Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /** |
2 | ****************************************************************************** |
||
3 | * @file stm32f1xx_hal_tim.c |
||
4 | * @author MCD Application Team |
||
5 | * @brief TIM HAL module driver. |
||
6 | * This file provides firmware functions to manage the following |
||
7 | * functionalities of the Timer (TIM) peripheral: |
||
8 | * + TIM Time Base Initialization |
||
9 | * + TIM Time Base Start |
||
10 | * + TIM Time Base Start Interruption |
||
11 | * + TIM Time Base Start DMA |
||
12 | * + TIM Output Compare/PWM Initialization |
||
13 | * + TIM Output Compare/PWM Channel Configuration |
||
14 | * + TIM Output Compare/PWM Start |
||
15 | * + TIM Output Compare/PWM Start Interruption |
||
16 | * + TIM Output Compare/PWM Start DMA |
||
17 | * + TIM Input Capture Initialization |
||
18 | * + TIM Input Capture Channel Configuration |
||
19 | * + TIM Input Capture Start |
||
20 | * + TIM Input Capture Start Interruption |
||
21 | * + TIM Input Capture Start DMA |
||
22 | * + TIM One Pulse Initialization |
||
23 | * + TIM One Pulse Channel Configuration |
||
24 | * + TIM One Pulse Start |
||
25 | * + TIM Encoder Interface Initialization |
||
26 | * + TIM Encoder Interface Start |
||
27 | * + TIM Encoder Interface Start Interruption |
||
28 | * + TIM Encoder Interface Start DMA |
||
29 | * + Commutation Event configuration with Interruption and DMA |
||
30 | * + TIM OCRef clear configuration |
||
31 | * + TIM External Clock configuration |
||
32 | @verbatim |
||
33 | ============================================================================== |
||
34 | ##### TIMER Generic features ##### |
||
35 | ============================================================================== |
||
36 | [..] The Timer features include: |
||
37 | (#) 16-bit up, down, up/down auto-reload counter. |
||
38 | (#) 16-bit programmable prescaler allowing dividing (also on the fly) the |
||
39 | counter clock frequency either by any factor between 1 and 65536. |
||
40 | (#) Up to 4 independent channels for: |
||
41 | (++) Input Capture |
||
42 | (++) Output Compare |
||
43 | (++) PWM generation (Edge and Center-aligned Mode) |
||
44 | (++) One-pulse mode output |
||
45 | (#) Synchronization circuit to control the timer with external signals and to interconnect |
||
46 | several timers together. |
||
47 | (#) Supports incremental encoder for positioning purposes |
||
48 | |||
49 | ##### How to use this driver ##### |
||
50 | ============================================================================== |
||
51 | [..] |
||
52 | (#) Initialize the TIM low level resources by implementing the following functions |
||
53 | depending on the selected feature: |
||
54 | (++) Time Base : HAL_TIM_Base_MspInit() |
||
55 | (++) Input Capture : HAL_TIM_IC_MspInit() |
||
56 | (++) Output Compare : HAL_TIM_OC_MspInit() |
||
57 | (++) PWM generation : HAL_TIM_PWM_MspInit() |
||
58 | (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() |
||
59 | (++) Encoder mode output : HAL_TIM_Encoder_MspInit() |
||
60 | |||
61 | (#) Initialize the TIM low level resources : |
||
62 | (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE(); |
||
63 | (##) TIM pins configuration |
||
64 | (+++) Enable the clock for the TIM GPIOs using the following function: |
||
65 | __HAL_RCC_GPIOx_CLK_ENABLE(); |
||
66 | (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); |
||
67 | |||
68 | (#) The external Clock can be configured, if needed (the default clock is the |
||
69 | internal clock from the APBx), using the following function: |
||
70 | HAL_TIM_ConfigClockSource, the clock configuration should be done before |
||
71 | any start function. |
||
72 | |||
73 | (#) Configure the TIM in the desired functioning mode using one of the |
||
74 | Initialization function of this driver: |
||
75 | (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base |
||
76 | (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an |
||
77 | Output Compare signal. |
||
78 | (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a |
||
79 | PWM signal. |
||
80 | (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an |
||
81 | external signal. |
||
82 | (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer |
||
83 | in One Pulse Mode. |
||
84 | (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. |
||
85 | |||
86 | (#) Activate the TIM peripheral using one of the start functions depending from the feature used: |
||
87 | (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() |
||
88 | (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() |
||
89 | (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() |
||
90 | (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() |
||
91 | (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() |
||
92 | (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). |
||
93 | |||
94 | (#) The DMA Burst is managed with the two following functions: |
||
95 | HAL_TIM_DMABurst_WriteStart() |
||
96 | HAL_TIM_DMABurst_ReadStart() |
||
97 | |||
98 | *** Callback registration *** |
||
99 | ============================================= |
||
100 | |||
101 | [..] |
||
102 | The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1 |
||
103 | allows the user to configure dynamically the driver callbacks. |
||
104 | |||
105 | [..] |
||
106 | Use Function @ref HAL_TIM_RegisterCallback() to register a callback. |
||
107 | @ref HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle, |
||
108 | the Callback ID and a pointer to the user callback function. |
||
109 | |||
110 | [..] |
||
111 | Use function @ref HAL_TIM_UnRegisterCallback() to reset a callback to the default |
||
112 | weak function. |
||
113 | @ref HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle, |
||
114 | and the Callback ID. |
||
115 | |||
116 | [..] |
||
117 | These functions allow to register/unregister following callbacks: |
||
118 | (+) Base_MspInitCallback : TIM Base Msp Init Callback. |
||
119 | (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback. |
||
120 | (+) IC_MspInitCallback : TIM IC Msp Init Callback. |
||
121 | (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback. |
||
122 | (+) OC_MspInitCallback : TIM OC Msp Init Callback. |
||
123 | (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback. |
||
124 | (+) PWM_MspInitCallback : TIM PWM Msp Init Callback. |
||
125 | (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback. |
||
126 | (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback. |
||
127 | (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback. |
||
128 | (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback. |
||
129 | (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback. |
||
130 | (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback. |
||
131 | (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback. |
||
132 | (+) PeriodElapsedCallback : TIM Period Elapsed Callback. |
||
133 | (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback. |
||
134 | (+) TriggerCallback : TIM Trigger Callback. |
||
135 | (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback. |
||
136 | (+) IC_CaptureCallback : TIM Input Capture Callback. |
||
137 | (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback. |
||
138 | (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback. |
||
139 | (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback. |
||
140 | (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback. |
||
141 | (+) ErrorCallback : TIM Error Callback. |
||
142 | (+) CommutationCallback : TIM Commutation Callback. |
||
143 | (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback. |
||
144 | (+) BreakCallback : TIM Break Callback. |
||
145 | |||
146 | [..] |
||
147 | By default, after the Init and when the state is HAL_TIM_STATE_RESET |
||
148 | all interrupt callbacks are set to the corresponding weak functions: |
||
149 | examples @ref HAL_TIM_TriggerCallback(), @ref HAL_TIM_ErrorCallback(). |
||
150 | |||
151 | [..] |
||
152 | Exception done for MspInit and MspDeInit functions that are reset to the legacy weak |
||
153 | functionalities in the Init / DeInit only when these callbacks are null |
||
154 | (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit |
||
155 | keep and use the user MspInit / MspDeInit callbacks(registered beforehand) |
||
156 | |||
157 | [..] |
||
158 | Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only. |
||
159 | Exception done MspInit / MspDeInit that can be registered / unregistered |
||
160 | in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state, |
||
161 | thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit. |
||
162 | In that case first register the MspInit/MspDeInit user callbacks |
||
163 | using @ref HAL_TIM_RegisterCallback() before calling DeInit or Init function. |
||
164 | |||
165 | [..] |
||
166 | When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or |
||
167 | not defined, the callback registration feature is not available and all callbacks |
||
168 | are set to the corresponding weak functions. |
||
169 | |||
170 | @endverbatim |
||
171 | ****************************************************************************** |
||
172 | * @attention |
||
173 | * |
||
174 | * <h2><center>© Copyright (c) 2016 STMicroelectronics. |
||
175 | * All rights reserved.</center></h2> |
||
176 | * |
||
177 | * This software component is licensed by ST under BSD 3-Clause license, |
||
178 | * the "License"; You may not use this file except in compliance with the |
||
179 | * License. You may obtain a copy of the License at: |
||
180 | * opensource.org/licenses/BSD-3-Clause |
||
181 | * |
||
182 | ****************************************************************************** |
||
183 | */ |
||
184 | |||
185 | /* Includes ------------------------------------------------------------------*/ |
||
186 | #include "stm32f1xx_hal.h" |
||
187 | |||
188 | /** @addtogroup STM32F1xx_HAL_Driver |
||
189 | * @{ |
||
190 | */ |
||
191 | |||
192 | /** @defgroup TIM TIM |
||
193 | * @brief TIM HAL module driver |
||
194 | * @{ |
||
195 | */ |
||
196 | |||
197 | #ifdef HAL_TIM_MODULE_ENABLED |
||
198 | |||
199 | /* Private typedef -----------------------------------------------------------*/ |
||
200 | /* Private define ------------------------------------------------------------*/ |
||
201 | /* Private macros ------------------------------------------------------------*/ |
||
202 | /* Private variables ---------------------------------------------------------*/ |
||
203 | /* Private function prototypes -----------------------------------------------*/ |
||
204 | /** @addtogroup TIM_Private_Functions |
||
205 | * @{ |
||
206 | */ |
||
207 | static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
||
208 | static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
||
209 | static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); |
||
210 | static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
||
211 | static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
||
212 | uint32_t TIM_ICFilter); |
||
213 | static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); |
||
214 | static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
||
215 | uint32_t TIM_ICFilter); |
||
216 | static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
||
217 | uint32_t TIM_ICFilter); |
||
218 | static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource); |
||
219 | static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); |
||
220 | static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma); |
||
221 | static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma); |
||
222 | static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); |
||
223 | static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma); |
||
224 | static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
||
225 | TIM_SlaveConfigTypeDef *sSlaveConfig); |
||
226 | /** |
||
227 | * @} |
||
228 | */ |
||
229 | /* Exported functions --------------------------------------------------------*/ |
||
230 | |||
231 | /** @defgroup TIM_Exported_Functions TIM Exported Functions |
||
232 | * @{ |
||
233 | */ |
||
234 | |||
235 | /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions |
||
236 | * @brief Time Base functions |
||
237 | * |
||
238 | @verbatim |
||
239 | ============================================================================== |
||
240 | ##### Time Base functions ##### |
||
241 | ============================================================================== |
||
242 | [..] |
||
243 | This section provides functions allowing to: |
||
244 | (+) Initialize and configure the TIM base. |
||
245 | (+) De-initialize the TIM base. |
||
246 | (+) Start the Time Base. |
||
247 | (+) Stop the Time Base. |
||
248 | (+) Start the Time Base and enable interrupt. |
||
249 | (+) Stop the Time Base and disable interrupt. |
||
250 | (+) Start the Time Base and enable DMA transfer. |
||
251 | (+) Stop the Time Base and disable DMA transfer. |
||
252 | |||
253 | @endverbatim |
||
254 | * @{ |
||
255 | */ |
||
256 | /** |
||
257 | * @brief Initializes the TIM Time base Unit according to the specified |
||
258 | * parameters in the TIM_HandleTypeDef and initialize the associated handle. |
||
259 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
||
260 | * requires a timer reset to avoid unexpected direction |
||
261 | * due to DIR bit readonly in center aligned mode. |
||
262 | * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init() |
||
263 | * @param htim TIM Base handle |
||
264 | * @retval HAL status |
||
265 | */ |
||
266 | HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) |
||
267 | { |
||
268 | /* Check the TIM handle allocation */ |
||
269 | if (htim == NULL) |
||
270 | { |
||
271 | return HAL_ERROR; |
||
272 | } |
||
273 | |||
274 | /* Check the parameters */ |
||
275 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
276 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
||
277 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
||
278 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
||
279 | |||
280 | if (htim->State == HAL_TIM_STATE_RESET) |
||
281 | { |
||
282 | /* Allocate lock resource and initialize it */ |
||
283 | htim->Lock = HAL_UNLOCKED; |
||
284 | |||
285 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
286 | /* Reset interrupt callbacks to legacy weak callbacks */ |
||
287 | TIM_ResetCallback(htim); |
||
288 | |||
289 | if (htim->Base_MspInitCallback == NULL) |
||
290 | { |
||
291 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
||
292 | } |
||
293 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
||
294 | htim->Base_MspInitCallback(htim); |
||
295 | #else |
||
296 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
||
297 | HAL_TIM_Base_MspInit(htim); |
||
298 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
299 | } |
||
300 | |||
301 | /* Set the TIM state */ |
||
302 | htim->State = HAL_TIM_STATE_BUSY; |
||
303 | |||
304 | /* Set the Time Base configuration */ |
||
305 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
||
306 | |||
307 | /* Initialize the DMA burst operation state */ |
||
308 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
||
309 | |||
310 | /* Initialize the TIM channels state */ |
||
311 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
||
312 | TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
||
313 | |||
314 | /* Initialize the TIM state*/ |
||
315 | htim->State = HAL_TIM_STATE_READY; |
||
316 | |||
317 | return HAL_OK; |
||
318 | } |
||
319 | |||
320 | /** |
||
321 | * @brief DeInitializes the TIM Base peripheral |
||
322 | * @param htim TIM Base handle |
||
323 | * @retval HAL status |
||
324 | */ |
||
325 | HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) |
||
326 | { |
||
327 | /* Check the parameters */ |
||
328 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
329 | |||
330 | htim->State = HAL_TIM_STATE_BUSY; |
||
331 | |||
332 | /* Disable the TIM Peripheral Clock */ |
||
333 | __HAL_TIM_DISABLE(htim); |
||
334 | |||
335 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
336 | if (htim->Base_MspDeInitCallback == NULL) |
||
337 | { |
||
338 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
||
339 | } |
||
340 | /* DeInit the low level hardware */ |
||
341 | htim->Base_MspDeInitCallback(htim); |
||
342 | #else |
||
343 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
||
344 | HAL_TIM_Base_MspDeInit(htim); |
||
345 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
346 | |||
347 | /* Change the DMA burst operation state */ |
||
348 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
||
349 | |||
350 | /* Change the TIM channels state */ |
||
351 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
||
352 | TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
||
353 | |||
354 | /* Change TIM state */ |
||
355 | htim->State = HAL_TIM_STATE_RESET; |
||
356 | |||
357 | /* Release Lock */ |
||
358 | __HAL_UNLOCK(htim); |
||
359 | |||
360 | return HAL_OK; |
||
361 | } |
||
362 | |||
363 | /** |
||
364 | * @brief Initializes the TIM Base MSP. |
||
365 | * @param htim TIM Base handle |
||
366 | * @retval None |
||
367 | */ |
||
368 | __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) |
||
369 | { |
||
370 | /* Prevent unused argument(s) compilation warning */ |
||
371 | UNUSED(htim); |
||
372 | |||
373 | /* NOTE : This function should not be modified, when the callback is needed, |
||
374 | the HAL_TIM_Base_MspInit could be implemented in the user file |
||
375 | */ |
||
376 | } |
||
377 | |||
378 | /** |
||
379 | * @brief DeInitializes TIM Base MSP. |
||
380 | * @param htim TIM Base handle |
||
381 | * @retval None |
||
382 | */ |
||
383 | __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) |
||
384 | { |
||
385 | /* Prevent unused argument(s) compilation warning */ |
||
386 | UNUSED(htim); |
||
387 | |||
388 | /* NOTE : This function should not be modified, when the callback is needed, |
||
389 | the HAL_TIM_Base_MspDeInit could be implemented in the user file |
||
390 | */ |
||
391 | } |
||
392 | |||
393 | |||
394 | /** |
||
395 | * @brief Starts the TIM Base generation. |
||
396 | * @param htim TIM Base handle |
||
397 | * @retval HAL status |
||
398 | */ |
||
399 | HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) |
||
400 | { |
||
401 | uint32_t tmpsmcr; |
||
402 | |||
403 | /* Check the parameters */ |
||
404 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
405 | |||
406 | /* Check the TIM state */ |
||
407 | if (htim->State != HAL_TIM_STATE_READY) |
||
408 | { |
||
409 | return HAL_ERROR; |
||
410 | } |
||
411 | |||
412 | /* Set the TIM state */ |
||
413 | htim->State = HAL_TIM_STATE_BUSY; |
||
414 | |||
415 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
416 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
417 | { |
||
418 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
419 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
420 | { |
||
421 | __HAL_TIM_ENABLE(htim); |
||
422 | } |
||
423 | } |
||
424 | else |
||
425 | { |
||
426 | __HAL_TIM_ENABLE(htim); |
||
427 | } |
||
428 | |||
429 | /* Return function status */ |
||
430 | return HAL_OK; |
||
431 | } |
||
432 | |||
433 | /** |
||
434 | * @brief Stops the TIM Base generation. |
||
435 | * @param htim TIM Base handle |
||
436 | * @retval HAL status |
||
437 | */ |
||
438 | HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) |
||
439 | { |
||
440 | /* Check the parameters */ |
||
441 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
442 | |||
443 | /* Disable the Peripheral */ |
||
444 | __HAL_TIM_DISABLE(htim); |
||
445 | |||
446 | /* Set the TIM state */ |
||
447 | htim->State = HAL_TIM_STATE_READY; |
||
448 | |||
449 | /* Return function status */ |
||
450 | return HAL_OK; |
||
451 | } |
||
452 | |||
453 | /** |
||
454 | * @brief Starts the TIM Base generation in interrupt mode. |
||
455 | * @param htim TIM Base handle |
||
456 | * @retval HAL status |
||
457 | */ |
||
458 | HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) |
||
459 | { |
||
460 | uint32_t tmpsmcr; |
||
461 | |||
462 | /* Check the parameters */ |
||
463 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
464 | |||
465 | /* Check the TIM state */ |
||
466 | if (htim->State != HAL_TIM_STATE_READY) |
||
467 | { |
||
468 | return HAL_ERROR; |
||
469 | } |
||
470 | |||
471 | /* Set the TIM state */ |
||
472 | htim->State = HAL_TIM_STATE_BUSY; |
||
473 | |||
474 | /* Enable the TIM Update interrupt */ |
||
475 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); |
||
476 | |||
477 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
478 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
479 | { |
||
480 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
481 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
482 | { |
||
483 | __HAL_TIM_ENABLE(htim); |
||
484 | } |
||
485 | } |
||
486 | else |
||
487 | { |
||
488 | __HAL_TIM_ENABLE(htim); |
||
489 | } |
||
490 | |||
491 | /* Return function status */ |
||
492 | return HAL_OK; |
||
493 | } |
||
494 | |||
495 | /** |
||
496 | * @brief Stops the TIM Base generation in interrupt mode. |
||
497 | * @param htim TIM Base handle |
||
498 | * @retval HAL status |
||
499 | */ |
||
500 | HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) |
||
501 | { |
||
502 | /* Check the parameters */ |
||
503 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
504 | |||
505 | /* Disable the TIM Update interrupt */ |
||
506 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); |
||
507 | |||
508 | /* Disable the Peripheral */ |
||
509 | __HAL_TIM_DISABLE(htim); |
||
510 | |||
511 | /* Set the TIM state */ |
||
512 | htim->State = HAL_TIM_STATE_READY; |
||
513 | |||
514 | /* Return function status */ |
||
515 | return HAL_OK; |
||
516 | } |
||
517 | |||
518 | /** |
||
519 | * @brief Starts the TIM Base generation in DMA mode. |
||
520 | * @param htim TIM Base handle |
||
521 | * @param pData The source Buffer address. |
||
522 | * @param Length The length of data to be transferred from memory to peripheral. |
||
523 | * @retval HAL status |
||
524 | */ |
||
525 | HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) |
||
526 | { |
||
527 | uint32_t tmpsmcr; |
||
528 | |||
529 | /* Check the parameters */ |
||
530 | assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
||
531 | |||
532 | /* Set the TIM state */ |
||
533 | if (htim->State == HAL_TIM_STATE_BUSY) |
||
534 | { |
||
535 | return HAL_BUSY; |
||
536 | } |
||
537 | else if (htim->State == HAL_TIM_STATE_READY) |
||
538 | { |
||
539 | if ((pData == NULL) && (Length > 0U)) |
||
540 | { |
||
541 | return HAL_ERROR; |
||
542 | } |
||
543 | else |
||
544 | { |
||
545 | htim->State = HAL_TIM_STATE_BUSY; |
||
546 | } |
||
547 | } |
||
548 | else |
||
549 | { |
||
550 | return HAL_ERROR; |
||
551 | } |
||
552 | |||
553 | /* Set the DMA Period elapsed callbacks */ |
||
554 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
||
555 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
||
556 | |||
557 | /* Set the DMA error callback */ |
||
558 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
||
559 | |||
560 | /* Enable the DMA channel */ |
||
561 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, |
||
562 | Length) != HAL_OK) |
||
563 | { |
||
564 | /* Return error status */ |
||
565 | return HAL_ERROR; |
||
566 | } |
||
567 | |||
568 | /* Enable the TIM Update DMA request */ |
||
569 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); |
||
570 | |||
571 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
572 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
573 | { |
||
574 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
575 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
576 | { |
||
577 | __HAL_TIM_ENABLE(htim); |
||
578 | } |
||
579 | } |
||
580 | else |
||
581 | { |
||
582 | __HAL_TIM_ENABLE(htim); |
||
583 | } |
||
584 | |||
585 | /* Return function status */ |
||
586 | return HAL_OK; |
||
587 | } |
||
588 | |||
589 | /** |
||
590 | * @brief Stops the TIM Base generation in DMA mode. |
||
591 | * @param htim TIM Base handle |
||
592 | * @retval HAL status |
||
593 | */ |
||
594 | HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) |
||
595 | { |
||
596 | /* Check the parameters */ |
||
597 | assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); |
||
598 | |||
599 | /* Disable the TIM Update DMA request */ |
||
600 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); |
||
601 | |||
602 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
||
603 | |||
604 | /* Disable the Peripheral */ |
||
605 | __HAL_TIM_DISABLE(htim); |
||
606 | |||
607 | /* Set the TIM state */ |
||
608 | htim->State = HAL_TIM_STATE_READY; |
||
609 | |||
610 | /* Return function status */ |
||
611 | return HAL_OK; |
||
612 | } |
||
613 | |||
614 | /** |
||
615 | * @} |
||
616 | */ |
||
617 | |||
618 | /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions |
||
619 | * @brief TIM Output Compare functions |
||
620 | * |
||
621 | @verbatim |
||
622 | ============================================================================== |
||
623 | ##### TIM Output Compare functions ##### |
||
624 | ============================================================================== |
||
625 | [..] |
||
626 | This section provides functions allowing to: |
||
627 | (+) Initialize and configure the TIM Output Compare. |
||
628 | (+) De-initialize the TIM Output Compare. |
||
629 | (+) Start the TIM Output Compare. |
||
630 | (+) Stop the TIM Output Compare. |
||
631 | (+) Start the TIM Output Compare and enable interrupt. |
||
632 | (+) Stop the TIM Output Compare and disable interrupt. |
||
633 | (+) Start the TIM Output Compare and enable DMA transfer. |
||
634 | (+) Stop the TIM Output Compare and disable DMA transfer. |
||
635 | |||
636 | @endverbatim |
||
637 | * @{ |
||
638 | */ |
||
639 | /** |
||
640 | * @brief Initializes the TIM Output Compare according to the specified |
||
641 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
||
642 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
||
643 | * requires a timer reset to avoid unexpected direction |
||
644 | * due to DIR bit readonly in center aligned mode. |
||
645 | * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init() |
||
646 | * @param htim TIM Output Compare handle |
||
647 | * @retval HAL status |
||
648 | */ |
||
649 | HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim) |
||
650 | { |
||
651 | /* Check the TIM handle allocation */ |
||
652 | if (htim == NULL) |
||
653 | { |
||
654 | return HAL_ERROR; |
||
655 | } |
||
656 | |||
657 | /* Check the parameters */ |
||
658 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
659 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
||
660 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
||
661 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
||
662 | |||
663 | if (htim->State == HAL_TIM_STATE_RESET) |
||
664 | { |
||
665 | /* Allocate lock resource and initialize it */ |
||
666 | htim->Lock = HAL_UNLOCKED; |
||
667 | |||
668 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
669 | /* Reset interrupt callbacks to legacy weak callbacks */ |
||
670 | TIM_ResetCallback(htim); |
||
671 | |||
672 | if (htim->OC_MspInitCallback == NULL) |
||
673 | { |
||
674 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
||
675 | } |
||
676 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
||
677 | htim->OC_MspInitCallback(htim); |
||
678 | #else |
||
679 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
||
680 | HAL_TIM_OC_MspInit(htim); |
||
681 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
682 | } |
||
683 | |||
684 | /* Set the TIM state */ |
||
685 | htim->State = HAL_TIM_STATE_BUSY; |
||
686 | |||
687 | /* Init the base time for the Output Compare */ |
||
688 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
||
689 | |||
690 | /* Initialize the DMA burst operation state */ |
||
691 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
||
692 | |||
693 | /* Initialize the TIM channels state */ |
||
694 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
||
695 | TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
||
696 | |||
697 | /* Initialize the TIM state*/ |
||
698 | htim->State = HAL_TIM_STATE_READY; |
||
699 | |||
700 | return HAL_OK; |
||
701 | } |
||
702 | |||
703 | /** |
||
704 | * @brief DeInitializes the TIM peripheral |
||
705 | * @param htim TIM Output Compare handle |
||
706 | * @retval HAL status |
||
707 | */ |
||
708 | HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) |
||
709 | { |
||
710 | /* Check the parameters */ |
||
711 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
712 | |||
713 | htim->State = HAL_TIM_STATE_BUSY; |
||
714 | |||
715 | /* Disable the TIM Peripheral Clock */ |
||
716 | __HAL_TIM_DISABLE(htim); |
||
717 | |||
718 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
719 | if (htim->OC_MspDeInitCallback == NULL) |
||
720 | { |
||
721 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
||
722 | } |
||
723 | /* DeInit the low level hardware */ |
||
724 | htim->OC_MspDeInitCallback(htim); |
||
725 | #else |
||
726 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
||
727 | HAL_TIM_OC_MspDeInit(htim); |
||
728 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
729 | |||
730 | /* Change the DMA burst operation state */ |
||
731 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
||
732 | |||
