Subversion Repositories EngineBay2

Rev

Rev 22 | Rev 24 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**
20 mjames 2
  ******************************************************************************
3
  * File Name          : main.c
4
  * Description        : Main program body
5
  ******************************************************************************
6
  *
7
  * COPYRIGHT(c) 2017 STMicroelectronics
8
  *
9
  * Redistribution and use in source and binary forms, with or without modification,
10
  * are permitted provided that the following conditions are met:
11
  *   1. Redistributions of source code must retain the above copyright notice,
12
  *      this list of conditions and the following disclaimer.
13
  *   2. Redistributions in binary form must reproduce the above copyright notice,
14
  *      this list of conditions and the following disclaimer in the documentation
15
  *      and/or other materials provided with the distribution.
16
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
17
  *      may be used to endorse or promote products derived from this software
18
  *      without specific prior written permission.
19
  *
20
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
  *
31
  ******************************************************************************
32
  */
2 mjames 33
/* Includes ------------------------------------------------------------------*/
34
#include "stm32l1xx_hal.h"
35
 
36
/* USER CODE BEGIN Includes */
7 mjames 37
#include "serial.h"
9 mjames 38
#include "plx.h"
39
#include "misc.h"
2 mjames 40
/* USER CODE END Includes */
41
 
42
/* Private variables ---------------------------------------------------------*/
43
ADC_HandleTypeDef hadc;
6 mjames 44
DMA_HandleTypeDef hdma_adc;
2 mjames 45
 
46
SPI_HandleTypeDef hspi1;
47
 
48
TIM_HandleTypeDef htim2;
49
TIM_HandleTypeDef htim6;
50
 
51
UART_HandleTypeDef huart1;
6 mjames 52
UART_HandleTypeDef huart2;
2 mjames 53
 
54
/* USER CODE BEGIN PV */
55
/* Private variables ---------------------------------------------------------*/
56
 
9 mjames 57
// with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000
58
// freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the first pulse longer than 1/300 of a second as being a proper closure .
59
// the TIM2 counter counts in 10uS increments,
60
#define BREAKER_MIN (RPM_COUNT_RATE/300)
61
 
22 mjames 62
// wait for about 1 second to decide whether or not starter is on
21 mjames 63
 
22 mjames 64
#define STARTER_LIMIT 10
65
 
9 mjames 66
volatile char TimerFlag = 0;
67
 
68
volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1
69
volatile char NoSerialIn = 0;
70
 
8 mjames 71
// storage for ADC
19 mjames 72
uint16_t ADC_Samples[6];
8 mjames 73
 
17 mjames 74
#define Scale 1024.0
75
const float ADC_Scale = 3.3 / (Scale * 4096.0); // convert to a voltage
76
 
19 mjames 77
uint32_t FILT_Samples[6]; // filtered ADC samples * 1024
9 mjames 78
// Rev counter processing from original RevCounter Project
79
unsigned int RPM_Diff = 0;
80
unsigned int RPM_Count_Latch = 0;
81
// accumulators
82
unsigned int RPM_Pulsecount = 0;
83
unsigned int RPM_FilteredWidth = 0;
84
 
85
unsigned int Coded_RPM = 0;
86
unsigned int Coded_CHT = 0;
87
 
18 mjames 88
uint32_t Power_CHT_Timer;
89
 
21 mjames 90
uint16_t Starter_Debounce = 0;
91
 
2 mjames 92
/* USER CODE END PV */
93
 
94
/* Private function prototypes -----------------------------------------------*/
95
void SystemClock_Config(void);
96
void Error_Handler(void);
97
static void MX_GPIO_Init(void);
6 mjames 98
static void MX_DMA_Init(void);
2 mjames 99
static void MX_ADC_Init(void);
100
static void MX_SPI1_Init(void);
101
static void MX_TIM2_Init(void);
102
static void MX_TIM6_Init(void);
13 mjames 103
static void MX_USART2_UART_Init(void);
2 mjames 104
static void MX_USART1_UART_Init(void);
105
 
106
/* USER CODE BEGIN PFP */
107
/* Private function prototypes -----------------------------------------------*/
108
 
9 mjames 109
/* USER CODE END PFP */
7 mjames 110
 
9 mjames 111
/* USER CODE BEGIN 0 */
7 mjames 112
 
19 mjames 113
void plx_sendword(int x)
114
{
9 mjames 115
        PutCharSerial(&uc1, ((x) >> 6) & 0x3F);
116
        PutCharSerial(&uc1, (x) & 0x3F);
117
}
2 mjames 118
 
17 mjames 119
void init_ADC_filter()
120
{
121
        int i;
19 mjames 122
        for (i = 0; i < 6; i++)
123
        {
17 mjames 124
                FILT_Samples[i] = 0;
19 mjames 125
        }
17 mjames 126
}
127
 
