Subversion Repositories EngineBay2

Rev

Rev 21 | Rev 23 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**
20 mjames 2
  ******************************************************************************
3
  * File Name          : main.c
4
  * Description        : Main program body
5
  ******************************************************************************
6
  *
7
  * COPYRIGHT(c) 2017 STMicroelectronics
8
  *
9
  * Redistribution and use in source and binary forms, with or without modification,
10
  * are permitted provided that the following conditions are met:
11
  *   1. Redistributions of source code must retain the above copyright notice,
12
  *      this list of conditions and the following disclaimer.
13
  *   2. Redistributions in binary form must reproduce the above copyright notice,
14
  *      this list of conditions and the following disclaimer in the documentation
15
  *      and/or other materials provided with the distribution.
16
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
17
  *      may be used to endorse or promote products derived from this software
18
  *      without specific prior written permission.
19
  *
20
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
  *
31
  ******************************************************************************
32
  */
2 mjames 33
/* Includes ------------------------------------------------------------------*/
34
#include "stm32l1xx_hal.h"
35
 
36
/* USER CODE BEGIN Includes */
7 mjames 37
#include "serial.h"
9 mjames 38
#include "plx.h"
39
#include "misc.h"
2 mjames 40
/* USER CODE END Includes */
41
 
42
/* Private variables ---------------------------------------------------------*/
43
ADC_HandleTypeDef hadc;
6 mjames 44
DMA_HandleTypeDef hdma_adc;
2 mjames 45
 
46
SPI_HandleTypeDef hspi1;
47
 
48
TIM_HandleTypeDef htim2;
49
TIM_HandleTypeDef htim6;
50
 
51
UART_HandleTypeDef huart1;
6 mjames 52
UART_HandleTypeDef huart2;
2 mjames 53
 
54
/* USER CODE BEGIN PV */
55
/* Private variables ---------------------------------------------------------*/
56
 
9 mjames 57
// with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000
58
// freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the first pulse longer than 1/300 of a second as being a proper closure .
59
// the TIM2 counter counts in 10uS increments,
60
#define BREAKER_MIN (RPM_COUNT_RATE/300)
61
 
22 mjames 62
// wait for about 1 second to decide whether or not starter is on
21 mjames 63
 
22 mjames 64
#define STARTER_LIMIT 10
65
 
9 mjames 66
volatile char TimerFlag = 0;
67
 
68
volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1
69
volatile char NoSerialIn = 0;
70
 
8 mjames 71
// storage for ADC
19 mjames 72
uint16_t ADC_Samples[6];
8 mjames 73
 
17 mjames 74
#define Scale 1024.0
75
const float ADC_Scale = 3.3 / (Scale * 4096.0); // convert to a voltage
76
 
19 mjames 77
uint32_t FILT_Samples[6]; // filtered ADC samples * 1024
9 mjames 78
// Rev counter processing from original RevCounter Project
79
unsigned int RPM_Diff = 0;
80
unsigned int RPM_Count_Latch = 0;
81
// accumulators
82
unsigned int RPM_Pulsecount = 0;
83
unsigned int RPM_FilteredWidth = 0;
84
 
85
unsigned int Coded_RPM = 0;
86
unsigned int Coded_CHT = 0;
87
 
18 mjames 88
uint32_t Power_CHT_Timer;
89
 
21 mjames 90
uint16_t Starter_Debounce = 0;
91
 
2 mjames 92
/* USER CODE END PV */
93
 
94
/* Private function prototypes -----------------------------------------------*/
95
void SystemClock_Config(void);
96
void Error_Handler(void);
97
static void MX_GPIO_Init(void);
6 mjames 98
static void MX_DMA_Init(void);
2 mjames 99
static void MX_ADC_Init(void);
100
static void MX_SPI1_Init(void);
101
static void MX_TIM2_Init(void);
102
static void MX_TIM6_Init(void);
13 mjames 103
static void MX_USART2_UART_Init(void);
2 mjames 104
static void MX_USART1_UART_Init(void);
105
 
106
/* USER CODE BEGIN PFP */
107
/* Private function prototypes -----------------------------------------------*/
108
 
9 mjames 109
/* USER CODE END PFP */
7 mjames 110
 
9 mjames 111
/* USER CODE BEGIN 0 */
7 mjames 112
 
19 mjames 113
void plx_sendword(int x)
114
{
9 mjames 115
        PutCharSerial(&uc1, ((x) >> 6) & 0x3F);
116
        PutCharSerial(&uc1, (x) & 0x3F);
117
}
2 mjames 118
 
17 mjames 119
void init_ADC_filter()
120
{
121
        int i;
19 mjames 122
        for (i = 0; i < 6; i++)
123
        {
17 mjames 124
                FILT_Samples[i] = 0;
19 mjames 125
        }
17 mjames 126
}
127
 