733 | /* Change the TIM channels state */ |
||
734 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
||
735 | TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
||
736 | |||
737 | /* Change TIM state */ |
||
738 | htim->State = HAL_TIM_STATE_RESET; |
||
739 | |||
740 | /* Release Lock */ |
||
741 | __HAL_UNLOCK(htim); |
||
742 | |||
743 | return HAL_OK; |
||
744 | } |
||
745 | |||
746 | /** |
||
747 | * @brief Initializes the TIM Output Compare MSP. |
||
748 | * @param htim TIM Output Compare handle |
||
749 | * @retval None |
||
750 | */ |
||
751 | __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) |
||
752 | { |
||
753 | /* Prevent unused argument(s) compilation warning */ |
||
754 | UNUSED(htim); |
||
755 | |||
756 | /* NOTE : This function should not be modified, when the callback is needed, |
||
757 | the HAL_TIM_OC_MspInit could be implemented in the user file |
||
758 | */ |
||
759 | } |
||
760 | |||
761 | /** |
||
762 | * @brief DeInitializes TIM Output Compare MSP. |
||
763 | * @param htim TIM Output Compare handle |
||
764 | * @retval None |
||
765 | */ |
||
766 | __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) |
||
767 | { |
||
768 | /* Prevent unused argument(s) compilation warning */ |
||
769 | UNUSED(htim); |
||
770 | |||
771 | /* NOTE : This function should not be modified, when the callback is needed, |
||
772 | the HAL_TIM_OC_MspDeInit could be implemented in the user file |
||
773 | */ |
||
774 | } |
||
775 | |||
776 | /** |
||
777 | * @brief Starts the TIM Output Compare signal generation. |
||
778 | * @param htim TIM Output Compare handle |
||
779 | * @param Channel TIM Channel to be enabled |
||
780 | * This parameter can be one of the following values: |
||
781 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
782 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
783 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
784 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
785 | * @retval HAL status |
||
786 | */ |
||
787 | HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
788 | { |
||
789 | uint32_t tmpsmcr; |
||
790 | |||
791 | /* Check the parameters */ |
||
792 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
793 | |||
794 | /* Check the TIM channel state */ |
||
795 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
||
796 | { |
||
797 | return HAL_ERROR; |
||
798 | } |
||
799 | |||
800 | /* Set the TIM channel state */ |
||
801 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
802 | |||
803 | /* Enable the Output compare channel */ |
||
804 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
||
805 | |||
806 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
807 | { |
||
808 | /* Enable the main output */ |
||
809 | __HAL_TIM_MOE_ENABLE(htim); |
||
810 | } |
||
811 | |||
812 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
813 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
814 | { |
||
815 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
816 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
817 | { |
||
818 | __HAL_TIM_ENABLE(htim); |
||
819 | } |
||
820 | } |
||
821 | else |
||
822 | { |
||
823 | __HAL_TIM_ENABLE(htim); |
||
824 | } |
||
825 | |||
826 | /* Return function status */ |
||
827 | return HAL_OK; |
||
828 | } |
||
829 | |||
830 | /** |
||
831 | * @brief Stops the TIM Output Compare signal generation. |
||
832 | * @param htim TIM Output Compare handle |
||
833 | * @param Channel TIM Channel to be disabled |
||
834 | * This parameter can be one of the following values: |
||
835 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
836 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
837 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
838 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
839 | * @retval HAL status |
||
840 | */ |
||
841 | HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
842 | { |
||
843 | /* Check the parameters */ |
||
844 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
845 | |||
846 | /* Disable the Output compare channel */ |
||
847 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
||
848 | |||
849 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
850 | { |
||
851 | /* Disable the Main Output */ |
||
852 | __HAL_TIM_MOE_DISABLE(htim); |
||
853 | } |
||
854 | |||
855 | /* Disable the Peripheral */ |
||
856 | __HAL_TIM_DISABLE(htim); |
||
857 | |||
858 | /* Set the TIM channel state */ |
||
859 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
860 | |||
861 | /* Return function status */ |
||
862 | return HAL_OK; |
||
863 | } |
||
864 | |||
865 | /** |
||
866 | * @brief Starts the TIM Output Compare signal generation in interrupt mode. |
||
867 | * @param htim TIM Output Compare handle |
||
868 | * @param Channel TIM Channel to be enabled |
||
869 | * This parameter can be one of the following values: |
||
870 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
871 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
872 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
873 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
874 | * @retval HAL status |
||
875 | */ |
||
876 | HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
877 | { |
||
878 | uint32_t tmpsmcr; |
||
879 | |||
880 | /* Check the parameters */ |
||
881 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
882 | |||
883 | /* Check the TIM channel state */ |
||
884 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
||
885 | { |
||
886 | return HAL_ERROR; |
||
887 | } |
||
888 | |||
889 | /* Set the TIM channel state */ |
||
890 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
891 | |||
892 | switch (Channel) |
||
893 | { |
||
894 | case TIM_CHANNEL_1: |
||
895 | { |
||
896 | /* Enable the TIM Capture/Compare 1 interrupt */ |
||
897 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
||
898 | break; |
||
899 | } |
||
900 | |||
901 | case TIM_CHANNEL_2: |
||
902 | { |
||
903 | /* Enable the TIM Capture/Compare 2 interrupt */ |
||
904 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
||
905 | break; |
||
906 | } |
||
907 | |||
908 | case TIM_CHANNEL_3: |
||
909 | { |
||
910 | /* Enable the TIM Capture/Compare 3 interrupt */ |
||
911 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
||
912 | break; |
||
913 | } |
||
914 | |||
915 | case TIM_CHANNEL_4: |
||
916 | { |
||
917 | /* Enable the TIM Capture/Compare 4 interrupt */ |
||
918 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
||
919 | break; |
||
920 | } |
||
921 | |||
922 | default: |
||
923 | break; |
||
924 | } |
||
925 | |||
926 | /* Enable the Output compare channel */ |
||
927 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
||
928 | |||
929 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
930 | { |
||
931 | /* Enable the main output */ |
||
932 | __HAL_TIM_MOE_ENABLE(htim); |
||
933 | } |
||
934 | |||
935 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
936 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
937 | { |
||
938 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
939 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
940 | { |
||
941 | __HAL_TIM_ENABLE(htim); |
||
942 | } |
||
943 | } |
||
944 | else |
||
945 | { |
||
946 | __HAL_TIM_ENABLE(htim); |
||
947 | } |
||
948 | |||
949 | /* Return function status */ |
||
950 | return HAL_OK; |
||
951 | } |
||
952 | |||
953 | /** |
||
954 | * @brief Stops the TIM Output Compare signal generation in interrupt mode. |
||
955 | * @param htim TIM Output Compare handle |
||
956 | * @param Channel TIM Channel to be disabled |
||
957 | * This parameter can be one of the following values: |
||
958 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
959 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
960 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
961 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
962 | * @retval HAL status |
||
963 | */ |
||
964 | HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
965 | { |
||
966 | /* Check the parameters */ |
||
967 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
968 | |||
969 | switch (Channel) |
||
970 | { |
||
971 | case TIM_CHANNEL_1: |
||
972 | { |
||
973 | /* Disable the TIM Capture/Compare 1 interrupt */ |
||
974 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
||
975 | break; |
||
976 | } |
||
977 | |||
978 | case TIM_CHANNEL_2: |
||
979 | { |
||
980 | /* Disable the TIM Capture/Compare 2 interrupt */ |
||
981 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
||
982 | break; |
||
983 | } |
||
984 | |||
985 | case TIM_CHANNEL_3: |
||
986 | { |
||
987 | /* Disable the TIM Capture/Compare 3 interrupt */ |
||
988 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
||
989 | break; |
||
990 | } |
||
991 | |||
992 | case TIM_CHANNEL_4: |
||
993 | { |
||
994 | /* Disable the TIM Capture/Compare 4 interrupt */ |
||
995 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
||
996 | break; |
||
997 | } |
||
998 | |||
999 | default: |
||
1000 | break; |
||
1001 | } |
||
1002 | |||
1003 | /* Disable the Output compare channel */ |
||
1004 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
||
1005 | |||
1006 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
1007 | { |
||
1008 | /* Disable the Main Output */ |
||
1009 | __HAL_TIM_MOE_DISABLE(htim); |
||
1010 | } |
||
1011 | |||
1012 | /* Disable the Peripheral */ |
||
1013 | __HAL_TIM_DISABLE(htim); |
||
1014 | |||
1015 | /* Set the TIM channel state */ |
||
1016 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
1017 | |||
1018 | /* Return function status */ |
||
1019 | return HAL_OK; |
||
1020 | } |
||
1021 | |||
1022 | /** |
||
1023 | * @brief Starts the TIM Output Compare signal generation in DMA mode. |
||
1024 | * @param htim TIM Output Compare handle |
||
1025 | * @param Channel TIM Channel to be enabled |
||
1026 | * This parameter can be one of the following values: |
||
1027 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
1028 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
1029 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
1030 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
1031 | * @param pData The source Buffer address. |
||
1032 | * @param Length The length of data to be transferred from memory to TIM peripheral |
||
1033 | * @retval HAL status |
||
1034 | */ |
||
1035 | HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
||
1036 | { |
||
1037 | uint32_t tmpsmcr; |
||
1038 | |||
1039 | /* Check the parameters */ |
||
1040 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
1041 | |||
1042 | /* Set the TIM channel state */ |
||
1043 | if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
||
1044 | { |
||
1045 | return HAL_BUSY; |
||
1046 | } |
||
1047 | else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
||
1048 | { |
||
1049 | if ((pData == NULL) && (Length > 0U)) |
||
1050 | { |
||
1051 | return HAL_ERROR; |
||
1052 | } |
||
1053 | else |
||
1054 | { |
||
1055 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
1056 | } |
||
1057 | } |
||
1058 | else |
||
1059 | { |
||
1060 | return HAL_ERROR; |
||
1061 | } |
||
1062 | |||
1063 | switch (Channel) |
||
1064 | { |
||
1065 | case TIM_CHANNEL_1: |
||
1066 | { |
||
1067 | /* Set the DMA compare callbacks */ |
||
1068 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
1069 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
1070 | |||
1071 | /* Set the DMA error callback */ |
||
1072 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
||
1073 | |||
1074 | /* Enable the DMA channel */ |
||
1075 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
||
1076 | Length) != HAL_OK) |
||
1077 | { |
||
1078 | /* Return error status */ |
||
1079 | return HAL_ERROR; |
||
1080 | } |
||
1081 | |||
1082 | /* Enable the TIM Capture/Compare 1 DMA request */ |
||
1083 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
||
1084 | break; |
||
1085 | } |
||
1086 | |||
1087 | case TIM_CHANNEL_2: |
||
1088 | { |
||
1089 | /* Set the DMA compare callbacks */ |
||
1090 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
1091 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
1092 | |||
1093 | /* Set the DMA error callback */ |
||
1094 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
||
1095 | |||
1096 | /* Enable the DMA channel */ |
||
1097 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
||
1098 | Length) != HAL_OK) |
||
1099 | { |
||
1100 | /* Return error status */ |
||
1101 | return HAL_ERROR; |
||
1102 | } |
||
1103 | |||
1104 | /* Enable the TIM Capture/Compare 2 DMA request */ |
||
1105 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
||
1106 | break; |
||
1107 | } |
||
1108 | |||
1109 | case TIM_CHANNEL_3: |
||
1110 | { |
||
1111 | /* Set the DMA compare callbacks */ |
||
1112 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
1113 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
1114 | |||
1115 | /* Set the DMA error callback */ |
||
1116 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
||
1117 | |||
1118 | /* Enable the DMA channel */ |
||
1119 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
||
1120 | Length) != HAL_OK) |
||
1121 | { |
||
1122 | /* Return error status */ |
||
1123 | return HAL_ERROR; |
||
1124 | } |
||
1125 | /* Enable the TIM Capture/Compare 3 DMA request */ |
||
1126 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
||
1127 | break; |
||
1128 | } |
||
1129 | |||
1130 | case TIM_CHANNEL_4: |
||
1131 | { |
||
1132 | /* Set the DMA compare callbacks */ |
||
1133 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
1134 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
1135 | |||
1136 | /* Set the DMA error callback */ |
||
1137 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
||
1138 | |||
1139 | /* Enable the DMA channel */ |
||
1140 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
||
1141 | Length) != HAL_OK) |
||
1142 | { |
||
1143 | /* Return error status */ |
||
1144 | return HAL_ERROR; |
||
1145 | } |
||
1146 | /* Enable the TIM Capture/Compare 4 DMA request */ |
||
1147 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
||
1148 | break; |
||
1149 | } |
||
1150 | |||
1151 | default: |
||
1152 | break; |
||
1153 | } |
||
1154 | |||
1155 | /* Enable the Output compare channel */ |
||
1156 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
||
1157 | |||
1158 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
1159 | { |
||
1160 | /* Enable the main output */ |
||
1161 | __HAL_TIM_MOE_ENABLE(htim); |
||
1162 | } |
||
1163 | |||
1164 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
1165 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
1166 | { |
||
1167 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
1168 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
1169 | { |
||
1170 | __HAL_TIM_ENABLE(htim); |
||
1171 | } |
||
1172 | } |
||
1173 | else |
||
1174 | { |
||
1175 | __HAL_TIM_ENABLE(htim); |
||
1176 | } |
||
1177 | |||
1178 | /* Return function status */ |
||
1179 | return HAL_OK; |
||
1180 | } |
||
1181 | |||
1182 | /** |
||
1183 | * @brief Stops the TIM Output Compare signal generation in DMA mode. |
||
1184 | * @param htim TIM Output Compare handle |
||
1185 | * @param Channel TIM Channel to be disabled |
||
1186 | * This parameter can be one of the following values: |
||
1187 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
1188 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
1189 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
1190 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
1191 | * @retval HAL status |
||
1192 | */ |
||
1193 | HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
1194 | { |
||
1195 | /* Check the parameters */ |
||
1196 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
1197 | |||
1198 | switch (Channel) |
||
1199 | { |
||
1200 | case TIM_CHANNEL_1: |
||
1201 | { |
||
1202 | /* Disable the TIM Capture/Compare 1 DMA request */ |
||
1203 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
||
1204 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
||
1205 | break; |
||
1206 | } |
||
1207 | |||
1208 | case TIM_CHANNEL_2: |
||
1209 | { |
||
1210 | /* Disable the TIM Capture/Compare 2 DMA request */ |
||
1211 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
||
1212 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
||
1213 | break; |
||
1214 | } |
||
1215 | |||
1216 | case TIM_CHANNEL_3: |
||
1217 | { |
||
1218 | /* Disable the TIM Capture/Compare 3 DMA request */ |
||
1219 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
||
1220 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
||
1221 | break; |
||
1222 | } |
||
1223 | |||
1224 | case TIM_CHANNEL_4: |
||
1225 | { |
||
1226 | /* Disable the TIM Capture/Compare 4 interrupt */ |
||
1227 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
||
1228 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
||
1229 | break; |
||
1230 | } |
||
1231 | |||
1232 | default: |
||
1233 | break; |
||
1234 | } |
||
1235 | |||
1236 | /* Disable the Output compare channel */ |
||
1237 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
||
1238 | |||
1239 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
1240 | { |
||
1241 | /* Disable the Main Output */ |
||
1242 | __HAL_TIM_MOE_DISABLE(htim); |
||
1243 | } |
||
1244 | |||
1245 | /* Disable the Peripheral */ |
||
1246 | __HAL_TIM_DISABLE(htim); |
||
1247 | |||
1248 | /* Set the TIM channel state */ |
||
1249 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
1250 | |||
1251 | /* Return function status */ |
||
1252 | return HAL_OK; |
||
1253 | } |
||
1254 | |||
1255 | /** |
||
1256 | * @} |
||
1257 | */ |
||
1258 | |||
1259 | /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions |
||
1260 | * @brief TIM PWM functions |
||
1261 | * |
||
1262 | @verbatim |
||
1263 | ============================================================================== |
||
1264 | ##### TIM PWM functions ##### |
||
1265 | ============================================================================== |
||
1266 | [..] |
||
1267 | This section provides functions allowing to: |
||
1268 | (+) Initialize and configure the TIM PWM. |
||
1269 | (+) De-initialize the TIM PWM. |
||
1270 | (+) Start the TIM PWM. |
||
1271 | (+) Stop the TIM PWM. |
||
1272 | (+) Start the TIM PWM and enable interrupt. |
||
1273 | (+) Stop the TIM PWM and disable interrupt. |
||
1274 | (+) Start the TIM PWM and enable DMA transfer. |
||
1275 | (+) Stop the TIM PWM and disable DMA transfer. |
||
1276 | |||
1277 | @endverbatim |
||
1278 | * @{ |
||
1279 | */ |
||
1280 | /** |
||
1281 | * @brief Initializes the TIM PWM Time Base according to the specified |
||
1282 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
||
1283 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
||
1284 | * requires a timer reset to avoid unexpected direction |
||
1285 | * due to DIR bit readonly in center aligned mode. |
||
1286 | * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init() |
||
1287 | * @param htim TIM PWM handle |
||
1288 | * @retval HAL status |
||
1289 | */ |
||
1290 | HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) |
||
1291 | { |
||
1292 | /* Check the TIM handle allocation */ |
||
1293 | if (htim == NULL) |
||
1294 | { |
||
1295 | return HAL_ERROR; |
||
1296 | } |
||
1297 | |||
1298 | /* Check the parameters */ |
||
1299 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
1300 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
||
1301 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
||
1302 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
||
1303 | |||
1304 | if (htim->State == HAL_TIM_STATE_RESET) |
||
1305 | { |
||
1306 | /* Allocate lock resource and initialize it */ |
||
1307 | htim->Lock = HAL_UNLOCKED; |
||
1308 | |||
1309 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
1310 | /* Reset interrupt callbacks to legacy weak callbacks */ |
||
1311 | TIM_ResetCallback(htim); |
||
1312 | |||
1313 | if (htim->PWM_MspInitCallback == NULL) |
||
1314 | { |
||
1315 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
||
1316 | } |
||
1317 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
||
1318 | htim->PWM_MspInitCallback(htim); |
||
1319 | #else |
||
1320 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
||
1321 | HAL_TIM_PWM_MspInit(htim); |
||
1322 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
1323 | } |
||
1324 | |||
1325 | /* Set the TIM state */ |
||
1326 | htim->State = HAL_TIM_STATE_BUSY; |
||
1327 | |||
1328 | /* Init the base time for the PWM */ |
||
1329 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
||
1330 | |||
1331 | /* Initialize the DMA burst operation state */ |
||
1332 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
||
1333 | |||
1334 | /* Initialize the TIM channels state */ |
||
1335 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
||
1336 | TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
||
1337 | |||
1338 | /* Initialize the TIM state*/ |
||
1339 | htim->State = HAL_TIM_STATE_READY; |
||
1340 | |||
1341 | return HAL_OK; |
||
1342 | } |
||
1343 | |||
1344 | /** |
||
1345 | * @brief DeInitializes the TIM peripheral |
||
1346 | * @param htim TIM PWM handle |
||
1347 | * @retval HAL status |
||
1348 | */ |
||
1349 | HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) |
||
1350 | { |
||
1351 | /* Check the parameters */ |
||
1352 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
1353 | |||
1354 | htim->State = HAL_TIM_STATE_BUSY; |
||
1355 | |||
1356 | /* Disable the TIM Peripheral Clock */ |
||
1357 | __HAL_TIM_DISABLE(htim); |
||
1358 | |||
1359 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
1360 | if (htim->PWM_MspDeInitCallback == NULL) |
||
1361 | { |
||
1362 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
||
1363 | } |
||
1364 | /* DeInit the low level hardware */ |
||
1365 | htim->PWM_MspDeInitCallback(htim); |
||
1366 | #else |
||
1367 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
||
1368 | HAL_TIM_PWM_MspDeInit(htim); |
||
1369 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
1370 | |||
1371 | /* Change the DMA burst operation state */ |
||
1372 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
||
1373 | |||
1374 | /* Change the TIM channels state */ |
||
1375 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
||
1376 | TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
||
1377 | |||
1378 | /* Change TIM state */ |
||
1379 | htim->State = HAL_TIM_STATE_RESET; |
||
1380 | |||
1381 | /* Release Lock */ |
||
1382 | __HAL_UNLOCK(htim); |
||
1383 | |||
1384 | return HAL_OK; |
||
1385 | } |
||
1386 | |||
1387 | /** |
||
1388 | * @brief Initializes the TIM PWM MSP. |
||
1389 | * @param htim TIM PWM handle |
||
1390 | * @retval None |
||
1391 | */ |
||
1392 | __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) |
||
1393 | { |
||
1394 | /* Prevent unused argument(s) compilation warning */ |
||
1395 | UNUSED(htim); |
||
1396 | |||
1397 | /* NOTE : This function should not be modified, when the callback is needed, |
||
1398 | the HAL_TIM_PWM_MspInit could be implemented in the user file |
||
1399 | */ |
||
1400 | } |
||
1401 | |||
1402 | /** |
||
1403 | * @brief DeInitializes TIM PWM MSP. |
||
1404 | * @param htim TIM PWM handle |
||
1405 | * @retval None |
||
1406 | */ |
||
1407 | __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) |
||
1408 | { |
||
1409 | /* Prevent unused argument(s) compilation warning */ |
||
1410 | UNUSED(htim); |
||
1411 | |||
1412 | /* NOTE : This function should not be modified, when the callback is needed, |
||
1413 | the HAL_TIM_PWM_MspDeInit could be implemented in the user file |
||
1414 | */ |
||
1415 | } |
||
1416 | |||
1417 | /** |
||
1418 | * @brief Starts the PWM signal generation. |
||
1419 | * @param htim TIM handle |
||
1420 | * @param Channel TIM Channels to be enabled |
||
1421 | * This parameter can be one of the following values: |
||
1422 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
1423 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
1424 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
1425 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
1426 | * @retval HAL status |
||
1427 | */ |
||
1428 | HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
1429 | { |
||
1430 | uint32_t tmpsmcr; |
||
1431 | |||
1432 | /* Check the parameters */ |
||
1433 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
1434 | |||
1435 | /* Check the TIM channel state */ |
||
1436 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
||
1437 | { |
||
1438 | return HAL_ERROR; |
||
1439 | } |
||
1440 | |||
1441 | /* Set the TIM channel state */ |
||
1442 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
1443 | |||
1444 | /* Enable the Capture compare channel */ |
||
1445 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
||
1446 | |||
1447 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
1448 | { |
||
1449 | /* Enable the main output */ |
||
1450 | __HAL_TIM_MOE_ENABLE(htim); |
||
1451 | } |
||
1452 | |||
1453 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
1454 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
1455 | { |
||
1456 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
1457 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
1458 | { |
||
1459 | __HAL_TIM_ENABLE(htim); |
||
1460 | } |
||
1461 | } |
||
1462 | else |
||
1463 | { |
||
1464 | __HAL_TIM_ENABLE(htim); |
||
1465 | } |
||
1466 | |||
1467 | /* Return function status */ |
||
1468 | return HAL_OK; |
||
1469 | } |
||
1470 | |||
1471 | /** |
||
1472 | * @brief Stops the PWM signal generation. |
||
1473 | * @param htim TIM PWM handle |
||
1474 | * @param Channel TIM Channels to be disabled |
||
1475 | * This parameter can be one of the following values: |
||
1476 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
1477 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
1478 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
1479 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
1480 | * @retval HAL status |
||
1481 | */ |
||
1482 | HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
1483 | { |
||
1484 | /* Check the parameters */ |
||
1485 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
1486 | |||
1487 | /* Disable the Capture compare channel */ |
||
1488 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
||
1489 | |||
1490 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
1491 | { |
||
1492 | /* Disable the Main Output */ |
||
1493 | __HAL_TIM_MOE_DISABLE(htim); |
||
1494 | } |
||
1495 | |||
1496 | /* Disable the Peripheral */ |
||
1497 | __HAL_TIM_DISABLE(htim); |
||
1498 | |||
1499 | /* Set the TIM channel state */ |
||
1500 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
1501 | |||
1502 | /* Return function status */ |
||
1503 | return HAL_OK; |
||
1504 | } |
||
1505 | |||
1506 | /** |
||
1507 | * @brief Starts the PWM signal generation in interrupt mode. |
||
1508 | * @param htim TIM PWM handle |
||
1509 | * @param Channel TIM Channel to be enabled |
||
1510 | * This parameter can be one of the following values: |
||
1511 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
1512 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
1513 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
1514 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
1515 | * @retval HAL status |
||
1516 | */ |
||
1517 | HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
1518 | { |
||
1519 | uint32_t tmpsmcr; |
||
1520 | /* Check the parameters */ |
||
1521 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
1522 | |||
1523 | /* Check the TIM channel state */ |
||
1524 | if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY) |
||
1525 | { |
||
1526 | return HAL_ERROR; |
||
1527 | } |
||
1528 | |||
1529 | /* Set the TIM channel state */ |
||
1530 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
1531 | |||
1532 | switch (Channel) |
||
1533 | { |
||
1534 | case TIM_CHANNEL_1: |
||
1535 | { |
||
1536 | /* Enable the TIM Capture/Compare 1 interrupt */ |
||
1537 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
||
1538 | break; |
||
1539 | } |
||
1540 | |||
1541 | case TIM_CHANNEL_2: |
||
1542 | { |
||
1543 | /* Enable the TIM Capture/Compare 2 interrupt */ |
||
1544 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
||
1545 | break; |
||
1546 | } |
||
1547 | |||
1548 | case TIM_CHANNEL_3: |
||
1549 | { |
||
1550 | /* Enable the TIM Capture/Compare 3 interrupt */ |
||
1551 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
||
1552 | break; |
||
1553 | } |
||
1554 | |||
1555 | case TIM_CHANNEL_4: |
||
1556 | { |
||
1557 | /* Enable the TIM Capture/Compare 4 interrupt */ |
||
1558 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
||
1559 | break; |
||
1560 | } |
||
1561 | |||
1562 | default: |
||
1563 | break; |
||
1564 | } |
||
1565 | |||
1566 | /* Enable the Capture compare channel */ |
||
1567 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
||
1568 | |||
1569 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
1570 | { |
||
1571 | /* Enable the main output */ |
||
1572 | __HAL_TIM_MOE_ENABLE(htim); |
||
1573 | } |
||
1574 | |||
1575 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
1576 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
1577 | { |
||
1578 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
1579 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
1580 | { |
||
1581 | __HAL_TIM_ENABLE(htim); |
||
1582 | } |
||
1583 | } |
||
1584 | else |
||
1585 | { |
||
1586 | __HAL_TIM_ENABLE(htim); |
||
1587 | } |
||
1588 | |||
1589 | /* Return function status */ |
