Subversion Repositories EngineBay2

Rev

Rev 18 | Rev 20 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**
19 mjames 2
 ******************************************************************************
3
 * File Name          : main.c
4
 * Description        : Main program body
5
 ******************************************************************************
6
 *
7
 * COPYRIGHT(c) 2017 STMicroelectronics
8
 *
9
 * Redistribution and use in source and binary forms, with or without modification,
10
 * are permitted provided that the following conditions are met:
11
 *   1. Redistributions of source code must retain the above copyright notice,
12
 *      this list of conditions and the following disclaimer.
13
 *   2. Redistributions in binary form must reproduce the above copyright notice,
14
 *      this list of conditions and the following disclaimer in the documentation
15
 *      and/or other materials provided with the distribution.
16
 *   3. Neither the name of STMicroelectronics nor the names of its contributors
17
 *      may be used to endorse or promote products derived from this software
18
 *      without specific prior written permission.
19
 *
20
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
 *
31
 ******************************************************************************
32
 */
2 mjames 33
/* Includes ------------------------------------------------------------------*/
34
#include "stm32l1xx_hal.h"
35
 
36
/* USER CODE BEGIN Includes */
7 mjames 37
#include "serial.h"
9 mjames 38
#include "plx.h"
39
#include "misc.h"
2 mjames 40
/* USER CODE END Includes */
41
 
42
/* Private variables ---------------------------------------------------------*/
43
ADC_HandleTypeDef hadc;
6 mjames 44
DMA_HandleTypeDef hdma_adc;
2 mjames 45
 
46
SPI_HandleTypeDef hspi1;
47
 
48
TIM_HandleTypeDef htim2;
49
TIM_HandleTypeDef htim6;
50
 
51
UART_HandleTypeDef huart1;
6 mjames 52
UART_HandleTypeDef huart2;
2 mjames 53
 
54
/* USER CODE BEGIN PV */
55
/* Private variables ---------------------------------------------------------*/
56
 
9 mjames 57
// with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000
58
// freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the first pulse longer than 1/300 of a second as being a proper closure .
59
// the TIM2 counter counts in 10uS increments,
60
#define BREAKER_MIN (RPM_COUNT_RATE/300)
61
 
62
volatile char TimerFlag = 0;
63
 
64
volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1
65
volatile char NoSerialIn = 0;
66
 
8 mjames 67
// storage for ADC
19 mjames 68
uint16_t ADC_Samples[6];
8 mjames 69
 
17 mjames 70
#define Scale 1024.0
71
const float ADC_Scale = 3.3 / (Scale * 4096.0); // convert to a voltage
72
 
19 mjames 73
uint32_t FILT_Samples[6]; // filtered ADC samples * 1024
9 mjames 74
// Rev counter processing from original RevCounter Project
75
unsigned int RPM_Diff = 0;
76
unsigned int RPM_Count_Latch = 0;
77
// accumulators
78
unsigned int RPM_Pulsecount = 0;
79
unsigned int RPM_FilteredWidth = 0;
80
 
81
unsigned int Coded_RPM = 0;
82
unsigned int Coded_CHT = 0;
83
 
18 mjames 84
uint32_t Power_CHT_Timer;
85
 
2 mjames 86
/* USER CODE END PV */
87
 
88
/* Private function prototypes -----------------------------------------------*/
89
void SystemClock_Config(void);
90
void Error_Handler(void);
91
static void MX_GPIO_Init(void);
6 mjames 92
static void MX_DMA_Init(void);
2 mjames 93
static void MX_ADC_Init(void);
94
static void MX_SPI1_Init(void);
95
static void MX_TIM2_Init(void);
96
static void MX_TIM6_Init(void);
13 mjames 97
static void MX_USART2_UART_Init(void);
2 mjames 98
static void MX_USART1_UART_Init(void);
99
 
100
/* USER CODE BEGIN PFP */
101
/* Private function prototypes -----------------------------------------------*/
102
 
9 mjames 103
/* USER CODE END PFP */
7 mjames 104
 
9 mjames 105
/* USER CODE BEGIN 0 */
7 mjames 106
 
19 mjames 107
void plx_sendword(int x)
108
{
9 mjames 109
        PutCharSerial(&uc1, ((x) >> 6) & 0x3F);
110
        PutCharSerial(&uc1, (x) & 0x3F);
111
}
2 mjames 112
 
17 mjames 113
void init_ADC_filter()
114
{
115
        int i;
19 mjames 116
        for (i = 0; i < 6; i++)
117
        {
17 mjames 118
                FILT_Samples[i] = 0;
19 mjames 119
        }
17 mjames 120
}
121
 
