Subversion Repositories EngineBay2

Rev

Rev 25 | Rev 27 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**
20 mjames 2
  ******************************************************************************
3
  * File Name          : main.c
4
  * Description        : Main program body
5
  ******************************************************************************
6
  *
7
  * COPYRIGHT(c) 2017 STMicroelectronics
8
  *
9
  * Redistribution and use in source and binary forms, with or without modification,
10
  * are permitted provided that the following conditions are met:
11
  *   1. Redistributions of source code must retain the above copyright notice,
12
  *      this list of conditions and the following disclaimer.
13
  *   2. Redistributions in binary form must reproduce the above copyright notice,
14
  *      this list of conditions and the following disclaimer in the documentation
15
  *      and/or other materials provided with the distribution.
16
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
17
  *      may be used to endorse or promote products derived from this software
18
  *      without specific prior written permission.
19
  *
20
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
  *
31
  ******************************************************************************
32
  */
2 mjames 33
/* Includes ------------------------------------------------------------------*/
34
#include "stm32l1xx_hal.h"
35
 
36
/* USER CODE BEGIN Includes */
7 mjames 37
#include "serial.h"
9 mjames 38
#include "plx.h"
39
#include "misc.h"
2 mjames 40
/* USER CODE END Includes */
41
 
42
/* Private variables ---------------------------------------------------------*/
43
ADC_HandleTypeDef hadc;
6 mjames 44
DMA_HandleTypeDef hdma_adc;
2 mjames 45
 
46
SPI_HandleTypeDef hspi1;
47
 
48
TIM_HandleTypeDef htim2;
49
TIM_HandleTypeDef htim6;
50
 
51
UART_HandleTypeDef huart1;
6 mjames 52
UART_HandleTypeDef huart2;
2 mjames 53
 
54
/* USER CODE BEGIN PV */
55
/* Private variables ---------------------------------------------------------*/
56
 
9 mjames 57
// with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000
58
// freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the first pulse longer than 1/300 of a second as being a proper closure .
59
// the TIM2 counter counts in 10uS increments,
60
#define BREAKER_MIN (RPM_COUNT_RATE/300)
61
 
22 mjames 62
// wait for about 1 second to decide whether or not starter is on
21 mjames 63
 
22 mjames 64
#define STARTER_LIMIT 10
65
 
9 mjames 66
volatile char TimerFlag = 0;
67
 
68
volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1
69
volatile char NoSerialIn = 0;
70
 
8 mjames 71
// storage for ADC
19 mjames 72
uint16_t ADC_Samples[6];
8 mjames 73
 
17 mjames 74
#define Scale 1024.0
75
const float ADC_Scale = 3.3 / (Scale * 4096.0); // convert to a voltage
76
 
19 mjames 77
uint32_t FILT_Samples[6]; // filtered ADC samples * 1024
9 mjames 78
// Rev counter processing from original RevCounter Project
79
unsigned int RPM_Diff = 0;
80
unsigned int RPM_Count_Latch = 0;
81
// accumulators
82
unsigned int RPM_Pulsecount = 0;
83
unsigned int RPM_FilteredWidth = 0;
84
 
85
unsigned int Coded_RPM = 0;
86
unsigned int Coded_CHT = 0;
87
 
18 mjames 88
uint32_t Power_CHT_Timer;
89
 
21 mjames 90
uint16_t Starter_Debounce = 0;
91
 
2 mjames 92
/* USER CODE END PV */
93
 
94
/* Private function prototypes -----------------------------------------------*/
95
void SystemClock_Config(void);
96
void Error_Handler(void);
97
static void MX_GPIO_Init(void);
6 mjames 98
static void MX_DMA_Init(void);
2 mjames 99
static void MX_ADC_Init(void);
100
static void MX_SPI1_Init(void);
101
static void MX_TIM2_Init(void);
102
static void MX_TIM6_Init(void);
13 mjames 103
static void MX_USART2_UART_Init(void);
2 mjames 104
static void MX_USART1_UART_Init(void);
105
 
106
/* USER CODE BEGIN PFP */
107
/* Private function prototypes -----------------------------------------------*/
108
 
9 mjames 109
/* USER CODE END PFP */
7 mjames 110
 
9 mjames 111
/* USER CODE BEGIN 0 */
7 mjames 112
 
19 mjames 113
void plx_sendword(int x)
114
{
9 mjames 115
        PutCharSerial(&uc1, ((x) >> 6) & 0x3F);
116
        PutCharSerial(&uc1, (x) & 0x3F);
117
}
2 mjames 118
 
17 mjames 119
void init_ADC_filter()
120
{
121
        int i;
19 mjames 122
        for (i = 0; i < 6; i++)
123
        {
17 mjames 124
                FILT_Samples[i] = 0;
19 mjames 125
        }
17 mjames 126
}
127
 