||
1590 | return HAL_OK; |
||
1591 | } |
||
1592 | |||
1593 | /** |
||
1594 | * @brief Stops the PWM signal generation in interrupt mode. |
||
1595 | * @param htim TIM PWM handle |
||
1596 | * @param Channel TIM Channels to be disabled |
||
1597 | * This parameter can be one of the following values: |
||
1598 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
1599 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
1600 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
1601 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
1602 | * @retval HAL status |
||
1603 | */ |
||
1604 | HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
1605 | { |
||
1606 | /* Check the parameters */ |
||
1607 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
1608 | |||
1609 | switch (Channel) |
||
1610 | { |
||
1611 | case TIM_CHANNEL_1: |
||
1612 | { |
||
1613 | /* Disable the TIM Capture/Compare 1 interrupt */ |
||
1614 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
||
1615 | break; |
||
1616 | } |
||
1617 | |||
1618 | case TIM_CHANNEL_2: |
||
1619 | { |
||
1620 | /* Disable the TIM Capture/Compare 2 interrupt */ |
||
1621 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
||
1622 | break; |
||
1623 | } |
||
1624 | |||
1625 | case TIM_CHANNEL_3: |
||
1626 | { |
||
1627 | /* Disable the TIM Capture/Compare 3 interrupt */ |
||
1628 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
||
1629 | break; |
||
1630 | } |
||
1631 | |||
1632 | case TIM_CHANNEL_4: |
||
1633 | { |
||
1634 | /* Disable the TIM Capture/Compare 4 interrupt */ |
||
1635 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
||
1636 | break; |
||
1637 | } |
||
1638 | |||
1639 | default: |
||
1640 | break; |
||
1641 | } |
||
1642 | |||
1643 | /* Disable the Capture compare channel */ |
||
1644 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
||
1645 | |||
1646 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
1647 | { |
||
1648 | /* Disable the Main Output */ |
||
1649 | __HAL_TIM_MOE_DISABLE(htim); |
||
1650 | } |
||
1651 | |||
1652 | /* Disable the Peripheral */ |
||
1653 | __HAL_TIM_DISABLE(htim); |
||
1654 | |||
1655 | /* Set the TIM channel state */ |
||
1656 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
1657 | |||
1658 | /* Return function status */ |
||
1659 | return HAL_OK; |
||
1660 | } |
||
1661 | |||
1662 | /** |
||
1663 | * @brief Starts the TIM PWM signal generation in DMA mode. |
||
1664 | * @param htim TIM PWM handle |
||
1665 | * @param Channel TIM Channels to be enabled |
||
1666 | * This parameter can be one of the following values: |
||
1667 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
1668 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
1669 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
1670 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
1671 | * @param pData The source Buffer address. |
||
1672 | * @param Length The length of data to be transferred from memory to TIM peripheral |
||
1673 | * @retval HAL status |
||
1674 | */ |
||
1675 | HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
||
1676 | { |
||
1677 | uint32_t tmpsmcr; |
||
1678 | |||
1679 | /* Check the parameters */ |
||
1680 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
1681 | |||
1682 | /* Set the TIM channel state */ |
||
1683 | if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY) |
||
1684 | { |
||
1685 | return HAL_BUSY; |
||
1686 | } |
||
1687 | else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY) |
||
1688 | { |
||
1689 | if ((pData == NULL) && (Length > 0U)) |
||
1690 | { |
||
1691 | return HAL_ERROR; |
||
1692 | } |
||
1693 | else |
||
1694 | { |
||
1695 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
1696 | } |
||
1697 | } |
||
1698 | else |
||
1699 | { |
||
1700 | return HAL_ERROR; |
||
1701 | } |
||
1702 | |||
1703 | switch (Channel) |
||
1704 | { |
||
1705 | case TIM_CHANNEL_1: |
||
1706 | { |
||
1707 | /* Set the DMA compare callbacks */ |
||
1708 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
1709 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
1710 | |||
1711 | /* Set the DMA error callback */ |
||
1712 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
||
1713 | |||
1714 | /* Enable the DMA channel */ |
||
1715 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, |
||
1716 | Length) != HAL_OK) |
||
1717 | { |
||
1718 | /* Return error status */ |
||
1719 | return HAL_ERROR; |
||
1720 | } |
||
1721 | |||
1722 | /* Enable the TIM Capture/Compare 1 DMA request */ |
||
1723 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
||
1724 | break; |
||
1725 | } |
||
1726 | |||
1727 | case TIM_CHANNEL_2: |
||
1728 | { |
||
1729 | /* Set the DMA compare callbacks */ |
||
1730 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
1731 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
1732 | |||
1733 | /* Set the DMA error callback */ |
||
1734 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
||
1735 | |||
1736 | /* Enable the DMA channel */ |
||
1737 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, |
||
1738 | Length) != HAL_OK) |
||
1739 | { |
||
1740 | /* Return error status */ |
||
1741 | return HAL_ERROR; |
||
1742 | } |
||
1743 | /* Enable the TIM Capture/Compare 2 DMA request */ |
||
1744 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
||
1745 | break; |
||
1746 | } |
||
1747 | |||
1748 | case TIM_CHANNEL_3: |
||
1749 | { |
||
1750 | /* Set the DMA compare callbacks */ |
||
1751 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
1752 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
1753 | |||
1754 | /* Set the DMA error callback */ |
||
1755 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
||
1756 | |||
1757 | /* Enable the DMA channel */ |
||
1758 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3, |
||
1759 | Length) != HAL_OK) |
||
1760 | { |
||
1761 | /* Return error status */ |
||
1762 | return HAL_ERROR; |
||
1763 | } |
||
1764 | /* Enable the TIM Output Capture/Compare 3 request */ |
||
1765 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
||
1766 | break; |
||
1767 | } |
||
1768 | |||
1769 | case TIM_CHANNEL_4: |
||
1770 | { |
||
1771 | /* Set the DMA compare callbacks */ |
||
1772 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
1773 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
1774 | |||
1775 | /* Set the DMA error callback */ |
||
1776 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
||
1777 | |||
1778 | /* Enable the DMA channel */ |
||
1779 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, |
||
1780 | Length) != HAL_OK) |
||
1781 | { |
||
1782 | /* Return error status */ |
||
1783 | return HAL_ERROR; |
||
1784 | } |
||
1785 | /* Enable the TIM Capture/Compare 4 DMA request */ |
||
1786 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
||
1787 | break; |
||
1788 | } |
||
1789 | |||
1790 | default: |
||
1791 | break; |
||
1792 | } |
||
1793 | |||
1794 | /* Enable the Capture compare channel */ |
||
1795 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
||
1796 | |||
1797 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
1798 | { |
||
1799 | /* Enable the main output */ |
||
1800 | __HAL_TIM_MOE_ENABLE(htim); |
||
1801 | } |
||
1802 | |||
1803 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
1804 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
1805 | { |
||
1806 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
1807 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
1808 | { |
||
1809 | __HAL_TIM_ENABLE(htim); |
||
1810 | } |
||
1811 | } |
||
1812 | else |
||
1813 | { |
||
1814 | __HAL_TIM_ENABLE(htim); |
||
1815 | } |
||
1816 | |||
1817 | /* Return function status */ |
||
1818 | return HAL_OK; |
||
1819 | } |
||
1820 | |||
1821 | /** |
||
1822 | * @brief Stops the TIM PWM signal generation in DMA mode. |
||
1823 | * @param htim TIM PWM handle |
||
1824 | * @param Channel TIM Channels to be disabled |
||
1825 | * This parameter can be one of the following values: |
||
1826 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
1827 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
1828 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
1829 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
1830 | * @retval HAL status |
||
1831 | */ |
||
1832 | HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
1833 | { |
||
1834 | /* Check the parameters */ |
||
1835 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
1836 | |||
1837 | switch (Channel) |
||
1838 | { |
||
1839 | case TIM_CHANNEL_1: |
||
1840 | { |
||
1841 | /* Disable the TIM Capture/Compare 1 DMA request */ |
||
1842 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
||
1843 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
||
1844 | break; |
||
1845 | } |
||
1846 | |||
1847 | case TIM_CHANNEL_2: |
||
1848 | { |
||
1849 | /* Disable the TIM Capture/Compare 2 DMA request */ |
||
1850 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
||
1851 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
||
1852 | break; |
||
1853 | } |
||
1854 | |||
1855 | case TIM_CHANNEL_3: |
||
1856 | { |
||
1857 | /* Disable the TIM Capture/Compare 3 DMA request */ |
||
1858 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
||
1859 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
||
1860 | break; |
||
1861 | } |
||
1862 | |||
1863 | case TIM_CHANNEL_4: |
||
1864 | { |
||
1865 | /* Disable the TIM Capture/Compare 4 interrupt */ |
||
1866 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
||
1867 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
||
1868 | break; |
||
1869 | } |
||
1870 | |||
1871 | default: |
||
1872 | break; |
||
1873 | } |
||
1874 | |||
1875 | /* Disable the Capture compare channel */ |
||
1876 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
||
1877 | |||
1878 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
1879 | { |
||
1880 | /* Disable the Main Output */ |
||
1881 | __HAL_TIM_MOE_DISABLE(htim); |
||
1882 | } |
||
1883 | |||
1884 | /* Disable the Peripheral */ |
||
1885 | __HAL_TIM_DISABLE(htim); |
||
1886 | |||
1887 | /* Set the TIM channel state */ |
||
1888 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
1889 | |||
1890 | /* Return function status */ |
||
1891 | return HAL_OK; |
||
1892 | } |
||
1893 | |||
1894 | /** |
||
1895 | * @} |
||
1896 | */ |
||
1897 | |||
1898 | /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions |
||
1899 | * @brief TIM Input Capture functions |
||
1900 | * |
||
1901 | @verbatim |
||
1902 | ============================================================================== |
||
1903 | ##### TIM Input Capture functions ##### |
||
1904 | ============================================================================== |
||
1905 | [..] |
||
1906 | This section provides functions allowing to: |
||
1907 | (+) Initialize and configure the TIM Input Capture. |
||
1908 | (+) De-initialize the TIM Input Capture. |
||
1909 | (+) Start the TIM Input Capture. |
||
1910 | (+) Stop the TIM Input Capture. |
||
1911 | (+) Start the TIM Input Capture and enable interrupt. |
||
1912 | (+) Stop the TIM Input Capture and disable interrupt. |
||
1913 | (+) Start the TIM Input Capture and enable DMA transfer. |
||
1914 | (+) Stop the TIM Input Capture and disable DMA transfer. |
||
1915 | |||
1916 | @endverbatim |
||
1917 | * @{ |
||
1918 | */ |
||
1919 | /** |
||
1920 | * @brief Initializes the TIM Input Capture Time base according to the specified |
||
1921 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
||
1922 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
||
1923 | * requires a timer reset to avoid unexpected direction |
||
1924 | * due to DIR bit readonly in center aligned mode. |
||
1925 | * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init() |
||
1926 | * @param htim TIM Input Capture handle |
||
1927 | * @retval HAL status |
||
1928 | */ |
||
1929 | HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) |
||
1930 | { |
||
1931 | /* Check the TIM handle allocation */ |
||
1932 | if (htim == NULL) |
||
1933 | { |
||
1934 | return HAL_ERROR; |
||
1935 | } |
||
1936 | |||
1937 | /* Check the parameters */ |
||
1938 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
1939 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
||
1940 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
||
1941 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
||
1942 | |||
1943 | if (htim->State == HAL_TIM_STATE_RESET) |
||
1944 | { |
||
1945 | /* Allocate lock resource and initialize it */ |
||
1946 | htim->Lock = HAL_UNLOCKED; |
||
1947 | |||
1948 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
1949 | /* Reset interrupt callbacks to legacy weak callbacks */ |
||
1950 | TIM_ResetCallback(htim); |
||
1951 | |||
1952 | if (htim->IC_MspInitCallback == NULL) |
||
1953 | { |
||
1954 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
||
1955 | } |
||
1956 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
||
1957 | htim->IC_MspInitCallback(htim); |
||
1958 | #else |
||
1959 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
||
1960 | HAL_TIM_IC_MspInit(htim); |
||
1961 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
1962 | } |
||
1963 | |||
1964 | /* Set the TIM state */ |
||
1965 | htim->State = HAL_TIM_STATE_BUSY; |
||
1966 | |||
1967 | /* Init the base time for the input capture */ |
||
1968 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
||
1969 | |||
1970 | /* Initialize the DMA burst operation state */ |
||
1971 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
||
1972 | |||
1973 | /* Initialize the TIM channels state */ |
||
1974 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
||
1975 | TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY); |
||
1976 | |||
1977 | /* Initialize the TIM state*/ |
||
1978 | htim->State = HAL_TIM_STATE_READY; |
||
1979 | |||
1980 | return HAL_OK; |
||
1981 | } |
||
1982 | |||
1983 | /** |
||
1984 | * @brief DeInitializes the TIM peripheral |
||
1985 | * @param htim TIM Input Capture handle |
||
1986 | * @retval HAL status |
||
1987 | */ |
||
1988 | HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) |
||
1989 | { |
||
1990 | /* Check the parameters */ |
||
1991 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
1992 | |||
1993 | htim->State = HAL_TIM_STATE_BUSY; |
||
1994 | |||
1995 | /* Disable the TIM Peripheral Clock */ |
||
1996 | __HAL_TIM_DISABLE(htim); |
||
1997 | |||
1998 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
1999 | if (htim->IC_MspDeInitCallback == NULL) |
||
2000 | { |
||
2001 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
||
2002 | } |
||
2003 | /* DeInit the low level hardware */ |
||
2004 | htim->IC_MspDeInitCallback(htim); |
||
2005 | #else |
||
2006 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ |
||
2007 | HAL_TIM_IC_MspDeInit(htim); |
||
2008 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
2009 | |||
2010 | /* Change the DMA burst operation state */ |
||
2011 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
||
2012 | |||
2013 | /* Change the TIM channels state */ |
||
2014 | TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
||
2015 | TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET); |
||
2016 | |||
2017 | /* Change TIM state */ |
||
2018 | htim->State = HAL_TIM_STATE_RESET; |
||
2019 | |||
2020 | /* Release Lock */ |
||
2021 | __HAL_UNLOCK(htim); |
||
2022 | |||
2023 | return HAL_OK; |
||
2024 | } |
||
2025 | |||
2026 | /** |
||
2027 | * @brief Initializes the TIM Input Capture MSP. |
||
2028 | * @param htim TIM Input Capture handle |
||
2029 | * @retval None |
||
2030 | */ |
||
2031 | __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) |
||
2032 | { |
||
2033 | /* Prevent unused argument(s) compilation warning */ |
||
2034 | UNUSED(htim); |
||
2035 | |||
2036 | /* NOTE : This function should not be modified, when the callback is needed, |
||
2037 | the HAL_TIM_IC_MspInit could be implemented in the user file |
||
2038 | */ |
||
2039 | } |
||
2040 | |||
2041 | /** |
||
2042 | * @brief DeInitializes TIM Input Capture MSP. |
||
2043 | * @param htim TIM handle |
||
2044 | * @retval None |
||
2045 | */ |
||
2046 | __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) |
||
2047 | { |
||
2048 | /* Prevent unused argument(s) compilation warning */ |
||
2049 | UNUSED(htim); |
||
2050 | |||
2051 | /* NOTE : This function should not be modified, when the callback is needed, |
||
2052 | the HAL_TIM_IC_MspDeInit could be implemented in the user file |
||
2053 | */ |
||
2054 | } |
||
2055 | |||
2056 | /** |
||
2057 | * @brief Starts the TIM Input Capture measurement. |
||
2058 | * @param htim TIM Input Capture handle |
||
2059 | * @param Channel TIM Channels to be enabled |
||
2060 | * This parameter can be one of the following values: |
||
2061 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
2062 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
2063 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
2064 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
2065 | * @retval HAL status |
||
2066 | */ |
||
2067 | HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
2068 | { |
||
2069 | uint32_t tmpsmcr; |
||
2070 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
||
2071 | HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); |
||
2072 | |||
2073 | /* Check the parameters */ |
||
2074 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
2075 | |||
2076 | /* Check the TIM channel state */ |
||
2077 | if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) |
||
2078 | || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) |
||
2079 | { |
||
2080 | return HAL_ERROR; |
||
2081 | } |
||
2082 | |||
2083 | /* Set the TIM channel state */ |
||
2084 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2085 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2086 | |||
2087 | /* Enable the Input Capture channel */ |
||
2088 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
||
2089 | |||
2090 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
2091 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
2092 | { |
||
2093 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
2094 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
2095 | { |
||
2096 | __HAL_TIM_ENABLE(htim); |
||
2097 | } |
||
2098 | } |
||
2099 | else |
||
2100 | { |
||
2101 | __HAL_TIM_ENABLE(htim); |
||
2102 | } |
||
2103 | |||
2104 | /* Return function status */ |
||
2105 | return HAL_OK; |
||
2106 | } |
||
2107 | |||
2108 | /** |
||
2109 | * @brief Stops the TIM Input Capture measurement. |
||
2110 | * @param htim TIM Input Capture handle |
||
2111 | * @param Channel TIM Channels to be disabled |
||
2112 | * This parameter can be one of the following values: |
||
2113 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
2114 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
2115 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
2116 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
2117 | * @retval HAL status |
||
2118 | */ |
||
2119 | HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
2120 | { |
||
2121 | /* Check the parameters */ |
||
2122 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
2123 | |||
2124 | /* Disable the Input Capture channel */ |
||
2125 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
||
2126 | |||
2127 | /* Disable the Peripheral */ |
||
2128 | __HAL_TIM_DISABLE(htim); |
||
2129 | |||
2130 | /* Set the TIM channel state */ |
||
2131 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
2132 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
2133 | |||
2134 | /* Return function status */ |
||
2135 | return HAL_OK; |
||
2136 | } |
||
2137 | |||
2138 | /** |
||
2139 | * @brief Starts the TIM Input Capture measurement in interrupt mode. |
||
2140 | * @param htim TIM Input Capture handle |
||
2141 | * @param Channel TIM Channels to be enabled |
||
2142 | * This parameter can be one of the following values: |
||
2143 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
2144 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
2145 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
2146 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
2147 | * @retval HAL status |
||
2148 | */ |
||
2149 | HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
2150 | { |
||
2151 | uint32_t tmpsmcr; |
||
2152 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
||
2153 | HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); |
||
2154 | |||
2155 | /* Check the parameters */ |
||
2156 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
2157 | |||
2158 | /* Check the TIM channel state */ |
||
2159 | if ((channel_state != HAL_TIM_CHANNEL_STATE_READY) |
||
2160 | || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY)) |
||
2161 | { |
||
2162 | return HAL_ERROR; |
||
2163 | } |
||
2164 | |||
2165 | /* Set the TIM channel state */ |
||
2166 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2167 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2168 | |||
2169 | switch (Channel) |
||
2170 | { |
||
2171 | case TIM_CHANNEL_1: |
||
2172 | { |
||
2173 | /* Enable the TIM Capture/Compare 1 interrupt */ |
||
2174 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
||
2175 | break; |
||
2176 | } |
||
2177 | |||
2178 | case TIM_CHANNEL_2: |
||
2179 | { |
||
2180 | /* Enable the TIM Capture/Compare 2 interrupt */ |
||
2181 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
||
2182 | break; |
||
2183 | } |
||
2184 | |||
2185 | case TIM_CHANNEL_3: |
||
2186 | { |
||
2187 | /* Enable the TIM Capture/Compare 3 interrupt */ |
||
2188 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); |
||
2189 | break; |
||
2190 | } |
||
2191 | |||
2192 | case TIM_CHANNEL_4: |
||
2193 | { |
||
2194 | /* Enable the TIM Capture/Compare 4 interrupt */ |
||
2195 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); |
||
2196 | break; |
||
2197 | } |
||
2198 | |||
2199 | default: |
||
2200 | break; |
||
2201 | } |
||
2202 | /* Enable the Input Capture channel */ |
||
2203 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
||
2204 | |||
2205 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
2206 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
2207 | { |
||
2208 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
2209 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
2210 | { |
||
2211 | __HAL_TIM_ENABLE(htim); |
||
2212 | } |
||
2213 | } |
||
2214 | else |
||
2215 | { |
||
2216 | __HAL_TIM_ENABLE(htim); |
||
2217 | } |
||
2218 | |||
2219 | /* Return function status */ |
||
2220 | return HAL_OK; |
||
2221 | } |
||
2222 | |||
2223 | /** |
||
2224 | * @brief Stops the TIM Input Capture measurement in interrupt mode. |
||
2225 | * @param htim TIM Input Capture handle |
||
2226 | * @param Channel TIM Channels to be disabled |
||
2227 | * This parameter can be one of the following values: |
||
2228 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
2229 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
2230 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
2231 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
2232 | * @retval HAL status |
||
2233 | */ |
||
2234 | HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
2235 | { |
||
2236 | /* Check the parameters */ |
||
2237 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
2238 | |||
2239 | switch (Channel) |
||
2240 | { |
||
2241 | case TIM_CHANNEL_1: |
||
2242 | { |
||
2243 | /* Disable the TIM Capture/Compare 1 interrupt */ |
||
2244 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
||
2245 | break; |
||
2246 | } |
||
2247 | |||
2248 | case TIM_CHANNEL_2: |
||
2249 | { |
||
2250 | /* Disable the TIM Capture/Compare 2 interrupt */ |
||
2251 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
||
2252 | break; |
||
2253 | } |
||
2254 | |||
2255 | case TIM_CHANNEL_3: |
||
2256 | { |
||
2257 | /* Disable the TIM Capture/Compare 3 interrupt */ |
||
2258 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); |
||
2259 | break; |
||
2260 | } |
||
2261 | |||
2262 | case TIM_CHANNEL_4: |
||
2263 | { |
||
2264 | /* Disable the TIM Capture/Compare 4 interrupt */ |
||
2265 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); |
||
2266 | break; |
||
2267 | } |
||
2268 | |||
2269 | default: |
||
2270 | break; |
||
2271 | } |
||
2272 | |||
2273 | /* Disable the Input Capture channel */ |
||
2274 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
||
2275 | |||
2276 | /* Disable the Peripheral */ |
||
2277 | __HAL_TIM_DISABLE(htim); |
||
2278 | |||
2279 | /* Set the TIM channel state */ |
||
2280 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
2281 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
2282 | |||
2283 | /* Return function status */ |
||
2284 | return HAL_OK; |
||
2285 | } |
||
2286 | |||
2287 | /** |
||
2288 | * @brief Starts the TIM Input Capture measurement in DMA mode. |
||
2289 | * @param htim TIM Input Capture handle |
||
2290 | * @param Channel TIM Channels to be enabled |
||
2291 | * This parameter can be one of the following values: |
||
2292 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
2293 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
2294 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
2295 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
2296 | * @param pData The destination Buffer address. |
||
2297 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
||
2298 | * @retval HAL status |
||
2299 | */ |
||
2300 | HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) |
||
2301 | { |
||
2302 | uint32_t tmpsmcr; |
||
2303 | HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
||
2304 | HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel); |
||
2305 | |||
2306 | /* Check the parameters */ |
||
2307 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
2308 | assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
||
2309 | |||
2310 | /* Set the TIM channel state */ |
||
2311 | if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY) |
||
2312 | || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
||
2313 | { |
||
2314 | return HAL_BUSY; |
||
2315 | } |
||
2316 | else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY) |
||
2317 | && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY)) |
||
2318 | { |
||
2319 | if ((pData == NULL) && (Length > 0U)) |
||
2320 | { |
||
2321 | return HAL_ERROR; |
||
2322 | } |
||
2323 | else |
||
2324 | { |
||
2325 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2326 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2327 | } |
||
2328 | } |
||
2329 | else |
||
2330 | { |
||
2331 | return HAL_ERROR; |
||
2332 | } |
||
2333 | |||
2334 | /* Enable the Input Capture channel */ |
||
2335 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); |
||
2336 | |||
2337 | /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */ |
||
2338 | if (IS_TIM_SLAVE_INSTANCE(htim->Instance)) |
||
2339 | { |
||
2340 | tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS; |
||
2341 | if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr)) |
||
2342 | { |
||
2343 | __HAL_TIM_ENABLE(htim); |
||
2344 | } |
||
2345 | } |
||
2346 | else |
||
2347 | { |
||
2348 | __HAL_TIM_ENABLE(htim); |
||
2349 | } |
||
2350 | |||
2351 | switch (Channel) |
||
2352 | { |
||
2353 | case TIM_CHANNEL_1: |
||
2354 | { |
||
2355 | /* Set the DMA capture callbacks */ |
||
2356 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
||
2357 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
2358 | |||
2359 | /* Set the DMA error callback */ |
||
2360 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
||
2361 | |||
2362 | /* Enable the DMA channel */ |
||
2363 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, |
||
2364 | Length) != HAL_OK) |
||
2365 | { |
||
2366 | /* Return error status */ |
||
2367 | return HAL_ERROR; |
||
2368 | } |
||
2369 | /* Enable the TIM Capture/Compare 1 DMA request */ |
||
2370 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
||
2371 | break; |
||
2372 | } |
||
2373 | |||
2374 | case TIM_CHANNEL_2: |
||
2375 | { |
||
2376 | /* Set the DMA capture callbacks */ |
||
2377 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
||
2378 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
2379 | |||
2380 | /* Set the DMA error callback */ |
||
2381 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
||
2382 | |||
2383 | /* Enable the DMA channel */ |
||
2384 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, |
||
2385 | Length) != HAL_OK) |
||
2386 | { |
||
2387 | /* Return error status */ |
||
2388 | return HAL_ERROR; |
||
2389 | } |
||
2390 | /* Enable the TIM Capture/Compare 2 DMA request */ |
||
2391 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
||
2392 | break; |
||
2393 | } |
||
2394 | |||
2395 | case TIM_CHANNEL_3: |
||
2396 | { |
||
2397 | /* Set the DMA capture callbacks */ |
||
2398 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
||
2399 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
2400 | |||
2401 | /* Set the DMA error callback */ |
||
2402 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
||
2403 | |||
2404 | /* Enable the DMA channel */ |
||
2405 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, |
||
2406 | Length) != HAL_OK) |
||
2407 | { |
||
2408 | /* Return error status */ |
||
2409 | return HAL_ERROR; |
||
2410 | } |
||
2411 | /* Enable the TIM Capture/Compare 3 DMA request */ |
||
2412 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); |
||
2413 | break; |
||
2414 | } |
||
2415 | |||
2416 | case TIM_CHANNEL_4: |
||