122
void filter_ADC_samples()
123
{
19 mjames 124
        int i;
125
        for (i = 0; i < 6; i++)
126
        {
127
                FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2;
128
        }
17 mjames 129
}
130
 
19 mjames 131
void ProcessRPM(int instance)
132
{
9 mjames 133
// compute the timer values
134
// snapshot timers
135
        unsigned long RPM_Pulsewidth;
136
        unsigned long RPM_Count_Val;
137
        __disable_irq(); // copy the counter value
138
        RPM_Count_Val = RPM_Count;
139
        __enable_irq();
140
// do calculations
141
// if there is only one entry, cannot get difference
19 mjames 142
        if (RPM_Count_Latch != RPM_Count_Val)
143
        {
144
                while (1)
145
                {
9 mjames 146
                        unsigned int base_time;
147
                        unsigned int new_time;
148
                        // if we are at N-1, stop.
149
                        unsigned int next_count = RPM_Count_Latch + 1;
19 mjames 150
                        if (next_count == RPM_SAMPLES)
151
                        {
9 mjames 152
                                next_count = 0;
153
                        }
19 mjames 154
                        if (next_count == RPM_Count_Val)
155
                        {
9 mjames 156
                                break;
157
                        }
158
                        base_time = RPM_Time[RPM_Count_Latch];
159
                        new_time = RPM_Time[next_count];
160
                        RPM_Count_Latch = next_count;
19 mjames 161
                        if (new_time > base_time)
162
                        {
9 mjames 163
                                RPM_Pulsewidth = new_time - base_time; // not wrapped
19 mjames 164
                        }
165
                        else
166
                        {
13 mjames 167
                                RPM_Pulsewidth = new_time - base_time + 65536; // deal with wrapping
9 mjames 168
                        }
2 mjames 169
 
9 mjames 170
                        RPM_Diff += RPM_Pulsewidth;
171
                        // need to check if this is a long pulse. If it is, keep the answer
19 mjames 172
                        if (RPM_Pulsewidth > BREAKER_MIN)
173
                        {
9 mjames 174
                                RPM_Pulsecount++; // count one pulse
175
                                RPM_FilteredWidth += RPM_Diff; // add its width to the accumulator
176
                                RPM_Diff = 0; // reset accumulator of all the narrow widths
177
                        }
178
                }
179
 
180
        }
181
 
19 mjames 182
        if (RPM_Pulsecount > 0)
183
        {
9 mjames 184
                // now have time for N pulses in clocks
185
                // need to scale by 19.55: one unit is 19.55 RPM
186
                // 1Hz is 60 RPM
17 mjames 187
                float new_RPM = (30.0 / 19.55 * RPM_Pulsecount * RPM_COUNT_RATE)
19 mjames 188
                                / (RPM_FilteredWidth) + 0.5;
17 mjames 189
 
19 mjames 190
                Coded_RPM += (new_RPM * Scale - Coded_RPM) / 4;
17 mjames 191
 
9 mjames 192
#if !defined MY_DEBUG
193
                // reset here unless we want to debug
194
                RPM_Pulsecount = 0;
195
                RPM_FilteredWidth = 0;
196
#endif
197
        }
198
 
17 mjames 199
// send the current RPM *calculation
9 mjames 200
        plx_sendword(PLX_RPM);
201
        PutCharSerial(&uc1, instance);
19 mjames 202
        plx_sendword(Coded_RPM / Scale);
9 mjames 203
}
204
 
205
// this uses a MAX6675 which is a simple 16 bit read
206
// SPI is configured for 8 bits so I can use an OLED display if I need it
11 mjames 207
// must wait > 0.22 seconds between conversion attempts as this is the measurement time
208
//
18 mjames 209
 
19 mjames 210
GPIO_PinState CHT_Enable;
18 mjames 211
 
19 mjames 212
uint8_t CHT_Timer[2] =
213
{ 0, 0 }; // two temperature readings
214
uint8_t CHT_Observations[2] =
215
{ 0, 0 };
216
 
217
void ProcessCHT(int instance)
218
{
9 mjames 219
        uint8_t buffer[2];
18 mjames 220
        if (instance > 2)
221
                return;
222
        CHT_Timer[instance]++;
19 mjames 223
        if ((CHT_Enable == GPIO_PIN_SET) && (CHT_Timer[instance] >= 3)) // every 300 milliseconds
224
        {
11 mjames 225
 
