Subversion Repositories EngineBay2

Rev

Rev 10 | Rev 12 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**
2
  ******************************************************************************
3
  * File Name          : main.c
4
  * Description        : Main program body
5
  ******************************************************************************
6
  *
7
  * COPYRIGHT(c) 2016 STMicroelectronics
8
  *
9
  * Redistribution and use in source and binary forms, with or without modification,
10
  * are permitted provided that the following conditions are met:
11
  *   1. Redistributions of source code must retain the above copyright notice,
12
  *      this list of conditions and the following disclaimer.
13
  *   2. Redistributions in binary form must reproduce the above copyright notice,
14
  *      this list of conditions and the following disclaimer in the documentation
15
  *      and/or other materials provided with the distribution.
16
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
17
  *      may be used to endorse or promote products derived from this software
18
  *      without specific prior written permission.
19
  *
20
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
  *
31
  ******************************************************************************
32
  */
33
/* Includes ------------------------------------------------------------------*/
34
#include "stm32l1xx_hal.h"
35
 
36
/* USER CODE BEGIN Includes */
7 mjames 37
#include "serial.h"
9 mjames 38
#include "plx.h"
39
#include "misc.h"
2 mjames 40
/* USER CODE END Includes */
41
 
42
/* Private variables ---------------------------------------------------------*/
43
ADC_HandleTypeDef hadc;
6 mjames 44
DMA_HandleTypeDef hdma_adc;
2 mjames 45
 
46
SPI_HandleTypeDef hspi1;
47
 
48
TIM_HandleTypeDef htim2;
49
TIM_HandleTypeDef htim6;
50
 
51
UART_HandleTypeDef huart1;
6 mjames 52
UART_HandleTypeDef huart2;
2 mjames 53
 
54
/* USER CODE BEGIN PV */
55
/* Private variables ---------------------------------------------------------*/
56
 
8 mjames 57
 
9 mjames 58
// with a dwell angle of 45 degrees , 4 cylinders and a maximum RPM of 5000
59
// freq = 5000/60 * 2 = 166Hz. Because the breaker might bounce , we accept the first pulse longer than 1/300 of a second as being a proper closure .
60
// the TIM2 counter counts in 10uS increments,
61
 
62
#define BREAKER_MIN (RPM_COUNT_RATE/300)
63
 
64
 
65
volatile char TimerFlag = 0;
66
 
67
volatile char NoSerialInCTR = 0; // Missing characters coming in on USART1
68
volatile char NoSerialIn = 0;
69
 
8 mjames 70
// storage for ADC
71
long ADC_samples[6];
72
 
9 mjames 73
// Rev counter processing from original RevCounter Project
74
unsigned int RPM_Diff = 0;
75
unsigned int RPM_Count_Latch = 0;
76
// accumulators
77
unsigned int RPM_Pulsecount = 0;
78
unsigned int RPM_FilteredWidth = 0;
79
 
80
unsigned int Coded_RPM = 0;
81
unsigned int Coded_CHT = 0;
82
 
2 mjames 83
/* USER CODE END PV */
84
 
85
/* Private function prototypes -----------------------------------------------*/
86
void SystemClock_Config(void);
87
void Error_Handler(void);
88
static void MX_GPIO_Init(void);
6 mjames 89
static void MX_DMA_Init(void);
2 mjames 90
static void MX_ADC_Init(void);
91
static void MX_SPI1_Init(void);
92
static void MX_TIM2_Init(void);
93
static void MX_TIM6_Init(void);
94
static void MX_USART1_UART_Init(void);
6 mjames 95
static void MX_USART2_UART_Init(void);
2 mjames 96
 
97
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
98
 
99
 
100
/* USER CODE BEGIN PFP */
101
/* Private function prototypes -----------------------------------------------*/
102
 
9 mjames 103
/* USER CODE END PFP */
7 mjames 104
 
9 mjames 105
/* USER CODE BEGIN 0 */
7 mjames 106
 
9 mjames 107
void ConfigureDMA(void) {
108
        hdma_adc.Instance = DMA1_Channel1;
109
        hdma_adc.Init.Direction = DMA_PERIPH_TO_MEMORY;
110
        hdma_adc.Init.PeriphInc = DMA_PINC_DISABLE;
111
        hdma_adc.Init.MemInc = DMA_MINC_ENABLE;
112
        hdma_adc.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
113
        hdma_adc.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
114
        hdma_adc.Init.Mode = DMA_CIRCULAR; // make the DMA loop automatically
115
        hdma_adc.Init.Priority = DMA_PRIORITY_LOW;
116
        HAL_DMA_Init(&hdma_adc);
117
        __HAL_LINKDMA(&hadc, DMA_Handle, hdma_adc);
118
 