2417 | { |
||
2418 | /* Set the DMA capture callbacks */ |
||
2419 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
||
2420 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
2421 | |||
2422 | /* Set the DMA error callback */ |
||
2423 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
||
2424 | |||
2425 | /* Enable the DMA channel */ |
||
2426 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, |
||
2427 | Length) != HAL_OK) |
||
2428 | { |
||
2429 | /* Return error status */ |
||
2430 | return HAL_ERROR; |
||
2431 | } |
||
2432 | /* Enable the TIM Capture/Compare 4 DMA request */ |
||
2433 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); |
||
2434 | break; |
||
2435 | } |
||
2436 | |||
2437 | default: |
||
2438 | break; |
||
2439 | } |
||
2440 | |||
2441 | /* Return function status */ |
||
2442 | return HAL_OK; |
||
2443 | } |
||
2444 | |||
2445 | /** |
||
2446 | * @brief Stops the TIM Input Capture measurement in DMA mode. |
||
2447 | * @param htim TIM Input Capture handle |
||
2448 | * @param Channel TIM Channels to be disabled |
||
2449 | * This parameter can be one of the following values: |
||
2450 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
2451 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
2452 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
2453 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
2454 | * @retval HAL status |
||
2455 | */ |
||
2456 | HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
2457 | { |
||
2458 | /* Check the parameters */ |
||
2459 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
2460 | assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); |
||
2461 | |||
2462 | /* Disable the Input Capture channel */ |
||
2463 | TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); |
||
2464 | |||
2465 | switch (Channel) |
||
2466 | { |
||
2467 | case TIM_CHANNEL_1: |
||
2468 | { |
||
2469 | /* Disable the TIM Capture/Compare 1 DMA request */ |
||
2470 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
||
2471 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
||
2472 | break; |
||
2473 | } |
||
2474 | |||
2475 | case TIM_CHANNEL_2: |
||
2476 | { |
||
2477 | /* Disable the TIM Capture/Compare 2 DMA request */ |
||
2478 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
||
2479 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
||
2480 | break; |
||
2481 | } |
||
2482 | |||
2483 | case TIM_CHANNEL_3: |
||
2484 | { |
||
2485 | /* Disable the TIM Capture/Compare 3 DMA request */ |
||
2486 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); |
||
2487 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
||
2488 | break; |
||
2489 | } |
||
2490 | |||
2491 | case TIM_CHANNEL_4: |
||
2492 | { |
||
2493 | /* Disable the TIM Capture/Compare 4 DMA request */ |
||
2494 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); |
||
2495 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
||
2496 | break; |
||
2497 | } |
||
2498 | |||
2499 | default: |
||
2500 | break; |
||
2501 | } |
||
2502 | |||
2503 | /* Disable the Peripheral */ |
||
2504 | __HAL_TIM_DISABLE(htim); |
||
2505 | |||
2506 | /* Set the TIM channel state */ |
||
2507 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
2508 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
2509 | |||
2510 | /* Return function status */ |
||
2511 | return HAL_OK; |
||
2512 | } |
||
2513 | /** |
||
2514 | * @} |
||
2515 | */ |
||
2516 | |||
2517 | /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions |
||
2518 | * @brief TIM One Pulse functions |
||
2519 | * |
||
2520 | @verbatim |
||
2521 | ============================================================================== |
||
2522 | ##### TIM One Pulse functions ##### |
||
2523 | ============================================================================== |
||
2524 | [..] |
||
2525 | This section provides functions allowing to: |
||
2526 | (+) Initialize and configure the TIM One Pulse. |
||
2527 | (+) De-initialize the TIM One Pulse. |
||
2528 | (+) Start the TIM One Pulse. |
||
2529 | (+) Stop the TIM One Pulse. |
||
2530 | (+) Start the TIM One Pulse and enable interrupt. |
||
2531 | (+) Stop the TIM One Pulse and disable interrupt. |
||
2532 | (+) Start the TIM One Pulse and enable DMA transfer. |
||
2533 | (+) Stop the TIM One Pulse and disable DMA transfer. |
||
2534 | |||
2535 | @endverbatim |
||
2536 | * @{ |
||
2537 | */ |
||
2538 | /** |
||
2539 | * @brief Initializes the TIM One Pulse Time Base according to the specified |
||
2540 | * parameters in the TIM_HandleTypeDef and initializes the associated handle. |
||
2541 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
||
2542 | * requires a timer reset to avoid unexpected direction |
||
2543 | * due to DIR bit readonly in center aligned mode. |
||
2544 | * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init() |
||
2545 | * @note When the timer instance is initialized in One Pulse mode, timer |
||
2546 | * channels 1 and channel 2 are reserved and cannot be used for other |
||
2547 | * purpose. |
||
2548 | * @param htim TIM One Pulse handle |
||
2549 | * @param OnePulseMode Select the One pulse mode. |
||
2550 | * This parameter can be one of the following values: |
||
2551 | * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. |
||
2552 | * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. |
||
2553 | * @retval HAL status |
||
2554 | */ |
||
2555 | HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) |
||
2556 | { |
||
2557 | /* Check the TIM handle allocation */ |
||
2558 | if (htim == NULL) |
||
2559 | { |
||
2560 | return HAL_ERROR; |
||
2561 | } |
||
2562 | |||
2563 | /* Check the parameters */ |
||
2564 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
2565 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
||
2566 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
||
2567 | assert_param(IS_TIM_OPM_MODE(OnePulseMode)); |
||
2568 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
||
2569 | |||
2570 | if (htim->State == HAL_TIM_STATE_RESET) |
||
2571 | { |
||
2572 | /* Allocate lock resource and initialize it */ |
||
2573 | htim->Lock = HAL_UNLOCKED; |
||
2574 | |||
2575 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
2576 | /* Reset interrupt callbacks to legacy weak callbacks */ |
||
2577 | TIM_ResetCallback(htim); |
||
2578 | |||
2579 | if (htim->OnePulse_MspInitCallback == NULL) |
||
2580 | { |
||
2581 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
||
2582 | } |
||
2583 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
||
2584 | htim->OnePulse_MspInitCallback(htim); |
||
2585 | #else |
||
2586 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
||
2587 | HAL_TIM_OnePulse_MspInit(htim); |
||
2588 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
2589 | } |
||
2590 | |||
2591 | /* Set the TIM state */ |
||
2592 | htim->State = HAL_TIM_STATE_BUSY; |
||
2593 | |||
2594 | /* Configure the Time base in the One Pulse Mode */ |
||
2595 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
||
2596 | |||
2597 | /* Reset the OPM Bit */ |
||
2598 | htim->Instance->CR1 &= ~TIM_CR1_OPM; |
||
2599 | |||
2600 | /* Configure the OPM Mode */ |
||
2601 | htim->Instance->CR1 |= OnePulseMode; |
||
2602 | |||
2603 | /* Initialize the DMA burst operation state */ |
||
2604 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
||
2605 | |||
2606 | /* Initialize the TIM channels state */ |
||
2607 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
2608 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
2609 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
2610 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
2611 | |||
2612 | /* Initialize the TIM state*/ |
||
2613 | htim->State = HAL_TIM_STATE_READY; |
||
2614 | |||
2615 | return HAL_OK; |
||
2616 | } |
||
2617 | |||
2618 | /** |
||
2619 | * @brief DeInitializes the TIM One Pulse |
||
2620 | * @param htim TIM One Pulse handle |
||
2621 | * @retval HAL status |
||
2622 | */ |
||
2623 | HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) |
||
2624 | { |
||
2625 | /* Check the parameters */ |
||
2626 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
2627 | |||
2628 | htim->State = HAL_TIM_STATE_BUSY; |
||
2629 | |||
2630 | /* Disable the TIM Peripheral Clock */ |
||
2631 | __HAL_TIM_DISABLE(htim); |
||
2632 | |||
2633 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
2634 | if (htim->OnePulse_MspDeInitCallback == NULL) |
||
2635 | { |
||
2636 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
||
2637 | } |
||
2638 | /* DeInit the low level hardware */ |
||
2639 | htim->OnePulse_MspDeInitCallback(htim); |
||
2640 | #else |
||
2641 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
||
2642 | HAL_TIM_OnePulse_MspDeInit(htim); |
||
2643 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
2644 | |||
2645 | /* Change the DMA burst operation state */ |
||
2646 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
||
2647 | |||
2648 | /* Set the TIM channel state */ |
||
2649 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
||
2650 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
||
2651 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
||
2652 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
||
2653 | |||
2654 | /* Change TIM state */ |
||
2655 | htim->State = HAL_TIM_STATE_RESET; |
||
2656 | |||
2657 | /* Release Lock */ |
||
2658 | __HAL_UNLOCK(htim); |
||
2659 | |||
2660 | return HAL_OK; |
||
2661 | } |
||
2662 | |||
2663 | /** |
||
2664 | * @brief Initializes the TIM One Pulse MSP. |
||
2665 | * @param htim TIM One Pulse handle |
||
2666 | * @retval None |
||
2667 | */ |
||
2668 | __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) |
||
2669 | { |
||
2670 | /* Prevent unused argument(s) compilation warning */ |
||
2671 | UNUSED(htim); |
||
2672 | |||
2673 | /* NOTE : This function should not be modified, when the callback is needed, |
||
2674 | the HAL_TIM_OnePulse_MspInit could be implemented in the user file |
||
2675 | */ |
||
2676 | } |
||
2677 | |||
2678 | /** |
||
2679 | * @brief DeInitializes TIM One Pulse MSP. |
||
2680 | * @param htim TIM One Pulse handle |
||
2681 | * @retval None |
||
2682 | */ |
||
2683 | __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) |
||
2684 | { |
||
2685 | /* Prevent unused argument(s) compilation warning */ |
||
2686 | UNUSED(htim); |
||
2687 | |||
2688 | /* NOTE : This function should not be modified, when the callback is needed, |
||
2689 | the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file |
||
2690 | */ |
||
2691 | } |
||
2692 | |||
2693 | /** |
||
2694 | * @brief Starts the TIM One Pulse signal generation. |
||
2695 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
||
2696 | * it has been kept to avoid HAL_TIM API compatibility break. |
||
2697 | * @note The pulse output channel is determined when calling |
||
2698 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
||
2699 | * @param htim TIM One Pulse handle |
||
2700 | * @param OutputChannel See note above |
||
2701 | * @retval HAL status |
||
2702 | */ |
||
2703 | HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
||
2704 | { |
||
2705 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
||
2706 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
||
2707 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
||
2708 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
||
2709 | |||
2710 | /* Prevent unused argument(s) compilation warning */ |
||
2711 | UNUSED(OutputChannel); |
||
2712 | |||
2713 | /* Check the TIM channels state */ |
||
2714 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
||
2715 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
||
2716 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
||
2717 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
||
2718 | { |
||
2719 | return HAL_ERROR; |
||
2720 | } |
||
2721 | |||
2722 | /* Set the TIM channels state */ |
||
2723 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2724 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2725 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2726 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2727 | |||
2728 | /* Enable the Capture compare and the Input Capture channels |
||
2729 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
||
2730 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
||
2731 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
||
2732 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
||
2733 | |||
2734 | No need to enable the counter, it's enabled automatically by hardware |
||
2735 | (the counter starts in response to a stimulus and generate a pulse */ |
||
2736 | |||
2737 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
||
2738 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
||
2739 | |||
2740 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
2741 | { |
||
2742 | /* Enable the main output */ |
||
2743 | __HAL_TIM_MOE_ENABLE(htim); |
||
2744 | } |
||
2745 | |||
2746 | /* Return function status */ |
||
2747 | return HAL_OK; |
||
2748 | } |
||
2749 | |||
2750 | /** |
||
2751 | * @brief Stops the TIM One Pulse signal generation. |
||
2752 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
||
2753 | * it has been kept to avoid HAL_TIM API compatibility break. |
||
2754 | * @note The pulse output channel is determined when calling |
||
2755 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
||
2756 | * @param htim TIM One Pulse handle |
||
2757 | * @param OutputChannel See note above |
||
2758 | * @retval HAL status |
||
2759 | */ |
||
2760 | HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
||
2761 | { |
||
2762 | /* Prevent unused argument(s) compilation warning */ |
||
2763 | UNUSED(OutputChannel); |
||
2764 | |||
2765 | /* Disable the Capture compare and the Input Capture channels |
||
2766 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
||
2767 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
||
2768 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
||
2769 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
||
2770 | |||
2771 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
||
2772 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
||
2773 | |||
2774 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
2775 | { |
||
2776 | /* Disable the Main Output */ |
||
2777 | __HAL_TIM_MOE_DISABLE(htim); |
||
2778 | } |
||
2779 | |||
2780 | /* Disable the Peripheral */ |
||
2781 | __HAL_TIM_DISABLE(htim); |
||
2782 | |||
2783 | /* Set the TIM channels state */ |
||
2784 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
2785 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
2786 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
2787 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
2788 | |||
2789 | /* Return function status */ |
||
2790 | return HAL_OK; |
||
2791 | } |
||
2792 | |||
2793 | /** |
||
2794 | * @brief Starts the TIM One Pulse signal generation in interrupt mode. |
||
2795 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
||
2796 | * it has been kept to avoid HAL_TIM API compatibility break. |
||
2797 | * @note The pulse output channel is determined when calling |
||
2798 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
||
2799 | * @param htim TIM One Pulse handle |
||
2800 | * @param OutputChannel See note above |
||
2801 | * @retval HAL status |
||
2802 | */ |
||
2803 | HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
||
2804 | { |
||
2805 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
||
2806 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
||
2807 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
||
2808 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
||
2809 | |||
2810 | /* Prevent unused argument(s) compilation warning */ |
||
2811 | UNUSED(OutputChannel); |
||
2812 | |||
2813 | /* Check the TIM channels state */ |
||
2814 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
||
2815 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
||
2816 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
||
2817 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
||
2818 | { |
||
2819 | return HAL_ERROR; |
||
2820 | } |
||
2821 | |||
2822 | /* Set the TIM channels state */ |
||
2823 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2824 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2825 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2826 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
2827 | |||
2828 | /* Enable the Capture compare and the Input Capture channels |
||
2829 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
||
2830 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
||
2831 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
||
2832 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together |
||
2833 | |||
2834 | No need to enable the counter, it's enabled automatically by hardware |
||
2835 | (the counter starts in response to a stimulus and generate a pulse */ |
||
2836 | |||
2837 | /* Enable the TIM Capture/Compare 1 interrupt */ |
||
2838 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
||
2839 | |||
2840 | /* Enable the TIM Capture/Compare 2 interrupt */ |
||
2841 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
||
2842 | |||
2843 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
||
2844 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
||
2845 | |||
2846 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
2847 | { |
||
2848 | /* Enable the main output */ |
||
2849 | __HAL_TIM_MOE_ENABLE(htim); |
||
2850 | } |
||
2851 | |||
2852 | /* Return function status */ |
||
2853 | return HAL_OK; |
||
2854 | } |
||
2855 | |||
2856 | /** |
||
2857 | * @brief Stops the TIM One Pulse signal generation in interrupt mode. |
||
2858 | * @note Though OutputChannel parameter is deprecated and ignored by the function |
||
2859 | * it has been kept to avoid HAL_TIM API compatibility break. |
||
2860 | * @note The pulse output channel is determined when calling |
||
2861 | * @ref HAL_TIM_OnePulse_ConfigChannel(). |
||
2862 | * @param htim TIM One Pulse handle |
||
2863 | * @param OutputChannel See note above |
||
2864 | * @retval HAL status |
||
2865 | */ |
||
2866 | HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) |
||
2867 | { |
||
2868 | /* Prevent unused argument(s) compilation warning */ |
||
2869 | UNUSED(OutputChannel); |
||
2870 | |||
2871 | /* Disable the TIM Capture/Compare 1 interrupt */ |
||
2872 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
||
2873 | |||
2874 | /* Disable the TIM Capture/Compare 2 interrupt */ |
||
2875 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
||
2876 | |||
2877 | /* Disable the Capture compare and the Input Capture channels |
||
2878 | (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) |
||
2879 | if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and |
||
2880 | if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output |
||
2881 | whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ |
||
2882 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
||
2883 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
||
2884 | |||
2885 | if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET) |
||
2886 | { |
||
2887 | /* Disable the Main Output */ |
||
2888 | __HAL_TIM_MOE_DISABLE(htim); |
||
2889 | } |
||
2890 | |||
2891 | /* Disable the Peripheral */ |
||
2892 | __HAL_TIM_DISABLE(htim); |
||
2893 | |||
2894 | /* Set the TIM channels state */ |
||
2895 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
2896 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
2897 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
2898 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
2899 | |||
2900 | /* Return function status */ |
||
2901 | return HAL_OK; |
||
2902 | } |
||
2903 | |||
2904 | /** |
||
2905 | * @} |
||
2906 | */ |
||
2907 | |||
2908 | /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions |
||
2909 | * @brief TIM Encoder functions |
||
2910 | * |
||
2911 | @verbatim |
||
2912 | ============================================================================== |
||
2913 | ##### TIM Encoder functions ##### |
||
2914 | ============================================================================== |
||
2915 | [..] |
||
2916 | This section provides functions allowing to: |
||
2917 | (+) Initialize and configure the TIM Encoder. |
||
2918 | (+) De-initialize the TIM Encoder. |
||
2919 | (+) Start the TIM Encoder. |
||
2920 | (+) Stop the TIM Encoder. |
||
2921 | (+) Start the TIM Encoder and enable interrupt. |
||
2922 | (+) Stop the TIM Encoder and disable interrupt. |
||
2923 | (+) Start the TIM Encoder and enable DMA transfer. |
||
2924 | (+) Stop the TIM Encoder and disable DMA transfer. |
||
2925 | |||
2926 | @endverbatim |
||
2927 | * @{ |
||
2928 | */ |
||
2929 | /** |
||
2930 | * @brief Initializes the TIM Encoder Interface and initialize the associated handle. |
||
2931 | * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse) |
||
2932 | * requires a timer reset to avoid unexpected direction |
||
2933 | * due to DIR bit readonly in center aligned mode. |
||
2934 | * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init() |
||
2935 | * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together |
||
2936 | * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource |
||
2937 | * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa |
||
2938 | * @note When the timer instance is initialized in Encoder mode, timer |
||
2939 | * channels 1 and channel 2 are reserved and cannot be used for other |
||
2940 | * purpose. |
||
2941 | * @param htim TIM Encoder Interface handle |
||
2942 | * @param sConfig TIM Encoder Interface configuration structure |
||
2943 | * @retval HAL status |
||
2944 | */ |
||
2945 | HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig) |
||
2946 | { |
||
2947 | uint32_t tmpsmcr; |
||
2948 | uint32_t tmpccmr1; |
||
2949 | uint32_t tmpccer; |
||
2950 | |||
2951 | /* Check the TIM handle allocation */ |
||
2952 | if (htim == NULL) |
||
2953 | { |
||
2954 | return HAL_ERROR; |
||
2955 | } |
||
2956 | |||
2957 | /* Check the parameters */ |
||
2958 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
||
2959 | assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); |
||
2960 | assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); |
||
2961 | assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload)); |
||
2962 | assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); |
||
2963 | assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); |
||
2964 | assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); |
||
2965 | assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity)); |
||
2966 | assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity)); |
||
2967 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); |
||
2968 | assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); |
||
2969 | assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); |
||
2970 | assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); |
||
2971 | |||
2972 | if (htim->State == HAL_TIM_STATE_RESET) |
||
2973 | { |
||
2974 | /* Allocate lock resource and initialize it */ |
||
2975 | htim->Lock = HAL_UNLOCKED; |
||
2976 | |||
2977 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
2978 | /* Reset interrupt callbacks to legacy weak callbacks */ |
||
2979 | TIM_ResetCallback(htim); |
||
2980 | |||
2981 | if (htim->Encoder_MspInitCallback == NULL) |
||
2982 | { |
||
2983 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
||
2984 | } |
||
2985 | /* Init the low level hardware : GPIO, CLOCK, NVIC */ |
||
2986 | htim->Encoder_MspInitCallback(htim); |
||
2987 | #else |
||
2988 | /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ |
||
2989 | HAL_TIM_Encoder_MspInit(htim); |
||
2990 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
2991 | } |
||
2992 | |||
2993 | /* Set the TIM state */ |
||
2994 | htim->State = HAL_TIM_STATE_BUSY; |
||
2995 | |||
2996 | /* Reset the SMS and ECE bits */ |
||
2997 | htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE); |
||
2998 | |||
2999 | /* Configure the Time base in the Encoder Mode */ |
||
3000 | TIM_Base_SetConfig(htim->Instance, &htim->Init); |
||
3001 | |||
3002 | /* Get the TIMx SMCR register value */ |
||
3003 | tmpsmcr = htim->Instance->SMCR; |
||
3004 | |||
3005 | /* Get the TIMx CCMR1 register value */ |
||
3006 | tmpccmr1 = htim->Instance->CCMR1; |
||
3007 | |||
3008 | /* Get the TIMx CCER register value */ |
||
3009 | tmpccer = htim->Instance->CCER; |
||
3010 | |||
3011 | /* Set the encoder Mode */ |
||
3012 | tmpsmcr |= sConfig->EncoderMode; |
||
3013 | |||
3014 | /* Select the Capture Compare 1 and the Capture Compare 2 as input */ |
||
3015 | tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); |
||
3016 | tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U)); |
||
3017 | |||
3018 | /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ |
||
3019 | tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); |
||
3020 | tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); |
||
3021 | tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U); |
||
3022 | tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U); |
||
3023 | |||
3024 | /* Set the TI1 and the TI2 Polarities */ |
||
3025 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); |
||
3026 | tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U); |
||
3027 | |||
3028 | /* Write to TIMx SMCR */ |
||
3029 | htim->Instance->SMCR = tmpsmcr; |
||
3030 | |||
3031 | /* Write to TIMx CCMR1 */ |
||
3032 | htim->Instance->CCMR1 = tmpccmr1; |
||
3033 | |||
3034 | /* Write to TIMx CCER */ |
||
3035 | htim->Instance->CCER = tmpccer; |
||
3036 | |||
3037 | /* Initialize the DMA burst operation state */ |
||
3038 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
||
3039 | |||
3040 | /* Set the TIM channels state */ |
||
3041 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
3042 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
3043 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
3044 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
3045 | |||
3046 | /* Initialize the TIM state*/ |
||
3047 | htim->State = HAL_TIM_STATE_READY; |
||
3048 | |||
3049 | return HAL_OK; |
||
3050 | } |
||
3051 | |||
3052 | |||
3053 | /** |
||
3054 | * @brief DeInitializes the TIM Encoder interface |
||
3055 | * @param htim TIM Encoder Interface handle |
||
3056 | * @retval HAL status |
||
3057 | */ |
||
3058 | HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) |
||
3059 | { |
||
3060 | /* Check the parameters */ |
||
3061 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
3062 | |||
3063 | htim->State = HAL_TIM_STATE_BUSY; |
||
3064 | |||
3065 | /* Disable the TIM Peripheral Clock */ |
||
3066 | __HAL_TIM_DISABLE(htim); |
||
3067 | |||
3068 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3069 | if (htim->Encoder_MspDeInitCallback == NULL) |
||
3070 | { |
||
3071 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
||
3072 | } |
||
3073 | /* DeInit the low level hardware */ |
||
3074 | htim->Encoder_MspDeInitCallback(htim); |
||
3075 | #else |
||
3076 | /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ |
||
3077 | HAL_TIM_Encoder_MspDeInit(htim); |
||
3078 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3079 | |||
3080 | /* Change the DMA burst operation state */ |
||
3081 | htim->DMABurstState = HAL_DMA_BURST_STATE_RESET; |
||
3082 | |||
3083 | /* Set the TIM channels state */ |
||
3084 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
||
3085 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
||
3086 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET); |
||
3087 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET); |
||
3088 | |||
3089 | /* Change TIM state */ |
||
3090 | htim->State = HAL_TIM_STATE_RESET; |
||
3091 | |||
3092 | /* Release Lock */ |
||
3093 | __HAL_UNLOCK(htim); |
||
3094 | |||
3095 | return HAL_OK; |
||
3096 | } |
||
3097 | |||
3098 | /** |
||
3099 | * @brief Initializes the TIM Encoder Interface MSP. |
||
3100 | * @param htim TIM Encoder Interface handle |
||
3101 | * @retval None |
||
3102 | */ |
||
3103 | __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) |
||
3104 | { |
||
3105 | /* Prevent unused argument(s) compilation warning */ |
||
3106 | UNUSED(htim); |
||
3107 | |||
3108 | /* NOTE : This function should not be modified, when the callback is needed, |
||
3109 | the HAL_TIM_Encoder_MspInit could be implemented in the user file |
||
3110 | */ |
||
3111 | } |
||
3112 | |||
3113 | /** |
||
3114 | * @brief DeInitializes TIM Encoder Interface MSP. |
||
3115 | * @param htim TIM Encoder Interface handle |
||
3116 | * @retval None |
||
3117 | */ |
||
3118 | __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) |
||
3119 | { |
||
3120 | /* Prevent unused argument(s) compilation warning */ |
||
3121 | UNUSED(htim); |
||
3122 | |||
3123 | /* NOTE : This function should not be modified, when the callback is needed, |
||
3124 | the HAL_TIM_Encoder_MspDeInit could be implemented in the user file |
||
3125 | */ |
||
3126 | } |
||
3127 | |||
3128 | /** |
||
3129 | * @brief Starts the TIM Encoder Interface. |
||
3130 | * @param htim TIM Encoder Interface handle |
||
3131 | * @param Channel TIM Channels to be enabled |
||
3132 | * This parameter can be one of the following values: |
||
3133 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
3134 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