128
void filter_ADC_samples()
129
{
19 mjames 130
        int i;
131
        for (i = 0; i < 6; i++)
132
        {
133
                FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2;
134
        }
17 mjames 135
}
136
 
19 mjames 137
void ProcessRPM(int instance)
138
{
9 mjames 139
// compute the timer values
140
// snapshot timers
141
        unsigned long RPM_Pulsewidth;
142
        unsigned long RPM_Count_Val;
143
        __disable_irq(); // copy the counter value
144
        RPM_Count_Val = RPM_Count;
145
        __enable_irq();
146
// do calculations
147
// if there is only one entry, cannot get difference
19 mjames 148
        if (RPM_Count_Latch != RPM_Count_Val)
149
        {
150
                while (1)
151
                {
9 mjames 152
                        unsigned int base_time;
153
                        unsigned int new_time;
154
                        // if we are at N-1, stop.
155
                        unsigned int next_count = RPM_Count_Latch + 1;
19 mjames 156
                        if (next_count == RPM_SAMPLES)
157
                        {
9 mjames 158
                                next_count = 0;
159
                        }
19 mjames 160
                        if (next_count == RPM_Count_Val)
161
                        {
9 mjames 162
                                break;
163
                        }
164
                        base_time = RPM_Time[RPM_Count_Latch];
165
                        new_time = RPM_Time[next_count];
166
                        RPM_Count_Latch = next_count;
19 mjames 167
                        if (new_time > base_time)
168
                        {
9 mjames 169
                                RPM_Pulsewidth = new_time - base_time; // not wrapped
19 mjames 170
                        }
171
                        else
172
                        {
13 mjames 173
                                RPM_Pulsewidth = new_time - base_time + 65536; // deal with wrapping
9 mjames 174
                        }
2 mjames 175
 
9 mjames 176
                        RPM_Diff += RPM_Pulsewidth;
177
                        // need to check if this is a long pulse. If it is, keep the answer
19 mjames 178
                        if (RPM_Pulsewidth > BREAKER_MIN)
179
                        {
9 mjames 180
                                RPM_Pulsecount++; // count one pulse
181
                                RPM_FilteredWidth += RPM_Diff; // add its width to the accumulator
182
                                RPM_Diff = 0; // reset accumulator of all the narrow widths
183
                        }
184
                }
185
 
186
        }
187
 
19 mjames 188
        if (RPM_Pulsecount > 0)
189
        {
9 mjames 190
                // now have time for N pulses in clocks
191
                // need to scale by 19.55: one unit is 19.55 RPM
192
                // 1Hz is 60 RPM
26 mjames 193
                float New_RPM = (30.0 / 19.55 * RPM_Pulsecount * RPM_COUNT_RATE)
19 mjames 194
                                / (RPM_FilteredWidth) + 0.5;
26 mjames 195
// increase RPM filtering
196
                Coded_RPM += (New_RPM * Scale - Coded_RPM) / 8;
17 mjames 197
 
9 mjames 198
#if !defined MY_DEBUG
199
                // reset here unless we want to debug
200
                RPM_Pulsecount = 0;
201
                RPM_FilteredWidth = 0;
202
#endif
203
        }
204
 
17 mjames 205
// send the current RPM *calculation
9 mjames 206
        plx_sendword(PLX_RPM);
207
        PutCharSerial(&uc1, instance);
19 mjames 208
        plx_sendword(Coded_RPM / Scale);
9 mjames 209
}
210
 
211
// this uses a MAX6675 which is a simple 16 bit read
212
// SPI is configured for 8 bits so I can use an OLED display if I need it
11 mjames 213
// must wait > 0.22 seconds between conversion attempts as this is the measurement time
214
//
18 mjames 215
 
21 mjames 216
FunctionalState CHT_Enable = ENABLE;
18 mjames 217
 
23 mjames 218
#define CORR 3
219
 
19 mjames 220
uint8_t CHT_Timer[2] =
23 mjames 221
{ 0, 0 }; // two temperature readings : from two sensors
222
 
223
 
21 mjames 224
uint16_t CHT_Observations[2] =
19 mjames 225
{ 0, 0 };
226
 
26 mjames 227
// look for the trigger pin being high then low - the points
228
// are opening, and skip the reading
229
 
230
 
19 mjames 231
void ProcessCHT(int instance)
232
{
9 mjames 233
        uint8_t buffer[2];
18 mjames 234
        if (instance > 2)
235
                return;
236
        CHT_Timer[instance]++;
26 mjames 237
 
238
        static uint8_t prevCB;
239
 
240
        uint8_t readCB =
241
        HAL_GPIO_ReadPin(CB_Pulse_GPIO_Port, CB_Pulse_Pin);
242
 
243
        if(!(prevCB == GPIO_PIN_SET && readCB ==
244
                                 GPIO_PIN_RESET) )
245
          {
246
 