7 mjames 119
}
120
 
9 mjames 121
void plx_sendword(int x) {
122
        PutCharSerial(&uc1, ((x) >> 6) & 0x3F);
123
        PutCharSerial(&uc1, (x) & 0x3F);
124
}
2 mjames 125
 
9 mjames 126
void ProcessRPM(int instance) {
127
// compute the timer values
128
// snapshot timers
129
        unsigned long RPM_Pulsewidth;
130
        unsigned long RPM_Count_Val;
131
        __disable_irq(); // copy the counter value
132
        RPM_Count_Val = RPM_Count;
133
        __enable_irq();
134
// do calculations
135
// if there is only one entry, cannot get difference
136
        if (RPM_Count_Latch != RPM_Count_Val) {
137
                while (1) {
138
                        unsigned int base_time;
139
                        unsigned int new_time;
140
                        // if we are at N-1, stop.
141
                        unsigned int next_count = RPM_Count_Latch + 1;
142
                        if (next_count == RPM_SAMPLES) {
143
                                next_count = 0;
144
                        }
145
                        if (next_count == RPM_Count_Val) {
146
                                break;
147
                        }
148
                        base_time = RPM_Time[RPM_Count_Latch];
149
                        new_time = RPM_Time[next_count];
150
                        RPM_Count_Latch = next_count;
151
                        if (new_time > base_time) {
152
                                RPM_Pulsewidth = new_time - base_time; // not wrapped
153
                        } else {
154
                                RPM_Pulsewidth = new_time + (~base_time) + 1; // deal with wrapping
155
                        }
2 mjames 156
 
9 mjames 157
                        RPM_Diff += RPM_Pulsewidth;
158
                        // need to check if this is a long pulse. If it is, keep the answer
159
                        if (RPM_Pulsewidth > BREAKER_MIN) {
160
                                RPM_Pulsecount++; // count one pulse
161
                                RPM_FilteredWidth += RPM_Diff; // add its width to the accumulator
162
                                RPM_Diff = 0; // reset accumulator of all the narrow widths
163
                        }
164
                }
165
 
166
        }
167
 
168
        if (RPM_Pulsecount > 0) {
169
 
170
                // now have time for N pulses in clocks
171
                // need to scale by 19.55: one unit is 19.55 RPM
172
                // 1Hz is 60 RPM
173
                Coded_RPM = (30.0 / 19.55 * RPM_Pulsecount * RPM_COUNT_RATE)
174
                                / (RPM_FilteredWidth) + 0.5;
175
#if !defined MY_DEBUG
176
                // reset here unless we want to debug
177
                RPM_Pulsecount = 0;
178
                RPM_FilteredWidth = 0;
179
#endif
180
        }
181
 
182
// send the current RPM calculation
183
        plx_sendword(PLX_RPM);
184
        PutCharSerial(&uc1, instance);
185
        plx_sendword(Coded_RPM);
186
}
187
 
11 mjames 188
uint8_t CHT_Timer = 0;
9 mjames 189
 
190
// this uses a MAX6675 which is a simple 16 bit read
191
// SPI is configured for 8 bits so I can use an OLED display if I need it
11 mjames 192
// must wait > 0.22 seconds between conversion attempts as this is the measurement time
193
//
9 mjames 194
void ProcessCHT(int instance)
195
{
196
        uint8_t buffer[2];
11 mjames 197
        CHT_Timer++;
198
        if(CHT_Timer >= 3) // every 300 milliseconds
199
 
200
        {
201
                CHT_Timer=0;
202
 
9 mjames 203
                   HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_RESET);
204
 
205
 
11 mjames 206
                   HAL_Delay(1);
207
 
9 mjames 208
                   HAL_SPI_Receive(&hspi1, buffer, 2, 2);
209
 
210
 
211
 
212
                   uint16_t obs = (buffer[0]<<8)| buffer[1];
213
 
214
                   uint8_t  good = (obs & 4)==0;
215
                   if(good)
216
                   {
10 mjames 217
                     Coded_CHT = obs>>5;
9 mjames 218
                   }
10 mjames 219
                   else
220
                   {
221
                          Coded_CHT= 1000; // signal fail
222
                   }
11 mjames 223
        }
224
 
