Rev 17 | Rev 19 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /** |
2 | ****************************************************************************** |
||
3 | * File Name : main.c |
||
4 | * Description : Main program body |
||
5 | ****************************************************************************** |
||
6 | * |
||
18 | mjames | 7 | * COPYRIGHT(c) 2017 STMicroelectronics |
2 | mjames | 8 | * |
9 | * Redistribution and use in source and binary forms, with or without modification, |
||
10 | * are permitted provided that the following conditions are met: |
||
11 | * 1. Redistributions of source code must retain the above copyright notice, |
||
12 | * this list of conditions and the following disclaimer. |
||
13 | * 2. Redistributions in binary form must reproduce the above copyright notice, |
||
14 | * this list of conditions and the following disclaimer in the documentation |
||
15 | * and/or other materials provided with the distribution. |
||
16 | * 3. Neither the name of STMicroelectronics nor the names of its contributors |
||
17 | * may be used to endorse or promote products derived from this software |
||
18 | * without specific prior written permission. |
||
19 | * |
||
20 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||
21 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
||
23 | * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
||
24 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||
25 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
||
26 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
27 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
||
28 | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||
29 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
30 | * |
||
31 | ****************************************************************************** |
||
32 | */ |
||
33 | /* Includes ------------------------------------------------------------------*/ |
||
34 | #include "stm32l1xx_hal.h" |
||
35 | |||
36 | /* USER CODE BEGIN Includes */ |
||
7 | mjames | 37 | #include "serial.h" |
9 | mjames | 38 | #include "plx.h" |
39 | #include "misc.h" |
||
2 | mjames | 40 | /* USER CODE END Includes */ |
41 | |||
42 | /* Private variables ---------------------------------------------------------*/ |
||
43 | ADC_HandleTypeDef hadc; |
||
6 | mjames | 44 | DMA_HandleTypeDef hdma_adc; |
2 | mjames | 45 | |
46 | SPI_HandleTypeDef hspi1; |
||
47 | |||
48 | TIM_HandleTypeDef htim2; |
||
49 | TIM_HandleTypeDef htim6; |
||
50 | |||
51 | UART_HandleTypeDef huart1; |
||
6 | mjames | 52 | UART_HandleTypeDef huart2; |
2 | mjames | 53 | |
54 | /* USER CODE BEGIN PV */ |
||
55 | /* Private variables ---------------------------------------------------------*/ |
||
56 | |||
8 | mjames | 57 | |
9 | mjames | 58 | // with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000 |
59 | // freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the first pulse longer than 1/300 of a second as being a proper closure . |
||
60 | // the TIM2 counter counts in 10uS increments, |
||
61 | |||
62 | #define BREAKER_MIN (RPM_COUNT_RATE/300) |
||
63 | |||
64 | |||
65 | volatile char TimerFlag = 0; |
||
66 | |||
67 | volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1 |
||
68 | volatile char NoSerialIn = 0; |
||
69 | |||
8 | mjames | 70 | // storage for ADC |
14 | mjames | 71 | uint16_t ADC_Samples[6]; |
8 | mjames | 72 | |
17 | mjames | 73 | #define Scale 1024.0 |
74 | const float ADC_Scale = 3.3 / (Scale * 4096.0); // convert to a voltage |
||
75 | |||
76 | uint32_t FILT_Samples[6]; // filtered ADC samples * 1024 |
||
9 | mjames | 77 | // Rev counter processing from original RevCounter Project |
78 | unsigned int RPM_Diff = 0; |
||
79 | unsigned int RPM_Count_Latch = 0; |
||
80 | // accumulators |
||
81 | unsigned int RPM_Pulsecount = 0; |
||
82 | unsigned int RPM_FilteredWidth = 0; |
||
83 | |||
84 | unsigned int Coded_RPM = 0; |
||
85 | unsigned int Coded_CHT = 0; |
||
86 | |||
18 | mjames | 87 | uint32_t Power_CHT_Timer; |
88 | |||
2 | mjames | 89 | /* USER CODE END PV */ |
90 | |||
91 | /* Private function prototypes -----------------------------------------------*/ |
||
92 | void SystemClock_Config(void); |
||
93 | void Error_Handler(void); |
||
94 | static void MX_GPIO_Init(void); |
||
6 | mjames | 95 | static void MX_DMA_Init(void); |
2 | mjames | 96 | static void MX_ADC_Init(void); |
97 | static void MX_SPI1_Init(void); |
||
98 | static void MX_TIM2_Init(void); |