3135 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
||
3136 | * @retval HAL status |
||
3137 | */ |
||
3138 | HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
3139 | { |
||
3140 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
||
3141 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
||
3142 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
||
3143 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
||
3144 | |||
3145 | /* Check the parameters */ |
||
3146 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
||
3147 | |||
3148 | /* Set the TIM channel(s) state */ |
||
3149 | if (Channel == TIM_CHANNEL_1) |
||
3150 | { |
||
3151 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
||
3152 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) |
||
3153 | { |
||
3154 | return HAL_ERROR; |
||
3155 | } |
||
3156 | else |
||
3157 | { |
||
3158 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3159 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3160 | } |
||
3161 | } |
||
3162 | else if (Channel == TIM_CHANNEL_2) |
||
3163 | { |
||
3164 | if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
||
3165 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
||
3166 | { |
||
3167 | return HAL_ERROR; |
||
3168 | } |
||
3169 | else |
||
3170 | { |
||
3171 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3172 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3173 | } |
||
3174 | } |
||
3175 | else |
||
3176 | { |
||
3177 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
||
3178 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
||
3179 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
||
3180 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
||
3181 | { |
||
3182 | return HAL_ERROR; |
||
3183 | } |
||
3184 | else |
||
3185 | { |
||
3186 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3187 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3188 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3189 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3190 | } |
||
3191 | } |
||
3192 | |||
3193 | /* Enable the encoder interface channels */ |
||
3194 | switch (Channel) |
||
3195 | { |
||
3196 | case TIM_CHANNEL_1: |
||
3197 | { |
||
3198 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
||
3199 | break; |
||
3200 | } |
||
3201 | |||
3202 | case TIM_CHANNEL_2: |
||
3203 | { |
||
3204 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
||
3205 | break; |
||
3206 | } |
||
3207 | |||
3208 | default : |
||
3209 | { |
||
3210 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
||
3211 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
||
3212 | break; |
||
3213 | } |
||
3214 | } |
||
3215 | /* Enable the Peripheral */ |
||
3216 | __HAL_TIM_ENABLE(htim); |
||
3217 | |||
3218 | /* Return function status */ |
||
3219 | return HAL_OK; |
||
3220 | } |
||
3221 | |||
3222 | /** |
||
3223 | * @brief Stops the TIM Encoder Interface. |
||
3224 | * @param htim TIM Encoder Interface handle |
||
3225 | * @param Channel TIM Channels to be disabled |
||
3226 | * This parameter can be one of the following values: |
||
3227 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
3228 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
3229 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
||
3230 | * @retval HAL status |
||
3231 | */ |
||
3232 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
3233 | { |
||
3234 | /* Check the parameters */ |
||
3235 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
||
3236 | |||
3237 | /* Disable the Input Capture channels 1 and 2 |
||
3238 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
||
3239 | switch (Channel) |
||
3240 | { |
||
3241 | case TIM_CHANNEL_1: |
||
3242 | { |
||
3243 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
||
3244 | break; |
||
3245 | } |
||
3246 | |||
3247 | case TIM_CHANNEL_2: |
||
3248 | { |
||
3249 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
||
3250 | break; |
||
3251 | } |
||
3252 | |||
3253 | default : |
||
3254 | { |
||
3255 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
||
3256 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
||
3257 | break; |
||
3258 | } |
||
3259 | } |
||
3260 | |||
3261 | /* Disable the Peripheral */ |
||
3262 | __HAL_TIM_DISABLE(htim); |
||
3263 | |||
3264 | /* Set the TIM channel(s) state */ |
||
3265 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
||
3266 | { |
||
3267 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
3268 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
3269 | } |
||
3270 | else |
||
3271 | { |
||
3272 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
3273 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
3274 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
3275 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
3276 | } |
||
3277 | |||
3278 | /* Return function status */ |
||
3279 | return HAL_OK; |
||
3280 | } |
||
3281 | |||
3282 | /** |
||
3283 | * @brief Starts the TIM Encoder Interface in interrupt mode. |
||
3284 | * @param htim TIM Encoder Interface handle |
||
3285 | * @param Channel TIM Channels to be enabled |
||
3286 | * This parameter can be one of the following values: |
||
3287 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
3288 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
3289 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
||
3290 | * @retval HAL status |
||
3291 | */ |
||
3292 | HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
3293 | { |
||
3294 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
||
3295 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
||
3296 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
||
3297 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
||
3298 | |||
3299 | /* Check the parameters */ |
||
3300 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
||
3301 | |||
3302 | /* Set the TIM channel(s) state */ |
||
3303 | if (Channel == TIM_CHANNEL_1) |
||
3304 | { |
||
3305 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
||
3306 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)) |
||
3307 | { |
||
3308 | return HAL_ERROR; |
||
3309 | } |
||
3310 | else |
||
3311 | { |
||
3312 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3313 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3314 | } |
||
3315 | } |
||
3316 | else if (Channel == TIM_CHANNEL_2) |
||
3317 | { |
||
3318 | if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
||
3319 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
||
3320 | { |
||
3321 | return HAL_ERROR; |
||
3322 | } |
||
3323 | else |
||
3324 | { |
||
3325 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3326 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3327 | } |
||
3328 | } |
||
3329 | else |
||
3330 | { |
||
3331 | if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
||
3332 | || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY) |
||
3333 | || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY) |
||
3334 | || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY)) |
||
3335 | { |
||
3336 | return HAL_ERROR; |
||
3337 | } |
||
3338 | else |
||
3339 | { |
||
3340 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3341 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3342 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3343 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3344 | } |
||
3345 | } |
||
3346 | |||
3347 | /* Enable the encoder interface channels */ |
||
3348 | /* Enable the capture compare Interrupts 1 and/or 2 */ |
||
3349 | switch (Channel) |
||
3350 | { |
||
3351 | case TIM_CHANNEL_1: |
||
3352 | { |
||
3353 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
||
3354 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
||
3355 | break; |
||
3356 | } |
||
3357 | |||
3358 | case TIM_CHANNEL_2: |
||
3359 | { |
||
3360 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
||
3361 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
||
3362 | break; |
||
3363 | } |
||
3364 | |||
3365 | default : |
||
3366 | { |
||
3367 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
||
3368 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
||
3369 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); |
||
3370 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); |
||
3371 | break; |
||
3372 | } |
||
3373 | } |
||
3374 | |||
3375 | /* Enable the Peripheral */ |
||
3376 | __HAL_TIM_ENABLE(htim); |
||
3377 | |||
3378 | /* Return function status */ |
||
3379 | return HAL_OK; |
||
3380 | } |
||
3381 | |||
3382 | /** |
||
3383 | * @brief Stops the TIM Encoder Interface in interrupt mode. |
||
3384 | * @param htim TIM Encoder Interface handle |
||
3385 | * @param Channel TIM Channels to be disabled |
||
3386 | * This parameter can be one of the following values: |
||
3387 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
3388 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
3389 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
||
3390 | * @retval HAL status |
||
3391 | */ |
||
3392 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
3393 | { |
||
3394 | /* Check the parameters */ |
||
3395 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
||
3396 | |||
3397 | /* Disable the Input Capture channels 1 and 2 |
||
3398 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
||
3399 | if (Channel == TIM_CHANNEL_1) |
||
3400 | { |
||
3401 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
||
3402 | |||
3403 | /* Disable the capture compare Interrupts 1 */ |
||
3404 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
||
3405 | } |
||
3406 | else if (Channel == TIM_CHANNEL_2) |
||
3407 | { |
||
3408 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
||
3409 | |||
3410 | /* Disable the capture compare Interrupts 2 */ |
||
3411 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
||
3412 | } |
||
3413 | else |
||
3414 | { |
||
3415 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
||
3416 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
||
3417 | |||
3418 | /* Disable the capture compare Interrupts 1 and 2 */ |
||
3419 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); |
||
3420 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); |
||
3421 | } |
||
3422 | |||
3423 | /* Disable the Peripheral */ |
||
3424 | __HAL_TIM_DISABLE(htim); |
||
3425 | |||
3426 | /* Set the TIM channel(s) state */ |
||
3427 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
||
3428 | { |
||
3429 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
3430 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
3431 | } |
||
3432 | else |
||
3433 | { |
||
3434 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
3435 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
3436 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
3437 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
3438 | } |
||
3439 | |||
3440 | /* Return function status */ |
||
3441 | return HAL_OK; |
||
3442 | } |
||
3443 | |||
3444 | /** |
||
3445 | * @brief Starts the TIM Encoder Interface in DMA mode. |
||
3446 | * @param htim TIM Encoder Interface handle |
||
3447 | * @param Channel TIM Channels to be enabled |
||
3448 | * This parameter can be one of the following values: |
||
3449 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
3450 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
3451 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
||
3452 | * @param pData1 The destination Buffer address for IC1. |
||
3453 | * @param pData2 The destination Buffer address for IC2. |
||
3454 | * @param Length The length of data to be transferred from TIM peripheral to memory. |
||
3455 | * @retval HAL status |
||
3456 | */ |
||
3457 | HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, |
||
3458 | uint32_t *pData2, uint16_t Length) |
||
3459 | { |
||
3460 | HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1); |
||
3461 | HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2); |
||
3462 | HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1); |
||
3463 | HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2); |
||
3464 | |||
3465 | /* Check the parameters */ |
||
3466 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
||
3467 | |||
3468 | /* Set the TIM channel(s) state */ |
||
3469 | if (Channel == TIM_CHANNEL_1) |
||
3470 | { |
||
3471 | if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
||
3472 | || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
||
3473 | { |
||
3474 | return HAL_BUSY; |
||
3475 | } |
||
3476 | else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
||
3477 | && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)) |
||
3478 | { |
||
3479 | if ((pData1 == NULL) && (Length > 0U)) |
||
3480 | { |
||
3481 | return HAL_ERROR; |
||
3482 | } |
||
3483 | else |
||
3484 | { |
||
3485 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3486 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3487 | } |
||
3488 | } |
||
3489 | else |
||
3490 | { |
||
3491 | return HAL_ERROR; |
||
3492 | } |
||
3493 | } |
||
3494 | else if (Channel == TIM_CHANNEL_2) |
||
3495 | { |
||
3496 | if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) |
||
3497 | || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
||
3498 | { |
||
3499 | return HAL_BUSY; |
||
3500 | } |
||
3501 | else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY) |
||
3502 | && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) |
||
3503 | { |
||
3504 | if ((pData2 == NULL) && (Length > 0U)) |
||
3505 | { |
||
3506 | return HAL_ERROR; |
||
3507 | } |
||
3508 | else |
||
3509 | { |
||
3510 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3511 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3512 | } |
||
3513 | } |
||
3514 | else |
||
3515 | { |
||
3516 | return HAL_ERROR; |
||
3517 | } |
||
3518 | } |
||
3519 | else |
||
3520 | { |
||
3521 | if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
||
3522 | || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY) |
||
3523 | || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY) |
||
3524 | || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)) |
||
3525 | { |
||
3526 | return HAL_BUSY; |
||
3527 | } |
||
3528 | else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
||
3529 | && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY) |
||
3530 | && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY) |
||
3531 | && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY)) |
||
3532 | { |
||
3533 | if ((((pData1 == NULL) || (pData2 == NULL))) && (Length > 0U)) |
||
3534 | { |
||
3535 | return HAL_ERROR; |
||
3536 | } |
||
3537 | else |
||
3538 | { |
||
3539 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3540 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3541 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3542 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY); |
||
3543 | } |
||
3544 | } |
||
3545 | else |
||
3546 | { |
||
3547 | return HAL_ERROR; |
||
3548 | } |
||
3549 | } |
||
3550 | |||
3551 | switch (Channel) |
||
3552 | { |
||
3553 | case TIM_CHANNEL_1: |
||
3554 | { |
||
3555 | /* Set the DMA capture callbacks */ |
||
3556 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
||
3557 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
3558 | |||
3559 | /* Set the DMA error callback */ |
||
3560 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
||
3561 | |||
3562 | /* Enable the DMA channel */ |
||
3563 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
||
3564 | Length) != HAL_OK) |
||
3565 | { |
||
3566 | /* Return error status */ |
||
3567 | return HAL_ERROR; |
||
3568 | } |
||
3569 | /* Enable the TIM Input Capture DMA request */ |
||
3570 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
||
3571 | |||
3572 | /* Enable the Peripheral */ |
||
3573 | __HAL_TIM_ENABLE(htim); |
||
3574 | |||
3575 | /* Enable the Capture compare channel */ |
||
3576 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
||
3577 | break; |
||
3578 | } |
||
3579 | |||
3580 | case TIM_CHANNEL_2: |
||
3581 | { |
||
3582 | /* Set the DMA capture callbacks */ |
||
3583 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
||
3584 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
3585 | |||
3586 | /* Set the DMA error callback */ |
||
3587 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; |
||
3588 | /* Enable the DMA channel */ |
||
3589 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
||
3590 | Length) != HAL_OK) |
||
3591 | { |
||
3592 | /* Return error status */ |
||
3593 | return HAL_ERROR; |
||
3594 | } |
||
3595 | /* Enable the TIM Input Capture DMA request */ |
||
3596 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
||
3597 | |||
3598 | /* Enable the Peripheral */ |
||
3599 | __HAL_TIM_ENABLE(htim); |
||
3600 | |||
3601 | /* Enable the Capture compare channel */ |
||
3602 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
||
3603 | break; |
||
3604 | } |
||
3605 | |||
3606 | case TIM_CHANNEL_ALL: |
||
3607 | { |
||
3608 | /* Set the DMA capture callbacks */ |
||
3609 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
||
3610 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
3611 | |||
3612 | /* Set the DMA error callback */ |
||
3613 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
||
3614 | |||
3615 | /* Enable the DMA channel */ |
||
3616 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, |
||
3617 | Length) != HAL_OK) |
||
3618 | { |
||
3619 | /* Return error status */ |
||
3620 | return HAL_ERROR; |
||
3621 | } |
||
3622 | |||
3623 | /* Set the DMA capture callbacks */ |
||
3624 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
||
3625 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
3626 | |||
3627 | /* Set the DMA error callback */ |
||
3628 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
||
3629 | |||
3630 | /* Enable the DMA channel */ |
||
3631 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, |
||
3632 | Length) != HAL_OK) |
||
3633 | { |
||
3634 | /* Return error status */ |
||
3635 | return HAL_ERROR; |
||
3636 | } |
||
3637 | /* Enable the Peripheral */ |
||
3638 | __HAL_TIM_ENABLE(htim); |
||
3639 | |||
3640 | /* Enable the Capture compare channel */ |
||
3641 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); |
||
3642 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); |
||
3643 | |||
3644 | /* Enable the TIM Input Capture DMA request */ |
||
3645 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); |
||
3646 | /* Enable the TIM Input Capture DMA request */ |
||
3647 | __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); |
||
3648 | break; |
||
3649 | } |
||
3650 | |||
3651 | default: |
||
3652 | break; |
||
3653 | } |
||
3654 | |||
3655 | /* Return function status */ |
||
3656 | return HAL_OK; |
||
3657 | } |
||
3658 | |||
3659 | /** |
||
3660 | * @brief Stops the TIM Encoder Interface in DMA mode. |
||
3661 | * @param htim TIM Encoder Interface handle |
||
3662 | * @param Channel TIM Channels to be enabled |
||
3663 | * This parameter can be one of the following values: |
||
3664 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
3665 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
3666 | * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected |
||
3667 | * @retval HAL status |
||
3668 | */ |
||
3669 | HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
3670 | { |
||
3671 | /* Check the parameters */ |
||
3672 | assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance)); |
||
3673 | |||
3674 | /* Disable the Input Capture channels 1 and 2 |
||
3675 | (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ |
||
3676 | if (Channel == TIM_CHANNEL_1) |
||
3677 | { |
||
3678 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
||
3679 | |||
3680 | /* Disable the capture compare DMA Request 1 */ |
||
3681 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
||
3682 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
||
3683 | } |
||
3684 | else if (Channel == TIM_CHANNEL_2) |
||
3685 | { |
||
3686 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
||
3687 | |||
3688 | /* Disable the capture compare DMA Request 2 */ |
||
3689 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
||
3690 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
||
3691 | } |
||
3692 | else |
||
3693 | { |
||
3694 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); |
||
3695 | TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); |
||
3696 | |||
3697 | /* Disable the capture compare DMA Request 1 and 2 */ |
||
3698 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); |
||
3699 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); |
||
3700 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
||
3701 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
||
3702 | } |
||
3703 | |||
3704 | /* Disable the Peripheral */ |
||
3705 | __HAL_TIM_DISABLE(htim); |
||
3706 | |||
3707 | /* Set the TIM channel(s) state */ |
||
3708 | if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2)) |
||
3709 | { |
||
3710 | TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
3711 | TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY); |
||
3712 | } |
||
3713 | else |
||
3714 | { |
||
3715 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
3716 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
3717 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
3718 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
3719 | } |
||
3720 | |||
3721 | /* Return function status */ |
||
3722 | return HAL_OK; |
||
3723 | } |
||
3724 | |||
3725 | /** |
||
3726 | * @} |
||
3727 | */ |
||
3728 | /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management |
||
3729 | * @brief TIM IRQ handler management |
||
3730 | * |
||
3731 | @verbatim |
||
3732 | ============================================================================== |
||
3733 | ##### IRQ handler management ##### |
||
3734 | ============================================================================== |
||
3735 | [..] |
||
3736 | This section provides Timer IRQ handler function. |
||
3737 | |||
3738 | @endverbatim |
||
3739 | * @{ |
||
3740 | */ |
||
3741 | /** |
||
3742 | * @brief This function handles TIM interrupts requests. |
||
3743 | * @param htim TIM handle |
||
3744 | * @retval None |
||
3745 | */ |
||
3746 | void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) |
||
3747 | { |
||
3748 | /* Capture compare 1 event */ |
||
3749 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) |
||
3750 | { |
||
3751 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET) |
||
3752 | { |
||
3753 | { |
||
3754 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); |
||
3755 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
||
3756 | |||
3757 | /* Input capture event */ |
||
3758 | if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U) |
||
3759 | { |
||
3760 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3761 | htim->IC_CaptureCallback(htim); |
||
3762 | #else |
||
3763 | HAL_TIM_IC_CaptureCallback(htim); |
||
3764 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3765 | } |
||
3766 | /* Output compare event */ |
||
3767 | else |
||
3768 | { |
||
3769 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3770 | htim->OC_DelayElapsedCallback(htim); |
||
3771 | htim->PWM_PulseFinishedCallback(htim); |
||
3772 | #else |
||
3773 | HAL_TIM_OC_DelayElapsedCallback(htim); |
||
3774 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
||
3775 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3776 | } |
||
3777 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
||
3778 | } |
||
3779 | } |
||
3780 | } |
||
3781 | /* Capture compare 2 event */ |
||
3782 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) |
||
3783 | { |
||
3784 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET) |
||
3785 | { |
||
3786 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); |
||
3787 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
||
3788 | /* Input capture event */ |
||
3789 | if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U) |
||
3790 | { |
||
3791 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3792 | htim->IC_CaptureCallback(htim); |
||
3793 | #else |
||
3794 | HAL_TIM_IC_CaptureCallback(htim); |
||
3795 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3796 | } |
||
3797 | /* Output compare event */ |
||
3798 | else |
||
3799 | { |
||
3800 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3801 | htim->OC_DelayElapsedCallback(htim); |
||
3802 | htim->PWM_PulseFinishedCallback(htim); |
||
3803 | #else |
||
3804 | HAL_TIM_OC_DelayElapsedCallback(htim); |
||
3805 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
||
3806 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3807 | } |
||
3808 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
||
3809 | } |
||
3810 | } |
||
3811 | /* Capture compare 3 event */ |
||
3812 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) |
||
3813 | { |
||
3814 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET) |
||
3815 | { |
||
3816 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); |
||
3817 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
||
3818 | /* Input capture event */ |
||
3819 | if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U) |
||
3820 | { |
||
3821 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3822 | htim->IC_CaptureCallback(htim); |
||
3823 | #else |
||
3824 | HAL_TIM_IC_CaptureCallback(htim); |
||
3825 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3826 | } |
||
3827 | /* Output compare event */ |
||
3828 | else |
||
3829 | { |
||
3830 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3831 | htim->OC_DelayElapsedCallback(htim); |
||
3832 | htim->PWM_PulseFinishedCallback(htim); |
||
3833 | #else |
||
3834 | HAL_TIM_OC_DelayElapsedCallback(htim); |
||
3835 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
||
3836 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3837 | } |
||
3838 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
||
3839 | } |
||
3840 | } |
||
3841 | /* Capture compare 4 event */ |
||
3842 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) |
||
3843 | { |
||
3844 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET) |
||
3845 | { |
||
3846 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); |
||
3847 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
||
3848 | /* Input capture event */ |
||
3849 | if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U) |
||
3850 | { |
||
3851 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3852 | htim->IC_CaptureCallback(htim); |
||
3853 | #else |
||
3854 | HAL_TIM_IC_CaptureCallback(htim); |
||
3855 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3856 | } |
||
3857 | /* Output compare event */ |
||
3858 | else |
||
3859 | { |
||
3860 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3861 | htim->OC_DelayElapsedCallback(htim); |
||
3862 | htim->PWM_PulseFinishedCallback(htim); |
||
3863 | #else |
||
3864 | HAL_TIM_OC_DelayElapsedCallback(htim); |
||
3865 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
||
3866 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3867 | } |
||
3868 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
||
3869 | } |
||
3870 | } |
||
3871 | /* TIM Update event */ |
||
3872 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) |
||
3873 | { |
||
3874 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET) |
||
3875 | { |
||
3876 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); |
||
3877 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3878 | htim->PeriodElapsedCallback(htim); |
||
3879 | #else |
||
3880 | HAL_TIM_PeriodElapsedCallback(htim); |
||
3881 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3882 | } |
||
3883 | } |
||
3884 | /* TIM Break input event */ |
||
3885 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET) |
||
3886 | { |
||
3887 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET) |
||
3888 | { |
||
3889 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK); |
||
3890 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3891 | htim->BreakCallback(htim); |
||
3892 | #else |
||
3893 | HAL_TIMEx_BreakCallback(htim); |
||
3894 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3895 | } |
||
3896 | } |
||
3897 | /* TIM Trigger detection event */ |
||
3898 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) |
||
3899 | { |
||
3900 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET) |
||
3901 | { |
||
3902 | __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); |
||
3903 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3904 | htim->TriggerCallback(htim); |
||
3905 | #else |
||
3906 | HAL_TIM_TriggerCallback(htim); |
||
3907 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3908 | } |
||
3909 | } |
||
3910 | /* TIM commutation event */ |
||
3911 | if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET) |
||
3912 | { |
||
3913 | if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET) |
||
3914 | { |
||
3915 | __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM); |
||
3916 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
3917 | htim->CommutationCallback(htim); |
||
3918 | #else |
||
3919 | HAL_TIMEx_CommutCallback(htim); |
||
3920 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
3921 | } |
||
3922 | } |
||
3923 | } |
||
3924 | |||
3925 | /** |
||
3926 | * @} |
||
3927 | */ |
||
3928 | |||
3929 | /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions |
||
3930 | * @brief TIM Peripheral Control functions |