9 mjames 225
        plx_sendword(PLX_EGT);
226
        PutCharSerial(&uc1, instance);
227
        plx_sendword(Coded_CHT);
10 mjames 228
        PutCharSerial(&uc2,Coded_CHT + 32);
229
           HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
9 mjames 230
 
231
}
232
 
2 mjames 233
/* USER CODE END 0 */
234
 
235
int main(void)
236
{
237
 
238
  /* USER CODE BEGIN 1 */
239
 
240
  /* USER CODE END 1 */
241
 
242
  /* MCU Configuration----------------------------------------------------------*/
243
 
244
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
245
  HAL_Init();
246
 
247
  /* Configure the system clock */
248
  SystemClock_Config();
249
 
250
  /* Initialize all configured peripherals */
251
  MX_GPIO_Init();
6 mjames 252
  MX_DMA_Init();
2 mjames 253
  MX_ADC_Init();
254
  MX_SPI1_Init();
255
  MX_TIM2_Init();
256
  MX_TIM6_Init();
257
  MX_USART1_UART_Init();
6 mjames 258
  MX_USART2_UART_Init();
2 mjames 259
 
260
  /* USER CODE BEGIN 2 */
261
 
9 mjames 262
        __HAL_RCC_SPI1_CLK_ENABLE()
263
        ;   // Temp sensor port
264
        __HAL_RCC_USART1_CLK_ENABLE()
265
        ; // PLX comms port
266
        __HAL_RCC_USART2_CLK_ENABLE()
267
        ;  // Debug comms port
7 mjames 268
 
9 mjames 269
        __HAL_RCC_ADC1_CLK_ENABLE()
270
        ; // enable the ADC
7 mjames 271
 
9 mjames 272
        __HAL_RCC_TIM6_CLK_ENABLE()
273
        ;
7 mjames 274
 
9 mjames 275
        ConfigureDMA();
276
        //   HAL_ADC_Start_DMA(&g_AdcHandle, g_ADCBuffer, ADC_BUFFER_LENGTH);
8 mjames 277
 
7 mjames 278
        /* setup the USART control blocks */
279
        init_usart_ctl(&uc1, huart1.Instance);
280
        init_usart_ctl(&uc2, huart2.Instance);
281
 
282
        EnableSerialRxInterrupt(&uc1);
283
        EnableSerialRxInterrupt(&uc2);
284
 
9 mjames 285
        HAL_TIM_Base_Start_IT(&htim6);
8 mjames 286
 
9 mjames 287
        PutCharSerial(&uc2, 'A');
7 mjames 288
 
2 mjames 289
  /* USER CODE END 2 */
290
 
291
  /* Infinite loop */
292
  /* USER CODE BEGIN WHILE */
9 mjames 293
        while (1) {
2 mjames 294
  /* USER CODE END WHILE */
295
 
296
  /* USER CODE BEGIN 3 */
9 mjames 297
     // check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
298
                int c;
299
                char send = 0;
2 mjames 300
 
9 mjames 301
                // poll the  input for a stop bit or timeout
302
                if(PollSerial(&uc1))
303
                {
304
                  c = GetCharSerial(&uc1);
305
                  if (c != PLX_Stop)
306
                  {
307
                                PutCharSerial(&uc1,c); // echo all but the stop bit
308
                  } else { // must be a stop character
309
                                send = 1; // start our sending process.
310
                        }
311
                }
312
 
313
                // sort out auto-sending
314
                if (TimerFlag)
315
                {
10 mjames 316
                        TimerFlag = 0;
9 mjames 317
                  if (NoSerialIn)
318
                  {
319
                        PutCharSerial(&uc1,PLX_Start);
320
                        send = 1;
321
                  }
322
                }
323
                if (send)
324
                {
325
                  send = 0;
326
 
327
                 ProcessRPM(0);
328
                 ProcessCHT(0);
329
 
330
                 PutCharSerial(&uc1,PLX_Stop);
331
                }
332
 
333
        }
2 mjames 334
  /* USER CODE END 3 */
335
 
336
}
337
 
338
/** System Clock Configuration
339
*/
340
void SystemClock_Config(void)
341
{
342
 
343
  RCC_OscInitTypeDef RCC_OscInitStruct;
344
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
345
 
346
  __HAL_RCC_PWR_CLK_ENABLE();
347
 
348
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
349
 
350
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
351
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
352
  RCC_OscInitStruct.HSICalibrationValue = 16;
353
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
354
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
355
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
356
  RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
357
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
358
  {
359
    Error_Handler();
360
  }
361
 