||
99 | static void MX_TIM6_Init(void); |
||
13 | mjames | 100 | static void MX_USART2_UART_Init(void); |
2 | mjames | 101 | static void MX_USART1_UART_Init(void); |
102 | |||
103 | /* USER CODE BEGIN PFP */ |
||
104 | /* Private function prototypes -----------------------------------------------*/ |
||
105 | |||
9 | mjames | 106 | /* USER CODE END PFP */ |
7 | mjames | 107 | |
9 | mjames | 108 | /* USER CODE BEGIN 0 */ |
7 | mjames | 109 | |
9 | mjames | 110 | void plx_sendword(int x) { |
111 | PutCharSerial(&uc1, ((x) >> 6) & 0x3F); |
||
112 | PutCharSerial(&uc1, (x) & 0x3F); |
||
113 | } |
||
2 | mjames | 114 | |
17 | mjames | 115 | void init_ADC_filter() |
116 | { |
||
117 | int i; |
||
118 | for(i=0;i<6;i++) |
||
119 | { |
||
120 | FILT_Samples[i] = 0; |
||
121 | } |
||
122 | } |
||
123 | |||
124 | void filter_ADC_samples() |
||
125 | { |
||
126 | int i; |
||
127 | for(i=0;i<6;i++) |
||
128 | { |
||
129 | FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2; |
||
130 | } |
||
131 | } |
||
132 | |||
133 | |||
9 | mjames | 134 | void ProcessRPM(int instance) { |
135 | // compute the timer values |
||
136 | // snapshot timers |
||
137 | unsigned long RPM_Pulsewidth; |
||
138 | unsigned long RPM_Count_Val; |
||
139 | __disable_irq(); // copy the counter value |
||
140 | RPM_Count_Val = RPM_Count; |
||
141 | __enable_irq(); |
||
142 | // do calculations |
||
143 | // if there is only one entry, cannot get difference |
||
144 | if (RPM_Count_Latch != RPM_Count_Val) { |
||
145 | while (1) { |
||
146 | unsigned int base_time; |
||
147 | unsigned int new_time; |
||
148 | // if we are at N-1, stop. |
||
149 | unsigned int next_count = RPM_Count_Latch + 1; |
||
150 | if (next_count == RPM_SAMPLES) { |
||
151 | next_count = 0; |
||
152 | } |
||
153 | if (next_count == RPM_Count_Val) { |
||
154 | break; |
||
155 | } |
||
156 | base_time = RPM_Time[RPM_Count_Latch]; |
||
157 | new_time = RPM_Time[next_count]; |
||
158 | RPM_Count_Latch = next_count; |
||
159 | if (new_time > base_time) { |
||
160 | RPM_Pulsewidth = new_time - base_time; // not wrapped |
||
161 | } else { |
||
13 | mjames | 162 | RPM_Pulsewidth = new_time - base_time + 65536; // deal with wrapping |
9 | mjames | 163 | } |
2 | mjames | 164 | |
9 | mjames | 165 | RPM_Diff += RPM_Pulsewidth; |
166 | // need to check if this is a long pulse. If it is, keep the answer |
||
167 | if (RPM_Pulsewidth > BREAKER_MIN) { |
||
168 | RPM_Pulsecount++; // count one pulse |
||
169 | RPM_FilteredWidth += RPM_Diff; // add its width to the accumulator |
||
170 | RPM_Diff = 0; // reset accumulator of all the narrow widths |
||
171 | } |
||
172 | } |
||
173 | |||
174 | } |
||
175 | |||
176 | if (RPM_Pulsecount > 0) { |
||
177 | // now have time for N pulses in clocks |
||
178 | // need to scale by 19.55: one unit is 19.55 RPM |
||
179 | // 1Hz is 60 RPM |
||
17 | mjames | 180 | float new_RPM = (30.0 / 19.55 * RPM_Pulsecount * RPM_COUNT_RATE) |
181 | / (RPM_FilteredWidth) + 0.5; |
||
182 | |||
183 | Coded_RPM += (new_RPM * Scale - Coded_RPM)/4; |
||
184 | |||
9 | mjames | 185 | #if !defined MY_DEBUG |
186 | // reset here unless we want to debug |
||
187 | RPM_Pulsecount = 0; |
||
188 | RPM_FilteredWidth = 0; |
||
189 | #endif |
||
190 | } |
||
191 | |||
17 | mjames | 192 | // send the current RPM *calculation |
9 | mjames | 193 | plx_sendword(PLX_RPM); |
194 | PutCharSerial(&uc1, instance); |
||
17 | mjames | 195 | plx_sendword(Coded_RPM/Scale); |
9 | mjames | 196 | } |
197 | |||
198 | |||
199 | // this uses a MAX6675 which is a simple 16 bit read |
||
200 | // SPI is configured for 8 bits so I can use an OLED display if I need it |
||
11 | mjames | 201 | // must wait > 0.22 seconds between conversion attempts as this is the measurement time |
202 | // |
||
18 | mjames | 203 | |
204 | uint8_t CHT_Timer[2] = { 0, 0 }; // two temperature readings |
||
205 | |||
206 | void ProcessCHT(int instance) { |
||
9 | mjames | 207 | uint8_t buffer[2]; |
18 | mjames | 208 | if (instance > 2) |
209 | return; |
||
210 | CHT_Timer[instance]++; |
||
211 | if (CHT_Timer[instance] >= 3) // every 300 milliseconds |
||
11 | mjames | 212 | |
18 | mjames | 213 | { |
214 | CHT_Timer[instance] = 0; |
||
11 | mjames | 215 | |
18 | mjames | 216 | uint16_t Pin = (instance == 0) ? SPI_NS_Temp_Pin : SPI_NS_Temp2_Pin; |
9 | mjames | 217 | |
18 | mjames | 218 | HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_RESET); |
9 | mjames | 219 | |
18 | mjames | 220 | HAL_SPI_Receive(&hspi1, buffer, 2, 2); |