18 mjames 226
                CHT_Timer[instance] = 0;
11 mjames 227
 
18 mjames 228
                uint16_t Pin = (instance == 0) ? SPI_NS_Temp_Pin : SPI_NS_Temp2_Pin;
9 mjames 229
 
18 mjames 230
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_RESET);
9 mjames 231
 
18 mjames 232
                HAL_SPI_Receive(&hspi1, buffer, 2, 2);
9 mjames 233
 
18 mjames 234
                HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_SET);
9 mjames 235
 
18 mjames 236
                uint16_t obs = (buffer[0] << 8) | buffer[1];
9 mjames 237
 
18 mjames 238
                uint8_t good = (obs & 4) == 0;
19 mjames 239
                if (good)
240
                {
241
                        CHT_Observations[instance] = obs >> 5;
18 mjames 242
                }
19 mjames 243
                else
244
                {
245
                        CHT_Observations[instance] = 1024; // signal fail
246
                }
11 mjames 247
        }
248
 
16 mjames 249
        plx_sendword(PLX_X_CHT);
9 mjames 250
        PutCharSerial(&uc1, instance);
19 mjames 251
        plx_sendword(CHT_Observations[instance]);
9 mjames 252
 
253
}
254
 
19 mjames 255
void EnableCHT(GPIO_PinState state)
256
{
257
 
258
        CHT_Enable = state;
259
        HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, state);
260
}
261
 
17 mjames 262
// 1023 is 20.00 volts.
19 mjames 263
void ProcessBatteryVoltage(int instance)
264
{
18 mjames 265
        float reading = FILT_Samples[instance] * ADC_Scale;
266
        reading = reading * 7.8125; // real voltage
267
        reading = reading * 51.15; // 1023/20
17 mjames 268
 
12 mjames 269
        plx_sendword(PLX_Volts);
270
        PutCharSerial(&uc1, instance);
18 mjames 271
        plx_sendword((uint16_t) reading);
12 mjames 272
 
18 mjames 273
}
12 mjames 274
 
18 mjames 275
/****!
276
 * @brief this reads the reference voltage within the STM32L151
277
 * Powers up reference voltage and temperature sensor, waits 3mS  and takes reading
278
 * Requires that the ADC be powered up
279
 */
12 mjames 280
 
18 mjames 281
uint32_t ADC_VREF_MV = 3300;           // 3.300V typical
282
const uint16_t STM32REF_MV = 1224;           // 1.224V typical
283
 
19 mjames 284
void CalibrateADC(void)
285
{
18 mjames 286
        uint32_t adc_val = FILT_Samples[6];       // as set up in device config
287
        ADC_VREF_MV = (STM32REF_MV * 4096) / adc_val;
12 mjames 288
}
289
 
19 mjames 290
void ProcessCPUTemperature(int instance)
291
{
18 mjames 292
        int32_t temp_val;
293
        uint16_t TS_CAL30 = *(uint16_t *) 0x1FF8007A; /* ADC reading for temperature sensor at 30 degrees C with Vref = 3000mV */
294
        uint16_t TS_CAL110 = *(uint16_t *) 0x1FF8007E; /* ADC reading for temperature sensor at 110 degrees C with Vref = 3000mV */
295
        /* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */
296
 
297
        temp_val = FILT_Samples[5];
298
 
299
        /* renormalise temperature value to account for different ADC Vref  : normalise to that which we would get for a 3000mV reference */
300
        temp_val = temp_val * ADC_VREF_MV / 3000UL;
301
 
302
        int32_t result = 800 * ((int32_t) temp_val - TS_CAL30);
303
        result = result / (TS_CAL110 - TS_CAL30) + 300;
304
 
19 mjames 305
        if (result < 0)
306
        {
307
                result = 0;
308
        }
18 mjames 309
        plx_sendword(PLX_FluidTemp);
310
        PutCharSerial(&uc1, instance);
19 mjames 311
        plx_sendword(result / 10);
18 mjames 312
 
313
}
314
 
17 mjames 315
// the MAP sensor is giving us a reading of
316
// 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016)
317
// I believe the sensor reads  4.5V at 1000kPa and 0.5V at  0kPa
12 mjames 318
 
17 mjames 319
void ProcessMAP(int instance)
320
{
321
// Using ADC_Samples[3] as the MAP input
19 mjames 322
        float reading = FILT_Samples[3] * ADC_Scale;
323
        reading = reading * 2.016;      // real voltage
324
        reading = (reading) * 1000 / 4.5; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5
17 mjames 325
        plx_sendword(PLX_MAP);
326
        PutCharSerial(&uc1, instance);
19 mjames 327
        plx_sendword((uint16_t) reading);
17 mjames 328
 