362
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
363
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
364
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
365
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
366
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
367
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
368
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
369
  {
370
    Error_Handler();
371
  }
372
 
373
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
374
 
375
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
376
 
377
  /* SysTick_IRQn interrupt configuration */
378
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
379
}
380
 
381
/* ADC init function */
382
static void MX_ADC_Init(void)
383
{
384
 
385
  ADC_ChannelConfTypeDef sConfig;
386
 
387
    /**Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
388
    */
389
  hadc.Instance = ADC1;
390
  hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
391
  hadc.Init.Resolution = ADC_RESOLUTION_12B;
392
  hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
393
  hadc.Init.ScanConvMode = ADC_SCAN_ENABLE;
394
  hadc.Init.EOCSelection = ADC_EOC_SEQ_CONV;
395
  hadc.Init.LowPowerAutoWait = ADC_AUTOWAIT_DISABLE;
396
  hadc.Init.LowPowerAutoPowerOff = ADC_AUTOPOWEROFF_DISABLE;
397
  hadc.Init.ChannelsBank = ADC_CHANNELS_BANK_A;
398
  hadc.Init.ContinuousConvMode = DISABLE;
399
  hadc.Init.NbrOfConversion = 6;
400
  hadc.Init.DiscontinuousConvMode = DISABLE;
401
  hadc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T6_TRGO;
402
  hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
403
  hadc.Init.DMAContinuousRequests = DISABLE;
404
  if (HAL_ADC_Init(&hadc) != HAL_OK)
405
  {
406
    Error_Handler();
407
  }
408
 
409
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
410
    */
6 mjames 411
  sConfig.Channel = ADC_CHANNEL_10;
2 mjames 412
  sConfig.Rank = 1;
413
  sConfig.SamplingTime = ADC_SAMPLETIME_4CYCLES;
414
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
415
  {
416
    Error_Handler();
417
  }
418
 
419
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
420
    */
6 mjames 421
  sConfig.Channel = ADC_CHANNEL_11;
2 mjames 422
  sConfig.Rank = 2;
423
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
424
  {
425
    Error_Handler();
426
  }
427
 
428
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
429
    */
6 mjames 430
  sConfig.Channel = ADC_CHANNEL_12;
2 mjames 431
  sConfig.Rank = 3;
432
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
433
  {
434
    Error_Handler();
435
  }
436
 
437
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
438
    */
6 mjames 439
  sConfig.Channel = ADC_CHANNEL_13;
2 mjames 440
  sConfig.Rank = 4;
441
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
442
  {
443
    Error_Handler();
444
  }
445
 
446
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
447
    */
448
  sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
449
  sConfig.Rank = 5;
450
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
451
  {
452
    Error_Handler();
453
  }
454
 
455
    /**Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
456
    */
457
  sConfig.Channel = ADC_CHANNEL_VREFINT;
458
  sConfig.Rank = 6;
459
  if (HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK)
460
  {
461
    Error_Handler();
462
  }
463
 
464
}
465
 
466
/* SPI1 init function */
467
static void MX_SPI1_Init(void)
468
{
469
 
470
  hspi1.Instance = SPI1;
471
  hspi1.Init.Mode = SPI_MODE_MASTER;
3 mjames 472
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
2 mjames 473
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
474
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
475
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
476
  hspi1.Init.NSS = SPI_NSS_SOFT;
10 mjames 477
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
2 mjames 478
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
479
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
480
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
481
  hspi1.Init.CRCPolynomial = 10;
482
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
483
  {
484
    Error_Handler();
485
  }
486
 
487
}
488
 
489
/* TIM2 init function */
490
static void MX_TIM2_Init(void)
491
{
492
 
493
  TIM_MasterConfigTypeDef sMasterConfig;
494
  TIM_IC_InitTypeDef sConfigIC;
495
  TIM_OC_InitTypeDef sConfigOC;
496
 
497
  htim2.Instance = TIM2;
498
  htim2.Init.Prescaler = 320;
499
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
500
  htim2.Init.Period = 0;
501
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
502
  if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
503
  {
504
    Error_Handler();
505
  }
506
 
507
  if (HAL_TIM_OC_Init(&htim2) != HAL_OK)
508
  {
509
    Error_Handler();
510
  }
511
 
512
  if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
513
  {
514
    Error_Handler();
515
  }
516
 