128
void filter_ADC_samples()
129
{
19 mjames 130
        int i;
131
        for (i = 0; i < 6; i++)
132
        {
133
                FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2;
134
        }
17 mjames 135
}
136
 
19 mjames 137
void ProcessRPM(int instance)
138
{
9 mjames 139
// compute the timer values
140
// snapshot timers
141
        unsigned long RPM_Pulsewidth;
142
        unsigned long RPM_Count_Val;
143
        __disable_irq(); // copy the counter value
144
        RPM_Count_Val = RPM_Count;
145
        __enable_irq();
146
// do calculations
147
// if there is only one entry, cannot get difference
19 mjames 148
        if (RPM_Count_Latch != RPM_Count_Val)
149
        {
150
                while (1)
151
                {
9 mjames 152
                        unsigned int base_time;
153
                        unsigned int new_time;
154
                        // if we are at N-1, stop.
155
                        unsigned int next_count = RPM_Count_Latch + 1;
19 mjames 156
                        if (next_count == RPM_SAMPLES)
157
                        {
9 mjames 158
                                next_count = 0;
159
                        }
19 mjames 160
                        if (next_count == RPM_Count_Val)
161
                        {
9 mjames 162
                                break;
163
                        }
164
                        base_time = RPM_Time[RPM_Count_Latch];
165
                        new_time = RPM_Time[next_count];
166
                        RPM_Count_Latch = next_count;
19 mjames 167
                        if (new_time > base_time)
168
                        {
9 mjames 169
                                RPM_Pulsewidth = new_time - base_time; // not wrapped
19 mjames 170
                        }
171
                        else
172
                        {
13 mjames 173
                                RPM_Pulsewidth = new_time - base_time + 65536; // deal with wrapping
9 mjames 174
                        }
2 mjames 175
 
9 mjames 176
                        RPM_Diff += RPM_Pulsewidth;
177
                        // need to check if this is a long pulse. If it is, keep the answer
19 mjames 178
                        if (RPM_Pulsewidth > BREAKER_MIN)
179
                        {
9 mjames 180
                                RPM_Pulsecount++; // count one pulse
181
                                RPM_FilteredWidth += RPM_Diff; // add its width to the accumulator
182
                                RPM_Diff = 0; // reset accumulator of all the narrow widths
183
                        }
184
                }
185
 
186
        }
187
 
19 mjames 188
        if (RPM_Pulsecount > 0)
189
        {
9 mjames 190
                // now have time for N pulses in clocks
191
                // need to scale by 19.55: one unit is 19.55 RPM
192
                // 1Hz is 60 RPM
17 mjames 193
                float new_RPM = (30.0 / 19.55 * RPM_Pulsecount * RPM_COUNT_RATE)
19 mjames 194
                                / (RPM_FilteredWidth) + 0.5;
17 mjames 195
 
19 mjames 196
                Coded_RPM += (new_RPM * Scale - Coded_RPM) / 4;
17 mjames 197
 
9 mjames 198
#if !defined MY_DEBUG
199
                // reset here unless we want to debug
200
                RPM_Pulsecount = 0;
201
                RPM_FilteredWidth = 0;
202
#endif
203
        }
204
 
17 mjames 205
// send the current RPM *calculation
9 mjames 206
        plx_sendword(PLX_RPM);
207
        PutCharSerial(&uc1, instance);
19 mjames 208
        plx_sendword(Coded_RPM / Scale);
9 mjames 209
}
210
 
211
// this uses a MAX6675 which is a simple 16 bit read
212
// SPI is configured for 8 bits so I can use an OLED display if I need it
11 mjames 213
// must wait > 0.22 seconds between conversion attempts as this is the measurement time
214
//
18 mjames 215
 
21 mjames 216
FunctionalState CHT_Enable = ENABLE;
18 mjames 217
 
19 mjames 218
uint8_t CHT_Timer[2] =
219
{ 0, 0 }; // two temperature readings
21 mjames 220
uint16_t CHT_Observations[2] =
19 mjames 221
{ 0, 0 };
222
 
223
void ProcessCHT(int instance)
224
{
9 mjames 225
        uint8_t buffer[2];
18 mjames 226
        if (instance > 2)
227
                return;
228
        CHT_Timer[instance]++;
21 mjames 229
        if ((CHT_Enable == ENABLE) && (CHT_Timer[instance] >= 4)) // every 300 milliseconds
19 mjames 230
        {
11 mjames 231
 
18 mjames 232
                CHT_Timer[instance] = 0;
11 mjames 233
 
18 mjames 234
                uint16_t Pin = (instance == 0) ? SPI_NS_Temp_Pin : SPI_NS_Temp2_Pin;
9 mjames 235
 