128
void filter_ADC_samples()
129
{
19 mjames 130
        int i;
131
        for (i = 0; i < 6; i++)
132
        {
133
                FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2;
134
        }
17 mjames 135
}
136
 
19 mjames 137
void ProcessRPM(int instance)
138
{
9 mjames 139
// compute the timer values
140
// snapshot timers
141
        unsigned long RPM_Pulsewidth;
142
        unsigned long RPM_Count_Val;
143
        __disable_irq(); // copy the counter value
144
        RPM_Count_Val = RPM_Count;
145
        __enable_irq();
146
// do calculations
147
// if there is only one entry, cannot get difference
19 mjames 148
        if (RPM_Count_Latch != RPM_Count_Val)
149
        {
150
                while (1)
151
                {
9 mjames 152
                        unsigned int base_time;
153
                        unsigned int new_time;
154
                        // if we are at N-1, stop.
155
                        unsigned int next_count = RPM_Count_Latch + 1;
19 mjames 156
                        if (next_count == RPM_SAMPLES)
157
                        {
9 mjames 158
                                next_count = 0;
159
                        }
19 mjames 160
                        if (next_count == RPM_Count_Val)
161
                        {
9 mjames 162
                                break;
163
                        }
164
                        base_time = RPM_Time[RPM_Count_Latch];
165
                        new_time = RPM_Time[next_count];
166
                        RPM_Count_Latch = next_count;
19 mjames 167
                        if (new_time > base_time)
168
                        {
9 mjames 169
                                RPM_Pulsewidth = new_time - base_time; // not wrapped
19 mjames 170
                        }
171
                        else
172
                        {
13 mjames 173
                                RPM_Pulsewidth = new_time - base_time + 65536; // deal with wrapping
9 mjames 174
                        }
2 mjames 175
 
9 mjames 176
                        RPM_Diff += RPM_Pulsewidth;
177
                        // need to check if this is a long pulse. If it is, keep the answer
19 mjames 178
                        if (RPM_Pulsewidth > BREAKER_MIN)
179
                        {
9 mjames 180
                                RPM_Pulsecount++; // count one pulse
181
                                RPM_FilteredWidth += RPM_Diff; // add its width to the accumulator
182
                                RPM_Diff = 0; // reset accumulator of all the narrow widths
183
                        }
184
                }
185
 
186
        }
187
 
19 mjames 188
        if (RPM_Pulsecount > 0)
189
        {
9 mjames 190
                // now have time for N pulses in clocks
191
                // need to scale by 19.55: one unit is 19.55 RPM
192
                // 1Hz is 60 RPM
17 mjames 193
                float new_RPM = (30.0 / 19.55 * RPM_Pulsecount * RPM_COUNT_RATE)
19 mjames 194
                                / (RPM_FilteredWidth) + 0.5;
17 mjames 195
 
19 mjames 196
                Coded_RPM += (new_RPM * Scale - Coded_RPM) / 4;
17 mjames 197
 
9 mjames 198
#if !defined MY_DEBUG
199
                // reset here unless we want to debug
200
                RPM_Pulsecount = 0;
201
                RPM_FilteredWidth = 0;
202
#endif
203
        }
204
 
17 mjames 205
// send the current RPM *calculation
9 mjames 206
        plx_sendword(PLX_RPM);
207
        PutCharSerial(&uc1, instance);
19 mjames 208
        plx_sendword(Coded_RPM / Scale);
9 mjames 209
}
210
 
211
// this uses a MAX6675 which is a simple 16 bit read
212
// SPI is configured for 8 bits so I can use an OLED display if I need it
11 mjames 213
// must wait > 0.22 seconds between conversion attempts as this is the measurement time
214
//
18 mjames 215
 
21 mjames 216
FunctionalState CHT_Enable = ENABLE;
18 mjames 217
 
23 mjames 218
#define CORR 3
219
 
19 mjames 220
uint8_t CHT_Timer[2] =
23 mjames 221
{ 0, 0 }; // two temperature readings : from two sensors
222
 
223
 
21 mjames 224
uint16_t CHT_Observations[2] =
19 mjames 225
{ 0, 0 };
226
 
227
void ProcessCHT(int instance)
228
{
9 mjames 229
        uint8_t buffer[2];
18 mjames 230
        if (instance > 2)
231
                return;
232
        CHT_Timer[instance]++;
21 mjames 233
        if ((CHT_Enable == ENABLE) && (CHT_Timer[instance] >= 4)) // every 300 milliseconds
19 mjames 234
        {
11 mjames 235
 