9 | mjames | 221 | |
18 | mjames | 222 | HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, Pin, GPIO_PIN_SET); |
9 | mjames | 223 | |
18 | mjames | 224 | uint16_t obs = (buffer[0] << 8) | buffer[1]; |
9 | mjames | 225 | |
18 | mjames | 226 | uint8_t good = (obs & 4) == 0; |
227 | if (good) { |
||
228 | Coded_CHT = obs >> 5; |
||
229 | } else { |
||
230 | Coded_CHT = 1024; // signal fail |
||
231 | } |
||
11 | mjames | 232 | } |
233 | |||
16 | mjames | 234 | plx_sendword(PLX_X_CHT); |
9 | mjames | 235 | PutCharSerial(&uc1, instance); |
236 | plx_sendword(Coded_CHT); |
||
237 | |||
238 | } |
||
239 | |||
17 | mjames | 240 | // 1023 is 20.00 volts. |
18 | mjames | 241 | void ProcessBatteryVoltage(int instance) { |
242 | float reading = FILT_Samples[instance] * ADC_Scale; |
||
243 | reading = reading * 7.8125; // real voltage |
||
244 | reading = reading * 51.15; // 1023/20 |
||
17 | mjames | 245 | |
12 | mjames | 246 | plx_sendword(PLX_Volts); |
247 | PutCharSerial(&uc1, instance); |
||
18 | mjames | 248 | plx_sendword((uint16_t) reading); |
12 | mjames | 249 | |
18 | mjames | 250 | } |
12 | mjames | 251 | |
18 | mjames | 252 | /****! |
253 | * @brief this reads the reference voltage within the STM32L151 |
||
254 | * Powers up reference voltage and temperature sensor, waits 3mS and takes reading |
||
255 | * Requires that the ADC be powered up |
||
256 | */ |
||
12 | mjames | 257 | |
18 | mjames | 258 | uint32_t ADC_VREF_MV = 3300; // 3.300V typical |
259 | const uint16_t STM32REF_MV = 1224; // 1.224V typical |
||
260 | |||
261 | void CalibrateADC(void) { |
||
262 | uint32_t adc_val = FILT_Samples[6]; // as set up in device config |
||
263 | ADC_VREF_MV = (STM32REF_MV * 4096) / adc_val; |
||
12 | mjames | 264 | } |
265 | |||
18 | mjames | 266 | void ProcessCPUTemperature(int instance) { |
267 | int32_t temp_val; |
||
268 | uint16_t TS_CAL30 = *(uint16_t *) 0x1FF8007A; /* ADC reading for temperature sensor at 30 degrees C with Vref = 3000mV */ |
||
269 | uint16_t TS_CAL110 = *(uint16_t *) 0x1FF8007E; /* ADC reading for temperature sensor at 110 degrees C with Vref = 3000mV */ |
||
270 | /* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */ |
||
271 | |||
272 | temp_val = FILT_Samples[5]; |
||
273 | |||
274 | /* renormalise temperature value to account for different ADC Vref : normalise to that which we would get for a 3000mV reference */ |
||
275 | temp_val = temp_val * ADC_VREF_MV / 3000UL; |
||
276 | |||
277 | int32_t result = 800 * ((int32_t) temp_val - TS_CAL30); |
||
278 | result = result / (TS_CAL110 - TS_CAL30) + 300; |
||
279 | |||
280 | if(result < 0) |
||
281 | { |
||
282 | result = 0; |
||
283 | } |
||
284 | plx_sendword(PLX_FluidTemp); |
||
285 | PutCharSerial(&uc1, instance); |
||
286 | plx_sendword(result/10); |
||
287 | |||
288 | } |
||
289 | |||
17 | mjames | 290 | // the MAP sensor is giving us a reading of |
291 | // 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016) |
||
292 | // I believe the sensor reads 4.5V at 1000kPa and 0.5V at 0kPa |
||
12 | mjames | 293 | |
17 | mjames | 294 | void ProcessMAP(int instance) |
295 | { |
||
296 | // Using ADC_Samples[3] as the MAP input |
||
297 | float reading = FILT_Samples[3] * ADC_Scale; |
||
18 | mjames | 298 | reading = reading * 2.016; // real voltage |
299 | reading = (reading) * 1000/ 4.5; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5 |
||
17 | mjames | 300 | plx_sendword(PLX_MAP); |
301 | PutCharSerial(&uc1, instance); |
||
302 | plx_sendword((uint16_t)reading); |
||
303 | |||
304 | } |
||
305 | |||
306 | // the Oil pressi sensor is giving us a reading of |
||
307 | // 4.5 volts for 100 PSI or 2.25 volts at the ADC input (resistive divider by 2.016) |
||
308 | // I believe the sensor reads 4.5V at 100PSI and 0.5V at 0PSI |
||
309 | // an observation of 1024 is 200PSI, so observation of 512 is 100 PSI. |
||
310 | |||
311 | void ProcessOilPress(int instance) |
||
312 | { |
||
313 | // Using ADC_Samples[2] as the MAP input |
||
314 | float reading = FILT_Samples[2] * ADC_Scale ; |
||
315 | reading = reading * 2.00 ; // real voltage |
||
316 | reading = (reading-0.5) * 512 / 4; // this is 1023 * 100/200 |
||
317 | |||
318 | plx_sendword(PLX_FluidPressure); |
||
319 | PutCharSerial(&uc1, instance); |
||
320 | plx_sendword((uint16_t)reading); |
||
321 | |||
322 | } |
||
323 | |||
324 | |||
325 | |||
16 | mjames | 326 | void ProcessTiming(int instance) |
327 | { |
||
328 | plx_sendword(PLX_Timing); |