329
}
330
 
331
// the Oil pressi sensor is giving us a reading of
332
// 4.5 volts for 100 PSI or  2.25 volts at the ADC input (resistive divider by 2.016)
333
// I believe the sensor reads  4.5V at 100PSI and 0.5V at  0PSI
334
// an observation of 1024 is 200PSI, so observation of 512 is 100 PSI.
335
 
336
void ProcessOilPress(int instance)
337
{
338
// Using ADC_Samples[2] as the MAP input
19 mjames 339
        float reading = FILT_Samples[2] * ADC_Scale;
340
        reading = reading * 2.00; // real voltage
341
        reading = (reading - 0.5) * 512 / 4;  // this is 1023 * 100/200
17 mjames 342
 
343
        plx_sendword(PLX_FluidPressure);
344
        PutCharSerial(&uc1, instance);
19 mjames 345
        plx_sendword((uint16_t) reading);
17 mjames 346
 
347
}
348
 
16 mjames 349
void ProcessTiming(int instance)
350
{
351
        plx_sendword(PLX_Timing);
352
        PutCharSerial(&uc1, instance);
19 mjames 353
        plx_sendword(64 - 15); // make it negative
16 mjames 354
}
355
 
2 mjames 356
/* USER CODE END 0 */
357
 
19 mjames 358
int main(void)
359
{
2 mjames 360
 
18 mjames 361
        /* USER CODE BEGIN 1 */
2 mjames 362
 
18 mjames 363
        /* USER CODE END 1 */
2 mjames 364
 
18 mjames 365
        /* MCU Configuration----------------------------------------------------------*/
2 mjames 366
 
18 mjames 367
        /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
368
        HAL_Init();
2 mjames 369
 
18 mjames 370
        /* Configure the system clock */
371
        SystemClock_Config();
2 mjames 372
 
18 mjames 373
        /* Initialize all configured peripherals */
374
        MX_GPIO_Init();
375
        MX_DMA_Init();
376
        MX_ADC_Init();
377
        MX_SPI1_Init();
378
        MX_TIM2_Init();
379
        MX_TIM6_Init();
380
        MX_USART2_UART_Init();
381
        MX_USART1_UART_Init();
2 mjames 382
 
18 mjames 383
        /* USER CODE BEGIN 2 */
13 mjames 384
        HAL_MspInit();
2 mjames 385
 
13 mjames 386
// Not using HAL USART code
9 mjames 387
        __HAL_RCC_USART1_CLK_ENABLE()
388
        ; // PLX comms port
389
        __HAL_RCC_USART2_CLK_ENABLE()
390
        ;  // Debug comms port
7 mjames 391
        /* setup the USART control blocks */
392
        init_usart_ctl(&uc1, huart1.Instance);
393
        init_usart_ctl(&uc2, huart2.Instance);
394
 
395
        EnableSerialRxInterrupt(&uc1);
396
        EnableSerialRxInterrupt(&uc2);
397
 
13 mjames 398
        HAL_SPI_MspInit(&hspi1);
399
 
400
        HAL_ADC_MspInit(&hadc);
14 mjames 401
 
13 mjames 402
        HAL_ADC_Start_DMA(&hadc, ADC_Samples, 6);
403
 
18 mjames 404
        HAL_ADC_Start_IT(&hadc);
13 mjames 405
 
406
        HAL_TIM_Base_MspInit(&htim6);
9 mjames 407
        HAL_TIM_Base_Start_IT(&htim6);
13 mjames 408
 
409
// initialise all the STMCubeMX stuff
410
        HAL_TIM_Base_MspInit(&htim2);
411
// Start the counter
12 mjames 412
        HAL_TIM_Base_Start(&htim2);
13 mjames 413
// Start the input capture and the interrupt
18 mjames 414
        HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
8 mjames 415
 
17 mjames 416
        init_ADC_filter();
7 mjames 417
 
18 mjames 418
        uint32_t Ticks = HAL_GetTick() + 100;
419
        int CalCounter = 0;
2 mjames 420
 
18 mjames 421
        Power_CHT_Timer = HAL_GetTick() + 10000; /* wait 10 seconds before powering up the CHT sensor */
422
 
423
        /* USER CODE END 2 */
424
 
425
        /* Infinite loop */
426
        /* USER CODE BEGIN WHILE */
19 mjames 427
        while (1)
428
        {
18 mjames 429
                /* USER CODE END WHILE */
2 mjames 430
 
18 mjames 431
                /* USER CODE BEGIN 3 */
2 mjames 432
 
19 mjames 433
                if (HAL_GetTick() > Ticks)
434
                {
18 mjames 435
                        Ticks += 100;
436
                        filter_ADC_samples();
437
                        // delay to calibrate ADC
19 mjames 438
                        if (CalCounter < 500)
439
                        {
18 mjames 440
                                CalCounter += 100;
9 mjames 441
                        }
442
 
19 mjames 443
                        if (CalCounter == 400)
444
                        {
18 mjames 445
                                CalibrateADC();
446
                        }
19 mjames 447
                }
448
                /* when the starter motor is on then power down the CHT sensors as they seem to fail */
9 mjames 449
 
19 mjames 450
                if (HAL_GPIO_ReadPin(STARTER_ON_GPIO_Port, STARTER_ON_Pin)
451
                                == GPIO_PIN_RESET)
452
                {
453
                        EnableCHT(GPIO_PIN_RESET);
454
                        Power_CHT_Timer = HAL_GetTick() + 500;
455
                }
456
                else
457
                /* if the Power_CHT_Timer is set then wait for it to timeout, then power up CHT */
458
                {
459
                        if ((Power_CHT_Timer > 0) && (HAL_GetTick() > Power_CHT_Timer))
18 mjames 460
                        {
19 mjames 461
                                EnableCHT(GPIO_PIN_SET);
462
                                Power_CHT_Timer = 0;
18 mjames 463
                        }
19 mjames 464
                }
13 mjames 465
 
19 mjames 466
                // check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
467
                int c;
468
                char send = 0;
13 mjames 469
 
19 mjames 470
                // poll the  input for a stop bit or timeout
471
                if (PollSerial(&uc1))
472
                {
473
                        c = GetCharSerial(&uc1);
474
                        if (c != PLX_Stop)
475
                        {
476
                                PutCharSerial(&uc1, c); // echo all but the stop bit
18 mjames 477
                        }
19 mjames 478
                        else
479
                        { // must be a stop character
480
                                send = 1; // start our sending process.
481
                        }
482
                }
16 mjames 483
 
19 mjames 484
                // sort out auto-sending
485
                if (TimerFlag)
486
                {
487
                        TimerFlag = 0;
488
                        if (NoSerialIn)
489
                        {
490
                                PutCharSerial(&uc1, PLX_Start);
491
                                send = 1;
18 mjames 492
                        }
19 mjames 493
                }
494
                if (send)
495
                {
496
                        send = 0;
18 mjames 497
 
19 mjames 498
                        uint16_t val;
499
                        val = __HAL_TIM_GET_COMPARE(&htim2,TIM_CHANNEL_1);
500
                        PutCharSerial(&uc2, (val & 31) + 32);
18 mjames 501
 
19 mjames 502
                        // send the observations
503
                        ProcessRPM(0);
504
                        ProcessCHT(0);
18 mjames 505
                        //      ProcessCHT(1);
19 mjames 506
                        ProcessBatteryVoltage(0); // Batt 1
507
                        ProcessBatteryVoltage(1); // Batt 2
508
                        ProcessCPUTemperature(0); //  built in temperature sensor
18 mjames 509
 
19 mjames 510
                        ProcessMAP(0);
511
                        ProcessOilPress(0);
18 mjames 512
 
19 mjames 513
                        PutCharSerial(&uc1, PLX_Stop);
9 mjames 514
                }
515
        }
18 mjames 516
        /* USER CODE END 3 */
2 mjames 517
}
518
/** System Clock Configuration
19 mjames 519
 */
2 mjames 520
void SystemClock_Config(void)
521
{
522
 
19 mjames 523
        RCC_OscInitTypeDef RCC_OscInitStruct;
524
        RCC_ClkInitTypeDef RCC_ClkInitStruct;
2 mjames 525
 
19 mjames 526
        __HAL_RCC_PWR_CLK_ENABLE()
527
        ;
2 mjames 528
 
19 mjames 529
        __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
2 mjames 530
 
19 mjames 531
        RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
532
        RCC_OscInitStruct.HSIState = RCC_HSI_ON;
533
        RCC_OscInitStruct.HSICalibrationValue = 16;
534
        RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
535
        RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
536
        RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
537
        RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
538
        if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
539
        {
540
                Error_Handler();
541
        }
2 mjames 542
 
19 mjames 543
        RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
544
                        | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
545
        RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
546
        RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
547
        RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
548
        RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
549
        if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
550
        {
551
                Error_Handler();
552
        }
2 mjames 553
 
19 mjames 554
        HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);
2 mjames 555
 
19 mjames 556
        HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
2 mjames 557
 
19 mjames 558
        /* SysTick_IRQn interrupt configuration */
559
        HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
2 mjames 560
}
561
 
562
/* ADC init function */
563
static void MX_ADC_Init(void)
564
{
565
 
19 mjames 566
        ADC_ChannelConfTypeDef sConfig;
2 mjames 567
 
19 mjames 568
        /**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
569
         */
570
        hadc.Instance = ADC1;
571
        hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
572
        hadc.Init.Resolution = ADC_RESOLUTION_12B;
573
        hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
574
        hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
575
        hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
576
        hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE;
577
        hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
578
        hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
579
        hadc.Init.ContinuousConvMode = DISABLE;
580
        hadc.Init.NbrOfConversion = 6;
581
        hadc.Init.DiscontinuousConvMode = DISABLE;
582
        hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T6_TRGO;
583
        hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
584
        hadc.Init.DMAContinuousRequests = ENABLE;
585
        if (HAL_ADC_Init(&hadc) != HAL_OK)
586
        {
587
                Error_Handler();
588
        }
2 mjames 589
 
19 mjames 590
        /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
591
         */
592
        sConfig.Channel = ADC_CHANNEL_10;
593
        sConfig.Rank = 1;
594
        sConfig.SamplingTime = ADC_SAMPLETIME_384CYCLES;
595
        if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
596
        {
597
                Error_Handler();
598
        }
2 mjames 599
 
19 mjames 600
        /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
601
         */
602
        sConfig.Channel = ADC_CHANNEL_11;
603
        sConfig.Rank = 2;
604
        if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
605
        {
606
                Error_Handler();
607
        }
2 mjames 608
 
19 mjames 609
        /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
610
         */
611
        sConfig.Channel = ADC_CHANNEL_12;
612
        sConfig.Rank = 3;
613
        if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
614
        {
615
                Error_Handler();
616
        }
2 mjames 617
 
19 mjames 618
        /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
619
         */
620
        sConfig.Channel = ADC_CHANNEL_13;
621
        sConfig.Rank = 4;
622
        if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
623
        {
624
                Error_Handler();
625
        }
2 mjames 626
 
19 mjames 627
        /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
628
         */
629
        sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
630
        sConfig.Rank = 5;
631
        if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
632
        {
633
                Error_Handler();
634
        }
2 mjames 635
 
19 mjames 636
        /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
637
         */
638
        sConfig.Channel = ADC_CHANNEL_VREFINT;
639
        sConfig.Rank = 6;
640
        if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
641
        {
642
                Error_Handler();
643
        }
2 mjames 644
 
645
}
646
 
647
/* SPI1 init function */
648
static void MX_SPI1_Init(void)
649
{
650
 
19 mjames 651
        hspi1.Instance = SPI1;
652
        hspi1.Init.Mode = SPI_MODE_MASTER;
653
        hspi1.Init.Direction = SPI_DIRECTION_2LINES;
654
        hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
655
        hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
656
        hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
657
        hspi1.Init.NSS = SPI_NSS_SOFT;
658
        hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
659
        hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
660
        hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
661
        hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
662
        hspi1.Init.CRCPolynomial = 10;
663
        if (HAL_SPI_Init(&hspi1) != HAL_OK)
664
        {
665
                Error_Handler();
666
        }
2 mjames 667
 
668
}
669
 
670
/* TIM2 init function */
671
static void MX_TIM2_Init(void)
672
{
673
 
19 mjames 674
        TIM_ClockConfigTypeDef sClockSourceConfig;
675
        TIM_MasterConfigTypeDef sMasterConfig;
676
        TIM_IC_InitTypeDef sConfigIC;
2 mjames 677
 
19 mjames 678
        htim2.Instance = TIM2;
679
        htim2.Init.Prescaler = 320;
680
        htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
681
        htim2.Init.Period = 65535;
682
        htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
683
        if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
684
        {
685
                Error_Handler();
686
        }
12 mjames 687
 
19 mjames 688
        sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
689
        if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
690
        {
691
                Error_Handler();
692
        }
12 mjames 693
 
19 mjames 694
        if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
695
        {
696
                Error_Handler();
697
        }
2 mjames 698
 
19 mjames 699
        sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
700
        sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
701
        if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
702
        {
703
                Error_Handler();
704
        }
2 mjames 705
 
19 mjames 706
        sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
707
        sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
708
        sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
709
        sConfigIC.ICFilter = 0;
710
        if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
711
        {
712
                Error_Handler();
713
        }
2 mjames 714
 