||
3931 | * |
||
3932 | @verbatim |
||
3933 | ============================================================================== |
||
3934 | ##### Peripheral Control functions ##### |
||
3935 | ============================================================================== |
||
3936 | [..] |
||
3937 | This section provides functions allowing to: |
||
3938 | (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. |
||
3939 | (+) Configure External Clock source. |
||
3940 | (+) Configure Complementary channels, break features and dead time. |
||
3941 | (+) Configure Master and the Slave synchronization. |
||
3942 | (+) Configure the DMA Burst Mode. |
||
3943 | |||
3944 | @endverbatim |
||
3945 | * @{ |
||
3946 | */ |
||
3947 | |||
3948 | /** |
||
3949 | * @brief Initializes the TIM Output Compare Channels according to the specified |
||
3950 | * parameters in the TIM_OC_InitTypeDef. |
||
3951 | * @param htim TIM Output Compare handle |
||
3952 | * @param sConfig TIM Output Compare configuration structure |
||
3953 | * @param Channel TIM Channels to configure |
||
3954 | * This parameter can be one of the following values: |
||
3955 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
3956 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
3957 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
3958 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
3959 | * @retval HAL status |
||
3960 | */ |
||
3961 | HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, |
||
3962 | TIM_OC_InitTypeDef *sConfig, |
||
3963 | uint32_t Channel) |
||
3964 | { |
||
3965 | /* Check the parameters */ |
||
3966 | assert_param(IS_TIM_CHANNELS(Channel)); |
||
3967 | assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); |
||
3968 | assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
||
3969 | |||
3970 | /* Process Locked */ |
||
3971 | __HAL_LOCK(htim); |
||
3972 | |||
3973 | switch (Channel) |
||
3974 | { |
||
3975 | case TIM_CHANNEL_1: |
||
3976 | { |
||
3977 | /* Check the parameters */ |
||
3978 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
||
3979 | |||
3980 | /* Configure the TIM Channel 1 in Output Compare */ |
||
3981 | TIM_OC1_SetConfig(htim->Instance, sConfig); |
||
3982 | break; |
||
3983 | } |
||
3984 | |||
3985 | case TIM_CHANNEL_2: |
||
3986 | { |
||
3987 | /* Check the parameters */ |
||
3988 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
||
3989 | |||
3990 | /* Configure the TIM Channel 2 in Output Compare */ |
||
3991 | TIM_OC2_SetConfig(htim->Instance, sConfig); |
||
3992 | break; |
||
3993 | } |
||
3994 | |||
3995 | case TIM_CHANNEL_3: |
||
3996 | { |
||
3997 | /* Check the parameters */ |
||
3998 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
||
3999 | |||
4000 | /* Configure the TIM Channel 3 in Output Compare */ |
||
4001 | TIM_OC3_SetConfig(htim->Instance, sConfig); |
||
4002 | break; |
||
4003 | } |
||
4004 | |||
4005 | case TIM_CHANNEL_4: |
||
4006 | { |
||
4007 | /* Check the parameters */ |
||
4008 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
||
4009 | |||
4010 | /* Configure the TIM Channel 4 in Output Compare */ |
||
4011 | TIM_OC4_SetConfig(htim->Instance, sConfig); |
||
4012 | break; |
||
4013 | } |
||
4014 | |||
4015 | default: |
||
4016 | break; |
||
4017 | } |
||
4018 | |||
4019 | __HAL_UNLOCK(htim); |
||
4020 | |||
4021 | return HAL_OK; |
||
4022 | } |
||
4023 | |||
4024 | /** |
||
4025 | * @brief Initializes the TIM Input Capture Channels according to the specified |
||
4026 | * parameters in the TIM_IC_InitTypeDef. |
||
4027 | * @param htim TIM IC handle |
||
4028 | * @param sConfig TIM Input Capture configuration structure |
||
4029 | * @param Channel TIM Channel to configure |
||
4030 | * This parameter can be one of the following values: |
||
4031 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
4032 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
4033 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
4034 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
4035 | * @retval HAL status |
||
4036 | */ |
||
4037 | HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef *sConfig, uint32_t Channel) |
||
4038 | { |
||
4039 | /* Check the parameters */ |
||
4040 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
||
4041 | assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); |
||
4042 | assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); |
||
4043 | assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); |
||
4044 | assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); |
||
4045 | |||
4046 | /* Process Locked */ |
||
4047 | __HAL_LOCK(htim); |
||
4048 | |||
4049 | if (Channel == TIM_CHANNEL_1) |
||
4050 | { |
||
4051 | /* TI1 Configuration */ |
||
4052 | TIM_TI1_SetConfig(htim->Instance, |
||
4053 | sConfig->ICPolarity, |
||
4054 | sConfig->ICSelection, |
||
4055 | sConfig->ICFilter); |
||
4056 | |||
4057 | /* Reset the IC1PSC Bits */ |
||
4058 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
||
4059 | |||
4060 | /* Set the IC1PSC value */ |
||
4061 | htim->Instance->CCMR1 |= sConfig->ICPrescaler; |
||
4062 | } |
||
4063 | else if (Channel == TIM_CHANNEL_2) |
||
4064 | { |
||
4065 | /* TI2 Configuration */ |
||
4066 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
||
4067 | |||
4068 | TIM_TI2_SetConfig(htim->Instance, |
||
4069 | sConfig->ICPolarity, |
||
4070 | sConfig->ICSelection, |
||
4071 | sConfig->ICFilter); |
||
4072 | |||
4073 | /* Reset the IC2PSC Bits */ |
||
4074 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
||
4075 | |||
4076 | /* Set the IC2PSC value */ |
||
4077 | htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U); |
||
4078 | } |
||
4079 | else if (Channel == TIM_CHANNEL_3) |
||
4080 | { |
||
4081 | /* TI3 Configuration */ |
||
4082 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
||
4083 | |||
4084 | TIM_TI3_SetConfig(htim->Instance, |
||
4085 | sConfig->ICPolarity, |
||
4086 | sConfig->ICSelection, |
||
4087 | sConfig->ICFilter); |
||
4088 | |||
4089 | /* Reset the IC3PSC Bits */ |
||
4090 | htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; |
||
4091 | |||
4092 | /* Set the IC3PSC value */ |
||
4093 | htim->Instance->CCMR2 |= sConfig->ICPrescaler; |
||
4094 | } |
||
4095 | else |
||
4096 | { |
||
4097 | /* TI4 Configuration */ |
||
4098 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
||
4099 | |||
4100 | TIM_TI4_SetConfig(htim->Instance, |
||
4101 | sConfig->ICPolarity, |
||
4102 | sConfig->ICSelection, |
||
4103 | sConfig->ICFilter); |
||
4104 | |||
4105 | /* Reset the IC4PSC Bits */ |
||
4106 | htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; |
||
4107 | |||
4108 | /* Set the IC4PSC value */ |
||
4109 | htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U); |
||
4110 | } |
||
4111 | |||
4112 | __HAL_UNLOCK(htim); |
||
4113 | |||
4114 | return HAL_OK; |
||
4115 | } |
||
4116 | |||
4117 | /** |
||
4118 | * @brief Initializes the TIM PWM channels according to the specified |
||
4119 | * parameters in the TIM_OC_InitTypeDef. |
||
4120 | * @param htim TIM PWM handle |
||
4121 | * @param sConfig TIM PWM configuration structure |
||
4122 | * @param Channel TIM Channels to be configured |
||
4123 | * This parameter can be one of the following values: |
||
4124 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
4125 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
4126 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
4127 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
4128 | * @retval HAL status |
||
4129 | */ |
||
4130 | HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, |
||
4131 | TIM_OC_InitTypeDef *sConfig, |
||
4132 | uint32_t Channel) |
||
4133 | { |
||
4134 | /* Check the parameters */ |
||
4135 | assert_param(IS_TIM_CHANNELS(Channel)); |
||
4136 | assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); |
||
4137 | assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); |
||
4138 | assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); |
||
4139 | |||
4140 | /* Process Locked */ |
||
4141 | __HAL_LOCK(htim); |
||
4142 | |||
4143 | switch (Channel) |
||
4144 | { |
||
4145 | case TIM_CHANNEL_1: |
||
4146 | { |
||
4147 | /* Check the parameters */ |
||
4148 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
||
4149 | |||
4150 | /* Configure the Channel 1 in PWM mode */ |
||
4151 | TIM_OC1_SetConfig(htim->Instance, sConfig); |
||
4152 | |||
4153 | /* Set the Preload enable bit for channel1 */ |
||
4154 | htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; |
||
4155 | |||
4156 | /* Configure the Output Fast mode */ |
||
4157 | htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; |
||
4158 | htim->Instance->CCMR1 |= sConfig->OCFastMode; |
||
4159 | break; |
||
4160 | } |
||
4161 | |||
4162 | case TIM_CHANNEL_2: |
||
4163 | { |
||
4164 | /* Check the parameters */ |
||
4165 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
||
4166 | |||
4167 | /* Configure the Channel 2 in PWM mode */ |
||
4168 | TIM_OC2_SetConfig(htim->Instance, sConfig); |
||
4169 | |||
4170 | /* Set the Preload enable bit for channel2 */ |
||
4171 | htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; |
||
4172 | |||
4173 | /* Configure the Output Fast mode */ |
||
4174 | htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; |
||
4175 | htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U; |
||
4176 | break; |
||
4177 | } |
||
4178 | |||
4179 | case TIM_CHANNEL_3: |
||
4180 | { |
||
4181 | /* Check the parameters */ |
||
4182 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
||
4183 | |||
4184 | /* Configure the Channel 3 in PWM mode */ |
||
4185 | TIM_OC3_SetConfig(htim->Instance, sConfig); |
||
4186 | |||
4187 | /* Set the Preload enable bit for channel3 */ |
||
4188 | htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; |
||
4189 | |||
4190 | /* Configure the Output Fast mode */ |
||
4191 | htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; |
||
4192 | htim->Instance->CCMR2 |= sConfig->OCFastMode; |
||
4193 | break; |
||
4194 | } |
||
4195 | |||
4196 | case TIM_CHANNEL_4: |
||
4197 | { |
||
4198 | /* Check the parameters */ |
||
4199 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
||
4200 | |||
4201 | /* Configure the Channel 4 in PWM mode */ |
||
4202 | TIM_OC4_SetConfig(htim->Instance, sConfig); |
||
4203 | |||
4204 | /* Set the Preload enable bit for channel4 */ |
||
4205 | htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; |
||
4206 | |||
4207 | /* Configure the Output Fast mode */ |
||
4208 | htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; |
||
4209 | htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U; |
||
4210 | break; |
||
4211 | } |
||
4212 | |||
4213 | default: |
||
4214 | break; |
||
4215 | } |
||
4216 | |||
4217 | __HAL_UNLOCK(htim); |
||
4218 | |||
4219 | return HAL_OK; |
||
4220 | } |
||
4221 | |||
4222 | /** |
||
4223 | * @brief Initializes the TIM One Pulse Channels according to the specified |
||
4224 | * parameters in the TIM_OnePulse_InitTypeDef. |
||
4225 | * @param htim TIM One Pulse handle |
||
4226 | * @param sConfig TIM One Pulse configuration structure |
||
4227 | * @param OutputChannel TIM output channel to configure |
||
4228 | * This parameter can be one of the following values: |
||
4229 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
4230 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
4231 | * @param InputChannel TIM input Channel to configure |
||
4232 | * This parameter can be one of the following values: |
||
4233 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
4234 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
4235 | * @note To output a waveform with a minimum delay user can enable the fast |
||
4236 | * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx |
||
4237 | * output is forced in response to the edge detection on TIx input, |
||
4238 | * without taking in account the comparison. |
||
4239 | * @retval HAL status |
||
4240 | */ |
||
4241 | HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig, |
||
4242 | uint32_t OutputChannel, uint32_t InputChannel) |
||
4243 | { |
||
4244 | TIM_OC_InitTypeDef temp1; |
||
4245 | |||
4246 | /* Check the parameters */ |
||
4247 | assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); |
||
4248 | assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); |
||
4249 | |||
4250 | if (OutputChannel != InputChannel) |
||
4251 | { |
||
4252 | /* Process Locked */ |
||
4253 | __HAL_LOCK(htim); |
||
4254 | |||
4255 | htim->State = HAL_TIM_STATE_BUSY; |
||
4256 | |||
4257 | /* Extract the Output compare configuration from sConfig structure */ |
||
4258 | temp1.OCMode = sConfig->OCMode; |
||
4259 | temp1.Pulse = sConfig->Pulse; |
||
4260 | temp1.OCPolarity = sConfig->OCPolarity; |
||
4261 | temp1.OCNPolarity = sConfig->OCNPolarity; |
||
4262 | temp1.OCIdleState = sConfig->OCIdleState; |
||
4263 | temp1.OCNIdleState = sConfig->OCNIdleState; |
||
4264 | |||
4265 | switch (OutputChannel) |
||
4266 | { |
||
4267 | case TIM_CHANNEL_1: |
||
4268 | { |
||
4269 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
||
4270 | |||
4271 | TIM_OC1_SetConfig(htim->Instance, &temp1); |
||
4272 | break; |
||
4273 | } |
||
4274 | case TIM_CHANNEL_2: |
||
4275 | { |
||
4276 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
||
4277 | |||
4278 | TIM_OC2_SetConfig(htim->Instance, &temp1); |
||
4279 | break; |
||
4280 | } |
||
4281 | default: |
||
4282 | break; |
||
4283 | } |
||
4284 | |||
4285 | switch (InputChannel) |
||
4286 | { |
||
4287 | case TIM_CHANNEL_1: |
||
4288 | { |
||
4289 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
||
4290 | |||
4291 | TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, |
||
4292 | sConfig->ICSelection, sConfig->ICFilter); |
||
4293 | |||
4294 | /* Reset the IC1PSC Bits */ |
||
4295 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; |
||
4296 | |||
4297 | /* Select the Trigger source */ |
||
4298 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
||
4299 | htim->Instance->SMCR |= TIM_TS_TI1FP1; |
||
4300 | |||
4301 | /* Select the Slave Mode */ |
||
4302 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
||
4303 | htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
||
4304 | break; |
||
4305 | } |
||
4306 | case TIM_CHANNEL_2: |
||
4307 | { |
||
4308 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
||
4309 | |||
4310 | TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, |
||
4311 | sConfig->ICSelection, sConfig->ICFilter); |
||
4312 | |||
4313 | /* Reset the IC2PSC Bits */ |
||
4314 | htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; |
||
4315 | |||
4316 | /* Select the Trigger source */ |
||
4317 | htim->Instance->SMCR &= ~TIM_SMCR_TS; |
||
4318 | htim->Instance->SMCR |= TIM_TS_TI2FP2; |
||
4319 | |||
4320 | /* Select the Slave Mode */ |
||
4321 | htim->Instance->SMCR &= ~TIM_SMCR_SMS; |
||
4322 | htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; |
||
4323 | break; |
||
4324 | } |
||
4325 | |||
4326 | default: |
||
4327 | break; |
||
4328 | } |
||
4329 | |||
4330 | htim->State = HAL_TIM_STATE_READY; |
||
4331 | |||
4332 | __HAL_UNLOCK(htim); |
||
4333 | |||
4334 | return HAL_OK; |
||
4335 | } |
||
4336 | else |
||
4337 | { |
||
4338 | return HAL_ERROR; |
||
4339 | } |
||
4340 | } |
||
4341 | |||
4342 | /** |
||
4343 | * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral |
||
4344 | * @param htim TIM handle |
||
4345 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
||
4346 | * This parameter can be one of the following values: |
||
4347 | * @arg TIM_DMABASE_CR1 |
||
4348 | * @arg TIM_DMABASE_CR2 |
||
4349 | * @arg TIM_DMABASE_SMCR |
||
4350 | * @arg TIM_DMABASE_DIER |
||
4351 | * @arg TIM_DMABASE_SR |
||
4352 | * @arg TIM_DMABASE_EGR |
||
4353 | * @arg TIM_DMABASE_CCMR1 |
||
4354 | * @arg TIM_DMABASE_CCMR2 |
||
4355 | * @arg TIM_DMABASE_CCER |
||
4356 | * @arg TIM_DMABASE_CNT |
||
4357 | * @arg TIM_DMABASE_PSC |
||
4358 | * @arg TIM_DMABASE_ARR |
||
4359 | * @arg TIM_DMABASE_RCR |
||
4360 | * @arg TIM_DMABASE_CCR1 |
||
4361 | * @arg TIM_DMABASE_CCR2 |
||
4362 | * @arg TIM_DMABASE_CCR3 |
||
4363 | * @arg TIM_DMABASE_CCR4 |
||
4364 | * @arg TIM_DMABASE_BDTR |
||
4365 | * @param BurstRequestSrc TIM DMA Request sources |
||
4366 | * This parameter can be one of the following values: |
||
4367 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
||
4368 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
||
4369 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
||
4370 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
||
4371 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
||
4372 | * @arg TIM_DMA_COM: TIM Commutation DMA source |
||
4373 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
||
4374 | * @param BurstBuffer The Buffer address. |
||
4375 | * @param BurstLength DMA Burst length. This parameter can be one value |
||
4376 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
||
4377 | * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
||
4378 | * @retval HAL status |
||
4379 | */ |
||
4380 | HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
||
4381 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
||
4382 | { |
||
4383 | return HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
||
4384 | ((BurstLength) >> 8U) + 1U); |
||
4385 | } |
||
4386 | |||
4387 | /** |
||
4388 | * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral |
||
4389 | * @param htim TIM handle |
||
4390 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write |
||
4391 | * This parameter can be one of the following values: |
||
4392 | * @arg TIM_DMABASE_CR1 |
||
4393 | * @arg TIM_DMABASE_CR2 |
||
4394 | * @arg TIM_DMABASE_SMCR |
||
4395 | * @arg TIM_DMABASE_DIER |
||
4396 | * @arg TIM_DMABASE_SR |
||
4397 | * @arg TIM_DMABASE_EGR |
||
4398 | * @arg TIM_DMABASE_CCMR1 |
||
4399 | * @arg TIM_DMABASE_CCMR2 |
||
4400 | * @arg TIM_DMABASE_CCER |
||
4401 | * @arg TIM_DMABASE_CNT |
||
4402 | * @arg TIM_DMABASE_PSC |
||
4403 | * @arg TIM_DMABASE_ARR |
||
4404 | * @arg TIM_DMABASE_RCR |
||
4405 | * @arg TIM_DMABASE_CCR1 |
||
4406 | * @arg TIM_DMABASE_CCR2 |
||
4407 | * @arg TIM_DMABASE_CCR3 |
||
4408 | * @arg TIM_DMABASE_CCR4 |
||
4409 | * @arg TIM_DMABASE_BDTR |
||
4410 | * @param BurstRequestSrc TIM DMA Request sources |
||
4411 | * This parameter can be one of the following values: |
||
4412 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
||
4413 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
||
4414 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
||
4415 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
||
4416 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
||
4417 | * @arg TIM_DMA_COM: TIM Commutation DMA source |
||
4418 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
||
4419 | * @param BurstBuffer The Buffer address. |
||
4420 | * @param BurstLength DMA Burst length. This parameter can be one value |
||
4421 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
||
4422 | * @param DataLength Data length. This parameter can be one value |
||
4423 | * between 1 and 0xFFFF. |
||
4424 | * @retval HAL status |
||
4425 | */ |
||
4426 | HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
||
4427 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
||
4428 | uint32_t BurstLength, uint32_t DataLength) |
||
4429 | { |
||
4430 | /* Check the parameters */ |
||
4431 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
||
4432 | assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
||
4433 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
||
4434 | assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
||
4435 | assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
||
4436 | |||
4437 | if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
||
4438 | { |
||
4439 | return HAL_BUSY; |
||
4440 | } |
||
4441 | else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
||
4442 | { |
||
4443 | if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
||
4444 | { |
||
4445 | return HAL_ERROR; |
||
4446 | } |
||
4447 | else |
||
4448 | { |
||
4449 | htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
||
4450 | } |
||
4451 | } |
||
4452 | else |
||
4453 | { |
||
4454 | /* nothing to do */ |
||
4455 | } |
||
4456 | switch (BurstRequestSrc) |
||
4457 | { |
||
4458 | case TIM_DMA_UPDATE: |
||
4459 | { |
||
4460 | /* Set the DMA Period elapsed callbacks */ |
||
4461 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
||
4462 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
||
4463 | |||
4464 | /* Set the DMA error callback */ |
||
4465 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
||
4466 | |||
4467 | /* Enable the DMA channel */ |
||
4468 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, |
||
4469 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
||
4470 | { |
||
4471 | /* Return error status */ |
||
4472 | return HAL_ERROR; |
||
4473 | } |
||
4474 | break; |
||
4475 | } |
||
4476 | case TIM_DMA_CC1: |
||
4477 | { |
||
4478 | /* Set the DMA compare callbacks */ |
||
4479 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
4480 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
4481 | |||
4482 | /* Set the DMA error callback */ |
||
4483 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
||
4484 | |||
4485 | /* Enable the DMA channel */ |
||
4486 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, |
||
4487 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
||
4488 | { |
||
4489 | /* Return error status */ |
||
4490 | return HAL_ERROR; |
||
4491 | } |
||
4492 | break; |
||
4493 | } |
||
4494 | case TIM_DMA_CC2: |
||
4495 | { |
||
4496 | /* Set the DMA compare callbacks */ |
||
4497 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
4498 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
4499 | |||
4500 | /* Set the DMA error callback */ |
||
4501 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
||
4502 | |||
4503 | /* Enable the DMA channel */ |
||
4504 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, |
||
4505 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
||
4506 | { |
||
4507 | /* Return error status */ |
||
4508 | return HAL_ERROR; |
||
4509 | } |
||
4510 | break; |
||
4511 | } |
||
4512 | case TIM_DMA_CC3: |
||
4513 | { |
||
4514 | /* Set the DMA compare callbacks */ |
||
4515 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
4516 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
4517 | |||
4518 | /* Set the DMA error callback */ |
||
4519 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
||
4520 | |||
4521 | /* Enable the DMA channel */ |
||
4522 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, |
||
4523 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
||
4524 | { |
||
4525 | /* Return error status */ |
||
4526 | return HAL_ERROR; |
||
4527 | } |
||
4528 | break; |
||
4529 | } |
||
4530 | case TIM_DMA_CC4: |
||
4531 | { |
||
4532 | /* Set the DMA compare callbacks */ |
||
4533 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; |
||
4534 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt; |
||
4535 | |||
4536 | /* Set the DMA error callback */ |
||
4537 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
||
4538 | |||
4539 | /* Enable the DMA channel */ |
||
4540 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, |
||
4541 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
||
4542 | { |
||
4543 | /* Return error status */ |
||
4544 | return HAL_ERROR; |
||
4545 | } |
||
4546 | break; |
||
4547 | } |
||
4548 | case TIM_DMA_COM: |
||
4549 | { |
||
4550 | /* Set the DMA commutation callbacks */ |
||
4551 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; |
||
4552 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; |
||
4553 | |||
4554 | /* Set the DMA error callback */ |
||
4555 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; |
||
4556 | |||
4557 | /* Enable the DMA channel */ |
||
4558 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, |
||
4559 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
||
4560 | { |
||
4561 | /* Return error status */ |
||
4562 | return HAL_ERROR; |
||
4563 | } |
||
4564 | break; |
||
4565 | } |
||
4566 | case TIM_DMA_TRIGGER: |
||
4567 | { |
||
4568 | /* Set the DMA trigger callbacks */ |
||
4569 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
||
4570 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
||
4571 | |||
4572 | /* Set the DMA error callback */ |
||
4573 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
||
4574 | |||
4575 | /* Enable the DMA channel */ |
||
4576 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, |
||
4577 | (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK) |
||
4578 | { |
||
4579 | /* Return error status */ |
||
4580 | return HAL_ERROR; |
||
4581 | } |
||
4582 | break; |
||
4583 | } |
||
4584 | default: |
||
4585 | break; |
||
4586 | } |
||
4587 | |||
4588 | /* Configure the DMA Burst Mode */ |
||
4589 | htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
||
4590 | /* Enable the TIM DMA Request */ |
||
4591 | __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
||
4592 | |||
4593 | /* Return function status */ |
||
4594 | return HAL_OK; |
||
4595 | } |
||
4596 | |||
4597 | /** |
||
4598 | * @brief Stops the TIM DMA Burst mode |
||
4599 | * @param htim TIM handle |
||
4600 | * @param BurstRequestSrc TIM DMA Request sources to disable |
||
4601 | * @retval HAL status |
||
4602 | */ |
||
4603 | HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
||
4604 | { |
||
4605 | /* Check the parameters */ |
||
4606 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
||
4607 | |||
4608 | /* Abort the DMA transfer (at least disable the DMA channel) */ |
||
4609 | switch (BurstRequestSrc) |
||
4610 | { |
||
4611 | case TIM_DMA_UPDATE: |
||
4612 | { |
||
4613 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
||
4614 | break; |
||
4615 | } |
||
4616 | case TIM_DMA_CC1: |
||
4617 | { |
||
4618 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
||
4619 | break; |
||
4620 | } |
||
4621 | case TIM_DMA_CC2: |
||
4622 | { |
||
4623 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
||
4624 | break; |
||
4625 | } |
||
4626 | case TIM_DMA_CC3: |
||
4627 | { |
||
4628 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
||
4629 | break; |
||
4630 | } |
||
4631 | case TIM_DMA_CC4: |
||
4632 | { |
||
4633 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
||
4634 | break; |
||
4635 | } |
||
4636 | case TIM_DMA_COM: |
||
4637 | { |
||
4638 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); |
||
4639 | break; |
||
4640 | } |
||
4641 | case TIM_DMA_TRIGGER: |
||
4642 | { |
||
4643 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
||
4644 | break; |
||
4645 | } |
||
4646 | default: |
||
4647 | break; |
||
4648 | } |
||
4649 | |||
4650 | /* Disable the TIM Update DMA request */ |
||
4651 | __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
||
4652 | |||
4653 | /* Change the DMA burst operation state */ |
||
4654 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
||
4655 | |||
4656 | /* Return function status */ |
||
4657 | return HAL_OK; |
||
4658 | } |
||
4659 | |||
4660 | /** |
||
4661 | * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
||
4662 | * @param htim TIM handle |
||
4663 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
||
4664 | * This parameter can be one of the following values: |
||
4665 | * @arg TIM_DMABASE_CR1 |
||
4666 | * @arg TIM_DMABASE_CR2 |
||
4667 | * @arg TIM_DMABASE_SMCR |
||
4668 | * @arg TIM_DMABASE_DIER |
||
4669 | * @arg TIM_DMABASE_SR |
||
4670 | * @arg TIM_DMABASE_EGR |
||
4671 | * @arg TIM_DMABASE_CCMR1 |
||
4672 | * @arg TIM_DMABASE_CCMR2 |
||
4673 | * @arg TIM_DMABASE_CCER |
||
4674 | * @arg TIM_DMABASE_CNT |
||
4675 | * @arg TIM_DMABASE_PSC |
||
4676 | * @arg TIM_DMABASE_ARR |
||
4677 | * @arg TIM_DMABASE_RCR |
||
4678 | * @arg TIM_DMABASE_CCR1 |
||
4679 | * @arg TIM_DMABASE_CCR2 |
||
4680 | * @arg TIM_DMABASE_CCR3 |
||
4681 | * @arg TIM_DMABASE_CCR4 |
||
4682 | * @arg TIM_DMABASE_BDTR |
||
4683 | * @param BurstRequestSrc TIM DMA Request sources |
||
4684 | * This parameter can be one of the following values: |
||
4685 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
||
4686 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
||
4687 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
||
4688 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
||
4689 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
||
4690 | * @arg TIM_DMA_COM: TIM Commutation DMA source |
||
4691 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
||
4692 | * @param BurstBuffer The Buffer address. |
||
4693 | * @param BurstLength DMA Burst length. This parameter can be one value |
||
4694 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
||
4695 | * @note This function should be used only when BurstLength is equal to DMA data transfer length. |
||
4696 | * @retval HAL status |
||
4697 | */ |
||
4698 | HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
||
4699 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength) |
||
4700 | { |
||
4701 | return HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength, |
||
4702 | ((BurstLength) >> 8U) + 1U); |
||
4703 | } |
||
4704 | |||
4705 | /** |
||
4706 | * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory |
||
4707 | * @param htim TIM handle |
||
4708 | * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read |
||
4709 | * This parameter can be one of the following values: |
||
4710 | * @arg TIM_DMABASE_CR1 |
||
4711 | * @arg TIM_DMABASE_CR2 |
||