||
329 | PutCharSerial(&uc1, instance); |
||
330 | plx_sendword(64-15); // make it negative |
||
331 | } |
||
332 | |||
17 | mjames | 333 | |
334 | |||
2 | mjames | 335 | /* USER CODE END 0 */ |
336 | |||
18 | mjames | 337 | int main(void) { |
2 | mjames | 338 | |
18 | mjames | 339 | /* USER CODE BEGIN 1 */ |
2 | mjames | 340 | |
18 | mjames | 341 | /* USER CODE END 1 */ |
2 | mjames | 342 | |
18 | mjames | 343 | /* MCU Configuration----------------------------------------------------------*/ |
2 | mjames | 344 | |
18 | mjames | 345 | /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ |
346 | HAL_Init(); |
||
2 | mjames | 347 | |
18 | mjames | 348 | /* Configure the system clock */ |
349 | SystemClock_Config(); |
||
2 | mjames | 350 | |
18 | mjames | 351 | /* Initialize all configured peripherals */ |
352 | MX_GPIO_Init(); |
||
353 | MX_DMA_Init(); |
||
354 | MX_ADC_Init(); |
||
355 | MX_SPI1_Init(); |
||
356 | MX_TIM2_Init(); |
||
357 | MX_TIM6_Init(); |
||
358 | MX_USART2_UART_Init(); |
||
359 | MX_USART1_UART_Init(); |
||
2 | mjames | 360 | |
18 | mjames | 361 | /* USER CODE BEGIN 2 */ |
13 | mjames | 362 | HAL_MspInit(); |
2 | mjames | 363 | |
13 | mjames | 364 | // Not using HAL USART code |
9 | mjames | 365 | __HAL_RCC_USART1_CLK_ENABLE() |
366 | ; // PLX comms port |
||
367 | __HAL_RCC_USART2_CLK_ENABLE() |
||
368 | ; // Debug comms port |
||
7 | mjames | 369 | /* setup the USART control blocks */ |
370 | init_usart_ctl(&uc1, huart1.Instance); |
||
371 | init_usart_ctl(&uc2, huart2.Instance); |
||
372 | |||
373 | EnableSerialRxInterrupt(&uc1); |
||
374 | EnableSerialRxInterrupt(&uc2); |
||
375 | |||
13 | mjames | 376 | HAL_SPI_MspInit(&hspi1); |
377 | |||
378 | HAL_ADC_MspInit(&hadc); |
||
14 | mjames | 379 | |
13 | mjames | 380 | HAL_ADC_Start_DMA(&hadc, ADC_Samples, 6); |
381 | |||
18 | mjames | 382 | HAL_ADC_Start_IT(&hadc); |
13 | mjames | 383 | |
384 | HAL_TIM_Base_MspInit(&htim6); |
||
9 | mjames | 385 | HAL_TIM_Base_Start_IT(&htim6); |
13 | mjames | 386 | |
387 | // initialise all the STMCubeMX stuff |
||
388 | HAL_TIM_Base_MspInit(&htim2); |
||
389 | // Start the counter |
||
12 | mjames | 390 | HAL_TIM_Base_Start(&htim2); |
13 | mjames | 391 | // Start the input capture and the interrupt |
18 | mjames | 392 | HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1); |
8 | mjames | 393 | |
17 | mjames | 394 | init_ADC_filter(); |
7 | mjames | 395 | |
18 | mjames | 396 | uint32_t Ticks = HAL_GetTick() + 100; |
397 | int CalCounter = 0; |
||
2 | mjames | 398 | |
18 | mjames | 399 | Power_CHT_Timer = HAL_GetTick() + 10000; /* wait 10 seconds before powering up the CHT sensor */ |
400 | |||
401 | /* USER CODE END 2 */ |
||
402 | |||
403 | /* Infinite loop */ |
||
404 | /* USER CODE BEGIN WHILE */ |
||
9 | mjames | 405 | while (1) { |
18 | mjames | 406 | /* USER CODE END WHILE */ |
2 | mjames | 407 | |
18 | mjames | 408 | /* USER CODE BEGIN 3 */ |
2 | mjames | 409 | |
18 | mjames | 410 | if (HAL_GetTick() > Ticks) { |
411 | Ticks += 100; |
||
412 | filter_ADC_samples(); |
||
413 | // delay to calibrate ADC |
||
414 | if (CalCounter < 500) { |
||
415 | CalCounter += 100; |
||
9 | mjames | 416 | } |
417 | |||
18 | mjames | 418 | if (CalCounter == 400) { |
419 | CalibrateADC(); |
||
420 | } |
||
9 | mjames | 421 | |
18 | mjames | 422 | /* when the starter motor is on then power down the CHT sensors as they seem to fail */ |
12 | mjames | 423 | |
18 | mjames | 424 | if (HAL_GPIO_ReadPin(STARTER_ON_GPIO_Port, STARTER_ON_Pin) |
425 | == GPIO_PIN_RESET) { |
||
426 | HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, |
||
427 | GPIO_PIN_RESET); |
||
428 | Power_CHT_Timer = HAL_GetTick() + 500; |
||
429 | } else |
||
430 | /* if the Power_CHT_Timer is set then wait for it to timeout, then power up CHT */ |
||
431 | { |
||
432 | if ((Power_CHT_Timer > 0) |
||
433 | && (HAL_GetTick() > Power_CHT_Timer)) { |
||
434 | Power_CHT_Timer = 0; |
||
435 | HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, |
||
436 | GPIO_PIN_SET); |
||
437 | } |
||
438 | } |
||
13 | mjames | 439 | |
18 | mjames | 440 | // check to see if we have any incoming data, copy and append if so, if no data then create our own frames. |
441 | int c; |
||
442 | char send = 0; |
||
13 | mjames | 443 | |
18 | mjames | 444 | // poll the input for a stop bit or timeout |
445 | if (PollSerial(&uc1)) { |
||
446 | c = GetCharSerial(&uc1); |
||
447 | if (c != PLX_Stop) { |
||
448 | PutCharSerial(&uc1, c); // echo all but the stop bit |