18 mjames 236
                CHT_Timer[instance] = 0;
11 mjames 237
 
18 mjames 238
                uint16_t Pin = (instance == 0) ? SPI_NS_Temp_Pin : SPI_NS_Temp2_Pin;
9 mjames 239
 
18 mjames 240
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_RESET);
9 mjames 241
 
18 mjames 242
                HAL_SPI_Receive(&hspi1, buffer, 2, 2);
9 mjames 243
 
18 mjames 244
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_SET);
9 mjames 245
 
18 mjames 246
                uint16_t obs = (buffer[0] << 8) | buffer[1];
9 mjames 247
 
22 mjames 248
                // good observation if the status bit is clear, and the reading is less than 1023
21 mjames 249
 
23 mjames 250
                uint16_t temp_c = obs>>5;
21 mjames 251
 
23 mjames 252
                uint8_t good = ((obs & 4) == 0) && (temp_c > 0) && (temp_c < 250);
253
 
19 mjames 254
                if (good)
255
                {
23 mjames 256
                        CHT_Observations[instance]=temp_c;
257
 
18 mjames 258
                }
23 mjames 259
 
11 mjames 260
        }
261
 
16 mjames 262
        plx_sendword(PLX_X_CHT);
9 mjames 263
        PutCharSerial(&uc1, instance);
19 mjames 264
        plx_sendword(CHT_Observations[instance]);
9 mjames 265
 
266
}
267
 
21 mjames 268
void EnableCHT(FunctionalState state)
269
 
19 mjames 270
{
20 mjames 271
        GPIO_InitTypeDef GPIO_InitStruct;
19 mjames 272
 
273
        CHT_Enable = state;
20 mjames 274
 
21 mjames 275
 
20 mjames 276
        /* enable SPI in live mode : assume it and its GPIOs are already initialised in SPI mode */
21 mjames 277
        if (state == ENABLE)
20 mjames 278
        {
21 mjames 279
                HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_SET );
20 mjames 280
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
281
                HAL_GPIO_WritePin(SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
282
                                GPIO_PIN_SET);
283
 
284
                /* put the SPI pins back into SPI AF mode */
285
                GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
286
                GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
287
                GPIO_InitStruct.Pull = GPIO_NOPULL;
288
                GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
289
                GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
290
                HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
291
 
292
        }
293
        else
294
        {
295
                /*  Power down the SPI interface taking signals all low */
21 mjames 296
                HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_RESET );
20 mjames 297
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin,
298
                                GPIO_PIN_RESET);
299
                HAL_GPIO_WritePin(SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
300
                                GPIO_PIN_RESET);
301
 
302
                HAL_GPIO_WritePin(SPI1_SCK_GPIO_Port,
303
                                SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin, GPIO_PIN_RESET);
304
 
305
                /* put the SPI pins back into GPIO mode */
306
                GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
307
                GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
308
                GPIO_InitStruct.Pull = GPIO_NOPULL;
309
                GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
310
                HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
311
 
312
        }
313
 
19 mjames 314
}
315
 
17 mjames 316
// 1023 is 20.00 volts.
19 mjames 317
void ProcessBatteryVoltage(int instance)
318
{
18 mjames 319
        float reading = FILT_Samples[instance] * ADC_Scale;
320
        reading = reading * 7.8125; // real voltage
321
        reading = reading * 51.15; // 1023/20
17 mjames 322
 
12 mjames 323
        plx_sendword(PLX_Volts);
324
        PutCharSerial(&uc1, instance);
18 mjames 325
        plx_sendword((uint16_t) reading);
12 mjames 326
 
18 mjames 327
}
12 mjames 328
 
18 mjames 329
/****!
330
 * @brief this reads the reference voltage within the STM32L151
331
 * Powers up reference voltage and temperature sensor, waits 3mS  and takes reading
332
 * Requires that the ADC be powered up
333
 */
12 mjames 334
 
18 mjames 335
uint32_t ADC_VREF_MV = 3300;           // 3.300V typical
336
const uint16_t STM32REF_MV = 1224;           // 1.224V typical
337
 
19 mjames 338
void CalibrateADC(void)
339
{
21 mjames 340
        uint32_t adc_val = FILT_Samples[5];       // as set up in device config
18 mjames 341
        ADC_VREF_MV = (STM32REF_MV * 4096) / adc_val;
12 mjames 342
}
343
 
19 mjames 344
void ProcessCPUTemperature(int instance)
345
{
18 mjames 346
        int32_t temp_val;
21 mjames 347
        uint16_t TS_CAL30 = *(uint16_t *) (0x1FF8007AUL); /* ADC reading for temperature sensor at 30 degrees C with Vref = 3000mV */
348
        uint16_t TS_CAL110 = *(uint16_t *) (0x1FF8007EUL); /* ADC reading for temperature sensor at 110 degrees C with Vref = 3000mV */
18 mjames 349
        /* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */
350
 