517
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
518
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
519
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
520
  {
521
    Error_Handler();
522
  }
523
 
524
  sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
525
  sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
526
  sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
527
  sConfigIC.ICFilter = 0;
528
  if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
529
  {
530
    Error_Handler();
531
  }
532
 
533
  if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
534
  {
535
    Error_Handler();
536
  }
537
 
538
  sConfigOC.OCMode = TIM_OCMODE_TIMING;
539
  sConfigOC.Pulse = 0;
540
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
541
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
542
  if (HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
543
  {
544
    Error_Handler();
545
  }
546
 
547
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
548
  if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
549
  {
550
    Error_Handler();
551
  }
552
 
553
  HAL_TIM_MspPostInit(&htim2);
554
 
555
}
556
 
557
/* TIM6 init function */
558
static void MX_TIM6_Init(void)
559
{
560
 
561
  TIM_MasterConfigTypeDef sMasterConfig;
562
 
563
  htim6.Instance = TIM6;
564
  htim6.Init.Prescaler = 3200;
565
  htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
566
  htim6.Init.Period = 1000;
567
  if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
568
  {
569
    Error_Handler();
570
  }
571
 
572
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
573
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
574
  if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
575
  {
576
    Error_Handler();
577
  }
578
 
579
}
580
 
581
/* USART1 init function */
582
static void MX_USART1_UART_Init(void)
583
{
584
 
585
  huart1.Instance = USART1;
586
  huart1.Init.BaudRate = 19200;
587
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
588
  huart1.Init.StopBits = UART_STOPBITS_1;
589
  huart1.Init.Parity = UART_PARITY_NONE;
590
  huart1.Init.Mode = UART_MODE_TX_RX;
591
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
592
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
593
  if (HAL_UART_Init(&huart1) != HAL_OK)
594
  {
595
    Error_Handler();
596
  }
597
 
598
}
599
 
6 mjames 600
/* USART2 init function */
601
static void MX_USART2_UART_Init(void)
602
{
603
 
604
  huart2.Instance = USART2;
605
  huart2.Init.BaudRate = 115200;
606
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
607
  huart2.Init.StopBits = UART_STOPBITS_1;
608
  huart2.Init.Parity = UART_PARITY_NONE;
609
  huart2.Init.Mode = UART_MODE_TX_RX;
610
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
611
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
612
  if (HAL_UART_Init(&huart2) != HAL_OK)
613
  {
614
    Error_Handler();
615
  }
616
 
617
}
618
 
619
/**
620
  * Enable DMA controller clock
621
  */
622
static void MX_DMA_Init(void)
623
{
624
  /* DMA controller clock enable */
625
  __HAL_RCC_DMA1_CLK_ENABLE();
626
 
627
  /* DMA interrupt init */
628
  /* DMA1_Channel1_IRQn interrupt configuration */
629
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
630
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
631
 
632
}
633
 
2 mjames 634
/** Configure pins as
635
        * Analog
636
        * Input
637
        * Output
638
        * EVENT_OUT
639
        * EXTI
5 mjames 640
        * Free pins are configured automatically as Analog (this feature is enabled through
641
        * the Code Generation settings)
2 mjames 642
*/
643
static void MX_GPIO_Init(void)
644
{
645
 
646
  GPIO_InitTypeDef GPIO_InitStruct;
647
 
648
  /* GPIO Ports Clock Enable */
5 mjames 649
  __HAL_RCC_GPIOC_CLK_ENABLE();
650
  __HAL_RCC_GPIOH_CLK_ENABLE();
2 mjames 651
  __HAL_RCC_GPIOA_CLK_ENABLE();
652
  __HAL_RCC_GPIOB_CLK_ENABLE();
5 mjames 653
  __HAL_RCC_GPIOD_CLK_ENABLE();
2 mjames 654
 
6 mjames 655
  /*Configure GPIO pins : PC13 PC14 PC15 PC6
5 mjames 656
                           PC7 PC8 PC9 PC10
657
                           PC11 PC12 */
6 mjames 658
  GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_6
5 mjames 659
                          |GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10
660
                          |GPIO_PIN_11|GPIO_PIN_12;
661
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
662
  GPIO_InitStruct.Pull = GPIO_NOPULL;
663
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
2 mjames 664
 
5 mjames 665
  /*Configure GPIO pins : PH0 PH1 */
666
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
667
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
668
  GPIO_InitStruct.Pull = GPIO_NOPULL;
669
  HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
3 mjames 670
 