||
449 | } else { // must be a stop character |
||
450 | send = 1; // start our sending process. |
||
451 | } |
||
452 | } |
||
16 | mjames | 453 | |
18 | mjames | 454 | // sort out auto-sending |
455 | if (TimerFlag) { |
||
456 | TimerFlag = 0; |
||
457 | if (NoSerialIn) { |
||
458 | PutCharSerial(&uc1, PLX_Start); |
||
459 | send = 1; |
||
460 | } |
||
461 | } |
||
462 | if (send) { |
||
463 | send = 0; |
||
464 | |||
465 | uint16_t val; |
||
466 | val = __HAL_TIM_GET_COMPARE(&htim2,TIM_CHANNEL_1); |
||
467 | PutCharSerial(&uc2, (val & 31) + 32); |
||
468 | |||
469 | ProcessRPM(0); |
||
470 | |||
471 | ProcessCHT(0); |
||
472 | // ProcessCHT(1); |
||
473 | ProcessBatteryVoltage(0); // Batt 1 |
||
474 | ProcessBatteryVoltage(1); // Batt 2 |
||
475 | |||
476 | ProcessCPUTemperature(0); // built in temperature sensor |
||
477 | |||
478 | ProcessMAP(0); |
||
479 | ProcessOilPress(0); |
||
480 | |||
481 | PutCharSerial(&uc1, PLX_Stop); |
||
482 | } |
||
9 | mjames | 483 | } |
484 | } |
||
18 | mjames | 485 | /* USER CODE END 3 */ |
2 | mjames | 486 | |
487 | } |
||
488 | /** System Clock Configuration |
||
489 | */ |
||
490 | void SystemClock_Config(void) |
||
491 | { |
||
492 | |||
493 | RCC_OscInitTypeDef RCC_OscInitStruct; |
||
494 | RCC_ClkInitTypeDef RCC_ClkInitStruct; |
||
495 | |||
496 | __HAL_RCC_PWR_CLK_ENABLE(); |
||
497 | |||
498 | __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); |
||
499 | |||
500 | RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; |
||
501 | RCC_OscInitStruct.HSIState = RCC_HSI_ON; |
||
502 | RCC_OscInitStruct.HSICalibrationValue = 16; |
||
503 | RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; |
||
504 | RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; |
||
505 | RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6; |
||
506 | RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3; |
||
507 | if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) |
||
508 | { |
||
509 | Error_Handler(); |
||
510 | } |
||
511 | |||
512 | RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |
||
513 | |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; |
||
514 | RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; |
||
515 | RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; |
||
516 | RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; |
||
517 | RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; |
||
518 | if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) |
||
519 | { |
||
520 | Error_Handler(); |
||
521 | } |
||
522 | |||
523 | HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); |
||
524 | |||
525 | HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); |
||
526 | |||
527 | /* SysTick_IRQn interrupt configuration */ |
||
528 | HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); |
||
529 | } |
||
530 | |||
531 | /* ADC init function */ |
||
532 | static void MX_ADC_Init(void) |
||
533 | { |
||
534 | |||
535 | ADC_ChannelConfTypeDef sConfig; |
||
536 | |||
537 | /**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) |
||
538 | */ |
||
539 | hadc.Instance = ADC1; |
||
540 | hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; |
||
541 | hadc.Init.Resolution = ADC_RESOLUTION_12B; |
||
542 | hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT; |
||
543 | hadc.Init.ScanConvMode = ADC_SCAN_ENABLE; |
||
544 | hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV; |
||
545 | hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE; |
||
546 | hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE; |
||
547 | hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A; |
||
548 | hadc.Init.ContinuousConvMode = DISABLE; |
||
549 | hadc.Init.NbrOfConversion = 6; |
||
550 | hadc.Init.DiscontinuousConvMode = DISABLE; |
||
551 | hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T6_TRGO; |
||
552 | hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING; |
||
14 | mjames | 553 | hadc.Init.DMAContinuousRequests = ENABLE; |
2 | mjames | 554 | if (HAL_ADC_Init(&hadc) != HAL_OK) |
555 | { |
||
556 | Error_Handler(); |
||
557 | } |
||
558 | |||
559 | /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. |
||
560 | */ |
||
6 | mjames | 561 | sConfig.Channel = ADC_CHANNEL_10; |
2 | mjames | 562 | sConfig.Rank = 1; |
17 | mjames | 563 | sConfig.SamplingTime = ADC_SAMPLETIME_384CYCLES; |
2 | mjames | 564 | if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) |
565 | { |
||
566 | Error_Handler(); |