21 mjames 247
        if ((CHT_Enable == ENABLE) && (CHT_Timer[instance] >= 4)) // every 300 milliseconds
19 mjames 248
        {
11 mjames 249
 
18 mjames 250
                CHT_Timer[instance] = 0;
11 mjames 251
 
18 mjames 252
                uint16_t Pin = (instance == 0) ? SPI_NS_Temp_Pin : SPI_NS_Temp2_Pin;
9 mjames 253
 
18 mjames 254
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_RESET);
9 mjames 255
 
18 mjames 256
                HAL_SPI_Receive(&hspi1, buffer, 2, 2);
9 mjames 257
 
18 mjames 258
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_SET);
9 mjames 259
 
18 mjames 260
                uint16_t obs = (buffer[0] << 8) | buffer[1];
9 mjames 261
 
22 mjames 262
                // good observation if the status bit is clear, and the reading is less than 1023
21 mjames 263
 
23 mjames 264
                uint16_t temp_c = obs>>5;
21 mjames 265
 
26 mjames 266
                uint8_t good = ((obs & 7) == 0) && (temp_c > 0) && (temp_c < 250);
23 mjames 267
 
19 mjames 268
                if (good)
269
                {
23 mjames 270
                        CHT_Observations[instance]=temp_c;
271
 
18 mjames 272
                }
23 mjames 273
 
11 mjames 274
        }
26 mjames 275
          }
11 mjames 276
 
26 mjames 277
        prevCB= readCB;
16 mjames 278
        plx_sendword(PLX_X_CHT);
9 mjames 279
        PutCharSerial(&uc1, instance);
19 mjames 280
        plx_sendword(CHT_Observations[instance]);
9 mjames 281
 
282
}
283
 
21 mjames 284
void EnableCHT(FunctionalState state)
285
 
19 mjames 286
{
20 mjames 287
        GPIO_InitTypeDef GPIO_InitStruct;
19 mjames 288
 
289
        CHT_Enable = state;
20 mjames 290
 
21 mjames 291
 
20 mjames 292
        /* enable SPI in live mode : assume it and its GPIOs are already initialised in SPI mode */
21 mjames 293
        if (state == ENABLE)
20 mjames 294
        {
21 mjames 295
                HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_SET );
20 mjames 296
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
297
                HAL_GPIO_WritePin(SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
298
                                GPIO_PIN_SET);
299
 
300
                /* put the SPI pins back into SPI AF mode */
301
                GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
302
                GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
303
                GPIO_InitStruct.Pull = GPIO_NOPULL;
304
                GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
305
                GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
306
                HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
307
 
308
        }
309
        else
310
        {
311
                /*  Power down the SPI interface taking signals all low */
21 mjames 312
                HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_RESET );
20 mjames 313
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin,
314
                                GPIO_PIN_RESET);
315
                HAL_GPIO_WritePin(SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
316
                                GPIO_PIN_RESET);
317
 
318
                HAL_GPIO_WritePin(SPI1_SCK_GPIO_Port,
319
                                SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin, GPIO_PIN_RESET);
320
 
321
                /* put the SPI pins back into GPIO mode */
322
                GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
323
                GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
324
                GPIO_InitStruct.Pull = GPIO_NOPULL;
325
                GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
326
                HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
327
 
328
        }
329
 
19 mjames 330
}
331
 
17 mjames 332
// 1023 is 20.00 volts.
19 mjames 333
void ProcessBatteryVoltage(int instance)
334
{
18 mjames 335
        float reading = FILT_Samples[instance] * ADC_Scale;
336
        reading = reading * 7.8125; // real voltage
337
        reading = reading * 51.15; // 1023/20
17 mjames 338
 
12 mjames 339
        plx_sendword(PLX_Volts);
340
        PutCharSerial(&uc1, instance);
18 mjames 341
        plx_sendword((uint16_t) reading);
12 mjames 342
 
18 mjames 343
}
12 mjames 344
 
18 mjames 345
/****!
346
 * @brief this reads the reference voltage within the STM32L151
347
 * Powers up reference voltage and temperature sensor, waits 3mS  and takes reading
348
 * Requires that the ADC be powered up
349
 */
12 mjames 350
 
18 mjames 351
uint32_t ADC_VREF_MV = 3300;           // 3.300V typical
352
const uint16_t STM32REF_MV = 1224;           // 1.224V typical
353
 
19 mjames 354
void CalibrateADC(void)
355
{
21 mjames 356
        uint32_t adc_val = FILT_Samples[5];       // as set up in device config
18 mjames 357
        ADC_VREF_MV = (STM32REF_MV * 4096) / adc_val;
12 mjames 358
}
359
 
19 mjames 360
void ProcessCPUTemperature(int instance)
361
{
18 mjames 362
        int32_t temp_val;
24 mjames 363
 