4712 | * @arg TIM_DMABASE_SMCR |
||
4713 | * @arg TIM_DMABASE_DIER |
||
4714 | * @arg TIM_DMABASE_SR |
||
4715 | * @arg TIM_DMABASE_EGR |
||
4716 | * @arg TIM_DMABASE_CCMR1 |
||
4717 | * @arg TIM_DMABASE_CCMR2 |
||
4718 | * @arg TIM_DMABASE_CCER |
||
4719 | * @arg TIM_DMABASE_CNT |
||
4720 | * @arg TIM_DMABASE_PSC |
||
4721 | * @arg TIM_DMABASE_ARR |
||
4722 | * @arg TIM_DMABASE_RCR |
||
4723 | * @arg TIM_DMABASE_CCR1 |
||
4724 | * @arg TIM_DMABASE_CCR2 |
||
4725 | * @arg TIM_DMABASE_CCR3 |
||
4726 | * @arg TIM_DMABASE_CCR4 |
||
4727 | * @arg TIM_DMABASE_BDTR |
||
4728 | * @param BurstRequestSrc TIM DMA Request sources |
||
4729 | * This parameter can be one of the following values: |
||
4730 | * @arg TIM_DMA_UPDATE: TIM update Interrupt source |
||
4731 | * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source |
||
4732 | * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source |
||
4733 | * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source |
||
4734 | * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source |
||
4735 | * @arg TIM_DMA_COM: TIM Commutation DMA source |
||
4736 | * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source |
||
4737 | * @param BurstBuffer The Buffer address. |
||
4738 | * @param BurstLength DMA Burst length. This parameter can be one value |
||
4739 | * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. |
||
4740 | * @param DataLength Data length. This parameter can be one value |
||
4741 | * between 1 and 0xFFFF. |
||
4742 | * @retval HAL status |
||
4743 | */ |
||
4744 | HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, |
||
4745 | uint32_t BurstRequestSrc, uint32_t *BurstBuffer, |
||
4746 | uint32_t BurstLength, uint32_t DataLength) |
||
4747 | { |
||
4748 | /* Check the parameters */ |
||
4749 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
||
4750 | assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); |
||
4751 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
||
4752 | assert_param(IS_TIM_DMA_LENGTH(BurstLength)); |
||
4753 | assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength)); |
||
4754 | |||
4755 | if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY) |
||
4756 | { |
||
4757 | return HAL_BUSY; |
||
4758 | } |
||
4759 | else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY) |
||
4760 | { |
||
4761 | if ((BurstBuffer == NULL) && (BurstLength > 0U)) |
||
4762 | { |
||
4763 | return HAL_ERROR; |
||
4764 | } |
||
4765 | else |
||
4766 | { |
||
4767 | htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY; |
||
4768 | } |
||
4769 | } |
||
4770 | else |
||
4771 | { |
||
4772 | /* nothing to do */ |
||
4773 | } |
||
4774 | switch (BurstRequestSrc) |
||
4775 | { |
||
4776 | case TIM_DMA_UPDATE: |
||
4777 | { |
||
4778 | /* Set the DMA Period elapsed callbacks */ |
||
4779 | htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; |
||
4780 | htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt; |
||
4781 | |||
4782 | /* Set the DMA error callback */ |
||
4783 | htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; |
||
4784 | |||
4785 | /* Enable the DMA channel */ |
||
4786 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
||
4787 | DataLength) != HAL_OK) |
||
4788 | { |
||
4789 | /* Return error status */ |
||
4790 | return HAL_ERROR; |
||
4791 | } |
||
4792 | break; |
||
4793 | } |
||
4794 | case TIM_DMA_CC1: |
||
4795 | { |
||
4796 | /* Set the DMA capture callbacks */ |
||
4797 | htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; |
||
4798 | htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
4799 | |||
4800 | /* Set the DMA error callback */ |
||
4801 | htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; |
||
4802 | |||
4803 | /* Enable the DMA channel */ |
||
4804 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
||
4805 | DataLength) != HAL_OK) |
||
4806 | { |
||
4807 | /* Return error status */ |
||
4808 | return HAL_ERROR; |
||
4809 | } |
||
4810 | break; |
||
4811 | } |
||
4812 | case TIM_DMA_CC2: |
||
4813 | { |
||
4814 | /* Set the DMA capture callbacks */ |
||
4815 | htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; |
||
4816 | htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
4817 | |||
4818 | /* Set the DMA error callback */ |
||
4819 | htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; |
||
4820 | |||
4821 | /* Enable the DMA channel */ |
||
4822 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
||
4823 | DataLength) != HAL_OK) |
||
4824 | { |
||
4825 | /* Return error status */ |
||
4826 | return HAL_ERROR; |
||
4827 | } |
||
4828 | break; |
||
4829 | } |
||
4830 | case TIM_DMA_CC3: |
||
4831 | { |
||
4832 | /* Set the DMA capture callbacks */ |
||
4833 | htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; |
||
4834 | htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
4835 | |||
4836 | /* Set the DMA error callback */ |
||
4837 | htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; |
||
4838 | |||
4839 | /* Enable the DMA channel */ |
||
4840 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
||
4841 | DataLength) != HAL_OK) |
||
4842 | { |
||
4843 | /* Return error status */ |
||
4844 | return HAL_ERROR; |
||
4845 | } |
||
4846 | break; |
||
4847 | } |
||
4848 | case TIM_DMA_CC4: |
||
4849 | { |
||
4850 | /* Set the DMA capture callbacks */ |
||
4851 | htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; |
||
4852 | htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt; |
||
4853 | |||
4854 | /* Set the DMA error callback */ |
||
4855 | htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; |
||
4856 | |||
4857 | /* Enable the DMA channel */ |
||
4858 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
||
4859 | DataLength) != HAL_OK) |
||
4860 | { |
||
4861 | /* Return error status */ |
||
4862 | return HAL_ERROR; |
||
4863 | } |
||
4864 | break; |
||
4865 | } |
||
4866 | case TIM_DMA_COM: |
||
4867 | { |
||
4868 | /* Set the DMA commutation callbacks */ |
||
4869 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; |
||
4870 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt; |
||
4871 | |||
4872 | /* Set the DMA error callback */ |
||
4873 | htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; |
||
4874 | |||
4875 | /* Enable the DMA channel */ |
||
4876 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
||
4877 | DataLength) != HAL_OK) |
||
4878 | { |
||
4879 | /* Return error status */ |
||
4880 | return HAL_ERROR; |
||
4881 | } |
||
4882 | break; |
||
4883 | } |
||
4884 | case TIM_DMA_TRIGGER: |
||
4885 | { |
||
4886 | /* Set the DMA trigger callbacks */ |
||
4887 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; |
||
4888 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt; |
||
4889 | |||
4890 | /* Set the DMA error callback */ |
||
4891 | htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; |
||
4892 | |||
4893 | /* Enable the DMA channel */ |
||
4894 | if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, |
||
4895 | DataLength) != HAL_OK) |
||
4896 | { |
||
4897 | /* Return error status */ |
||
4898 | return HAL_ERROR; |
||
4899 | } |
||
4900 | break; |
||
4901 | } |
||
4902 | default: |
||
4903 | break; |
||
4904 | } |
||
4905 | |||
4906 | /* Configure the DMA Burst Mode */ |
||
4907 | htim->Instance->DCR = (BurstBaseAddress | BurstLength); |
||
4908 | |||
4909 | /* Enable the TIM DMA Request */ |
||
4910 | __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); |
||
4911 | |||
4912 | /* Return function status */ |
||
4913 | return HAL_OK; |
||
4914 | } |
||
4915 | |||
4916 | /** |
||
4917 | * @brief Stop the DMA burst reading |
||
4918 | * @param htim TIM handle |
||
4919 | * @param BurstRequestSrc TIM DMA Request sources to disable. |
||
4920 | * @retval HAL status |
||
4921 | */ |
||
4922 | HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) |
||
4923 | { |
||
4924 | /* Check the parameters */ |
||
4925 | assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); |
||
4926 | |||
4927 | /* Abort the DMA transfer (at least disable the DMA channel) */ |
||
4928 | switch (BurstRequestSrc) |
||
4929 | { |
||
4930 | case TIM_DMA_UPDATE: |
||
4931 | { |
||
4932 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]); |
||
4933 | break; |
||
4934 | } |
||
4935 | case TIM_DMA_CC1: |
||
4936 | { |
||
4937 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]); |
||
4938 | break; |
||
4939 | } |
||
4940 | case TIM_DMA_CC2: |
||
4941 | { |
||
4942 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]); |
||
4943 | break; |
||
4944 | } |
||
4945 | case TIM_DMA_CC3: |
||
4946 | { |
||
4947 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]); |
||
4948 | break; |
||
4949 | } |
||
4950 | case TIM_DMA_CC4: |
||
4951 | { |
||
4952 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]); |
||
4953 | break; |
||
4954 | } |
||
4955 | case TIM_DMA_COM: |
||
4956 | { |
||
4957 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]); |
||
4958 | break; |
||
4959 | } |
||
4960 | case TIM_DMA_TRIGGER: |
||
4961 | { |
||
4962 | (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]); |
||
4963 | break; |
||
4964 | } |
||
4965 | default: |
||
4966 | break; |
||
4967 | } |
||
4968 | |||
4969 | /* Disable the TIM Update DMA request */ |
||
4970 | __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); |
||
4971 | |||
4972 | /* Change the DMA burst operation state */ |
||
4973 | htim->DMABurstState = HAL_DMA_BURST_STATE_READY; |
||
4974 | |||
4975 | /* Return function status */ |
||
4976 | return HAL_OK; |
||
4977 | } |
||
4978 | |||
4979 | /** |
||
4980 | * @brief Generate a software event |
||
4981 | * @param htim TIM handle |
||
4982 | * @param EventSource specifies the event source. |
||
4983 | * This parameter can be one of the following values: |
||
4984 | * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source |
||
4985 | * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source |
||
4986 | * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source |
||
4987 | * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source |
||
4988 | * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source |
||
4989 | * @arg TIM_EVENTSOURCE_COM: Timer COM event source |
||
4990 | * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source |
||
4991 | * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source |
||
4992 | * @note Basic timers can only generate an update event. |
||
4993 | * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances. |
||
4994 | * @note TIM_EVENTSOURCE_BREAK are relevant only for timer instances |
||
4995 | * supporting a break input. |
||
4996 | * @retval HAL status |
||
4997 | */ |
||
4998 | |||
4999 | HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) |
||
5000 | { |
||
5001 | /* Check the parameters */ |
||
5002 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
5003 | assert_param(IS_TIM_EVENT_SOURCE(EventSource)); |
||
5004 | |||
5005 | /* Process Locked */ |
||
5006 | __HAL_LOCK(htim); |
||
5007 | |||
5008 | /* Change the TIM state */ |
||
5009 | htim->State = HAL_TIM_STATE_BUSY; |
||
5010 | |||
5011 | /* Set the event sources */ |
||
5012 | htim->Instance->EGR = EventSource; |
||
5013 | |||
5014 | /* Change the TIM state */ |
||
5015 | htim->State = HAL_TIM_STATE_READY; |
||
5016 | |||
5017 | __HAL_UNLOCK(htim); |
||
5018 | |||
5019 | /* Return function status */ |
||
5020 | return HAL_OK; |
||
5021 | } |
||
5022 | |||
5023 | /** |
||
5024 | * @brief Configures the OCRef clear feature |
||
5025 | * @param htim TIM handle |
||
5026 | * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that |
||
5027 | * contains the OCREF clear feature and parameters for the TIM peripheral. |
||
5028 | * @param Channel specifies the TIM Channel |
||
5029 | * This parameter can be one of the following values: |
||
5030 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
||
5031 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
||
5032 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
||
5033 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
||
5034 | * @retval HAL status |
||
5035 | */ |
||
5036 | HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, |
||
5037 | TIM_ClearInputConfigTypeDef *sClearInputConfig, |
||
5038 | uint32_t Channel) |
||
5039 | { |
||
5040 | /* Check the parameters */ |
||
5041 | assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance)); |
||
5042 | assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); |
||
5043 | |||
5044 | /* Process Locked */ |
||
5045 | __HAL_LOCK(htim); |
||
5046 | |||
5047 | htim->State = HAL_TIM_STATE_BUSY; |
||
5048 | |||
5049 | switch (sClearInputConfig->ClearInputSource) |
||
5050 | { |
||
5051 | case TIM_CLEARINPUTSOURCE_NONE: |
||
5052 | { |
||
5053 | /* Clear the OCREF clear selection bit and the the ETR Bits */ |
||
5054 | CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP)); |
||
5055 | break; |
||
5056 | } |
||
5057 | |||
5058 | case TIM_CLEARINPUTSOURCE_ETR: |
||
5059 | { |
||
5060 | /* Check the parameters */ |
||
5061 | assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); |
||
5062 | assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); |
||
5063 | assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); |
||
5064 | |||
5065 | /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */ |
||
5066 | if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1) |
||
5067 | { |
||
5068 | htim->State = HAL_TIM_STATE_READY; |
||
5069 | __HAL_UNLOCK(htim); |
||
5070 | return HAL_ERROR; |
||
5071 | } |
||
5072 | |||
5073 | TIM_ETR_SetConfig(htim->Instance, |
||
5074 | sClearInputConfig->ClearInputPrescaler, |
||
5075 | sClearInputConfig->ClearInputPolarity, |
||
5076 | sClearInputConfig->ClearInputFilter); |
||
5077 | break; |
||
5078 | } |
||
5079 | |||
5080 | default: |
||
5081 | break; |
||
5082 | } |
||
5083 | |||
5084 | switch (Channel) |
||
5085 | { |
||
5086 | case TIM_CHANNEL_1: |
||
5087 | { |
||
5088 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
||
5089 | { |
||
5090 | /* Enable the OCREF clear feature for Channel 1 */ |
||
5091 | SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
||
5092 | } |
||
5093 | else |
||
5094 | { |
||
5095 | /* Disable the OCREF clear feature for Channel 1 */ |
||
5096 | CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE); |
||
5097 | } |
||
5098 | break; |
||
5099 | } |
||
5100 | case TIM_CHANNEL_2: |
||
5101 | { |
||
5102 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
||
5103 | { |
||
5104 | /* Enable the OCREF clear feature for Channel 2 */ |
||
5105 | SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
||
5106 | } |
||
5107 | else |
||
5108 | { |
||
5109 | /* Disable the OCREF clear feature for Channel 2 */ |
||
5110 | CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE); |
||
5111 | } |
||
5112 | break; |
||
5113 | } |
||
5114 | case TIM_CHANNEL_3: |
||
5115 | { |
||
5116 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
||
5117 | { |
||
5118 | /* Enable the OCREF clear feature for Channel 3 */ |
||
5119 | SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
||
5120 | } |
||
5121 | else |
||
5122 | { |
||
5123 | /* Disable the OCREF clear feature for Channel 3 */ |
||
5124 | CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE); |
||
5125 | } |
||
5126 | break; |
||
5127 | } |
||
5128 | case TIM_CHANNEL_4: |
||
5129 | { |
||
5130 | if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE) |
||
5131 | { |
||
5132 | /* Enable the OCREF clear feature for Channel 4 */ |
||
5133 | SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
||
5134 | } |
||
5135 | else |
||
5136 | { |
||
5137 | /* Disable the OCREF clear feature for Channel 4 */ |
||
5138 | CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE); |
||
5139 | } |
||
5140 | break; |
||
5141 | } |
||
5142 | default: |
||
5143 | break; |
||
5144 | } |
||
5145 | |||
5146 | htim->State = HAL_TIM_STATE_READY; |
||
5147 | |||
5148 | __HAL_UNLOCK(htim); |
||
5149 | |||
5150 | return HAL_OK; |
||
5151 | } |
||
5152 | |||
5153 | /** |
||
5154 | * @brief Configures the clock source to be used |
||
5155 | * @param htim TIM handle |
||
5156 | * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that |
||
5157 | * contains the clock source information for the TIM peripheral. |
||
5158 | * @retval HAL status |
||
5159 | */ |
||
5160 | HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef *sClockSourceConfig) |
||
5161 | { |
||
5162 | uint32_t tmpsmcr; |
||
5163 | |||
5164 | /* Process Locked */ |
||
5165 | __HAL_LOCK(htim); |
||
5166 | |||
5167 | htim->State = HAL_TIM_STATE_BUSY; |
||
5168 | |||
5169 | /* Check the parameters */ |
||
5170 | assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); |
||
5171 | |||
5172 | /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ |
||
5173 | tmpsmcr = htim->Instance->SMCR; |
||
5174 | tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); |
||
5175 | tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
||
5176 | htim->Instance->SMCR = tmpsmcr; |
||
5177 | |||
5178 | switch (sClockSourceConfig->ClockSource) |
||
5179 | { |
||
5180 | case TIM_CLOCKSOURCE_INTERNAL: |
||
5181 | { |
||
5182 | assert_param(IS_TIM_INSTANCE(htim->Instance)); |
||
5183 | break; |
||
5184 | } |
||
5185 | |||
5186 | case TIM_CLOCKSOURCE_ETRMODE1: |
||
5187 | { |
||
5188 | /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/ |
||
5189 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
||
5190 | |||
5191 | /* Check ETR input conditioning related parameters */ |
||
5192 | assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
||
5193 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
||
5194 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
||
5195 | |||
5196 | /* Configure the ETR Clock source */ |
||
5197 | TIM_ETR_SetConfig(htim->Instance, |
||
5198 | sClockSourceConfig->ClockPrescaler, |
||
5199 | sClockSourceConfig->ClockPolarity, |
||
5200 | sClockSourceConfig->ClockFilter); |
||
5201 | |||
5202 | /* Select the External clock mode1 and the ETRF trigger */ |
||
5203 | tmpsmcr = htim->Instance->SMCR; |
||
5204 | tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); |
||
5205 | /* Write to TIMx SMCR */ |
||
5206 | htim->Instance->SMCR = tmpsmcr; |
||
5207 | break; |
||
5208 | } |
||
5209 | |||
5210 | case TIM_CLOCKSOURCE_ETRMODE2: |
||
5211 | { |
||
5212 | /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/ |
||
5213 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance)); |
||
5214 | |||
5215 | /* Check ETR input conditioning related parameters */ |
||
5216 | assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); |
||
5217 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
||
5218 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
||
5219 | |||
5220 | /* Configure the ETR Clock source */ |
||
5221 | TIM_ETR_SetConfig(htim->Instance, |
||
5222 | sClockSourceConfig->ClockPrescaler, |
||
5223 | sClockSourceConfig->ClockPolarity, |
||
5224 | sClockSourceConfig->ClockFilter); |
||
5225 | /* Enable the External clock mode2 */ |
||
5226 | htim->Instance->SMCR |= TIM_SMCR_ECE; |
||
5227 | break; |
||
5228 | } |
||
5229 | |||
5230 | case TIM_CLOCKSOURCE_TI1: |
||
5231 | { |
||
5232 | /* Check whether or not the timer instance supports external clock mode 1 */ |
||
5233 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
||
5234 | |||
5235 | /* Check TI1 input conditioning related parameters */ |
||
5236 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
||
5237 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
||
5238 | |||
5239 | TIM_TI1_ConfigInputStage(htim->Instance, |
||
5240 | sClockSourceConfig->ClockPolarity, |
||
5241 | sClockSourceConfig->ClockFilter); |
||
5242 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); |
||
5243 | break; |
||
5244 | } |
||
5245 | |||
5246 | case TIM_CLOCKSOURCE_TI2: |
||
5247 | { |
||
5248 | /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/ |
||
5249 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
||
5250 | |||
5251 | /* Check TI2 input conditioning related parameters */ |
||
5252 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
||
5253 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
||
5254 | |||
5255 | TIM_TI2_ConfigInputStage(htim->Instance, |
||
5256 | sClockSourceConfig->ClockPolarity, |
||
5257 | sClockSourceConfig->ClockFilter); |
||
5258 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); |
||
5259 | break; |
||
5260 | } |
||
5261 | |||
5262 | case TIM_CLOCKSOURCE_TI1ED: |
||
5263 | { |
||
5264 | /* Check whether or not the timer instance supports external clock mode 1 */ |
||
5265 | assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance)); |
||
5266 | |||
5267 | /* Check TI1 input conditioning related parameters */ |
||
5268 | assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); |
||
5269 | assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); |
||
5270 | |||
5271 | TIM_TI1_ConfigInputStage(htim->Instance, |
||
5272 | sClockSourceConfig->ClockPolarity, |
||
5273 | sClockSourceConfig->ClockFilter); |
||
5274 | TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); |
||
5275 | break; |
||
5276 | } |
||
5277 | |||
5278 | case TIM_CLOCKSOURCE_ITR0: |
||
5279 | case TIM_CLOCKSOURCE_ITR1: |
||
5280 | case TIM_CLOCKSOURCE_ITR2: |
||
5281 | case TIM_CLOCKSOURCE_ITR3: |
||
5282 | { |
||
5283 | /* Check whether or not the timer instance supports internal trigger input */ |
||
5284 | assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance)); |
||
5285 | |||
5286 | TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource); |
||
5287 | break; |
||
5288 | } |
||
5289 | |||
5290 | default: |
||
5291 | break; |
||
5292 | } |
||
5293 | htim->State = HAL_TIM_STATE_READY; |
||
5294 | |||
5295 | __HAL_UNLOCK(htim); |
||
5296 | |||
5297 | return HAL_OK; |
||
5298 | } |
||
5299 | |||
5300 | /** |
||
5301 | * @brief Selects the signal connected to the TI1 input: direct from CH1_input |
||
5302 | * or a XOR combination between CH1_input, CH2_input & CH3_input |
||
5303 | * @param htim TIM handle. |
||
5304 | * @param TI1_Selection Indicate whether or not channel 1 is connected to the |
||
5305 | * output of a XOR gate. |
||
5306 | * This parameter can be one of the following values: |
||
5307 | * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input |
||
5308 | * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 |
||
5309 | * pins are connected to the TI1 input (XOR combination) |
||
5310 | * @retval HAL status |
||
5311 | */ |
||
5312 | HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) |
||
5313 | { |
||
5314 | uint32_t tmpcr2; |
||
5315 | |||
5316 | /* Check the parameters */ |
||
5317 | assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); |
||
5318 | assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); |
||
5319 | |||
5320 | /* Get the TIMx CR2 register value */ |
||
5321 | tmpcr2 = htim->Instance->CR2; |
||
5322 | |||
5323 | /* Reset the TI1 selection */ |
||
5324 | tmpcr2 &= ~TIM_CR2_TI1S; |
||
5325 | |||
5326 | /* Set the TI1 selection */ |
||
5327 | tmpcr2 |= TI1_Selection; |
||
5328 | |||
5329 | /* Write to TIMxCR2 */ |
||
5330 | htim->Instance->CR2 = tmpcr2; |
||
5331 | |||
5332 | return HAL_OK; |
||
5333 | } |
||
5334 | |||
5335 | /** |
||
5336 | * @brief Configures the TIM in Slave mode |
||
5337 | * @param htim TIM handle. |
||
5338 | * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
||
5339 | * contains the selected trigger (internal trigger input, filtered |
||
5340 | * timer input or external trigger input) and the Slave mode |
||
5341 | * (Disable, Reset, Gated, Trigger, External clock mode 1). |
||
5342 | * @retval HAL status |
||
5343 | */ |
||
5344 | HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef *sSlaveConfig) |
||
5345 | { |
||
5346 | /* Check the parameters */ |
||
5347 | assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
||
5348 | assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
||
5349 | assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
||
5350 | |||
5351 | __HAL_LOCK(htim); |
||
5352 | |||
5353 | htim->State = HAL_TIM_STATE_BUSY; |
||
5354 | |||
5355 | if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
||
5356 | { |
||
5357 | htim->State = HAL_TIM_STATE_READY; |
||
5358 | __HAL_UNLOCK(htim); |
||
5359 | return HAL_ERROR; |
||
5360 | } |
||
5361 | |||
5362 | /* Disable Trigger Interrupt */ |
||
5363 | __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); |
||
5364 | |||
5365 | /* Disable Trigger DMA request */ |
||
5366 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
||
5367 | |||
5368 | htim->State = HAL_TIM_STATE_READY; |
||
5369 | |||
5370 | __HAL_UNLOCK(htim); |
||
5371 | |||
5372 | return HAL_OK; |
||
5373 | } |
||
5374 | |||
5375 | /** |
||
5376 | * @brief Configures the TIM in Slave mode in interrupt mode |
||
5377 | * @param htim TIM handle. |
||
5378 | * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that |
||
5379 | * contains the selected trigger (internal trigger input, filtered |
||
5380 | * timer input or external trigger input) and the Slave mode |
||
5381 | * (Disable, Reset, Gated, Trigger, External clock mode 1). |
||
5382 | * @retval HAL status |
||
5383 | */ |
||
5384 | HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim, |
||
5385 | TIM_SlaveConfigTypeDef *sSlaveConfig) |
||
5386 | { |
||
5387 | /* Check the parameters */ |
||
5388 | assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); |
||
5389 | assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); |
||
5390 | assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); |
||
5391 | |||
5392 | __HAL_LOCK(htim); |
||
5393 | |||
5394 | htim->State = HAL_TIM_STATE_BUSY; |
||
5395 | |||
5396 | if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK) |
||
5397 | { |
||
5398 | htim->State = HAL_TIM_STATE_READY; |
||
5399 | __HAL_UNLOCK(htim); |
||
5400 | return HAL_ERROR; |
||
5401 | } |
||
5402 | |||
5403 | /* Enable Trigger Interrupt */ |
||
5404 | __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); |
||
5405 | |||
5406 | /* Disable Trigger DMA request */ |
||
5407 | __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); |
||
5408 | |||
5409 | htim->State = HAL_TIM_STATE_READY; |
||
5410 | |||
5411 | __HAL_UNLOCK(htim); |
||
5412 | |||
5413 | return HAL_OK; |
||
5414 | } |
||
5415 | |||
5416 | /** |
||
5417 | * @brief Read the captured value from Capture Compare unit |
||
5418 | * @param htim TIM handle. |
||
5419 | * @param Channel TIM Channels to be enabled |
||
5420 | * This parameter can be one of the following values: |
||
5421 | * @arg TIM_CHANNEL_1: TIM Channel 1 selected |
||
5422 | * @arg TIM_CHANNEL_2: TIM Channel 2 selected |
||
5423 | * @arg TIM_CHANNEL_3: TIM Channel 3 selected |
||
5424 | * @arg TIM_CHANNEL_4: TIM Channel 4 selected |
||
5425 | * @retval Captured value |
||
5426 | */ |
||
5427 | uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
5428 | { |
||
5429 | uint32_t tmpreg = 0U; |
||
5430 | |||
5431 | switch (Channel) |
||
5432 | { |
||
5433 | case TIM_CHANNEL_1: |
||
5434 | { |
||
5435 | /* Check the parameters */ |
||
5436 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
||
5437 | |||
5438 | /* Return the capture 1 value */ |
||
5439 | tmpreg = htim->Instance->CCR1; |
||
5440 | |||
5441 | break; |
||
5442 | } |
||
5443 | case TIM_CHANNEL_2: |
||
5444 | { |
||
5445 | /* Check the parameters */ |
||
5446 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
||
5447 | |||
5448 | /* Return the capture 2 value */ |
||
5449 | tmpreg = htim->Instance->CCR2; |
||
5450 | |||
5451 | break; |
||
5452 | } |
||
5453 | |||
5454 | case TIM_CHANNEL_3: |
||
5455 | { |
||
5456 | /* Check the parameters */ |
||
5457 | assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); |
||
5458 | |||
5459 | /* Return the capture 3 value */ |
||
5460 | tmpreg = htim->Instance->CCR3; |
||
5461 | |||
5462 | break; |
||
5463 | } |
||
5464 | |||
5465 | case TIM_CHANNEL_4: |
||
5466 | { |
||
5467 | /* Check the parameters */ |
||
5468 | assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); |
||
5469 | |||
5470 | /* Return the capture 4 value */ |
||
5471 | tmpreg = htim->Instance->CCR4; |
||
5472 | |||
5473 | break; |
||
5474 | } |
||
5475 | |||
5476 | default: |
||
5477 | break; |
||
5478 | } |
||
5479 | |||
5480 | return tmpreg; |
||
5481 | } |
||
5482 | |||
5483 | /** |
||
5484 | * @} |
||
5485 | */ |
||
5486 | |||
5487 | /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions |
||
5488 | * @brief TIM Callbacks functions |
||
5489 | * |
||
5490 | @verbatim |
||
5491 | ============================================================================== |
||
5492 | ##### TIM Callbacks functions ##### |
||
5493 | ============================================================================== |
||
5494 | [..] |
||
5495 | This section provides TIM callback functions: |
||
5496 | (+) TIM Period elapsed callback |
||
5497 | (+) TIM Output Compare callback |
||
5498 | (+) TIM Input capture callback |
||
5499 | (+) TIM Trigger callback |
||
5500 | (+) TIM Error callback |
||
5501 | |||
5502 | @endverbatim |
||
5503 | * @{ |
||
5504 | */ |
||
5505 | |||
5506 | /** |
||
5507 | * @brief Period elapsed callback in non-blocking mode |
||
5508 | * @param htim TIM handle |
||
5509 | * @retval None |
||
5510 | */ |
||
5511 | __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) |
||
5512 | { |
||
5513 | /* Prevent unused argument(s) compilation warning */ |
||
5514 | UNUSED(htim); |
||
5515 | |||
5516 | /* NOTE : This function should not be modified, when the callback is needed, |
||