||
567 | } |
||
568 | |||
569 | /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. |
||
570 | */ |
||
6 | mjames | 571 | sConfig.Channel = ADC_CHANNEL_11; |
2 | mjames | 572 | sConfig.Rank = 2; |
573 | if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) |
||
574 | { |
||
575 | Error_Handler(); |
||
576 | } |
||
577 | |||
578 | /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. |
||
579 | */ |
||
6 | mjames | 580 | sConfig.Channel = ADC_CHANNEL_12; |
2 | mjames | 581 | sConfig.Rank = 3; |
582 | if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) |
||
583 | { |
||
584 | Error_Handler(); |
||
585 | } |
||
586 | |||
587 | /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. |
||
588 | */ |
||
6 | mjames | 589 | sConfig.Channel = ADC_CHANNEL_13; |
2 | mjames | 590 | sConfig.Rank = 4; |
591 | if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) |
||
592 | { |
||
593 | Error_Handler(); |
||
594 | } |
||
595 | |||
596 | /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. |
||
597 | */ |
||
598 | sConfig.Channel = ADC_CHANNEL_TEMPSENSOR; |
||
599 | sConfig.Rank = 5; |
||
600 | if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) |
||
601 | { |
||
602 | Error_Handler(); |
||
603 | } |
||
604 | |||
605 | /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. |
||
606 | */ |
||
607 | sConfig.Channel = ADC_CHANNEL_VREFINT; |
||
608 | sConfig.Rank = 6; |
||
609 | if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) |
||
610 | { |
||
611 | Error_Handler(); |
||
612 | } |
||
613 | |||
614 | } |
||
615 | |||
616 | /* SPI1 init function */ |
||
617 | static void MX_SPI1_Init(void) |
||
618 | { |
||
619 | |||
620 | hspi1.Instance = SPI1; |
||
621 | hspi1.Init.Mode = SPI_MODE_MASTER; |
||
3 | mjames | 622 | hspi1.Init.Direction = SPI_DIRECTION_2LINES; |
2 | mjames | 623 | hspi1.Init.DataSize = SPI_DATASIZE_8BIT; |
624 | hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; |
||
625 | hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; |
||
626 | hspi1.Init.NSS = SPI_NSS_SOFT; |
||
10 | mjames | 627 | hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; |
2 | mjames | 628 | hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; |
629 | hspi1.Init.TIMode = SPI_TIMODE_DISABLE; |
||
630 | hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; |
||
631 | hspi1.Init.CRCPolynomial = 10; |
||
632 | if (HAL_SPI_Init(&hspi1) != HAL_OK) |
||
633 | { |
||
634 | Error_Handler(); |
||
635 | } |
||
636 | |||
637 | } |
||
638 | |||
639 | /* TIM2 init function */ |
||
640 | static void MX_TIM2_Init(void) |
||
641 | { |
||
642 | |||
12 | mjames | 643 | TIM_ClockConfigTypeDef sClockSourceConfig; |
2 | mjames | 644 | TIM_MasterConfigTypeDef sMasterConfig; |
645 | TIM_IC_InitTypeDef sConfigIC; |
||
646 | |||
647 | htim2.Instance = TIM2; |
||
648 | htim2.Init.Prescaler = 320; |
||
649 | htim2.Init.CounterMode = TIM_COUNTERMODE_UP; |
||
13 | mjames | 650 | htim2.Init.Period = 65535; |
2 | mjames | 651 | htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; |
12 | mjames | 652 | if (HAL_TIM_Base_Init(&htim2) != HAL_OK) |
653 | { |
||
654 | Error_Handler(); |
||
655 | } |
||
656 | |||
657 | sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; |
||
658 | if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) |
||
659 | { |
||
660 | Error_Handler(); |
||
661 | } |
||
662 | |||
2 | mjames | 663 | if (HAL_TIM_IC_Init(&htim2) != HAL_OK) |
664 | { |
||
665 | Error_Handler(); |
||
666 | } |
||
667 | |||
13 | mjames | 668 | sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; |
2 | mjames | 669 | sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; |
670 | if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) |
||
671 | { |
||
672 | Error_Handler(); |
||
673 | } |
||
674 | |||
675 | sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING; |
||
676 | sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI; |
||
677 | sConfigIC.ICPrescaler = TIM_ICPSC_DIV1; |
||
678 | sConfigIC.ICFilter = 0; |
||
679 | if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK) |
||
680 | { |
||
681 | Error_Handler(); |
||
682 | } |
||
683 | |||
684 | } |
||
685 | |||
686 | /* TIM6 init function */ |
||
687 | static void MX_TIM6_Init(void) |
||
688 | { |
||
689 | |||
690 | TIM_MasterConfigTypeDef sMasterConfig; |
||
691 | |||
692 | htim6.Instance = TIM6; |
||
13 | mjames | 693 | htim6.Init.Prescaler = 320; |
2 | mjames | 694 | htim6.Init.CounterMode = TIM_COUNTERMODE_UP; |