18 mjames 236
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_RESET);
9 mjames 237
 
18 mjames 238
                HAL_SPI_Receive(&hspi1, buffer, 2, 2);
9 mjames 239
 
18 mjames 240
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_SET);
9 mjames 241
 
18 mjames 242
                uint16_t obs = (buffer[0] << 8) | buffer[1];
9 mjames 243
 
22 mjames 244
                // good observation if the status bit is clear, and the reading is less than 1023
21 mjames 245
 
22 mjames 246
                uint8_t good = ((obs & 4) == 0) && ((obs>>5)<1023);
21 mjames 247
 
19 mjames 248
                if (good)
249
                {
250
                        CHT_Observations[instance] = obs >> 5;
18 mjames 251
                }
11 mjames 252
        }
253
 
16 mjames 254
        plx_sendword(PLX_X_CHT);
9 mjames 255
        PutCharSerial(&uc1, instance);
19 mjames 256
        plx_sendword(CHT_Observations[instance]);
9 mjames 257
 
258
}
259
 
21 mjames 260
void EnableCHT(FunctionalState state)
261
 
19 mjames 262
{
20 mjames 263
        GPIO_InitTypeDef GPIO_InitStruct;
19 mjames 264
 
265
        CHT_Enable = state;
20 mjames 266
 
21 mjames 267
 
20 mjames 268
        /* enable SPI in live mode : assume it and its GPIOs are already initialised in SPI mode */
21 mjames 269
        if (state == ENABLE)
20 mjames 270
        {
21 mjames 271
                HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_SET );
20 mjames 272
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
273
                HAL_GPIO_WritePin(SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
274
                                GPIO_PIN_SET);
275
 
276
                /* put the SPI pins back into SPI AF mode */
277
                GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
278
                GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
279
                GPIO_InitStruct.Pull = GPIO_NOPULL;
280
                GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
281
                GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
282
                HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
283
 
284
        }
285
        else
286
        {
287
                /*  Power down the SPI interface taking signals all low */
21 mjames 288
                HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_RESET );
20 mjames 289
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin,
290
                                GPIO_PIN_RESET);
291
                HAL_GPIO_WritePin(SPI_NS_Temp2_GPIO_Port, SPI_NS_Temp2_Pin,
292
                                GPIO_PIN_RESET);
293
 
294
                HAL_GPIO_WritePin(SPI1_SCK_GPIO_Port,
295
                                SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin, GPIO_PIN_RESET);
296
 
297
                /* put the SPI pins back into GPIO mode */
298
                GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
299
                GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
300
                GPIO_InitStruct.Pull = GPIO_NOPULL;
301
                GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
302
                HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
303
 
304
        }
305
 
19 mjames 306
}
307
 
17 mjames 308
// 1023 is 20.00 volts.
19 mjames 309
void ProcessBatteryVoltage(int instance)
310
{
18 mjames 311
        float reading = FILT_Samples[instance] * ADC_Scale;
312
        reading = reading * 7.8125; // real voltage
313
        reading = reading * 51.15; // 1023/20
17 mjames 314
 
12 mjames 315
        plx_sendword(PLX_Volts);
316
        PutCharSerial(&uc1, instance);
18 mjames 317
        plx_sendword((uint16_t) reading);
12 mjames 318
 
18 mjames 319
}
12 mjames 320
 
18 mjames 321
/****!
322
 * @brief this reads the reference voltage within the STM32L151
323
 * Powers up reference voltage and temperature sensor, waits 3mS  and takes reading
324
 * Requires that the ADC be powered up
325
 */
12 mjames 326
 
18 mjames 327
uint32_t ADC_VREF_MV = 3300;           // 3.300V typical
328
const uint16_t STM32REF_MV = 1224;           // 1.224V typical
329
 
19 mjames 330
void CalibrateADC(void)
331
{
21 mjames 332
        uint32_t adc_val = FILT_Samples[5];       // as set up in device config
18 mjames 333
        ADC_VREF_MV = (STM32REF_MV * 4096) / adc_val;
12 mjames 334
}
335
 
19 mjames 336
void ProcessCPUTemperature(int instance)
337
{
18 mjames 338
        int32_t temp_val;
21 mjames 339
        uint16_t TS_CAL30 = *(uint16_t *) (0x1FF8007AUL); /* ADC reading for temperature sensor at 30 degrees C with Vref = 3000mV */
340
        uint16_t TS_CAL110 = *(uint16_t *) (0x1FF8007EUL); /* ADC reading for temperature sensor at 110 degrees C with Vref = 3000mV */
18 mjames 341
        /* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */
342
 