21 mjames 364
        uint16_t TS_CAL30 = *(uint16_t *) (0x1FF8007AUL); /* ADC reading for temperature sensor at 30 degrees C with Vref = 3000mV */
365
        uint16_t TS_CAL110 = *(uint16_t *) (0x1FF8007EUL); /* ADC reading for temperature sensor at 110 degrees C with Vref = 3000mV */
18 mjames 366
        /* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */
367
 
368
        temp_val = FILT_Samples[5];
369
 
370
        /* renormalise temperature value to account for different ADC Vref  : normalise to that which we would get for a 3000mV reference */
21 mjames 371
        temp_val = temp_val * ADC_VREF_MV / (Scale * 3000UL);
18 mjames 372
 
373
        int32_t result = 800 * ((int32_t) temp_val - TS_CAL30);
374
        result = result / (TS_CAL110 - TS_CAL30) + 300;
375
 
19 mjames 376
        if (result < 0)
377
        {
378
                result = 0;
379
        }
18 mjames 380
        plx_sendword(PLX_FluidTemp);
381
        PutCharSerial(&uc1, instance);
19 mjames 382
        plx_sendword(result / 10);
18 mjames 383
 
384
}
385
 
17 mjames 386
// the MAP sensor is giving us a reading of
387
// 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016)
388
// I believe the sensor reads  4.5V at 1000kPa and 0.5V at  0kPa
24 mjames 389
// Calibration is a bit off
390
// Real   Displayed
391
// 989    968
392
// 994.1    986
393
// 992.3  984
12 mjames 394
 
17 mjames 395
void ProcessMAP(int instance)
396
{
397
// Using ADC_Samples[3] as the MAP input
19 mjames 398
        float reading = FILT_Samples[3] * ADC_Scale;
399
        reading = reading * 2.016;      // real voltage
24 mjames 400
        // values computed from slope / intercept of map.ods
401
        reading = (reading) * 56.23 + 743.2; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5
17 mjames 402
        plx_sendword(PLX_MAP);
403
        PutCharSerial(&uc1, instance);
19 mjames 404
        plx_sendword((uint16_t) reading);
17 mjames 405
 
406
}
407
 
408
// the Oil pressi sensor is giving us a reading of
409
// 4.5 volts for 100 PSI or  2.25 volts at the ADC input (resistive divider by 2.016)
410
// I believe the sensor reads  4.5V at 100PSI and 0.5V at  0PSI
411
// an observation of 1024 is 200PSI, so observation of 512 is 100 PSI.
412
 
413
void ProcessOilPress(int instance)
414
{
415
// Using ADC_Samples[2] as the MAP input
19 mjames 416
        float reading = FILT_Samples[2] * ADC_Scale;
417
        reading = reading * 2.00; // real voltage
418
        reading = (reading - 0.5) * 512 / 4;  // this is 1023 * 100/200
17 mjames 419
 
420
        plx_sendword(PLX_FluidPressure);
421
        PutCharSerial(&uc1, instance);
19 mjames 422
        plx_sendword((uint16_t) reading);
17 mjames 423
 
424
}
425
 
16 mjames 426
void ProcessTiming(int instance)
427
{
428
        plx_sendword(PLX_Timing);
429
        PutCharSerial(&uc1, instance);
19 mjames 430
        plx_sendword(64 - 15); // make it negative
16 mjames 431
}
432
 
2 mjames 433
/* USER CODE END 0 */
434
 
19 mjames 435
int main(void)
436
{
2 mjames 437
 
20 mjames 438
  /* USER CODE BEGIN 1 */
2 mjames 439
 
20 mjames 440
  /* USER CODE END 1 */
2 mjames 441
 
20 mjames 442
  /* MCU Configuration----------------------------------------------------------*/
2 mjames 443
 
20 mjames 444
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
445
  HAL_Init();
2 mjames 446
 
20 mjames 447
  /* Configure the system clock */
448
  SystemClock_Config();
2 mjames 449
 
20 mjames 450
  /* Initialize all configured peripherals */
451
  MX_GPIO_Init();
452
  MX_DMA_Init();
453
  MX_ADC_Init();
454
  MX_SPI1_Init();
455
  MX_TIM2_Init();
456
  MX_TIM6_Init();
457
  MX_USART2_UART_Init();
458
  MX_USART1_UART_Init();
2 mjames 459
 
20 mjames 460
  /* USER CODE BEGIN 2 */
13 mjames 461
        HAL_MspInit();
2 mjames 462
 
13 mjames 463
// Not using HAL USART code
9 mjames 464
        __HAL_RCC_USART1_CLK_ENABLE()
465
        ; // PLX comms port
466
        __HAL_RCC_USART2_CLK_ENABLE()
467
        ;  // Debug comms port
7 mjames 468
        /* setup the USART control blocks */
469
        init_usart_ctl(&uc1, huart1.Instance);
470
        init_usart_ctl(&uc2, huart2.Instance);
471
 