6 mjames 671
  /*Configure GPIO pins : PA0 PA1 PA8 PA11
7 mjames 672
                           PA12 */
6 mjames 673
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_8|GPIO_PIN_11
7 mjames 674
                          |GPIO_PIN_12;
6 mjames 675
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
676
  GPIO_InitStruct.Pull = GPIO_NOPULL;
677
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
678
 
7 mjames 679
  /*Configure GPIO pin : LED_Blink_Pin */
680
  GPIO_InitStruct.Pin = LED_Blink_Pin;
2 mjames 681
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
682
  GPIO_InitStruct.Pull = GPIO_NOPULL;
7 mjames 683
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
684
  HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
2 mjames 685
 
3 mjames 686
  /*Configure GPIO pins : SPI_NSS1_Pin SPI1CD_Pin */
687
  GPIO_InitStruct.Pin = SPI_NSS1_Pin|SPI1CD_Pin;
688
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
689
  GPIO_InitStruct.Pull = GPIO_NOPULL;
690
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
691
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
692
 
7 mjames 693
  /*Configure GPIO pins : SPI_RESET_Pin SPI_NS_Temp_Pin */
694
  GPIO_InitStruct.Pin = SPI_RESET_Pin|SPI_NS_Temp_Pin;
3 mjames 695
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
696
  GPIO_InitStruct.Pull = GPIO_NOPULL;
697
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
7 mjames 698
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
3 mjames 699
 
7 mjames 700
  /*Configure GPIO pins : PB2 PB12 PB13 PB14
701
                           PB15 PB4 PB5 PB6
702
                           PB7 PB8 PB9 */
703
  GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
704
                          |GPIO_PIN_15|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6
705
                          |GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
5 mjames 706
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
707
  GPIO_InitStruct.Pull = GPIO_NOPULL;
708
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
709
 
710
  /*Configure GPIO pin : PD2 */
711
  GPIO_InitStruct.Pin = GPIO_PIN_2;
712
  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
713
  GPIO_InitStruct.Pull = GPIO_NOPULL;
714
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
715
 
716
  /*Configure GPIO pin Output Level */
7 mjames 717
  HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
5 mjames 718
 
719
  /*Configure GPIO pin Output Level */
7 mjames 720
  HAL_GPIO_WritePin(SPI_NSS1_GPIO_Port, SPI_NSS1_Pin, GPIO_PIN_SET);
5 mjames 721
 
722
  /*Configure GPIO pin Output Level */
7 mjames 723
  HAL_GPIO_WritePin(SPI1CD_GPIO_Port, SPI1CD_Pin, GPIO_PIN_RESET);
724
 
725
  /*Configure GPIO pin Output Level */
5 mjames 726
  HAL_GPIO_WritePin(SPI_RESET_GPIO_Port, SPI_RESET_Pin, GPIO_PIN_RESET);
727
 
7 mjames 728
  /*Configure GPIO pin Output Level */
729
  HAL_GPIO_WritePin(SPI_NS_Temp_GPIO_Port, SPI_NS_Temp_Pin, GPIO_PIN_SET);
730
 
2 mjames 731
}
732
 
733
/* USER CODE BEGIN 4 */
734
 
735
/* USER CODE END 4 */
736
 
737
/**
738
  * @brief  This function is executed in case of error occurrence.
739
  * @param  None
740
  * @retval None
741
  */
742
void Error_Handler(void)
743
{
744
  /* USER CODE BEGIN Error_Handler */
9 mjames 745
        /* User can add his own implementation to report the HAL error return state */
746
        while (1) {
747
        }
2 mjames 748
  /* USER CODE END Error_Handler */
749
}
750
 
751
#ifdef USE_FULL_ASSERT
752
 
753
/**
754
   * @brief Reports the name of the source file and the source line number
755
   * where the assert_param error has occurred.
756
   * @param file: pointer to the source file name
757
   * @param line: assert_param error line source number
758
   * @retval None
759
   */
760
void assert_failed(uint8_t* file, uint32_t line)
761
{
762
  /* USER CODE BEGIN 6 */
9 mjames 763
        /* User can add his own implementation to report the file name and line number,
764
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
2 mjames 765
  /* USER CODE END 6 */
766
 
767
}
768
 
769
#endif
770
 
771
/**
772
  * @}
773
  */
774
 
775
/**
776
  * @}
777
*/
778
 
779
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/