13 | mjames | 695 | htim6.Init.Period = 9999; |
2 | mjames | 696 | if (HAL_TIM_Base_Init(&htim6) != HAL_OK) |
697 | { |
||
698 | Error_Handler(); |
||
699 | } |
||
700 | |||
701 | sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; |
||
702 | sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; |
||
703 | if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK) |
||
704 | { |
||
705 | Error_Handler(); |
||
706 | } |
||
707 | |||
708 | } |
||
709 | |||
710 | /* USART1 init function */ |
||
711 | static void MX_USART1_UART_Init(void) |
||
712 | { |
||
713 | |||
714 | huart1.Instance = USART1; |
||
715 | huart1.Init.BaudRate = 19200; |
||
716 | huart1.Init.WordLength = UART_WORDLENGTH_8B; |
||
717 | huart1.Init.StopBits = UART_STOPBITS_1; |
||
718 | huart1.Init.Parity = UART_PARITY_NONE; |
||
719 | huart1.Init.Mode = UART_MODE_TX_RX; |
||
720 | huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; |
||
721 | huart1.Init.OverSampling = UART_OVERSAMPLING_16; |
||
722 | if (HAL_UART_Init(&huart1) != HAL_OK) |
||
723 | { |
||
724 | Error_Handler(); |
||
725 | } |
||
726 | |||
727 | } |
||
728 | |||
6 | mjames | 729 | /* USART2 init function */ |
730 | static void MX_USART2_UART_Init(void) |
||
731 | { |
||
732 | |||
733 | huart2.Instance = USART2; |
||
734 | huart2.Init.BaudRate = 115200; |
||
735 | huart2.Init.WordLength = UART_WORDLENGTH_8B; |
||
736 | huart2.Init.StopBits = UART_STOPBITS_1; |
||
737 | huart2.Init.Parity = UART_PARITY_NONE; |
||
738 | huart2.Init.Mode = UART_MODE_TX_RX; |
||
739 | huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; |
||
740 | huart2.Init.OverSampling = UART_OVERSAMPLING_16; |
||
741 | if (HAL_UART_Init(&huart2) != HAL_OK) |
||
742 | { |
||
743 | Error_Handler(); |
||
744 | } |
||
745 | |||
746 | } |
||
747 | |||
748 | /** |
||
749 | * Enable DMA controller clock |
||
750 | */ |
||
751 | static void MX_DMA_Init(void) |
||
752 | { |
||
753 | /* DMA controller clock enable */ |
||
754 | __HAL_RCC_DMA1_CLK_ENABLE(); |
||
755 | |||
756 | /* DMA interrupt init */ |
||
757 | /* DMA1_Channel1_IRQn interrupt configuration */ |
||
758 | HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0); |
||
759 | HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); |
||
760 | |||
761 | } |
||
762 | |||
2 | mjames | 763 | /** Configure pins as |
764 | * Analog |
||
765 | * Input |
||
766 | * Output |
||
767 | * EVENT_OUT |
||
768 | * EXTI |
||
5 | mjames | 769 | * Free pins are configured automatically as Analog (this feature is enabled through |
770 | * the Code Generation settings) |
||
2 | mjames | 771 | */ |
772 | static void MX_GPIO_Init(void) |
||
773 | { |
||
774 | |||
775 | GPIO_InitTypeDef GPIO_InitStruct; |
||
776 | |||
777 | /* GPIO Ports Clock Enable */ |
||
5 | mjames | 778 | __HAL_RCC_GPIOC_CLK_ENABLE(); |
779 | __HAL_RCC_GPIOH_CLK_ENABLE(); |
||
2 | mjames | 780 | __HAL_RCC_GPIOA_CLK_ENABLE(); |
781 | __HAL_RCC_GPIOB_CLK_ENABLE(); |
||
5 | mjames | 782 | __HAL_RCC_GPIOD_CLK_ENABLE(); |
2 | mjames | 783 | |
6 | mjames | 784 | /*Configure GPIO pins : PC13 PC14 PC15 PC6 |
18 | mjames | 785 | PC7 PC8 PC9 PC11 |
786 | PC12 */ |
||
6 | mjames | 787 | GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_6 |
18 | mjames | 788 | |GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_11 |
789 | |GPIO_PIN_12; |
||
5 | mjames | 790 | GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; |
791 | GPIO_InitStruct.Pull = GPIO_NOPULL; |
||
792 | HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); |
||
2 | mjames | 793 | |
5 | mjames | 794 | /*Configure GPIO pins : PH0 PH1 */ |
795 | GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1; |
||
796 | GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; |
||
797 | GPIO_InitStruct.Pull = GPIO_NOPULL; |
||
798 | HAL_GPIO_Init(GPIOH, &GPIO_InitStruct); |
||
3 | mjames | 799 | |
6 | mjames | 800 | /*Configure GPIO pins : PA0 PA1 PA8 PA11 |
7 | mjames | 801 | PA12 */ |
6 | mjames | 802 | GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_8|GPIO_PIN_11 |
7 | mjames | 803 | |GPIO_PIN_12; |
6 | mjames | 804 | GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; |
805 | GPIO_InitStruct.Pull = GPIO_NOPULL; |
||
806 | HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); |
||
807 | |||
7 | mjames | 808 | /*Configure GPIO pin : LED_Blink_Pin */ |
809 | GPIO_InitStruct.Pin = LED_Blink_Pin; |
||
2 | mjames | 810 | GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; |
811 | GPIO_InitStruct.Pull = GPIO_NOPULL; |
||