472
        EnableSerialRxInterrupt(&uc1);
473
        EnableSerialRxInterrupt(&uc2);
474
 
13 mjames 475
        HAL_SPI_MspInit(&hspi1);
476
 
477
        HAL_ADC_MspInit(&hadc);
14 mjames 478
 
13 mjames 479
        HAL_ADC_Start_DMA(&hadc, ADC_Samples, 6);
480
 
18 mjames 481
        HAL_ADC_Start_IT(&hadc);
13 mjames 482
 
483
        HAL_TIM_Base_MspInit(&htim6);
9 mjames 484
        HAL_TIM_Base_Start_IT(&htim6);
13 mjames 485
 
486
// initialise all the STMCubeMX stuff
487
        HAL_TIM_Base_MspInit(&htim2);
488
// Start the counter
12 mjames 489
        HAL_TIM_Base_Start(&htim2);
13 mjames 490
// Start the input capture and the interrupt
18 mjames 491
        HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
8 mjames 492
 
17 mjames 493
        init_ADC_filter();
7 mjames 494
 
18 mjames 495
        uint32_t Ticks = HAL_GetTick() + 100;
496
        int CalCounter = 0;
2 mjames 497
 
26 mjames 498
        Power_CHT_Timer = HAL_GetTick() + 1000; /* wait 10 seconds before powering up the CHT sensor */
18 mjames 499
 
500
 
20 mjames 501
 
502
 
503
  /* USER CODE END 2 */
504
 
505
  /* Infinite loop */
506
  /* USER CODE BEGIN WHILE */
19 mjames 507
        while (1)
508
        {
20 mjames 509
  /* USER CODE END WHILE */
2 mjames 510
 
20 mjames 511
  /* USER CODE BEGIN 3 */
2 mjames 512
 
19 mjames 513
                if (HAL_GetTick() > Ticks)
514
                {
18 mjames 515
                        Ticks += 100;
516
                        filter_ADC_samples();
517
                        // delay to calibrate ADC
21 mjames 518
                        if (CalCounter < 1000)
19 mjames 519
                        {
18 mjames 520
                                CalCounter += 100;
9 mjames 521
                        }
522
 
21 mjames 523
                        if (CalCounter == 900)
19 mjames 524
                        {
18 mjames 525
                                CalibrateADC();
526
                        }
19 mjames 527
                }
528
                /* when the starter motor is on then power down the CHT sensors as they seem to fail */
9 mjames 529
 
19 mjames 530
                if (HAL_GPIO_ReadPin(STARTER_ON_GPIO_Port, STARTER_ON_Pin)
21 mjames 531
                                        == GPIO_PIN_RESET )
19 mjames 532
                {
21 mjames 533
                        if(Starter_Debounce < STARTER_LIMIT)
534
                        {
535
                                Starter_Debounce++;
536
                        }
537
                }
538
                else
539
                {
540
                        if(Starter_Debounce > 0)
541
                        {
542
                                Starter_Debounce --;
543
                        }
544
                }
545
 
546
                if (Starter_Debounce == STARTER_LIMIT)
547
                {
548
                        EnableCHT(DISABLE);
26 mjames 549
                        Power_CHT_Timer = HAL_GetTick() + 1000;
19 mjames 550
                }
551
                else
552
                /* if the Power_CHT_Timer is set then wait for it to timeout, then power up CHT */
553
                {
554
                        if ((Power_CHT_Timer > 0) && (HAL_GetTick() > Power_CHT_Timer))
18 mjames 555
                        {
21 mjames 556
                                EnableCHT(ENABLE);
19 mjames 557
                                Power_CHT_Timer = 0;
18 mjames 558
                        }
19 mjames 559
                }
13 mjames 560
 
19 mjames 561
                // check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
562
                int c;
563
                char send = 0;
13 mjames 564
 
19 mjames 565
                // poll the  input for a stop bit or timeout
566
                if (PollSerial(&uc1))
567
                {
568
                        c = GetCharSerial(&uc1);
569
                        if (c != PLX_Stop)
570
                        {
571
                                PutCharSerial(&uc1, c); // echo all but the stop bit
18 mjames 572
                        }
19 mjames 573
                        else
574
                        { // must be a stop character
575
                                send = 1; // start our sending process.
576
                        }
577
                }
16 mjames 578
 
19 mjames 579
                // sort out auto-sending
580
                if (TimerFlag)
581
                {
582
                        TimerFlag = 0;
583
                        if (NoSerialIn)
584
                        {
585
                                PutCharSerial(&uc1, PLX_Start);
586
                                send = 1;
18 mjames 587
                        }
19 mjames 588
                }
589
                if (send)
590
                {
591
                        send = 0;
18 mjames 592
 