343
        temp_val = FILT_Samples[5];
344
 
345
        /* renormalise temperature value to account for different ADC Vref  : normalise to that which we would get for a 3000mV reference */
21 mjames 346
        temp_val = temp_val * ADC_VREF_MV / (Scale * 3000UL);
18 mjames 347
 
348
        int32_t result = 800 * ((int32_t) temp_val - TS_CAL30);
349
        result = result / (TS_CAL110 - TS_CAL30) + 300;
350
 
19 mjames 351
        if (result < 0)
352
        {
353
                result = 0;
354
        }
18 mjames 355
        plx_sendword(PLX_FluidTemp);
356
        PutCharSerial(&uc1, instance);
19 mjames 357
        plx_sendword(result / 10);
18 mjames 358
 
359
}
360
 
17 mjames 361
// the MAP sensor is giving us a reading of
362
// 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016)
363
// I believe the sensor reads  4.5V at 1000kPa and 0.5V at  0kPa
12 mjames 364
 
17 mjames 365
void ProcessMAP(int instance)
366
{
367
// Using ADC_Samples[3] as the MAP input
19 mjames 368
        float reading = FILT_Samples[3] * ADC_Scale;
369
        reading = reading * 2.016;      // real voltage
370
        reading = (reading) * 1000 / 4.5; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5
17 mjames 371
        plx_sendword(PLX_MAP);
372
        PutCharSerial(&uc1, instance);
19 mjames 373
        plx_sendword((uint16_t) reading);
17 mjames 374
 
375
}
376
 
377
// the Oil pressi sensor is giving us a reading of
378
// 4.5 volts for 100 PSI or  2.25 volts at the ADC input (resistive divider by 2.016)
379
// I believe the sensor reads  4.5V at 100PSI and 0.5V at  0PSI
380
// an observation of 1024 is 200PSI, so observation of 512 is 100 PSI.
381
 
382
void ProcessOilPress(int instance)
383
{
384
// Using ADC_Samples[2] as the MAP input
19 mjames 385
        float reading = FILT_Samples[2] * ADC_Scale;
386
        reading = reading * 2.00; // real voltage
387
        reading = (reading - 0.5) * 512 / 4;  // this is 1023 * 100/200
17 mjames 388
 
389
        plx_sendword(PLX_FluidPressure);
390
        PutCharSerial(&uc1, instance);
19 mjames 391
        plx_sendword((uint16_t) reading);
17 mjames 392
 
393
}
394
 
16 mjames 395
void ProcessTiming(int instance)
396
{
397
        plx_sendword(PLX_Timing);
398
        PutCharSerial(&uc1, instance);
19 mjames 399
        plx_sendword(64 - 15); // make it negative
16 mjames 400
}
401
 
2 mjames 402
/* USER CODE END 0 */
403
 
19 mjames 404
int main(void)
405
{
2 mjames 406
 
20 mjames 407
  /* USER CODE BEGIN 1 */
2 mjames 408
 
20 mjames 409
  /* USER CODE END 1 */
2 mjames 410
 
20 mjames 411
  /* MCU Configuration----------------------------------------------------------*/
2 mjames 412
 
20 mjames 413
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
414
  HAL_Init();
2 mjames 415
 
20 mjames 416
  /* Configure the system clock */
417
  SystemClock_Config();
2 mjames 418
 
20 mjames 419
  /* Initialize all configured peripherals */
420
  MX_GPIO_Init();
421
  MX_DMA_Init();
422
  MX_ADC_Init();
423
  MX_SPI1_Init();
424
  MX_TIM2_Init();
425
  MX_TIM6_Init();
426
  MX_USART2_UART_Init();
427
  MX_USART1_UART_Init();
2 mjames 428
 
20 mjames 429
  /* USER CODE BEGIN 2 */
13 mjames 430
        HAL_MspInit();
2 mjames 431
 
13 mjames 432
// Not using HAL USART code
9 mjames 433
        __HAL_RCC_USART1_CLK_ENABLE()
434
        ; // PLX comms port
435
        __HAL_RCC_USART2_CLK_ENABLE()
436
        ;  // Debug comms port
7 mjames 437
        /* setup the USART control blocks */
438
        init_usart_ctl(&uc1, huart1.Instance);
439
        init_usart_ctl(&uc2, huart2.Instance);
440
 