715
}
716
 
717
/* TIM6 init function */
718
static void MX_TIM6_Init(void)
719
{
720
 
19 mjames 721
        TIM_MasterConfigTypeDef sMasterConfig;
2 mjames 722
 
19 mjames 723
        htim6.Instance = TIM6;
724
        htim6.Init.Prescaler = 320;
725
        htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
726
        htim6.Init.Period = 9999;
727
        if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
728
        {
729
                Error_Handler();
730
        }
2 mjames 731
 
19 mjames 732
        sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
733
        sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
734
        if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
735
        {
736
                Error_Handler();
737
        }
2 mjames 738
 
739
}
740
 
741
/* USART1 init function */
742
static void MX_USART1_UART_Init(void)
743
{
744
 
19 mjames 745
        huart1.Instance = USART1;
746
        huart1.Init.BaudRate = 19200;
747
        huart1.Init.WordLength = UART_WORDLENGTH_8B;
748
        huart1.Init.StopBits = UART_STOPBITS_1;
749
        huart1.Init.Parity = UART_PARITY_NONE;
750
        huart1.Init.Mode = UART_MODE_TX_RX;
751
        huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
752
        huart1.Init.OverSampling = UART_OVERSAMPLING_16;
753
        if (HAL_UART_Init(&huart1) != HAL_OK)
754
        {
755
                Error_Handler();
756
        }
2 mjames 757
 
758
}
759
 
6 mjames 760
/* USART2 init function */
761
static void MX_USART2_UART_Init(void)
762
{
763
 
19 mjames 764
        huart2.Instance = USART2;
765
        huart2.Init.BaudRate = 115200;
766
        huart2.Init.WordLength = UART_WORDLENGTH_8B;
767
        huart2.Init.StopBits = UART_STOPBITS_1;
768
        huart2.Init.Parity = UART_PARITY_NONE;
769
        huart2.Init.Mode = UART_MODE_TX_RX;
770
        huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
771
        huart2.Init.OverSampling = UART_OVERSAMPLING_16;
772
        if (HAL_UART_Init(&huart2) != HAL_OK)
773
        {
774
                Error_Handler();
775
        }
6 mjames 776
 
777
}
778
 
779
/**
19 mjames 780
 * Enable DMA controller clock
781
 */
782
static void MX_DMA_Init(void)
6 mjames 783
{
19 mjames 784
        /* DMA controller clock enable */
785
        __HAL_RCC_DMA1_CLK_ENABLE()
786
        ;
6 mjames 787
 
19 mjames 788
        /* DMA interrupt init */
789
        /* DMA1_Channel1_IRQn interrupt configuration */
790
        HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
791
        HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
6 mjames 792
 
793
}
794
 
2 mjames 795
/** Configure pins as
19 mjames 796
 * Analog
797
 * Input
798
 * Output
799
 * EVENT_OUT
800
 * EXTI
801
 * Free pins are configured automatically as Analog (this feature is enabled through
802
 * the Code Generation settings)
803
 */
2 mjames 804
static void MX_GPIO_Init(void)
805
{
806
 
19 mjames 807
        GPIO_InitTypeDef GPIO_InitStruct;
2 mjames 808
 
19 mjames 809
        /* GPIO Ports Clock Enable */
810
        __HAL_RCC_GPIOC_CLK_ENABLE()
811
        ;
812
        __HAL_RCC_GPIOH_CLK_ENABLE()
813
        ;
814
        __HAL_RCC_GPIOA_CLK_ENABLE()
815
        ;
816
        __HAL_RCC_GPIOB_CLK_ENABLE()
817
        ;
818
        __HAL_RCC_GPIOD_CLK_ENABLE()
819
        ;
2 mjames 820
 
19 mjames 821
        /*Configure GPIO pins : PC13 PC14 PC15 PC6
822
         PC7 PC8 PC9 PC11
823
         PC12 */
824
        GPIO_InitStruct.Pin = GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15 | GPIO_PIN_6
825
                        | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_11 | GPIO_PIN_12;
826
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
827
        GPIO_InitStruct.Pull = GPIO_NOPULL;
828
        HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
2 mjames 829
 
19 mjames 830
        /*Configure GPIO pins : PH0 PH1 */
831
        GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
832
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
833
        GPIO_InitStruct.Pull = GPIO_NOPULL;
834
        HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
3 mjames 835
 
19 mjames 836
        /*Configure GPIO pins : PA0 PA1 PA8 PA11
837
         PA12 */
838
        GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_8 | GPIO_PIN_11
839
                        | GPIO_PIN_12;
840
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
841
        GPIO_InitStruct.Pull = GPIO_NOPULL;
842
        HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
6 mjames 843
 
19 mjames 844
        /*Configure GPIO pin : LED_Blink_Pin */
845
        GPIO_InitStruct.Pin = LED_Blink_Pin;
846
        GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
847
        GPIO_InitStruct.Pull = GPIO_NOPULL;
848
        GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
849
        HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
2 mjames 850
 
19 mjames 851
        /*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin */
852
        GPIO_InitStruct.Pin = SPI_NSS1_Pin | SPI1CD_Pin;
853
        GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
854
        GPIO_InitStruct.Pull = GPIO_NOPULL;
855
        GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
856
        HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
3 mjames 857
 
19 mjames 858
        /*Configure GPIO pins : SPI_RESET_Pin SPI_NS_Temp_Pin SPI_NS_Temp2_Pin ENA_AUX_5V_Pin */
859
        GPIO_InitStruct.Pin = SPI_RESET_Pin | SPI_NS_Temp_Pin | SPI_NS_Temp2_Pin
860
                        | ENA_AUX_5V_Pin;
861
        GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
862
        GPIO_InitStruct.Pull = GPIO_NOPULL;
863
        GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
864
        HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
3 mjames 865
 
19 mjames 866
        /*Configure GPIO pins : PB11 PB12 PB13 PB14
867
         PB15 PB3 PB4 PB5
868
         PB6 PB7 PB8 PB9 */
869
        GPIO_InitStruct.Pin = GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14
870
                        | GPIO_PIN_15 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6
871
                        | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9;
872
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
873
        GPIO_InitStruct.Pull = GPIO_NOPULL;
874
        HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
5 mjames 875
 
19 mjames 876
        /*Configure GPIO pin : STARTER_ON_Pin */
877
        GPIO_InitStruct.Pin = STARTER_ON_Pin;
878
        GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
879
        GPIO_InitStruct.Pull = GPIO_NOPULL;
880
        HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct);
18 mjames 881
 
19 mjames 882
        /*Configure GPIO pin : PD2 */
883
        GPIO_InitStruct.Pin = GPIO_PIN_2;
884
        GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
885
        GPIO_InitStruct.Pull = GPIO_NOPULL;
886
        HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
5 mjames 887
 
19 mjames 888
        /*Configure GPIO pin Output Level */
889
        HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
5 mjames 890
 
19 mjames 891
        /*Configure GPIO pin Output Level */
892
        HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
5 mjames 893
 
19 mjames 894
        /*Configure GPIO pin Output Level */
895
        HAL_GPIO_WritePin(SPI1CD_GPIO_Port, SPI1CD_Pin, GPIO_PIN_RESET);
7 mjames 896
 
19 mjames 897
        /*Configure GPIO pin Output Level */
898
        HAL_GPIO_WritePin(GPIOB, SPI_RESET_Pin | SPI_NS_Temp2_Pin | ENA_AUX_5V_Pin,
899
                        GPIO_PIN_RESET);
5 mjames 900
 
19 mjames 901
        /*Configure GPIO pin Output Level */
902
        HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
7 mjames 903
 
2 mjames 904
}
905
 
906
/* USER CODE BEGIN 4 */
907
 
908
/* USER CODE END 4 */
909
 
910
/**
19 mjames 911
 * @brief  This function is executed in case of error occurrence.
912
 * @param  None
913
 * @retval None
914
 */
2 mjames 915
void Error_Handler(void)
916
{
19 mjames 917
        /* USER CODE BEGIN Error_Handler */
9 mjames 918
        /* User can add his own implementation to report the HAL error return state */
19 mjames 919
        while (1)
920
        {
9 mjames 921
        }
19 mjames 922
        /* USER CODE END Error_Handler */
2 mjames 923
}
924
 
925
#ifdef USE_FULL_ASSERT
926
 
927
/**
19 mjames 928
 * @brief Reports the name of the source file and the source line number
929
 * where the assert_param error has occurred.
930
 * @param file: pointer to the source file name
931
 * @param line: assert_param error line source number
932
 * @retval None
933
 */
2 mjames 934
void assert_failed(uint8_t* file, uint32_t line)
935
{
19 mjames 936
        /* USER CODE BEGIN 6 */
9 mjames 937
        /* User can add his own implementation to report the file name and line number,
938
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
19 mjames 939
        /* USER CODE END 6 */
2 mjames 940
 
941
}
942
 
943
#endif
944
 
945
/**
19 mjames 946
 * @}
947
 */
2 mjames 948
 
949
/**
19 mjames 950
 * @}
951
 */
2 mjames 952
 
953
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/