19 mjames 593
                        uint16_t val;
594
                        val = __HAL_TIM_GET_COMPARE(&htim2,TIM_CHANNEL_1);
595
                        PutCharSerial(&uc2, (val & 31) + 32);
18 mjames 596
 
19 mjames 597
                        // send the observations
598
                        ProcessRPM(0);
599
                        ProcessCHT(0);
25 mjames 600
                        ProcessCHT(1);
19 mjames 601
                        ProcessBatteryVoltage(0); // Batt 1
602
                        ProcessBatteryVoltage(1); // Batt 2
603
                        ProcessCPUTemperature(0); //  built in temperature sensor
18 mjames 604
 
19 mjames 605
                        ProcessMAP(0);
606
                        ProcessOilPress(0);
18 mjames 607
 
19 mjames 608
                        PutCharSerial(&uc1, PLX_Stop);
9 mjames 609
                }
610
        }
20 mjames 611
  /* USER CODE END 3 */
612
 
2 mjames 613
}
20 mjames 614
 
2 mjames 615
/** System Clock Configuration
20 mjames 616
*/
2 mjames 617
void SystemClock_Config(void)
618
{
619
 
20 mjames 620
  RCC_OscInitTypeDef RCC_OscInitStruct;
621
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
2 mjames 622
 
20 mjames 623
  __HAL_RCC_PWR_CLK_ENABLE();
2 mjames 624
 
20 mjames 625
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
2 mjames 626
 
20 mjames 627
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
628
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
629
  RCC_OscInitStruct.HSICalibrationValue = 16;
630
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
631
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
632
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
633
  RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
634
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
635
  {
636
    Error_Handler();
637
  }
2 mjames 638
 
20 mjames 639
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
640
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
641
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
642
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
643
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
644
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
645
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
646
  {
647
    Error_Handler();
648
  }
2 mjames 649
 
20 mjames 650
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
2 mjames 651
 
20 mjames 652
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
2 mjames 653
 
20 mjames 654
  /* SysTick_IRQn interrupt configuration */
655
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
2 mjames 656
}
657
 
658
/* ADC init function */
659
static void MX_ADC_Init(void)
660
{
661
 
20 mjames 662
  ADC_ChannelConfTypeDef sConfig;
2 mjames 663
 
20 mjames 664
    /**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
665
    */
666
  hadc.Instance = ADC1;
667
  hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
668
  hadc.Init.Resolution = ADC_RESOLUTION_12B;
669
  hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
670
  hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
671
  hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
672
  hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE;
673
  hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
674
  hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
675
  hadc.Init.ContinuousConvMode = DISABLE;
676
  hadc.Init.NbrOfConversion = 6;
677
  hadc.Init.DiscontinuousConvMode = DISABLE;
678
  hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T6_TRGO;
679
  hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
680
  hadc.Init.DMAContinuousRequests = ENABLE;
681
  if (HAL_ADC_Init(&hadc) != HAL_OK)
682
  {
683
    Error_Handler();
684
  }
2 mjames 685
 
20 mjames 686
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
687
    */
688
  sConfig.Channel = ADC_CHANNEL_10;
689
  sConfig.Rank = 1;
690
  sConfig.SamplingTime = ADC_SAMPLETIME_384CYCLES;
691
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
692
  {
693
    Error_Handler();
694
  }
2 mjames 695
 
20 mjames 696
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
697
    */
698
  sConfig.Channel = ADC_CHANNEL_11;
699
  sConfig.Rank = 2;
700
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
701
  {
702
    Error_Handler();
703
  }
2 mjames 704
 
20 mjames 705
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
706
    */
707
  sConfig.Channel = ADC_CHANNEL_12;
708
  sConfig.Rank = 3;
709
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
710
  {
711
    Error_Handler();
712
  }
2 mjames 713
 
20 mjames 714
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
715
    */
716
  sConfig.Channel = ADC_CHANNEL_13;
717
  sConfig.Rank = 4;
718
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
719
  {
720
    Error_Handler();
721
  }
2 mjames 722
 
20 mjames 723
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
724
    */
725
  sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
726
  sConfig.Rank = 5;
727
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
728
  {
729
    Error_Handler();
730
  }
2 mjames 731
 
20 mjames 732
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
733
    */
734
  sConfig.Channel = ADC_CHANNEL_VREFINT;
735
  sConfig.Rank = 6;
736
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
737
  {
738
    Error_Handler();
739
  }
2 mjames 740
 
741
}
742
 
743
/* SPI1 init function */
744
static void MX_SPI1_Init(void)
745
{
746
 
20 mjames 747
  hspi1.Instance = SPI1;
748
  hspi1.Init.Mode = SPI_MODE_MASTER;
749
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
750
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
751
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
21 mjames 752
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
20 mjames 753
  hspi1.Init.NSS = SPI_NSS_SOFT;
754
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
755
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
756
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
757
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
758
  hspi1.Init.CRCPolynomial = 10;
759
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
760
  {
761
    Error_Handler();
762
  }
2 mjames 763
 
764
}
765
 
766
/* TIM2 init function */
767
static void MX_TIM2_Init(void)
768
{
769
 
20 mjames 770
  TIM_ClockConfigTypeDef sClockSourceConfig;
771
  TIM_MasterConfigTypeDef sMasterConfig;
772
  TIM_IC_InitTypeDef sConfigIC;
2 mjames 773
 
20 mjames 774
  htim2.Instance = TIM2;
775
  htim2.Init.Prescaler = 320;
776
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
777
  htim2.Init.Period = 65535;
778
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
779
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
780
  {
781
    Error_Handler();
782
  }
12 mjames 783
 
20 mjames 784
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
785
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
786
  {
787
    Error_Handler();
788
  }
12 mjames 789
 
20 mjames 790
  if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
791
  {
792
    Error_Handler();
793
  }
2 mjames 794
 
20 mjames 795
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
796
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
797
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
798
  {
799
    Error_Handler();
800
  }
2 mjames 801
 
20 mjames 802
  sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
803
  sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
804
  sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
805
  sConfigIC.ICFilter = 0;
806
  if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
807
  {
808
    Error_Handler();
809
  }
2 mjames 810
 
811
}
812
 
813
/* TIM6 init function */
814
static void MX_TIM6_Init(void)
815
{
816
 
20 mjames 817
  TIM_MasterConfigTypeDef sMasterConfig;
2 mjames 818
 
20 mjames 819
  htim6.Instance = TIM6;
820
  htim6.Init.Prescaler = 320;
821
  htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
822
  htim6.Init.Period = 9999;
823
  if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
824
  {
825
    Error_Handler();
826
  }
2 mjames 827
 
20 mjames 828
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
829
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
830
  if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
831
  {
832
    Error_Handler();
833
  }
2 mjames 834
 
835
}
836
 
837
/* USART1 init function */
838
static void MX_USART1_UART_Init(void)
839
{
840
 
20 mjames 841
  huart1.Instance = USART1;
842
  huart1.Init.BaudRate = 19200;
843
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
844
  huart1.Init.StopBits = UART_STOPBITS_1;
845
  huart1.Init.Parity = UART_PARITY_NONE;
846
  huart1.Init.Mode = UART_MODE_TX_RX;
847
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
848
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
849
  if (HAL_UART_Init(&huart1) != HAL_OK)
850
  {
851
    Error_Handler();
852
  }
2 mjames 853
 
854
}
855
 
6 mjames 856
/* USART2 init function */
857
static void MX_USART2_UART_Init(void)
858
{
859
 
20 mjames 860
  huart2.Instance = USART2;
861
  huart2.Init.BaudRate = 115200;
862
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
863
  huart2.Init.StopBits = UART_STOPBITS_1;
864
  huart2.Init.Parity = UART_PARITY_NONE;
865
  huart2.Init.Mode = UART_MODE_TX_RX;
866
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
867
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
868
  if (HAL_UART_Init(&huart2) != HAL_OK)
869
  {
870
    Error_Handler();
871
  }
6 mjames 872
 
873
}
874
 
875
/**
20 mjames 876
  * Enable DMA controller clock
877
  */
878
static void MX_DMA_Init(void)
6 mjames 879
{
20 mjames 880
  /* DMA controller clock enable */
881
  __HAL_RCC_DMA1_CLK_ENABLE();
6 mjames 882
 
20 mjames 883
  /* DMA interrupt init */
884
  /* DMA1_Channel1_IRQn interrupt configuration */
885
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
886
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
6 mjames 887
 
888
}
889
 
2 mjames 890
/** Configure pins as
20 mjames 891
        * Analog
892
        * Input
893
        * Output
894
        * EVENT_OUT
895
        * EXTI
896
        * Free pins are configured automatically as Analog (this feature is enabled through
897
        * the Code Generation settings)
898
*/
2 mjames 899
static void MX_GPIO_Init(void)
900
{
901
 
20 mjames 902
  GPIO_InitTypeDef GPIO_InitStruct;
2 mjames 903
 
20 mjames 904
  /* GPIO Ports Clock Enable */
905
  __HAL_RCC_GPIOC_CLK_ENABLE();
906
  __HAL_RCC_GPIOH_CLK_ENABLE();
907
  __HAL_RCC_GPIOA_CLK_ENABLE();
908
  __HAL_RCC_GPIOB_CLK_ENABLE();
909
  __HAL_RCC_GPIOD_CLK_ENABLE();
2 mjames 910
 
20 mjames 911
  /*Configure GPIO pins : PC13 PC14 PC15 PC6
912
                           PC7 PC8 PC9 PC11
913
                           PC12 */
914
  GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_6
915
                          |GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_11
916
                          |GPIO_PIN_12;
917
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
918
  GPIO_InitStruct.Pull = GPIO_NOPULL;
919
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
2 mjames 920
 