7 | mjames | 812 | GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; |
813 | HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct); |
||
2 | mjames | 814 | |
3 | mjames | 815 | /*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin */ |
816 | GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI1CD_Pin; |
||
817 | GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; |
||
818 | GPIO_InitStruct.Pull = GPIO_NOPULL; |
||
819 | GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; |
||
820 | HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); |
||
821 | |||
18 | mjames | 822 | /*Configure GPIO pins : SPI_RESET_Pin SPI_NS_Temp_Pin SPI_NS_Temp2_Pin ENA_AUX_5V_Pin */ |
823 | GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NS_Temp_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin; |
||
3 | mjames | 824 | GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; |
825 | GPIO_InitStruct.Pull = GPIO_NOPULL; |
||
826 | GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; |
||
7 | mjames | 827 | HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); |
3 | mjames | 828 | |
18 | mjames | 829 | /*Configure GPIO pins : PB11 PB12 PB13 PB14 |
830 | PB15 PB3 PB4 PB5 |
||
831 | PB6 PB7 PB8 PB9 */ |
||
832 | GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14 |
||
833 | |GPIO_PIN_15|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5 |
||
834 | |GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9; |
||
5 | mjames | 835 | GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; |
836 | GPIO_InitStruct.Pull = GPIO_NOPULL; |
||
837 | HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); |
||
838 | |||
18 | mjames | 839 | /*Configure GPIO pin : STARTER_ON_Pin */ |
840 | GPIO_InitStruct.Pin = STARTER_ON_Pin; |
||
841 | GPIO_InitStruct.Mode = GPIO_MODE_INPUT; |
||
842 | GPIO_InitStruct.Pull = GPIO_NOPULL; |
||
843 | HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct); |
||
844 | |||
5 | mjames | 845 | /*Configure GPIO pin : PD2 */ |
846 | GPIO_InitStruct.Pin = GPIO_PIN_2; |
||
847 | GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; |
||
848 | GPIO_InitStruct.Pull = GPIO_NOPULL; |
||
849 | HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); |
||
850 | |||
851 | /*Configure GPIO pin Output Level */ |
||
7 | mjames | 852 | HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET); |
5 | mjames | 853 | |
854 | /*Configure GPIO pin Output Level */ |
||
7 | mjames | 855 | HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET); |
5 | mjames | 856 | |
857 | /*Configure GPIO pin Output Level */ |
||
7 | mjames | 858 | HAL_GPIO_WritePin(SPI1CD_GPIO_Port, SPI1CD_Pin, GPIO_PIN_RESET); |
859 | |||
860 | /*Configure GPIO pin Output Level */ |
||
18 | mjames | 861 | HAL_GPIO_WritePin(GPIOB, SPI_RESET_Pin|SPI_NS_Temp2_Pin|ENA_AUX_5V_Pin, GPIO_PIN_RESET); |
5 | mjames | 862 | |
7 | mjames | 863 | /*Configure GPIO pin Output Level */ |
864 | HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET); |
||
865 | |||
2 | mjames | 866 | } |
867 | |||
868 | /* USER CODE BEGIN 4 */ |
||
869 | |||
870 | /* USER CODE END 4 */ |
||
871 | |||
872 | /** |
||
873 | * @brief This function is executed in case of error occurrence. |
||
874 | * @param None |
||
875 | * @retval None |
||
876 | */ |
||
877 | void Error_Handler(void) |
||
878 | { |
||
879 | /* USER CODE BEGIN Error_Handler */ |
||
9 | mjames | 880 | /* User can add his own implementation to report the HAL error return state */ |
881 | while (1) { |
||
882 | } |
||
2 | mjames | 883 | /* USER CODE END Error_Handler */ |
884 | } |
||
885 | |||
886 | #ifdef USE_FULL_ASSERT |
||
887 | |||
888 | /** |
||
889 | * @brief Reports the name of the source file and the source line number |
||
890 | * where the assert_param error has occurred. |
||
891 | * @param file: pointer to the source file name |
||
892 | * @param line: assert_param error line source number |
||
893 | * @retval None |
||
894 | */ |
||
895 | void assert_failed(uint8_t* file, uint32_t line) |
||
896 | { |
||
897 | /* USER CODE BEGIN 6 */ |
||
9 | mjames | 898 | /* User can add his own implementation to report the file name and line number, |
899 | ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ |
||
2 | mjames | 900 | /* USER CODE END 6 */ |
901 | |||
902 | } |
||
903 | |||
904 | #endif |
||
905 | |||
906 | /** |
||
907 | * @} |
||
908 | */ |
||
909 | |||
910 | /** |
||
911 | * @} |
||
912 | */ |
||
913 | |||
914 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |