=t; } |
||
29 | #define abs(x) ((x)>0?(x):-(x)) |
||
30 | |||
31 | static uint8_t rotation = 0; |
||
32 | const uint16_t WIDTH = SSD1306_LCDWIDTH; |
||
33 | const uint16_t HEIGHT = SSD1306_LCDHEIGHT; |
||
34 | const uint16_t RAMWIDTH = 128; |
||
35 | |||
36 | extern SPI_HandleTypeDef hspi1; |
||
37 | |||
38 | // the memory buffer for the LCD |
||
39 | |||
40 | // pointer to the current display - affects buffer used and also chipselect |
||
41 | static int cd = 0; |
||
42 | |||
43 | uint8_t display_buffer[MAX_PHYS_DISPLAYS][SSD1306_LCDHEIGHT * SSD1306_LCDWIDTH |
||
44 | / 8]; |
||
45 | |||
46 | inline uint8_t * display_address(void) { |
||
47 | return (uint8_t *) (&display_buffer[cd]); |
||
48 | } |
||
49 | |||
50 | inline uint8_t getRotation(void) { |
||
51 | return rotation; |
||
52 | } |
||
53 | |||
54 | inline int16_t width(void) { |
||
55 | switch (rotation) { |
||
56 | case 0: |
||
57 | return WIDTH; |
||
58 | break; |
||
59 | case 1: |
||
60 | return WIDTH; |
||
61 | break; |
||
62 | case 2: |
||
63 | return HEIGHT; |
||
64 | break; |
||
65 | case 3: |
||
66 | return -WIDTH; |
||
67 | break; |
||
68 | } |
||
69 | return 0; |
||
70 | } |
||
71 | |||
72 | inline int16_t height(void) { |
||
73 | switch (rotation) { |
||
74 | case 0: |
||
75 | return HEIGHT; |
||
76 | break; |
||
77 | case 1: |
||
78 | return HEIGHT; |
||
79 | break; |
||
80 | case 2: |
||
81 | return WIDTH; |
||
82 | break; |
||
83 | case 3: |
||
84 | return -HEIGHT; |
||
85 | break; |
||
86 | } |
||
87 | return 0; |
||
88 | } |
||
89 | |||
90 | inline void fastSPIwrite(uint8_t d) { |
||
91 | uint8_t buffer[1]; |
||
92 | buffer[0] = d; |
||
93 | // todo chipselect based on 'cd' buffer choice |
||
94 | |||
95 | #if defined SPI_SPI1 |
||
96 | if(cd==0) |
||
97 | { |
||
98 | HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_RESET); |
||
99 | } |
||
100 | #endif |
||
101 | #if defined SPI_SPI2 |
||
102 | if(cd==1) |
||
103 | { |
||
104 | HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_RESET); |
||
105 | } |
||
106 | #endif |
||
107 | |||
108 | HAL_SPI_Transmit(&hspi1, buffer, 1, 2); |
||
109 | #if defined SPI_SPI1 |
||
110 | if(cd==0) |
||
111 | { |
||
112 | HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET); |
||
113 | } |
||
114 | #endif |
||
115 | #if defined SPI_SPI2 |
||
116 | if(cd==1) |
||
117 | { |
||
118 | HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET); |
||
119 | } |
||
120 | #endif |
||
121 | |||
122 | |||
123 | } |
||
124 | |||
125 | // the most basic function, set a single pixel |
||
126 | inline void drawPixel(int16_t x, int16_t y, uint16_t color) { |
||
127 | if ((x < 0) || (x >= width()) || (y < 0) || (y >= height())) |
||
128 | return; |
||
129 | |||
130 | // check rotation, move pixel around if necessary |
||
131 | switch (getRotation()) { |
||
132 | case 1: |
||
133 | swap(x, y) |
||
134 | ; |
||
135 | x = WIDTH - x - 1; |
||
136 | break; |
||
137 | case 2: |
||
138 | x = WIDTH - x - 1; |
||
139 | y = HEIGHT - y - 1; |
||
140 | break; |
||
141 | case 3: |
||
142 | swap(x, y) |
||
143 | ; |
||
144 | y = HEIGHT - y - 1; |
||
145 | break; |
||
146 | } |
||
147 | |||
148 | // x is which column |
||
149 | switch (color) { |
||
150 | case BLACK: |
||
151 | display_buffer[cd][x + (y / 8) * SSD1306_LCDWIDTH] &= ~(1 << (y & 7)); |
||
152 | break; |
||
153 | |||
154 | default: |
||
155 | case WHITE: |
||
156 | display_buffer[cd][x + (y / 8) * SSD1306_LCDWIDTH] |= (1 << (y & 7)); |
||
157 | break; |
||
158 | |||
159 | case INVERT: |
||
160 | display_buffer[cd][x + (y / 8) * SSD1306_LCDWIDTH] ^= (1 << (y & 7)); |
||
161 | break; |
||
162 | } |
||
163 | } |
||
164 | |||
165 | void ssd1306_begin(uint8_t vccstate, uint8_t i2caddr) { |
||
166 | |||
167 | HAL_GPIO_WritePin(SPI_RESET_GPIO_Port, SPI_RESET_Pin, GPIO_PIN_SET); |
||
168 | |||
169 | // VDD (3.3V) goes high at start, lets just chill for a ms |
||
170 | HAL_Delay(1); |
||
171 | // bring reset low |
||
172 | HAL_GPIO_WritePin(SPI_RESET_GPIO_Port, SPI_RESET_Pin, GPIO_PIN_RESET); |
||
173 | // wait 10ms |
||
174 | HAL_Delay(10); |
||
175 | // bring out of reset |
||
176 | HAL_GPIO_WritePin(SPI_RESET_GPIO_Port, SPI_RESET_Pin, GPIO_PIN_SET); |
||
177 | // turn on VCC (9V?) |
||
178 | |||
179 | for (cd = 0; cd < 2; cd++) { |
||
180 | select_display(cd); |
||
181 | #if defined SSD1306_128_32 |
||
182 | // Init sequence for 128x32 OLED module |
||
183 | ssd1306_command(SSD1306_DISPLAYOFF);// 0xAE |
||
184 | ssd1306_command(SSD1306_SETDISPLAYCLOCKDIV);// 0xD5 |
||
185 | ssd1306_command(0x80);// the suggested ratio 0x80 |
||
186 | ssd1306_command(SSD1306_SETMULTIPLEX);// 0xA8 |
||
187 | ssd1306_command(0x1F); |
||
188 | ssd1306_command(SSD1306_SETDISPLAYOFFSET);// 0xD3 |
||
189 | ssd1306_command(0x0);// no offset |
||
190 | ssd1306_command(SSD1306_SETSTARTLINE | 0x0);// line #0 |
||
191 | ssd1306_command(SSD1306_CHARGEPUMP);// 0x8D |
||
192 | if (vccstate == SSD1306_EXTERNALVCC) |
||
193 | { ssd1306_command(0x10);} |
||
194 | else |
||
195 | { ssd1306_command(0x14);} |
||
196 | ssd1306_command(SSD1306_MEMORYMODE); // 0x20 |
||
197 | ssd1306_command(0x00);// 0x0 act like ks0108 |
||
198 | ssd1306_command(SSD1306_SEGREMAP | 0x1); |
||
199 | ssd1306_command(SSD1306_COMSCANDEC); |
||
200 | ssd1306_command(SSD1306_SETCOMPINS);// 0xDA |
||
201 | ssd1306_command(0x02); |
||
202 | ssd1306_command(SSD1306_SETCONTRAST);// 0x81 |
||
203 | ssd1306_command(0x8F); |
||
204 | ssd1306_command(SSD1306_SETPRECHARGE);// 0xd9 |
||
205 | if (vccstate == SSD1306_EXTERNALVCC) |
||
206 | { ssd1306_command(0x22);} |
||
207 | else |
||
208 | { ssd1306_command(0xF1);} |
||
209 | ssd1306_command(SSD1306_SETVCOMDETECT); // 0xDB |
||
210 | ssd1306_command(0x40); |
||
211 | ssd1306_command(SSD1306_DISPLAYALLON_RESUME);// 0xA4 |
||
212 | ssd1306_command(SSD1306_NORMALDISPLAY);// 0xA6 |
||
213 | #endif |
||
214 | |||
215 | #if defined SSD1306_128_64 |
||
216 | // Init sequence for 128x64 OLED module |
||
217 | ssd1306_command(SSD1306_DISPLAYOFF); // 0xAE |
||
218 | ssd1306_command(SSD1306_SETDISPLAYCLOCKDIV); // 0xD5 |
||
219 | ssd1306_command(0x80); // the suggested ratio 0x80 |
||
220 | ssd1306_command(SSD1306_SETMULTIPLEX); // 0xA8 |
||
221 | ssd1306_command(0x3F); |
||
222 | ssd1306_command(SSD1306_SETDISPLAYOFFSET); // 0xD3 |
||
223 | ssd1306_command(0x0); // no offset |
||
224 | ssd1306_command(SSD1306_SETSTARTLINE | 0x0); // line #0 |
||
225 | ssd1306_command(SSD1306_CHARGEPUMP); // 0x8D |
||
226 | if (vccstate == SSD1306_EXTERNALVCC) { |
||
227 | ssd1306_command(0x10); |
||
228 | } else { |
||
229 | ssd1306_command(0x14); |
||
230 | } |
||
231 | ssd1306_command(SSD1306_MEMORYMODE); // 0x20 |
||
232 | ssd1306_command(0x00); // 0x0 act like ks0108 |
||
233 | ssd1306_command(SSD1306_SEGREMAP | 0x1); |
||
234 | ssd1306_command(SSD1306_COMSCANDEC); |
||
235 | ssd1306_command(SSD1306_SETCOMPINS); // 0xDA |
||
236 | ssd1306_command(0x12); |
||
237 | ssd1306_command(SSD1306_SETCONTRAST); // 0x81 |
||
238 | if (vccstate == SSD1306_EXTERNALVCC) { |
||
239 | ssd1306_command(0x9F); |
||
240 | } else { |
||
241 | ssd1306_command(0xCF); |
||
242 | } |
||
243 | ssd1306_command(SSD1306_SETPRECHARGE); // 0xd9 |
||
244 | if (vccstate == SSD1306_EXTERNALVCC) { |
||
245 | ssd1306_command(0x22); |
||
246 | } else { |
||
247 | ssd1306_command(0xF1); |
||
248 | } |
||
249 | ssd1306_command(SSD1306_SETVCOMDETECT); // 0xDB |
||
250 | ssd1306_command(0x40); |
||
251 | ssd1306_command(SSD1306_DISPLAYALLON_RESUME); // 0xA4 |
||
252 | ssd1306_command(SSD1306_NORMALDISPLAY); // 0xA6 |
||
253 | #endif |
||
254 | |||
255 | ssd1306_command(SSD1306_DISPLAYON); //--turn on oled panel |
||
256 | } |
||
257 | select_display(0); |
||
258 | } |
||
259 | |||
260 | void invertDisplay(uint8_t i) { |
||
261 | if (i) { |
||
262 | ssd1306_command(SSD1306_INVERTDISPLAY); |
||
263 | } else { |
||
264 | ssd1306_command(SSD1306_NORMALDISPLAY); |
||
265 | } |
||
266 | } |
||
267 | |||
268 | void ssd1306_command(uint8_t c) { |
||
269 | HAL_GPIO_WritePin(SPI_CD_GPIO_Port, SPI_CD_Pin, GPIO_PIN_RESET); |
||
270 | |||
271 | fastSPIwrite(c); |
||
272 | |||
273 | } |
||
274 | |||
275 | // startscrollright |
||
276 | // Activate a right handed scroll for rows start through stop |
||
277 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
278 | // display.scrollright(0x00, 0x0F) |
||
279 | void startscrollright(uint8_t start, uint8_t stop) { |
||
280 | ssd1306_command(SSD1306_RIGHT_HORIZONTAL_SCROLL); |
||
281 | ssd1306_command(0X00); |
||
282 | ssd1306_command(start); |
||
283 | ssd1306_command(0X00); |
||
284 | ssd1306_command(stop); |
||
285 | ssd1306_command(0X00); |
||
286 | ssd1306_command(0XFF); |
||
287 | ssd1306_command(SSD1306_ACTIVATE_SCROLL); |
||
288 | } |
||
289 | |||
290 | // startscrollleft |
||
291 | // Activate a right handed scroll for rows start through stop |
||
292 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
293 | // display.scrollright(0x00, 0x0F) |
||
294 | void startscrollleft(uint8_t start, uint8_t stop) { |
||
295 | ssd1306_command(SSD1306_LEFT_HORIZONTAL_SCROLL); |
||
296 | ssd1306_command(0X00); |
||
297 | ssd1306_command(start); |
||
298 | ssd1306_command(0X00); |
||
299 | ssd1306_command(stop); |
||
300 | ssd1306_command(0X00); |
||
301 | ssd1306_command(0XFF); |
||
302 | ssd1306_command(SSD1306_ACTIVATE_SCROLL); |
||
303 | } |
||
304 | |||
305 | // startscrolldiagright |
||
306 | // Activate a diagonal scroll for rows start through stop |
||
307 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
308 | // display.scrollright(0x00, 0x0F) |
||
309 | void startscrolldiagright(uint8_t start, uint8_t stop) { |
||
310 | ssd1306_command(SSD1306_SET_VERTICAL_SCROLL_AREA); |
||
311 | ssd1306_command(0X00); |
||
312 | ssd1306_command(SSD1306_LCDHEIGHT); |
||
313 | ssd1306_command(SSD1306_VERTICAL_AND_RIGHT_HORIZONTAL_SCROLL); |
||
314 | ssd1306_command(0X00); |
||
315 | ssd1306_command(start); |
||
316 | ssd1306_command(0X00); |
||
317 | ssd1306_command(stop); |
||
318 | ssd1306_command(0X01); |
||
319 | ssd1306_command(SSD1306_ACTIVATE_SCROLL); |
||
320 | } |
||
321 | |||
322 | // startscrolldiagleft |
||
323 | // Activate a diagonal scroll for rows start through stop |
||
324 | // Hint, the display is 16 rows tall. To scroll the whole display, run: |
||
325 | // display.scrollright(0x00, 0x0F) |
||
326 | void startscrolldiagleft(uint8_t start, uint8_t stop) { |
||
327 | ssd1306_command(SSD1306_SET_VERTICAL_SCROLL_AREA); |
||
328 | ssd1306_command(0X00); |
||
329 | ssd1306_command(SSD1306_LCDHEIGHT); |
||
330 | ssd1306_command(SSD1306_VERTICAL_AND_LEFT_HORIZONTAL_SCROLL); |
||
331 | ssd1306_command(0X00); |
||
332 | ssd1306_command(start); |
||
333 | ssd1306_command(0X00); |
||
334 | ssd1306_command(stop); |
||
335 | ssd1306_command(0X01); |
||
336 | ssd1306_command(SSD1306_ACTIVATE_SCROLL); |
||
337 | } |
||
338 | |||
339 | void stopscroll(void) { |
||
340 | ssd1306_command(SSD1306_DEACTIVATE_SCROLL); |
||
341 | } |
||
342 | |||
343 | // Dim the display |
||
344 | // dim = true: display is dimmed |
||
345 | // dim = false: display is normal |
||
346 | void dim(uint8_t dim) { |
||
347 | uint8_t contrast; |
||
348 | |||
349 | if (dim) { |
||
350 | contrast = 0; // Dimmed display |
||
351 | } else { |
||
352 | contrast = 0xCF; |
||
353 | } |
||
354 | // the range of contrast to too small to be really useful |
||
355 | // it is useful to dim the display |
||
356 | ssd1306_command(SSD1306_SETCONTRAST); |
||
357 | ssd1306_command(contrast); |
||
358 | } |
||
359 | |||
360 | void display(void) { |
||
361 | ssd1306_command(SSD1306_COLUMNADDR); |
||
362 | ssd1306_command(0); // Column start address (0 = reset) |
||
363 | ssd1306_command(RAMWIDTH-1); // Column end address (127 = reset) |
||
364 | |||
365 | ssd1306_command(SSD1306_PAGEADDR); |
||
366 | ssd1306_command(0); // Page start address (0 = reset) |
||
367 | ssd1306_command((SSD1306_LCDHEIGHT == 64) ? 7 : 3); // Page end address |
||
368 | |||
369 | int row; |
||
370 | int col = 2; |
||
371 | for (row = 0; row < SSD1306_LCDHEIGHT / 8; row++) { |
||
372 | // set the cursor to |
||
373 | ssd1306_command(0xB0 + row); //set page address |
||
374 | ssd1306_command(col & 0xf); //set lower column address |
||
375 | ssd1306_command(0x10 | (col >> 4)); //set higher column address |
||
376 | |||
377 | |||
378 | HAL_GPIO_WritePin(SPI_CD_GPIO_Port, SPI_CD_Pin, GPIO_PIN_SET); |
||
379 | |||
380 | #if defined SPI_SPI1 |
||
381 | if(cd==0) |
||
382 | { |
||
383 | HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_RESET); |
||
384 | } |
||
385 | #endif |
||
386 | #if defined SPI_SPI2 |
||
387 | if(cd==1) |
||
388 | { |
||
389 | HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_RESET); |
||
390 | } |
||
391 | #endif |
||
392 | |||
393 | |||
394 | |||
395 | HAL_SPI_Transmit(&hspi1, |
||
396 | (uint8_t *) (&display_buffer[cd]) + row * SSD1306_LCDWIDTH, |
||
397 | SSD1306_LCDWIDTH, 100); |
||
398 | #if defined SPI_SPI1 |
||
399 | if(cd==0) |
||
400 | { |
||
401 | HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET); |
||
402 | } |
||
403 | #endif |
||
404 | #if defined SPI_SPI2 |
||
405 | |||
406 | if(cd==1) |
||
407 | { |
||
408 | HAL_GPIO_WritePin(SPI_NSS2_GPIO_Port, SPI_NSS2_Pin, GPIO_PIN_SET); |
||
409 | } |
||
410 | #endif |
||
411 | HAL_GPIO_WritePin(SPI_CD_GPIO_Port, SPI_CD_Pin, GPIO_PIN_RESET); |
||
412 | |||
413 | } |
||
414 | |||
415 | } |
||
416 | |||
417 | // clear everything |
||
418 | void clearDisplay(void) { |
||
419 | memset(&display_buffer[cd], 0, (SSD1306_LCDWIDTH * SSD1306_LCDHEIGHT / 8)); |
||
420 | } |
||
421 | |||
422 | void drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { |
||
423 | boolean bSwap = false; |
||
424 | switch (rotation) { |
||
425 | case 0: |
||
426 | // 0 degree rotation, do nothing |
||
427 | break; |
||
428 | case 1: |
||
429 | // 90 degree rotation, swap x & y for rotation, then invert x |
||
430 | bSwap = true; |
||
431 | swap(x, y) |
||
432 | ; |
||
433 | x = WIDTH - x - 1; |
||
434 | break; |
||
435 | case 2: |
||
436 | // 180 degree rotation, invert x and y - then shift y around for height. |
||
437 | x = WIDTH - x - 1; |
||
438 | y = HEIGHT - y - 1; |
||
439 | x -= (w - 1); |
||
440 | break; |
||
441 | case 3: |
||
442 | // 270 degree rotation, swap x & y for rotation, then invert y and adjust y for w (not to become h) |
||
443 | bSwap = true; |
||
444 | swap(x, y) |
||
445 | ; |
||
446 | y = HEIGHT - y - 1; |
||
447 | y -= (w - 1); |
||
448 | break; |
||
449 | } |
||
450 | |||
451 | if (bSwap) { |
||
452 | drawFastVLineInternal(x, y, w, color); |
||
453 | } else { |
||
454 | drawFastHLineInternal(x, y, w, color); |
||
455 | } |
||
456 | } |
||
457 | |||
458 | void drawFastHLineInternal(int16_t x, int16_t y, int16_t w, uint16_t color) { |
||
459 | // Do bounds/limit checks |
||
460 | if (y < 0 || y >= HEIGHT) { |
||
461 | return; |
||
462 | } |
||
463 | |||
464 | // make sure we don't try to draw below 0 |
||
465 | if (x < 0) { |
||
466 | w += x; |
||
467 | x = 0; |
||
468 | } |
||
469 | |||
470 | // make sure we don't go off the edge of the display |
||
471 | if ((x + w) > WIDTH) { |
||
472 | w = (HEIGHT - x); |
||
473 | } |
||
474 | |||
475 | // if our width is now negative, punt |
||
476 | if (w <= 0) { |
||
477 | return; |
||
478 | } |
||
479 | |||
480 | // set up the pointer for movement through the buffer |
||
481 | register uint8_t *pBuf = display_address(); |
||
482 | // adjust the buffer pointer for the current row |
||
483 | pBuf += ((y / 8) * SSD1306_LCDWIDTH); |
||
484 | // and offset x columns in |
||
485 | pBuf += x; |
||
486 | |||
487 | register uint8_t mask = 1 << (y & 7); |
||
488 | |||
489 | if (color == WHITE) { |
||
490 | while (w--) { |
||
491 | *pBuf++ |= mask; |
||
492 | } |
||
493 | } else { |
||
494 | mask = ~mask; |
||
495 | while (w--) { |
||
496 | *pBuf++ &= mask; |
||
497 | } |
||
498 | } |
||
499 | } |
||
500 | |||
501 | void drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { |
||
502 | boolean bSwap = false; |
||
503 | switch (rotation) { |
||
504 | case 0: |
||
505 | break; |
||
506 | case 1: |
||
507 | // 90 degree rotation, swap x & y for rotation, then invert x and adjust x for h (now to become w) |
||
508 | bSwap = true; |
||
509 | swap(x, y) |
||
510 | ; |
||
511 | x = WIDTH - x - 1; |
||
512 | x -= (h - 1); |
||
513 | break; |
||
514 | case 2: |
||
515 | // 180 degree rotation, invert x and y - then shift y around for height. |
||
516 | x = WIDTH - x - 1; |
||
517 | y = HEIGHT - y - 1; |
||
518 | y -= (h - 1); |
||
519 | break; |
||
520 | case 3: |
||
521 | // 270 degree rotation, swap x & y for rotation, then invert y |
||
522 | bSwap = true; |
||
523 | swap(x, y) |
||
524 | ; |
||
525 | y = HEIGHT - y - 1; |
||
526 | break; |
||
527 | } |
||
528 | |||
529 | if (bSwap) { |
||
530 | drawFastHLineInternal(x, y, h, color); |
||
531 | } else { |
||
532 | drawFastVLineInternal(x, y, h, color); |
||
533 | } |
||
534 | } |
||
535 | |||
536 | void drawFastVLineInternal(int16_t x, int16_t __y, int16_t __h, uint16_t color) { |
||
537 | |||
538 | // do nothing if we're off the left or right side of the screen |
||
539 | if (x < 0 || x >= WIDTH) { |
||
540 | return; |
||
541 | } |
||
542 | |||
543 | // make sure we don't try to draw below 0 |
||
544 | if (__y < 0) { |
||
545 | // __y is negative, this will subtract enough from __h to account for __y being 0 |
||
546 | __h += __y; |
||
547 | __y = 0; |
||
548 | |||
549 | } |
||
550 | |||
551 | // make sure we don't go past the height of the display |
||
552 | if ((__y + __h) > HEIGHT) { |
||
553 | __h = (HEIGHT - __y); |
||
554 | } |
||
555 | |||
556 | // if our height is now negative, punt |
||
557 | if (__h <= 0) { |
||
558 | return; |
||
559 | } |
||
560 | |||
561 | // this display doesn't need ints for coordinates, use local byte registers for faster juggling |
||
562 | register uint8_t y = __y; |
||
563 | register uint8_t h = __h; |
||
564 | |||
565 | // set up the pointer for fast movement through the buffer |
||
566 | register uint8_t *pBuf = display_address(); |
||
567 | // adjust the buffer pointer for the current row |
||
568 | pBuf += ((y / 8) * SSD1306_LCDWIDTH); |
||
569 | // and offset x columns in |
||
570 | pBuf += x; |
||
571 | |||
572 | // do the first partial byte, if necessary - this requires some masking |
||
573 | register uint8_t mod = (y & 7); |
||
574 | if (mod) { |
||
575 | // mask off the high n bits we want to set |
||
576 | mod = 8 - mod; |
||
577 | |||
578 | // note - lookup table results in a nearly 10% performance improvement in fill* functions |
||
579 | // register uint8_t mask = ~(0xFF >> (mod)); |
||
580 | static uint8_t premask[8] = { 0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, |
||
581 | 0xFE }; |
||
582 | register uint8_t mask = premask[mod]; |
||
583 | |||
584 | // adjust the mask if we're not going to reach the end of this byte |
||
585 | if (h < mod) { |
||
586 | mask &= (0XFF >> (mod - h)); |
||
587 | } |
||
588 | |||
589 | if (color == WHITE) { |
||
590 | *pBuf |= mask; |
||
591 | } else { |
||
592 | *pBuf &= ~mask; |
||
593 | } |
||
594 | |||
595 | // fast exit if we're done here! |
||
596 | if (h < mod) { |
||
597 | return; |
||
598 | } |
||
599 | |||
600 | h -= mod; |
||
601 | |||
602 | pBuf += SSD1306_LCDWIDTH; |
||
603 | } |
||
604 | |||
605 | // write solid bytes while we can - effectively doing 8 rows at a time |
||
606 | if (h >= 8) { |
||
607 | // store a local value to work with |
||
608 | register uint8_t val = (color == WHITE) ? 255 : 0; |
||
609 | |||
610 | do { |
||
611 | // write our value in |
||
612 | *pBuf = val; |
||
613 | |||
614 | // adjust the buffer forward 8 rows worth of data |
||
615 | pBuf += SSD1306_LCDWIDTH; |
||
616 | |||
617 | // adjust h & y (there's got to be a faster way for me to do this, but this should still help a fair bit for now) |
||
618 | h -= 8; |
||
619 | } while (h >= 8); |
||
620 | } |
||
621 | |||
622 | // now do the final partial byte, if necessary |
||
623 | if (h) { |
||
624 | mod = h & 7; |
||
625 | // this time we want to mask the low bits of the byte, vs the high bits we did above |
||
626 | // register uint8_t mask = (1 << mod) - 1; |
||
627 | // note - lookup table results in a nearly 10% performance improvement in fill* functions |
||
628 | static uint8_t postmask[8] = { 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, |
||
629 | 0x7F }; |
||
630 | register uint8_t mask = postmask[mod]; |
||
631 | if (color == WHITE) { |
||
632 | *pBuf |= mask; |
||
633 | } else { |
||
634 | *pBuf &= ~mask; |
||
635 | } |
||
636 | } |
||
637 | } |
||
638 | |||
639 | /* using Bresenham draw algorithm */ |
||
640 | void drawLine(int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color) { |
||
641 | int16_t x, y, dx, //deltas |
||
642 | dy, dx2, //scaled deltas |
||
643 | dy2, ix, //increase rate on the x axis |
||
644 | iy, //increase rate on the y axis |
||
645 | err; //the error term |
||
646 | uint16_t i; //looping variable |
||
647 | |||
648 | // identify the first pixel |
||
649 | x = x1; |
||
650 | y = y1; |
||
651 | |||
652 | // difference between starting and ending points |
||
653 | dx = x2 - x1; |
||
654 | dy = y2 - y1; |
||
655 | |||
656 | // calculate direction of the vector and store in ix and iy |
||
657 | if (dx >= 0) |
||
658 | ix = 1; |
||
659 | |||
660 | if (dx < 0) { |
||
661 | ix = -1; |
||
662 | dx = abs(dx); |
||
663 | } |
||
664 | |||
665 | if (dy >= 0) |
||
666 | iy = 1; |
||
667 | |||
668 | if (dy < 0) { |
||
669 | iy = -1; |
||
670 | dy = abs(dy); |
||
671 | } |
||
672 | |||
673 | // scale deltas and store in dx2 and dy2 |
||
674 | dx2 = dx * 2; |
||
675 | dy2 = dy * 2; |
||
676 | |||
677 | // all variables are set and it's time to enter the main loop. |
||
678 | |||
679 | if (dx > dy) // dx is the major axis |
||
680 | { |
||
681 | // initialize the error term |
||
682 | err = dy2 - dx; |
||
683 | |||
684 | for (i = 0; i <= dx; i++) { |
||
685 | drawPixel(x, y, color); |
||
686 | if (err >= 0) { |
||
687 | err -= dx2; |
||
688 | y += iy; |
||
689 | } |
||
690 | err += dy2; |
||
691 | x += ix; |
||
692 | } |
||
693 | } |
||
694 | |||
695 | else // dy is the major axis |
||
696 | { |
||
697 | // initialize the error term |
||
698 | err = dx2 - dy; |
||
699 | |||
700 | for (i = 0; i <= dy; i++) { |
||
701 | drawPixel(x, y, color); |
||
702 | if (err >= 0) { |
||
703 | err -= dy2; |
||
704 | x += ix; |
||
705 | } |
||
706 | err += dx2; |
||
707 | y += iy; |
||
708 | } |
||
709 | } |
||
710 | } |
||
711 | |||
712 | void select_display(int i) { |
||
713 | if (i < MAX_PHYS_DISPLAYS) { |
||
714 | cd = i; |
||
715 | } |
||
716 | } |