351
        temp_val = FILT_Samples[5];
352
 
353
        /* renormalise temperature value to account for different ADC Vref  : normalise to that which we would get for a 3000mV reference */
21 mjames 354
        temp_val = temp_val * ADC_VREF_MV / (Scale * 3000UL);
18 mjames 355
 
356
        int32_t result = 800 * ((int32_t) temp_val - TS_CAL30);
357
        result = result / (TS_CAL110 - TS_CAL30) + 300;
358
 
19 mjames 359
        if (result < 0)
360
        {
361
                result = 0;
362
        }
18 mjames 363
        plx_sendword(PLX_FluidTemp);
364
        PutCharSerial(&uc1, instance);
19 mjames 365
        plx_sendword(result / 10);
18 mjames 366
 
367
}
368
 
17 mjames 369
// the MAP sensor is giving us a reading of
370
// 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016)
371
// I believe the sensor reads  4.5V at 1000kPa and 0.5V at  0kPa
12 mjames 372
 
17 mjames 373
void ProcessMAP(int instance)
374
{
375
// Using ADC_Samples[3] as the MAP input
19 mjames 376
        float reading = FILT_Samples[3] * ADC_Scale;
377
        reading = reading * 2.016;      // real voltage
378
        reading = (reading) * 1000 / 4.5; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5
17 mjames 379
        plx_sendword(PLX_MAP);
380
        PutCharSerial(&uc1, instance);
19 mjames 381
        plx_sendword((uint16_t) reading);
17 mjames 382
 
383
}
384
 
385
// the Oil pressi sensor is giving us a reading of
386
// 4.5 volts for 100 PSI or  2.25 volts at the ADC input (resistive divider by 2.016)
387
// I believe the sensor reads  4.5V at 100PSI and 0.5V at  0PSI
388
// an observation of 1024 is 200PSI, so observation of 512 is 100 PSI.
389
 
390
void ProcessOilPress(int instance)
391
{
392
// Using ADC_Samples[2] as the MAP input
19 mjames 393
        float reading = FILT_Samples[2] * ADC_Scale;
394
        reading = reading * 2.00; // real voltage
395
        reading = (reading - 0.5) * 512 / 4;  // this is 1023 * 100/200
17 mjames 396
 
397
        plx_sendword(PLX_FluidPressure);
398
        PutCharSerial(&uc1, instance);
19 mjames 399
        plx_sendword((uint16_t) reading);
17 mjames 400
 
401
}
402
 
16 mjames 403
void ProcessTiming(int instance)
404
{
405
        plx_sendword(PLX_Timing);
406
        PutCharSerial(&uc1, instance);
19 mjames 407
        plx_sendword(64 - 15); // make it negative
16 mjames 408
}
409
 
2 mjames 410
/* USER CODE END 0 */
411
 
19 mjames 412
int main(void)
413
{
2 mjames 414
 
20 mjames 415
  /* USER CODE BEGIN 1 */
2 mjames 416
 
20 mjames 417
  /* USER CODE END 1 */
2 mjames 418
 
20 mjames 419
  /* MCU Configuration----------------------------------------------------------*/
2 mjames 420
 
20 mjames 421
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
422
  HAL_Init();
2 mjames 423
 
20 mjames 424
  /* Configure the system clock */
425
  SystemClock_Config();
2 mjames 426
 
20 mjames 427
  /* Initialize all configured peripherals */
428
  MX_GPIO_Init();
429
  MX_DMA_Init();
430
  MX_ADC_Init();
431
  MX_SPI1_Init();
432
  MX_TIM2_Init();
433
  MX_TIM6_Init();
434
  MX_USART2_UART_Init();
435
  MX_USART1_UART_Init();
2 mjames 436
 
20 mjames 437
  /* USER CODE BEGIN 2 */
13 mjames 438
        HAL_MspInit();
2 mjames 439
 
13 mjames 440
// Not using HAL USART code
9 mjames 441
        __HAL_RCC_USART1_CLK_ENABLE()
442
        ; // PLX comms port
443
        __HAL_RCC_USART2_CLK_ENABLE()
444
        ;  // Debug comms port
7 mjames 445
        /* setup the USART control blocks */
446
        init_usart_ctl(&uc1, huart1.Instance);
447
        init_usart_ctl(&uc2, huart2.Instance);
448
 
449
        EnableSerialRxInterrupt(&uc1);
450
        EnableSerialRxInterrupt(&uc2);
451
 
13 mjames 452
        HAL_SPI_MspInit(&hspi1);
453
 
454
        HAL_ADC_MspInit(&hadc);
14 mjames 455
 
13 mjames 456
        HAL_ADC_Start_DMA(&hadc, ADC_Samples, 6);
457
 
18 mjames 458
        HAL_ADC_Start_IT(&hadc);
13 mjames 459
 
460
        HAL_TIM_Base_MspInit(&htim6);
9 mjames 461
        HAL_TIM_Base_Start_IT(&htim6);
13 mjames 462
 
463
// initialise all the STMCubeMX stuff
464
        HAL_TIM_Base_MspInit(&htim2);
465
// Start the counter
12 mjames 466
        HAL_TIM_Base_Start(&htim2);
13 mjames 467
// Start the input capture and the interrupt
18 mjames 468
        HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
8 mjames 469
 
17 mjames 470
        init_ADC_filter();
7 mjames 471
 
18 mjames 472
        uint32_t Ticks = HAL_GetTick() + 100;
473
        int CalCounter = 0;
2 mjames 474
 
18 mjames 475
        Power_CHT_Timer = HAL_GetTick() + 10000; /* wait 10 seconds before powering up the CHT sensor */
476
 
477
 
20 mjames 478
 
479
 
480
  /* USER CODE END 2 */
481
 
482
  /* Infinite loop */
483
  /* USER CODE BEGIN WHILE */
19 mjames 484
        while (1)
485
        {
20 mjames 486
  /* USER CODE END WHILE */
2 mjames 487
 
20 mjames 488
  /* USER CODE BEGIN 3 */
2 mjames 489
 
19 mjames 490
                if (HAL_GetTick() > Ticks)
491
                {
18 mjames 492
                        Ticks += 100;
493
                        filter_ADC_samples();
494
                        // delay to calibrate ADC
21 mjames 495
                        if (CalCounter < 1000)
19 mjames 496
                        {
18 mjames 497
                                CalCounter += 100;
9 mjames 498
                        }
499
 
21 mjames 500
                        if (CalCounter == 900)
19 mjames 501
                        {
18 mjames 502
                                CalibrateADC();
503
                        }
19 mjames 504
                }
505
                /* when the starter motor is on then power down the CHT sensors as they seem to fail */
9 mjames 506
 
19 mjames 507
                if (HAL_GPIO_ReadPin(STARTER_ON_GPIO_Port, STARTER_ON_Pin)
21 mjames 508
                                        == GPIO_PIN_RESET )
19 mjames 509
                {
21 mjames 510
                        if(Starter_Debounce < STARTER_LIMIT)
511
                        {
512
                                Starter_Debounce++;
513
                        }
514
                }
515
                else
516
                {
517
                        if(Starter_Debounce > 0)
518
                        {
519
                                Starter_Debounce --;
520
                        }
521
                }
522
 
523
                if (Starter_Debounce == STARTER_LIMIT)
524
                {
525
                        EnableCHT(DISABLE);
20 mjames 526
                        Power_CHT_Timer = HAL_GetTick() + 5000;
19 mjames 527
                }
528
                else
529
                /* if the Power_CHT_Timer is set then wait for it to timeout, then power up CHT */
530
                {
531
                        if ((Power_CHT_Timer > 0) && (HAL_GetTick() > Power_CHT_Timer))
18 mjames 532
                        {
21 mjames 533
                                EnableCHT(ENABLE);
19 mjames 534
                                Power_CHT_Timer = 0;
18 mjames 535
                        }
19 mjames 536
                }
13 mjames 537
 
19 mjames 538
                // check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
539
                int c;
540
                char send = 0;
13 mjames 541
 
19 mjames 542
                // poll the  input for a stop bit or timeout
543
                if (PollSerial(&uc1))
544
                {
545
                        c = GetCharSerial(&uc1);
546
                        if (c != PLX_Stop)
547
                        {
548
                                PutCharSerial(&uc1, c); // echo all but the stop bit
18 mjames 549
                        }
19 mjames 550
                        else
551
                        { // must be a stop character
552
                                send = 1; // start our sending process.
553
                        }
554
                }
16 mjames 555
 
19 mjames 556
                // sort out auto-sending
557
                if (TimerFlag)
558
                {
559
                        TimerFlag = 0;
560
                        if (NoSerialIn)
561
                        {
562
                                PutCharSerial(&uc1, PLX_Start);
563
                                send = 1;
18 mjames 564
                        }
19 mjames 565
                }
566
                if (send)
567
                {
568
                        send = 0;
18 mjames 569
 
19 mjames 570
                        uint16_t val;
571
                        val = __HAL_TIM_GET_COMPARE(&htim2,TIM_CHANNEL_1);
572
                        PutCharSerial(&uc2, (val & 31) + 32);
18 mjames 573
 
19 mjames 574
                        // send the observations
575
                        ProcessRPM(0);
576
                        ProcessCHT(0);
18 mjames 577
                        //      ProcessCHT(1);
19 mjames 578
                        ProcessBatteryVoltage(0); // Batt 1
579
                        ProcessBatteryVoltage(1); // Batt 2
580
                        ProcessCPUTemperature(0); //  built in temperature sensor
18 mjames 581
 
19 mjames 582
                        ProcessMAP(0);
583
                        ProcessOilPress(0);
18 mjames 584
 
19 mjames 585
                        PutCharSerial(&uc1, PLX_Stop);
9 mjames 586
                }
587
        }
20 mjames 588
  /* USER CODE END 3 */
589
 
2 mjames 590
}
20 mjames 591
 
2 mjames 592
/** System Clock Configuration
20 mjames 593
*/
2 mjames 594
void SystemClock_Config(void)
595
{
596
 
20 mjames 597
  RCC_OscInitTypeDef RCC_OscInitStruct;
598
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
2 mjames 599
 
20 mjames 600
  __HAL_RCC_PWR_CLK_ENABLE();
2 mjames 601
 
20 mjames 602
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
2 mjames 603
 
20 mjames 604
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
605
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
606
  RCC_OscInitStruct.HSICalibrationValue = 16;
607
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
608
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
609
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
610
  RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
611
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
612
  {
613
    Error_Handler();
614
  }
2 mjames 615
 
20 mjames 616
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
617
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
618
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
619
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
620
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
621
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
622
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
623
  {
624
    Error_Handler();
625
  }
2 mjames 626
 
20 mjames 627
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
2 mjames 628
 
20 mjames 629
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
2 mjames 630
 
20 mjames 631
  /* SysTick_IRQn interrupt configuration */
632
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
2 mjames 633
}
634
 
635
/* ADC init function */
636
static void MX_ADC_Init(void)
637
{
638
 
20 mjames 639
  ADC_ChannelConfTypeDef sConfig;
2 mjames 640
 
20 mjames 641
    /**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
642
    */
643
  hadc.Instance = ADC1;
644
  hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
645
  hadc.Init.Resolution = ADC_RESOLUTION_12B;
646
  hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
647
  hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
648
  hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
649
  hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE;
650
  hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
651
  hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
652
  hadc.Init.ContinuousConvMode = DISABLE;
653
  hadc.Init.NbrOfConversion = 6;
654
  hadc.Init.DiscontinuousConvMode = DISABLE;
655
  hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T6_TRGO;
656
  hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
657
  hadc.Init.DMAContinuousRequests = ENABLE;
658
  if (HAL_ADC_Init(&hadc) != HAL_OK)
659
  {
660
    Error_Handler();
661
  }
2 mjames 662
 
20 mjames 663
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
664
    */
665
  sConfig.Channel = ADC_CHANNEL_10;
666
  sConfig.Rank = 1;
667
  sConfig.SamplingTime = ADC_SAMPLETIME_384CYCLES;
668
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
669
  {
670
    Error_Handler();
671
  }
2 mjames 672
 
20 mjames 673
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
674
    */
675
  sConfig.Channel = ADC_CHANNEL_11;
676
  sConfig.Rank = 2;
677
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
678
  {
679
    Error_Handler();
680
  }
2 mjames 681
 
20 mjames 682
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
683
    */
684
  sConfig.Channel = ADC_CHANNEL_12;
685
  sConfig.Rank = 3;
686
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
687
  {
688
    Error_Handler();
689
  }
2 mjames 690
 
20 mjames 691
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
692
    */
693
  sConfig.Channel = ADC_CHANNEL_13;
694
  sConfig.Rank = 4;
695
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
696
  {
697
    Error_Handler();
698
  }
2 mjames 699
 
20 mjames 700
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
701
    */
702
  sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
703
  sConfig.Rank = 5;
704
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
705
  {
706
    Error_Handler();
707
  }
2 mjames 708
 
20 mjames 709
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
710
    */
711
  sConfig.Channel = ADC_CHANNEL_VREFINT;
712
  sConfig.Rank = 6;
713
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
714
  {
715
    Error_Handler();
716
  }
2 mjames 717
 
718
}
719
 
720
/* SPI1 init function */
721
static void MX_SPI1_Init(void)
722
{
723
 
20 mjames 724
  hspi1.Instance = SPI1;
725
  hspi1.Init.Mode = SPI_MODE_MASTER;
726
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
727
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
728
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
21 mjames 729
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
20 mjames 730
  hspi1.Init.NSS = SPI_NSS_SOFT;
731
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
732
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
733
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
734
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
735
  hspi1.Init.CRCPolynomial = 10;
736
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
737
  {
738
    Error_Handler();
739
  }
2 mjames 740
 