20 mjames 921
  /*Configure GPIO pins : PH0 PH1 */
922
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
923
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
924
  GPIO_InitStruct.Pull = GPIO_NOPULL;
925
  HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
3 mjames 926
 
20 mjames 927
  /*Configure GPIO pins : PA0 PA1 PA8 PA11
928
                           PA12 */
929
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_8|GPIO_PIN_11
930
                          |GPIO_PIN_12;
931
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
932
  GPIO_InitStruct.Pull = GPIO_NOPULL;
933
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
6 mjames 934
 
20 mjames 935
  /*Configure GPIO pin : LED_Blink_Pin */
936
  GPIO_InitStruct.Pin = LED_Blink_Pin;
937
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
938
  GPIO_InitStruct.Pull = GPIO_NOPULL;
939
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
940
  HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
2 mjames 941
 
20 mjames 942
  /*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin */
943
  GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI1CD_Pin;
944
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
945
  GPIO_InitStruct.Pull = GPIO_NOPULL;
946
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
947
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
3 mjames 948
 
20 mjames 949
  /*Configure GPIO pins : SPI_RESET_Pin SPI_NS_Temp_Pin SPI_NS_Temp2_Pin ENA_AUX_5V_Pin */
950
  GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NS_Temp_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin;
951
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
952
  GPIO_InitStruct.Pull = GPIO_NOPULL;
953
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
954
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
3 mjames 955
 
20 mjames 956
  /*Configure GPIO pins : PB11 PB12 PB13 PB14
957
                           PB15 PB3 PB4 PB5
958
                           PB6 PB7 PB8 PB9 */
959
  GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
960
                          |GPIO_PIN_15|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
961
                          |GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
962
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
963
  GPIO_InitStruct.Pull = GPIO_NOPULL;
964
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
5 mjames 965
 
20 mjames 966
  /*Configure GPIO pin : STARTER_ON_Pin */
967
  GPIO_InitStruct.Pin = STARTER_ON_Pin;
968
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
969
  GPIO_InitStruct.Pull = GPIO_NOPULL;
970
  HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct);
18 mjames 971
 
20 mjames 972
  /*Configure GPIO pin : PD2 */
973
  GPIO_InitStruct.Pin = GPIO_PIN_2;
974
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
975
  GPIO_InitStruct.Pull = GPIO_NOPULL;
976
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
5 mjames 977
 
20 mjames 978
  /*Configure GPIO pin Output Level */
979
  HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
5 mjames 980
 
20 mjames 981
  /*Configure GPIO pin Output Level */
982
  HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
5 mjames 983
 
20 mjames 984
  /*Configure GPIO pin Output Level */
985
  HAL_GPIO_WritePin(SPI1CD_GPIO_Port, SPI1CD_Pin, GPIO_PIN_RESET);
7 mjames 986
 
20 mjames 987
  /*Configure GPIO pin Output Level */
988
  HAL_GPIO_WritePin(GPIOB, SPI_RESET_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin, GPIO_PIN_RESET);
5 mjames 989
 
20 mjames 990
  /*Configure GPIO pin Output Level */
991
  HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
7 mjames 992
 
2 mjames 993
}
994
 
995
/* USER CODE BEGIN 4 */
996
 
997
/* USER CODE END 4 */
998
 
999
/**
20 mjames 1000
  * @brief  This function is executed in case of error occurrence.
1001
  * @param  None
1002
  * @retval None
1003
  */
2 mjames 1004
void Error_Handler(void)
1005
{
20 mjames 1006
  /* USER CODE BEGIN Error_Handler */
9 mjames 1007
        /* User can add his own implementation to report the HAL error return state */
19 mjames 1008
        while (1)
1009
        {
9 mjames 1010
        }
20 mjames 1011
  /* USER CODE END Error_Handler */
2 mjames 1012
}
1013
 
1014
#ifdef USE_FULL_ASSERT
1015
 
1016
/**
20 mjames 1017
   * @brief Reports the name of the source file and the source line number
1018
   * where the assert_param error has occurred.
1019
   * @param file: pointer to the source file name
1020
   * @param line: assert_param error line source number
1021
   * @retval None
1022
   */
2 mjames 1023
void assert_failed(uint8_t* file, uint32_t line)
1024
{
20 mjames 1025
  /* USER CODE BEGIN 6 */
9 mjames 1026
        /* User can add his own implementation to report the file name and line number,
1027
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
20 mjames 1028
  /* USER CODE END 6 */
2 mjames 1029
 
1030
}
1031
 
1032
#endif
1033
 
1034
/**
20 mjames 1035
  * @}
1036
  */
2 mjames 1037
 
1038
/**
20 mjames 1039
  * @}
1040
*/
2 mjames 1041
 
1042
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/