441
        EnableSerialRxInterrupt(&uc1);
442
        EnableSerialRxInterrupt(&uc2);
443
 
13 mjames 444
        HAL_SPI_MspInit(&hspi1);
445
 
446
        HAL_ADC_MspInit(&hadc);
14 mjames 447
 
13 mjames 448
        HAL_ADC_Start_DMA(&hadc, ADC_Samples, 6);
449
 
18 mjames 450
        HAL_ADC_Start_IT(&hadc);
13 mjames 451
 
452
        HAL_TIM_Base_MspInit(&htim6);
9 mjames 453
        HAL_TIM_Base_Start_IT(&htim6);
13 mjames 454
 
455
// initialise all the STMCubeMX stuff
456
        HAL_TIM_Base_MspInit(&htim2);
457
// Start the counter
12 mjames 458
        HAL_TIM_Base_Start(&htim2);
13 mjames 459
// Start the input capture and the interrupt
18 mjames 460
        HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
8 mjames 461
 
17 mjames 462
        init_ADC_filter();
7 mjames 463
 
18 mjames 464
        uint32_t Ticks = HAL_GetTick() + 100;
465
        int CalCounter = 0;
2 mjames 466
 
18 mjames 467
        Power_CHT_Timer = HAL_GetTick() + 10000; /* wait 10 seconds before powering up the CHT sensor */
468
 
469
 
20 mjames 470
 
471
 
472
  /* USER CODE END 2 */
473
 
474
  /* Infinite loop */
475
  /* USER CODE BEGIN WHILE */
19 mjames 476
        while (1)
477
        {
20 mjames 478
  /* USER CODE END WHILE */
2 mjames 479
 
20 mjames 480
  /* USER CODE BEGIN 3 */
2 mjames 481
 
19 mjames 482
                if (HAL_GetTick() > Ticks)
483
                {
18 mjames 484
                        Ticks += 100;
485
                        filter_ADC_samples();
486
                        // delay to calibrate ADC
21 mjames 487
                        if (CalCounter < 1000)
19 mjames 488
                        {
18 mjames 489
                                CalCounter += 100;
9 mjames 490
                        }
491
 
21 mjames 492
                        if (CalCounter == 900)
19 mjames 493
                        {
18 mjames 494
                                CalibrateADC();
495
                        }
19 mjames 496
                }
497
                /* when the starter motor is on then power down the CHT sensors as they seem to fail */
9 mjames 498
 
19 mjames 499
                if (HAL_GPIO_ReadPin(STARTER_ON_GPIO_Port, STARTER_ON_Pin)
21 mjames 500
                                        == GPIO_PIN_RESET )
19 mjames 501
                {
21 mjames 502
                        if(Starter_Debounce < STARTER_LIMIT)
503
                        {
504
                                Starter_Debounce++;
505
                        }
506
                }
507
                else
508
                {
509
                        if(Starter_Debounce > 0)
510
                        {
511
                                Starter_Debounce --;
512
                        }
513
                }
514
 
515
                if (Starter_Debounce == STARTER_LIMIT)
516
                {
517
                        EnableCHT(DISABLE);
20 mjames 518
                        Power_CHT_Timer = HAL_GetTick() + 5000;
19 mjames 519
                }
520
                else
521
                /* if the Power_CHT_Timer is set then wait for it to timeout, then power up CHT */
522
                {
523
                        if ((Power_CHT_Timer > 0) && (HAL_GetTick() > Power_CHT_Timer))
18 mjames 524
                        {
21 mjames 525
                                EnableCHT(ENABLE);
19 mjames 526
                                Power_CHT_Timer = 0;
18 mjames 527
                        }
19 mjames 528
                }
13 mjames 529
 
19 mjames 530
                // check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
531
                int c;
532
                char send = 0;
13 mjames 533
 
19 mjames 534
                // poll the  input for a stop bit or timeout
535
                if (PollSerial(&uc1))
536
                {
537
                        c = GetCharSerial(&uc1);
538
                        if (c != PLX_Stop)
539
                        {
540
                                PutCharSerial(&uc1, c); // echo all but the stop bit
18 mjames 541
                        }
19 mjames 542
                        else
543
                        { // must be a stop character
544
                                send = 1; // start our sending process.
545
                        }
546
                }
16 mjames 547
 
19 mjames 548
                // sort out auto-sending
549
                if (TimerFlag)
550
                {
551
                        TimerFlag = 0;
552
                        if (NoSerialIn)
553
                        {
554
                                PutCharSerial(&uc1, PLX_Start);
555
                                send = 1;
18 mjames 556
                        }
19 mjames 557
                }
558
                if (send)
559
                {
560
                        send = 0;
18 mjames 561
 
19 mjames 562
                        uint16_t val;
563
                        val = __HAL_TIM_GET_COMPARE(&htim2,TIM_CHANNEL_1);
564
                        PutCharSerial(&uc2, (val & 31) + 32);
18 mjames 565
 
19 mjames 566
                        // send the observations
567
                        ProcessRPM(0);
568
                        ProcessCHT(0);
18 mjames 569
                        //      ProcessCHT(1);
19 mjames 570
                        ProcessBatteryVoltage(0); // Batt 1
571
                        ProcessBatteryVoltage(1); // Batt 2
572
                        ProcessCPUTemperature(0); //  built in temperature sensor
18 mjames 573
 
19 mjames 574
                        ProcessMAP(0);
575
                        ProcessOilPress(0);
18 mjames 576
 
19 mjames 577
                        PutCharSerial(&uc1, PLX_Stop);
9 mjames 578
                }
579
        }
20 mjames 580
  /* USER CODE END 3 */
581
 
2 mjames 582
}
20 mjames 583
 
2 mjames 584
/** System Clock Configuration
20 mjames 585
*/
2 mjames 586
void SystemClock_Config(void)
587
{
588
 
20 mjames 589
  RCC_OscInitTypeDef RCC_OscInitStruct;
590
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
2 mjames 591
 
20 mjames 592
  __HAL_RCC_PWR_CLK_ENABLE();
2 mjames 593
 
20 mjames 594
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
2 mjames 595
 
20 mjames 596
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
597
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
598
  RCC_OscInitStruct.HSICalibrationValue = 16;
599
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
600
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
601
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
602
  RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
603
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
604
  {
605
    Error_Handler();
606
  }
2 mjames 607
 
20 mjames 608
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
609
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
610
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
611
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
612
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
613
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
614
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
615
  {
616
    Error_Handler();
617
  }
2 mjames 618
 
20 mjames 619
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
2 mjames 620
 
20 mjames 621
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
2 mjames 622
 
20 mjames 623
  /* SysTick_IRQn interrupt configuration */
624
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
2 mjames 625
}
626
 
627
/* ADC init function */
628
static void MX_ADC_Init(void)
629
{
630
 
20 mjames 631
  ADC_ChannelConfTypeDef sConfig;
2 mjames 632
 
20 mjames 633
    /**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
634
    */
635
  hadc.Instance = ADC1;
636
  hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
637
  hadc.Init.Resolution = ADC_RESOLUTION_12B;
638
  hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
639
  hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
640
  hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
641
  hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE;
642
  hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
643
  hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
644
  hadc.Init.ContinuousConvMode = DISABLE;
645
  hadc.Init.NbrOfConversion = 6;
646
  hadc.Init.DiscontinuousConvMode = DISABLE;
647
  hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T6_TRGO;
648
  hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
649
  hadc.Init.DMAContinuousRequests = ENABLE;
650
  if (HAL_ADC_Init(&hadc) != HAL_OK)
651
  {
652
    Error_Handler();
653
  }
2 mjames 654
 
20 mjames 655
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
656
    */
657
  sConfig.Channel = ADC_CHANNEL_10;
658
  sConfig.Rank = 1;
659
  sConfig.SamplingTime = ADC_SAMPLETIME_384CYCLES;
660
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
661
  {
662
    Error_Handler();
663
  }
2 mjames 664
 
20 mjames 665
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
666
    */
667
  sConfig.Channel = ADC_CHANNEL_11;
668
  sConfig.Rank = 2;
669
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
670
  {
671
    Error_Handler();
672
  }
2 mjames 673
 
20 mjames 674
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
675
    */
676
  sConfig.Channel = ADC_CHANNEL_12;
677
  sConfig.Rank = 3;
678
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
679
  {
680
    Error_Handler();
681
  }
2 mjames 682
 
20 mjames 683
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
684
    */
685
  sConfig.Channel = ADC_CHANNEL_13;
686
  sConfig.Rank = 4;
687
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
688
  {
689
    Error_Handler();
690
  }
2 mjames 691
 
20 mjames 692
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
693
    */
694
  sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
695
  sConfig.Rank = 5;
696
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
697
  {
698
    Error_Handler();
699
  }
2 mjames 700
 
20 mjames 701
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
702
    */
703
  sConfig.Channel = ADC_CHANNEL_VREFINT;
704
  sConfig.Rank = 6;
705
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
706
  {
707
    Error_Handler();
708
  }
2 mjames 709
 
710
}
711
 
712
/* SPI1 init function */
713
static void MX_SPI1_Init(void)
714
{
715
 
20 mjames 716
  hspi1.Instance = SPI1;
717
  hspi1.Init.Mode = SPI_MODE_MASTER;
718
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
719
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
720
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
21 mjames 721
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
20 mjames 722
  hspi1.Init.NSS = SPI_NSS_SOFT;
723
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
724
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
725
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
726
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
727
  hspi1.Init.CRCPolynomial = 10;
728
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
729
  {
730
    Error_Handler();
731
  }
2 mjames 732
 
733
}
734
 
735
/* TIM2 init function */
736
static void MX_TIM2_Init(void)
737
{
738
 
20 mjames 739
  TIM_ClockConfigTypeDef sClockSourceConfig;
740
  TIM_MasterConfigTypeDef sMasterConfig;
741
  TIM_IC_InitTypeDef sConfigIC;
2 mjames 742
 
20 mjames 743
  htim2.Instance = TIM2;
744
  htim2.Init.Prescaler = 320;
745
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
746
  htim2.Init.Period = 65535;
747
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
748
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
749
  {
750
    Error_Handler();
751
  }
12 mjames 752
 
20 mjames 753
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
754
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
755
  {
756
    Error_Handler();
757
  }
12 mjames 758
 
20 mjames 759
  if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
760
  {
761
    Error_Handler();
762
  }
2 mjames 763
 
20 mjames 764
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
765
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
766
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
767
  {
768
    Error_Handler();
769
  }
2 mjames 770
 
20 mjames 771
  sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
772
  sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
773
  sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
774
  sConfigIC.ICFilter = 0;
775
  if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
776
  {
777
    Error_Handler();
778
  }
2 mjames 779
 
780
}
781
 
782
/* TIM6 init function */
783
static void MX_TIM6_Init(void)
784
{
785
 
20 mjames 786
  TIM_MasterConfigTypeDef sMasterConfig;
2 mjames 787
 
20 mjames 788
  htim6.Instance = TIM6;
789
  htim6.Init.Prescaler = 320;
790
  htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
791
  htim6.Init.Period = 9999;
792
  if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
793
  {
794
    Error_Handler();
795
  }
2 mjames 796
 
20 mjames 797
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
798
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
799
  if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
800
  {
801
    Error_Handler();
802
  }
2 mjames 803
 
804
}
805
 
806
/* USART1 init function */
807
static void MX_USART1_UART_Init(void)
808
{
809
 
20 mjames 810
  huart1.Instance = USART1;
811
  huart1.Init.BaudRate = 19200;
812
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
813
  huart1.Init.StopBits = UART_STOPBITS_1;
814
  huart1.Init.Parity = UART_PARITY_NONE;
815
  huart1.Init.Mode = UART_MODE_TX_RX;
816
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
817
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
818
  if (HAL_UART_Init(&huart1) != HAL_OK)
819
  {
820
    Error_Handler();
821
  }
2 mjames 822
 
823
}
824
 
6 mjames 825
/* USART2 init function */
826
static void MX_USART2_UART_Init(void)
827
{
828
 
20 mjames 829
  huart2.Instance = USART2;
830
  huart2.Init.BaudRate = 115200;
831
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
832
  huart2.Init.StopBits = UART_STOPBITS_1;
833
  huart2.Init.Parity = UART_PARITY_NONE;
834
  huart2.Init.Mode = UART_MODE_TX_RX;
835
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
836
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
837
  if (HAL_UART_Init(&huart2) != HAL_OK)
838
  {
839
    Error_Handler();
840
  }
6 mjames 841
 
842
}
843
 
844
/**
20 mjames 845
  * Enable DMA controller clock
846
  */
847
static void MX_DMA_Init(void)
6 mjames 848
{
20 mjames 849
  /* DMA controller clock enable */
850
  __HAL_RCC_DMA1_CLK_ENABLE();
6 mjames 851
 
20 mjames 852
  /* DMA interrupt init */
853
  /* DMA1_Channel1_IRQn interrupt configuration */
854
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
855
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
6 mjames 856
 
857
}
858
 
2 mjames 859
/** Configure pins as
20 mjames 860
        * Analog
861
        * Input
862
        * Output
863
        * EVENT_OUT
864
        * EXTI
865
        * Free pins are configured automatically as Analog (this feature is enabled through
866
        * the Code Generation settings)
867
*/
2 mjames 868
static void MX_GPIO_Init(void)
869
{
870
 
20 mjames 871
  GPIO_InitTypeDef GPIO_InitStruct;
2 mjames 872
 
20 mjames 873
  /* GPIO Ports Clock Enable */
874
  __HAL_RCC_GPIOC_CLK_ENABLE();
875
  __HAL_RCC_GPIOH_CLK_ENABLE();
876
  __HAL_RCC_GPIOA_CLK_ENABLE();
877
  __HAL_RCC_GPIOB_CLK_ENABLE();
878
  __HAL_RCC_GPIOD_CLK_ENABLE();
2 mjames 879
 
20 mjames 880
  /*Configure GPIO pins : PC13 PC14 PC15 PC6
881
                           PC7 PC8 PC9 PC11
882
                           PC12 */
883
  GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_6
884
                          |GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_11
885
                          |GPIO_PIN_12;
886
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
887
  GPIO_InitStruct.Pull = GPIO_NOPULL;
888
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
2 mjames 889
 
20 mjames 890
  /*Configure GPIO pins : PH0 PH1 */
891
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
892
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
893
  GPIO_InitStruct.Pull = GPIO_NOPULL;
894
  HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
3 mjames 895
 
20 mjames 896
  /*Configure GPIO pins : PA0 PA1 PA8 PA11
897
                           PA12 */
898
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_8|GPIO_PIN_11
899
                          |GPIO_PIN_12;
900
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
901
  GPIO_InitStruct.Pull = GPIO_NOPULL;
902
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
6 mjames 903
 
20 mjames 904
  /*Configure GPIO pin : LED_Blink_Pin */
905
  GPIO_InitStruct.Pin = LED_Blink_Pin;
906
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
907
  GPIO_InitStruct.Pull = GPIO_NOPULL;
908
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
909
  HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
2 mjames 910
 
20 mjames 911
  /*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin */
912
  GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI1CD_Pin;
913
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
914
  GPIO_InitStruct.Pull = GPIO_NOPULL;
915
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
916
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
3 mjames 917
 
20 mjames 918
  /*Configure GPIO pins : SPI_RESET_Pin SPI_NS_Temp_Pin SPI_NS_Temp2_Pin ENA_AUX_5V_Pin */
919
  GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NS_Temp_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin;
920
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
921
  GPIO_InitStruct.Pull = GPIO_NOPULL;
922
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
923
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
3 mjames 924
 
20 mjames 925
  /*Configure GPIO pins : PB11 PB12 PB13 PB14
926
                           PB15 PB3 PB4 PB5
927
                           PB6 PB7 PB8 PB9 */
928
  GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
929
                          |GPIO_PIN_15|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
930
                          |GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
931
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
932
  GPIO_InitStruct.Pull = GPIO_NOPULL;
933
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
5 mjames 934
 
20 mjames 935
  /*Configure GPIO pin : STARTER_ON_Pin */
936
  GPIO_InitStruct.Pin = STARTER_ON_Pin;
937
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
938
  GPIO_InitStruct.Pull = GPIO_NOPULL;
939
  HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct);
18 mjames 940
 
20 mjames 941
  /*Configure GPIO pin : PD2 */
942
  GPIO_InitStruct.Pin = GPIO_PIN_2;
943
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
944
  GPIO_InitStruct.Pull = GPIO_NOPULL;
945
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
5 mjames 946
 
20 mjames 947
  /*Configure GPIO pin Output Level */
948
  HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
5 mjames 949
 
20 mjames 950
  /*Configure GPIO pin Output Level */
951
  HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
5 mjames 952
 
20 mjames 953
  /*Configure GPIO pin Output Level */
954
  HAL_GPIO_WritePin(SPI1CD_GPIO_Port, SPI1CD_Pin, GPIO_PIN_RESET);
7 mjames 955
 
20 mjames 956
  /*Configure GPIO pin Output Level */
957
  HAL_GPIO_WritePin(GPIOB, SPI_RESET_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin, GPIO_PIN_RESET);
5 mjames 958
 
20 mjames 959
  /*Configure GPIO pin Output Level */
960
  HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
7 mjames 961
 
2 mjames 962
}
963
 
964
/* USER CODE BEGIN 4 */
965
 
966
/* USER CODE END 4 */
967
 
968
/**
20 mjames 969
  * @brief  This function is executed in case of error occurrence.
970
  * @param  None
971
  * @retval None
972
  */
2 mjames 973
void Error_Handler(void)
974
{
20 mjames 975
  /* USER CODE BEGIN Error_Handler */
9 mjames 976
        /* User can add his own implementation to report the HAL error return state */
19 mjames 977
        while (1)
978
        {
9 mjames 979
        }
20 mjames 980
  /* USER CODE END Error_Handler */
2 mjames 981
}
982
 
983
#ifdef USE_FULL_ASSERT
984
 
985
/**
20 mjames 986
   * @brief Reports the name of the source file and the source line number
987
   * where the assert_param error has occurred.
988
   * @param file: pointer to the source file name
989
   * @param line: assert_param error line source number
990
   * @retval None
991
   */
2 mjames 992
void assert_failed(uint8_t* file, uint32_t line)
993
{
20 mjames 994
  /* USER CODE BEGIN 6 */
9 mjames 995
        /* User can add his own implementation to report the file name and line number,
996
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
20 mjames 997
  /* USER CODE END 6 */
2 mjames 998
 
999
}
1000
 
1001
#endif
1002
 
1003
/**
20 mjames 1004
  * @}
1005
  */
2 mjames 1006
 
1007
/**
20 mjames 1008
  * @}
1009
*/
2 mjames 1010
 
1011
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/