741
}
742
 
743
/* TIM2 init function */
744
static void MX_TIM2_Init(void)
745
{
746
 
20 mjames 747
  TIM_ClockConfigTypeDef sClockSourceConfig;
748
  TIM_MasterConfigTypeDef sMasterConfig;
749
  TIM_IC_InitTypeDef sConfigIC;
2 mjames 750
 
20 mjames 751
  htim2.Instance = TIM2;
752
  htim2.Init.Prescaler = 320;
753
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
754
  htim2.Init.Period = 65535;
755
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
756
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
757
  {
758
    Error_Handler();
759
  }
12 mjames 760
 
20 mjames 761
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
762
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
763
  {
764
    Error_Handler();
765
  }
12 mjames 766
 
20 mjames 767
  if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
768
  {
769
    Error_Handler();
770
  }
2 mjames 771
 
20 mjames 772
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
773
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
774
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
775
  {
776
    Error_Handler();
777
  }
2 mjames 778
 
20 mjames 779
  sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
780
  sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
781
  sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
782
  sConfigIC.ICFilter = 0;
783
  if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
784
  {
785
    Error_Handler();
786
  }
2 mjames 787
 
788
}
789
 
790
/* TIM6 init function */
791
static void MX_TIM6_Init(void)
792
{
793
 
20 mjames 794
  TIM_MasterConfigTypeDef sMasterConfig;
2 mjames 795
 
20 mjames 796
  htim6.Instance = TIM6;
797
  htim6.Init.Prescaler = 320;
798
  htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
799
  htim6.Init.Period = 9999;
800
  if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
801
  {
802
    Error_Handler();
803
  }
2 mjames 804
 
20 mjames 805
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
806
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
807
  if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
808
  {
809
    Error_Handler();
810
  }
2 mjames 811
 
812
}
813
 
814
/* USART1 init function */
815
static void MX_USART1_UART_Init(void)
816
{
817
 
20 mjames 818
  huart1.Instance = USART1;
819
  huart1.Init.BaudRate = 19200;
820
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
821
  huart1.Init.StopBits = UART_STOPBITS_1;
822
  huart1.Init.Parity = UART_PARITY_NONE;
823
  huart1.Init.Mode = UART_MODE_TX_RX;
824
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
825
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
826
  if (HAL_UART_Init(&huart1) != HAL_OK)
827
  {
828
    Error_Handler();
829
  }
2 mjames 830
 
831
}
832
 
6 mjames 833
/* USART2 init function */
834
static void MX_USART2_UART_Init(void)
835
{
836
 
20 mjames 837
  huart2.Instance = USART2;
838
  huart2.Init.BaudRate = 115200;
839
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
840
  huart2.Init.StopBits = UART_STOPBITS_1;
841
  huart2.Init.Parity = UART_PARITY_NONE;
842
  huart2.Init.Mode = UART_MODE_TX_RX;
843
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
844
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
845
  if (HAL_UART_Init(&huart2) != HAL_OK)
846
  {
847
    Error_Handler();
848
  }
6 mjames 849
 
850
}
851
 
852
/**
20 mjames 853
  * Enable DMA controller clock
854
  */
855
static void MX_DMA_Init(void)
6 mjames 856
{
20 mjames 857
  /* DMA controller clock enable */
858
  __HAL_RCC_DMA1_CLK_ENABLE();
6 mjames 859
 
20 mjames 860
  /* DMA interrupt init */
861
  /* DMA1_Channel1_IRQn interrupt configuration */
862
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
863
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
6 mjames 864
 
865
}
866
 
2 mjames 867
/** Configure pins as
20 mjames 868
        * Analog
869
        * Input
870
        * Output
871
        * EVENT_OUT
872
        * EXTI
873
        * Free pins are configured automatically as Analog (this feature is enabled through
874
        * the Code Generation settings)
875
*/
2 mjames 876
static void MX_GPIO_Init(void)
877
{
878
 
20 mjames 879
  GPIO_InitTypeDef GPIO_InitStruct;
2 mjames 880
 
20 mjames 881
  /* GPIO Ports Clock Enable */
882
  __HAL_RCC_GPIOC_CLK_ENABLE();
883
  __HAL_RCC_GPIOH_CLK_ENABLE();
884
  __HAL_RCC_GPIOA_CLK_ENABLE();
885
  __HAL_RCC_GPIOB_CLK_ENABLE();
886
  __HAL_RCC_GPIOD_CLK_ENABLE();
2 mjames 887
 
20 mjames 888
  /*Configure GPIO pins : PC13 PC14 PC15 PC6
889
                           PC7 PC8 PC9 PC11
890
                           PC12 */
891
  GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_6
892
                          |GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_11
893
                          |GPIO_PIN_12;
894
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
895
  GPIO_InitStruct.Pull = GPIO_NOPULL;
896
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
2 mjames 897
 
20 mjames 898
  /*Configure GPIO pins : PH0 PH1 */
899
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
900
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
901
  GPIO_InitStruct.Pull = GPIO_NOPULL;
902
  HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
3 mjames 903
 
20 mjames 904
  /*Configure GPIO pins : PA0 PA1 PA8 PA11
905
                           PA12 */
906
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_8|GPIO_PIN_11
907
                          |GPIO_PIN_12;
908
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
909
  GPIO_InitStruct.Pull = GPIO_NOPULL;
910
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
6 mjames 911
 
20 mjames 912
  /*Configure GPIO pin : LED_Blink_Pin */
913
  GPIO_InitStruct.Pin = LED_Blink_Pin;
914
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
915
  GPIO_InitStruct.Pull = GPIO_NOPULL;
916
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
917
  HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
2 mjames 918
 
20 mjames 919
  /*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin */
920
  GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI1CD_Pin;
921
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
922
  GPIO_InitStruct.Pull = GPIO_NOPULL;
923
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
924
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
3 mjames 925
 
20 mjames 926
  /*Configure GPIO pins : SPI_RESET_Pin SPI_NS_Temp_Pin SPI_NS_Temp2_Pin ENA_AUX_5V_Pin */
927
  GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NS_Temp_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin;
928
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
929
  GPIO_InitStruct.Pull = GPIO_NOPULL;
930
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
931
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
3 mjames 932
 
20 mjames 933
  /*Configure GPIO pins : PB11 PB12 PB13 PB14
934
                           PB15 PB3 PB4 PB5
935
                           PB6 PB7 PB8 PB9 */
936
  GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
937
                          |GPIO_PIN_15|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
938
                          |GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
939
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
940
  GPIO_InitStruct.Pull = GPIO_NOPULL;
941
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
5 mjames 942
 
20 mjames 943
  /*Configure GPIO pin : STARTER_ON_Pin */
944
  GPIO_InitStruct.Pin = STARTER_ON_Pin;
945
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
946
  GPIO_InitStruct.Pull = GPIO_NOPULL;
947
  HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct);
18 mjames 948
 
20 mjames 949
  /*Configure GPIO pin : PD2 */
950
  GPIO_InitStruct.Pin = GPIO_PIN_2;
951
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
952
  GPIO_InitStruct.Pull = GPIO_NOPULL;
953
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
5 mjames 954
 
20 mjames 955
  /*Configure GPIO pin Output Level */
956
  HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
5 mjames 957
 
20 mjames 958
  /*Configure GPIO pin Output Level */
959
  HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
5 mjames 960
 
20 mjames 961
  /*Configure GPIO pin Output Level */
962
  HAL_GPIO_WritePin(SPI1CD_GPIO_Port, SPI1CD_Pin, GPIO_PIN_RESET);
7 mjames 963
 
20 mjames 964
  /*Configure GPIO pin Output Level */
965
  HAL_GPIO_WritePin(GPIOB, SPI_RESET_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin, GPIO_PIN_RESET);
5 mjames 966
 
20 mjames 967
  /*Configure GPIO pin Output Level */
968
  HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
7 mjames 969
 
2 mjames 970
}
971
 
972
/* USER CODE BEGIN 4 */
973
 
974
/* USER CODE END 4 */
975
 
976
/**
20 mjames 977
  * @brief  This function is executed in case of error occurrence.
978
  * @param  None
979
  * @retval None
980
  */
2 mjames 981
void Error_Handler(void)
982
{
20 mjames 983
  /* USER CODE BEGIN Error_Handler */
9 mjames 984
        /* User can add his own implementation to report the HAL error return state */
19 mjames 985
        while (1)
986
        {
9 mjames 987
        }
20 mjames 988
  /* USER CODE END Error_Handler */
2 mjames 989
}
990
 
991
#ifdef USE_FULL_ASSERT
992
 
993
/**
20 mjames 994
   * @brief Reports the name of the source file and the source line number
995
   * where the assert_param error has occurred.
996
   * @param file: pointer to the source file name
997
   * @param line: assert_param error line source number
998
   * @retval None
999
   */
2 mjames 1000
void assert_failed(uint8_t* file, uint32_t line)
1001
{
20 mjames 1002
  /* USER CODE BEGIN 6 */
9 mjames 1003
        /* User can add his own implementation to report the file name and line number,
1004
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
20 mjames 1005
  /* USER CODE END 6 */
2 mjames 1006
 
1007
}
1008
 
1009
#endif
1010
 
1011
/**
20 mjames 1012
  * @}
1013
  */
2 mjames 1014
 
1015
/**
20 mjames 1016
  * @}
1017
*/
2 mjames 1018
 
1019
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/