5517 | the HAL_TIM_PeriodElapsedCallback could be implemented in the user file |
||
5518 | */ |
||
5519 | } |
||
5520 | |||
5521 | /** |
||
5522 | * @brief Period elapsed half complete callback in non-blocking mode |
||
5523 | * @param htim TIM handle |
||
5524 | * @retval None |
||
5525 | */ |
||
5526 | __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim) |
||
5527 | { |
||
5528 | /* Prevent unused argument(s) compilation warning */ |
||
5529 | UNUSED(htim); |
||
5530 | |||
5531 | /* NOTE : This function should not be modified, when the callback is needed, |
||
5532 | the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file |
||
5533 | */ |
||
5534 | } |
||
5535 | |||
5536 | /** |
||
5537 | * @brief Output Compare callback in non-blocking mode |
||
5538 | * @param htim TIM OC handle |
||
5539 | * @retval None |
||
5540 | */ |
||
5541 | __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) |
||
5542 | { |
||
5543 | /* Prevent unused argument(s) compilation warning */ |
||
5544 | UNUSED(htim); |
||
5545 | |||
5546 | /* NOTE : This function should not be modified, when the callback is needed, |
||
5547 | the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file |
||
5548 | */ |
||
5549 | } |
||
5550 | |||
5551 | /** |
||
5552 | * @brief Input Capture callback in non-blocking mode |
||
5553 | * @param htim TIM IC handle |
||
5554 | * @retval None |
||
5555 | */ |
||
5556 | __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) |
||
5557 | { |
||
5558 | /* Prevent unused argument(s) compilation warning */ |
||
5559 | UNUSED(htim); |
||
5560 | |||
5561 | /* NOTE : This function should not be modified, when the callback is needed, |
||
5562 | the HAL_TIM_IC_CaptureCallback could be implemented in the user file |
||
5563 | */ |
||
5564 | } |
||
5565 | |||
5566 | /** |
||
5567 | * @brief Input Capture half complete callback in non-blocking mode |
||
5568 | * @param htim TIM IC handle |
||
5569 | * @retval None |
||
5570 | */ |
||
5571 | __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim) |
||
5572 | { |
||
5573 | /* Prevent unused argument(s) compilation warning */ |
||
5574 | UNUSED(htim); |
||
5575 | |||
5576 | /* NOTE : This function should not be modified, when the callback is needed, |
||
5577 | the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file |
||
5578 | */ |
||
5579 | } |
||
5580 | |||
5581 | /** |
||
5582 | * @brief PWM Pulse finished callback in non-blocking mode |
||
5583 | * @param htim TIM handle |
||
5584 | * @retval None |
||
5585 | */ |
||
5586 | __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) |
||
5587 | { |
||
5588 | /* Prevent unused argument(s) compilation warning */ |
||
5589 | UNUSED(htim); |
||
5590 | |||
5591 | /* NOTE : This function should not be modified, when the callback is needed, |
||
5592 | the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file |
||
5593 | */ |
||
5594 | } |
||
5595 | |||
5596 | /** |
||
5597 | * @brief PWM Pulse finished half complete callback in non-blocking mode |
||
5598 | * @param htim TIM handle |
||
5599 | * @retval None |
||
5600 | */ |
||
5601 | __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim) |
||
5602 | { |
||
5603 | /* Prevent unused argument(s) compilation warning */ |
||
5604 | UNUSED(htim); |
||
5605 | |||
5606 | /* NOTE : This function should not be modified, when the callback is needed, |
||
5607 | the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file |
||
5608 | */ |
||
5609 | } |
||
5610 | |||
5611 | /** |
||
5612 | * @brief Hall Trigger detection callback in non-blocking mode |
||
5613 | * @param htim TIM handle |
||
5614 | * @retval None |
||
5615 | */ |
||
5616 | __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) |
||
5617 | { |
||
5618 | /* Prevent unused argument(s) compilation warning */ |
||
5619 | UNUSED(htim); |
||
5620 | |||
5621 | /* NOTE : This function should not be modified, when the callback is needed, |
||
5622 | the HAL_TIM_TriggerCallback could be implemented in the user file |
||
5623 | */ |
||
5624 | } |
||
5625 | |||
5626 | /** |
||
5627 | * @brief Hall Trigger detection half complete callback in non-blocking mode |
||
5628 | * @param htim TIM handle |
||
5629 | * @retval None |
||
5630 | */ |
||
5631 | __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim) |
||
5632 | { |
||
5633 | /* Prevent unused argument(s) compilation warning */ |
||
5634 | UNUSED(htim); |
||
5635 | |||
5636 | /* NOTE : This function should not be modified, when the callback is needed, |
||
5637 | the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file |
||
5638 | */ |
||
5639 | } |
||
5640 | |||
5641 | /** |
||
5642 | * @brief Timer error callback in non-blocking mode |
||
5643 | * @param htim TIM handle |
||
5644 | * @retval None |
||
5645 | */ |
||
5646 | __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) |
||
5647 | { |
||
5648 | /* Prevent unused argument(s) compilation warning */ |
||
5649 | UNUSED(htim); |
||
5650 | |||
5651 | /* NOTE : This function should not be modified, when the callback is needed, |
||
5652 | the HAL_TIM_ErrorCallback could be implemented in the user file |
||
5653 | */ |
||
5654 | } |
||
5655 | |||
5656 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
5657 | /** |
||
5658 | * @brief Register a User TIM callback to be used instead of the weak predefined callback |
||
5659 | * @param htim tim handle |
||
5660 | * @param CallbackID ID of the callback to be registered |
||
5661 | * This parameter can be one of the following values: |
||
5662 | * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
||
5663 | * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
||
5664 | * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
||
5665 | * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
||
5666 | * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
||
5667 | * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
||
5668 | * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
||
5669 | * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
||
5670 | * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
||
5671 | * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
||
5672 | * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
||
5673 | * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
||
5674 | * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID |
||
5675 | * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID |
||
5676 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
||
5677 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
||
5678 | * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
||
5679 | * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
||
5680 | * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
||
5681 | * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
||
5682 | * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
||
5683 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
||
5684 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
||
5685 | * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
||
5686 | * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID |
||
5687 | * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID |
||
5688 | * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID |
||
5689 | * @param pCallback pointer to the callback function |
||
5690 | * @retval status |
||
5691 | */ |
||
5692 | HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID, |
||
5693 | pTIM_CallbackTypeDef pCallback) |
||
5694 | { |
||
5695 | HAL_StatusTypeDef status = HAL_OK; |
||
5696 | |||
5697 | if (pCallback == NULL) |
||
5698 | { |
||
5699 | return HAL_ERROR; |
||
5700 | } |
||
5701 | /* Process locked */ |
||
5702 | __HAL_LOCK(htim); |
||
5703 | |||
5704 | if (htim->State == HAL_TIM_STATE_READY) |
||
5705 | { |
||
5706 | switch (CallbackID) |
||
5707 | { |
||
5708 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
||
5709 | htim->Base_MspInitCallback = pCallback; |
||
5710 | break; |
||
5711 | |||
5712 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
||
5713 | htim->Base_MspDeInitCallback = pCallback; |
||
5714 | break; |
||
5715 | |||
5716 | case HAL_TIM_IC_MSPINIT_CB_ID : |
||
5717 | htim->IC_MspInitCallback = pCallback; |
||
5718 | break; |
||
5719 | |||
5720 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
||
5721 | htim->IC_MspDeInitCallback = pCallback; |
||
5722 | break; |
||
5723 | |||
5724 | case HAL_TIM_OC_MSPINIT_CB_ID : |
||
5725 | htim->OC_MspInitCallback = pCallback; |
||
5726 | break; |
||
5727 | |||
5728 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
||
5729 | htim->OC_MspDeInitCallback = pCallback; |
||
5730 | break; |
||
5731 | |||
5732 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
||
5733 | htim->PWM_MspInitCallback = pCallback; |
||
5734 | break; |
||
5735 | |||
5736 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
||
5737 | htim->PWM_MspDeInitCallback = pCallback; |
||
5738 | break; |
||
5739 | |||
5740 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
||
5741 | htim->OnePulse_MspInitCallback = pCallback; |
||
5742 | break; |
||
5743 | |||
5744 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
||
5745 | htim->OnePulse_MspDeInitCallback = pCallback; |
||
5746 | break; |
||
5747 | |||
5748 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
||
5749 | htim->Encoder_MspInitCallback = pCallback; |
||
5750 | break; |
||
5751 | |||
5752 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
||
5753 | htim->Encoder_MspDeInitCallback = pCallback; |
||
5754 | break; |
||
5755 | |||
5756 | case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
||
5757 | htim->HallSensor_MspInitCallback = pCallback; |
||
5758 | break; |
||
5759 | |||
5760 | case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
||
5761 | htim->HallSensor_MspDeInitCallback = pCallback; |
||
5762 | break; |
||
5763 | |||
5764 | case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
||
5765 | htim->PeriodElapsedCallback = pCallback; |
||
5766 | break; |
||
5767 | |||
5768 | case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
||
5769 | htim->PeriodElapsedHalfCpltCallback = pCallback; |
||
5770 | break; |
||
5771 | |||
5772 | case HAL_TIM_TRIGGER_CB_ID : |
||
5773 | htim->TriggerCallback = pCallback; |
||
5774 | break; |
||
5775 | |||
5776 | case HAL_TIM_TRIGGER_HALF_CB_ID : |
||
5777 | htim->TriggerHalfCpltCallback = pCallback; |
||
5778 | break; |
||
5779 | |||
5780 | case HAL_TIM_IC_CAPTURE_CB_ID : |
||
5781 | htim->IC_CaptureCallback = pCallback; |
||
5782 | break; |
||
5783 | |||
5784 | case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
||
5785 | htim->IC_CaptureHalfCpltCallback = pCallback; |
||
5786 | break; |
||
5787 | |||
5788 | case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
||
5789 | htim->OC_DelayElapsedCallback = pCallback; |
||
5790 | break; |
||
5791 | |||
5792 | case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
||
5793 | htim->PWM_PulseFinishedCallback = pCallback; |
||
5794 | break; |
||
5795 | |||
5796 | case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
||
5797 | htim->PWM_PulseFinishedHalfCpltCallback = pCallback; |
||
5798 | break; |
||
5799 | |||
5800 | case HAL_TIM_ERROR_CB_ID : |
||
5801 | htim->ErrorCallback = pCallback; |
||
5802 | break; |
||
5803 | |||
5804 | case HAL_TIM_COMMUTATION_CB_ID : |
||
5805 | htim->CommutationCallback = pCallback; |
||
5806 | break; |
||
5807 | |||
5808 | case HAL_TIM_COMMUTATION_HALF_CB_ID : |
||
5809 | htim->CommutationHalfCpltCallback = pCallback; |
||
5810 | break; |
||
5811 | |||
5812 | case HAL_TIM_BREAK_CB_ID : |
||
5813 | htim->BreakCallback = pCallback; |
||
5814 | break; |
||
5815 | |||
5816 | default : |
||
5817 | /* Return error status */ |
||
5818 | status = HAL_ERROR; |
||
5819 | break; |
||
5820 | } |
||
5821 | } |
||
5822 | else if (htim->State == HAL_TIM_STATE_RESET) |
||
5823 | { |
||
5824 | switch (CallbackID) |
||
5825 | { |
||
5826 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
||
5827 | htim->Base_MspInitCallback = pCallback; |
||
5828 | break; |
||
5829 | |||
5830 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
||
5831 | htim->Base_MspDeInitCallback = pCallback; |
||
5832 | break; |
||
5833 | |||
5834 | case HAL_TIM_IC_MSPINIT_CB_ID : |
||
5835 | htim->IC_MspInitCallback = pCallback; |
||
5836 | break; |
||
5837 | |||
5838 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
||
5839 | htim->IC_MspDeInitCallback = pCallback; |
||
5840 | break; |
||
5841 | |||
5842 | case HAL_TIM_OC_MSPINIT_CB_ID : |
||
5843 | htim->OC_MspInitCallback = pCallback; |
||
5844 | break; |
||
5845 | |||
5846 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
||
5847 | htim->OC_MspDeInitCallback = pCallback; |
||
5848 | break; |
||
5849 | |||
5850 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
||
5851 | htim->PWM_MspInitCallback = pCallback; |
||
5852 | break; |
||
5853 | |||
5854 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
||
5855 | htim->PWM_MspDeInitCallback = pCallback; |
||
5856 | break; |
||
5857 | |||
5858 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
||
5859 | htim->OnePulse_MspInitCallback = pCallback; |
||
5860 | break; |
||
5861 | |||
5862 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
||
5863 | htim->OnePulse_MspDeInitCallback = pCallback; |
||
5864 | break; |
||
5865 | |||
5866 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
||
5867 | htim->Encoder_MspInitCallback = pCallback; |
||
5868 | break; |
||
5869 | |||
5870 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
||
5871 | htim->Encoder_MspDeInitCallback = pCallback; |
||
5872 | break; |
||
5873 | |||
5874 | case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
||
5875 | htim->HallSensor_MspInitCallback = pCallback; |
||
5876 | break; |
||
5877 | |||
5878 | case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
||
5879 | htim->HallSensor_MspDeInitCallback = pCallback; |
||
5880 | break; |
||
5881 | |||
5882 | default : |
||
5883 | /* Return error status */ |
||
5884 | status = HAL_ERROR; |
||
5885 | break; |
||
5886 | } |
||
5887 | } |
||
5888 | else |
||
5889 | { |
||
5890 | /* Return error status */ |
||
5891 | status = HAL_ERROR; |
||
5892 | } |
||
5893 | |||
5894 | /* Release Lock */ |
||
5895 | __HAL_UNLOCK(htim); |
||
5896 | |||
5897 | return status; |
||
5898 | } |
||
5899 | |||
5900 | /** |
||
5901 | * @brief Unregister a TIM callback |
||
5902 | * TIM callback is redirected to the weak predefined callback |
||
5903 | * @param htim tim handle |
||
5904 | * @param CallbackID ID of the callback to be unregistered |
||
5905 | * This parameter can be one of the following values: |
||
5906 | * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID |
||
5907 | * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID |
||
5908 | * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID |
||
5909 | * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID |
||
5910 | * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID |
||
5911 | * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID |
||
5912 | * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID |
||
5913 | * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID |
||
5914 | * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID |
||
5915 | * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID |
||
5916 | * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID |
||
5917 | * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID |
||
5918 | * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID |
||
5919 | * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID |
||
5920 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID |
||
5921 | * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID |
||
5922 | * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID |
||
5923 | * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID |
||
5924 | * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID |
||
5925 | * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID |
||
5926 | * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID |
||
5927 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID |
||
5928 | * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID |
||
5929 | * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID |
||
5930 | * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID |
||
5931 | * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID |
||
5932 | * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID |
||
5933 | * @retval status |
||
5934 | */ |
||
5935 | HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID) |
||
5936 | { |
||
5937 | HAL_StatusTypeDef status = HAL_OK; |
||
5938 | |||
5939 | /* Process locked */ |
||
5940 | __HAL_LOCK(htim); |
||
5941 | |||
5942 | if (htim->State == HAL_TIM_STATE_READY) |
||
5943 | { |
||
5944 | switch (CallbackID) |
||
5945 | { |
||
5946 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
||
5947 | /* Legacy weak Base MspInit Callback */ |
||
5948 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
||
5949 | break; |
||
5950 | |||
5951 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
||
5952 | /* Legacy weak Base Msp DeInit Callback */ |
||
5953 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
||
5954 | break; |
||
5955 | |||
5956 | case HAL_TIM_IC_MSPINIT_CB_ID : |
||
5957 | /* Legacy weak IC Msp Init Callback */ |
||
5958 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
||
5959 | break; |
||
5960 | |||
5961 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
||
5962 | /* Legacy weak IC Msp DeInit Callback */ |
||
5963 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
||
5964 | break; |
||
5965 | |||
5966 | case HAL_TIM_OC_MSPINIT_CB_ID : |
||
5967 | /* Legacy weak OC Msp Init Callback */ |
||
5968 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
||
5969 | break; |
||
5970 | |||
5971 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
||
5972 | /* Legacy weak OC Msp DeInit Callback */ |
||
5973 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
||
5974 | break; |
||
5975 | |||
5976 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
||
5977 | /* Legacy weak PWM Msp Init Callback */ |
||
5978 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
||
5979 | break; |
||
5980 | |||
5981 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
||
5982 | /* Legacy weak PWM Msp DeInit Callback */ |
||
5983 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
||
5984 | break; |
||
5985 | |||
5986 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
||
5987 | /* Legacy weak One Pulse Msp Init Callback */ |
||
5988 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
||
5989 | break; |
||
5990 | |||
5991 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
||
5992 | /* Legacy weak One Pulse Msp DeInit Callback */ |
||
5993 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
||
5994 | break; |
||
5995 | |||
5996 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
||
5997 | /* Legacy weak Encoder Msp Init Callback */ |
||
5998 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
||
5999 | break; |
||
6000 | |||
6001 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
||
6002 | /* Legacy weak Encoder Msp DeInit Callback */ |
||
6003 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
||
6004 | break; |
||
6005 | |||
6006 | case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
||
6007 | /* Legacy weak Hall Sensor Msp Init Callback */ |
||
6008 | htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; |
||
6009 | break; |
||
6010 | |||
6011 | case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
||
6012 | /* Legacy weak Hall Sensor Msp DeInit Callback */ |
||
6013 | htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; |
||
6014 | break; |
||
6015 | |||
6016 | case HAL_TIM_PERIOD_ELAPSED_CB_ID : |
||
6017 | /* Legacy weak Period Elapsed Callback */ |
||
6018 | htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
||
6019 | break; |
||
6020 | |||
6021 | case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID : |
||
6022 | /* Legacy weak Period Elapsed half complete Callback */ |
||
6023 | htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
||
6024 | break; |
||
6025 | |||
6026 | case HAL_TIM_TRIGGER_CB_ID : |
||
6027 | /* Legacy weak Trigger Callback */ |
||
6028 | htim->TriggerCallback = HAL_TIM_TriggerCallback; |
||
6029 | break; |
||
6030 | |||
6031 | case HAL_TIM_TRIGGER_HALF_CB_ID : |
||
6032 | /* Legacy weak Trigger half complete Callback */ |
||
6033 | htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
||
6034 | break; |
||
6035 | |||
6036 | case HAL_TIM_IC_CAPTURE_CB_ID : |
||
6037 | /* Legacy weak IC Capture Callback */ |
||
6038 | htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
||
6039 | break; |
||
6040 | |||
6041 | case HAL_TIM_IC_CAPTURE_HALF_CB_ID : |
||
6042 | /* Legacy weak IC Capture half complete Callback */ |
||
6043 | htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
||
6044 | break; |
||
6045 | |||
6046 | case HAL_TIM_OC_DELAY_ELAPSED_CB_ID : |
||
6047 | /* Legacy weak OC Delay Elapsed Callback */ |
||
6048 | htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
||
6049 | break; |
||
6050 | |||
6051 | case HAL_TIM_PWM_PULSE_FINISHED_CB_ID : |
||
6052 | /* Legacy weak PWM Pulse Finished Callback */ |
||
6053 | htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
||
6054 | break; |
||
6055 | |||
6056 | case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID : |
||
6057 | /* Legacy weak PWM Pulse Finished half complete Callback */ |
||
6058 | htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
||
6059 | break; |
||
6060 | |||
6061 | case HAL_TIM_ERROR_CB_ID : |
||
6062 | /* Legacy weak Error Callback */ |
||
6063 | htim->ErrorCallback = HAL_TIM_ErrorCallback; |
||
6064 | break; |
||
6065 | |||
6066 | case HAL_TIM_COMMUTATION_CB_ID : |
||
6067 | /* Legacy weak Commutation Callback */ |
||
6068 | htim->CommutationCallback = HAL_TIMEx_CommutCallback; |
||
6069 | break; |
||
6070 | |||
6071 | case HAL_TIM_COMMUTATION_HALF_CB_ID : |
||
6072 | /* Legacy weak Commutation half complete Callback */ |
||
6073 | htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; |
||
6074 | break; |
||
6075 | |||
6076 | case HAL_TIM_BREAK_CB_ID : |
||
6077 | /* Legacy weak Break Callback */ |
||
6078 | htim->BreakCallback = HAL_TIMEx_BreakCallback; |
||
6079 | break; |
||
6080 | |||
6081 | default : |
||
6082 | /* Return error status */ |
||
6083 | status = HAL_ERROR; |
||
6084 | break; |
||
6085 | } |
||
6086 | } |
||
6087 | else if (htim->State == HAL_TIM_STATE_RESET) |
||
6088 | { |
||
6089 | switch (CallbackID) |
||
6090 | { |
||
6091 | case HAL_TIM_BASE_MSPINIT_CB_ID : |
||
6092 | /* Legacy weak Base MspInit Callback */ |
||
6093 | htim->Base_MspInitCallback = HAL_TIM_Base_MspInit; |
||
6094 | break; |
||
6095 | |||
6096 | case HAL_TIM_BASE_MSPDEINIT_CB_ID : |
||
6097 | /* Legacy weak Base Msp DeInit Callback */ |
||
6098 | htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit; |
||
6099 | break; |
||
6100 | |||
6101 | case HAL_TIM_IC_MSPINIT_CB_ID : |
||
6102 | /* Legacy weak IC Msp Init Callback */ |
||
6103 | htim->IC_MspInitCallback = HAL_TIM_IC_MspInit; |
||
6104 | break; |
||
6105 | |||
6106 | case HAL_TIM_IC_MSPDEINIT_CB_ID : |
||
6107 | /* Legacy weak IC Msp DeInit Callback */ |
||
6108 | htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit; |
||
6109 | break; |
||
6110 | |||
6111 | case HAL_TIM_OC_MSPINIT_CB_ID : |
||
6112 | /* Legacy weak OC Msp Init Callback */ |
||
6113 | htim->OC_MspInitCallback = HAL_TIM_OC_MspInit; |
||
6114 | break; |
||
6115 | |||
6116 | case HAL_TIM_OC_MSPDEINIT_CB_ID : |
||
6117 | /* Legacy weak OC Msp DeInit Callback */ |
||
6118 | htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit; |
||
6119 | break; |
||
6120 | |||
6121 | case HAL_TIM_PWM_MSPINIT_CB_ID : |
||
6122 | /* Legacy weak PWM Msp Init Callback */ |
||
6123 | htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit; |
||
6124 | break; |
||
6125 | |||
6126 | case HAL_TIM_PWM_MSPDEINIT_CB_ID : |
||
6127 | /* Legacy weak PWM Msp DeInit Callback */ |
||
6128 | htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit; |
||
6129 | break; |
||
6130 | |||
6131 | case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID : |
||
6132 | /* Legacy weak One Pulse Msp Init Callback */ |
||
6133 | htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit; |
||
6134 | break; |
||
6135 | |||
6136 | case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID : |
||
6137 | /* Legacy weak One Pulse Msp DeInit Callback */ |
||
6138 | htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit; |
||
6139 | break; |
||
6140 | |||
6141 | case HAL_TIM_ENCODER_MSPINIT_CB_ID : |
||
6142 | /* Legacy weak Encoder Msp Init Callback */ |
||
6143 | htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit; |
||
6144 | break; |
||
6145 | |||
6146 | case HAL_TIM_ENCODER_MSPDEINIT_CB_ID : |
||
6147 | /* Legacy weak Encoder Msp DeInit Callback */ |
||
6148 | htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit; |
||
6149 | break; |
||
6150 | |||
6151 | case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID : |
||
6152 | /* Legacy weak Hall Sensor Msp Init Callback */ |
||
6153 | htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit; |
||
6154 | break; |
||
6155 | |||
6156 | case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID : |
||
6157 | /* Legacy weak Hall Sensor Msp DeInit Callback */ |
||
6158 | htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit; |
||
6159 | break; |
||
6160 | |||
6161 | default : |
||
6162 | /* Return error status */ |
||
6163 | status = HAL_ERROR; |
||
6164 | break; |
||
6165 | } |
||
6166 | } |
||
6167 | else |
||
6168 | { |
||
6169 | /* Return error status */ |
||
6170 | status = HAL_ERROR; |
||
6171 | } |
||
6172 | |||
6173 | /* Release Lock */ |
||
6174 | __HAL_UNLOCK(htim); |
||
6175 | |||
6176 | return status; |
||
6177 | } |
||
6178 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
6179 | |||
6180 | /** |
||
6181 | * @} |
||
6182 | */ |
||
6183 | |||
6184 | /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions |
||
6185 | * @brief TIM Peripheral State functions |
||
6186 | * |
||
6187 | @verbatim |
||
6188 | ============================================================================== |
||
6189 | ##### Peripheral State functions ##### |
||
6190 | ============================================================================== |
||
6191 | [..] |
||
6192 | This subsection permits to get in run-time the status of the peripheral |
||
6193 | and the data flow. |
||
6194 | |||
6195 | @endverbatim |
||
6196 | * @{ |
||
6197 | */ |
||
6198 | |||
6199 | /** |
||
6200 | * @brief Return the TIM Base handle state. |
||
6201 | * @param htim TIM Base handle |
||
6202 | * @retval HAL state |
||
6203 | */ |
||
6204 | HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) |
||
6205 | { |
||
6206 | return htim->State; |
||
6207 | } |
||
6208 | |||
6209 | /** |
||
6210 | * @brief Return the TIM OC handle state. |
||
6211 | * @param htim TIM Output Compare handle |
||
6212 | * @retval HAL state |
||
6213 | */ |
||
6214 | HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) |
||
6215 | { |
||
6216 | return htim->State; |
||
6217 | } |
||
6218 | |||
6219 | /** |
||
6220 | * @brief Return the TIM PWM handle state. |
||
6221 | * @param htim TIM handle |
||
6222 | * @retval HAL state |
||
6223 | */ |
||
6224 | HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) |
||
6225 | { |
||
6226 | return htim->State; |
||
6227 | } |
||
6228 | |||
6229 | /** |
||
6230 | * @brief Return the TIM Input Capture handle state. |
||
6231 | * @param htim TIM IC handle |
||
6232 | * @retval HAL state |
||
6233 | */ |
||
6234 | HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) |
||
6235 | { |
||
6236 | return htim->State; |
||
6237 | } |
||
6238 | |||
6239 | /** |
||
6240 | * @brief Return the TIM One Pulse Mode handle state. |
||
6241 | * @param htim TIM OPM handle |
||
6242 | * @retval HAL state |
||
6243 | */ |
||
6244 | HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) |
||
6245 | { |
||
6246 | return htim->State; |
||
6247 | } |
||
6248 | |||
6249 | /** |
||
6250 | * @brief Return the TIM Encoder Mode handle state. |
||
6251 | * @param htim TIM Encoder Interface handle |
||
6252 | * @retval HAL state |
||
6253 | */ |
||
6254 | HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) |
||
6255 | { |
||
6256 | return htim->State; |
||
6257 | } |
||
6258 | |||
6259 | /** |
||
6260 | * @brief Return the TIM Encoder Mode handle state. |
||
6261 | * @param htim TIM handle |
||
6262 | * @retval Active channel |
||
6263 | */ |
||
6264 | HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(TIM_HandleTypeDef *htim) |
||
6265 | { |
||
6266 | return htim->Channel; |
||
6267 | } |
||
6268 | |||
6269 | /** |
||
6270 | * @brief Return actual state of the TIM channel. |
||
6271 | * @param htim TIM handle |
||
6272 | * @param Channel TIM Channel |
||
6273 | * This parameter can be one of the following values: |
||
6274 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
||
6275 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
||
6276 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
||
6277 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
||
6278 | * @arg TIM_CHANNEL_5: TIM Channel 5 |
||
6279 | * @arg TIM_CHANNEL_6: TIM Channel 6 |
||
6280 | * @retval TIM Channel state |
||
6281 | */ |
||
6282 | HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(TIM_HandleTypeDef *htim, uint32_t Channel) |
||
6283 | { |
||
6284 | HAL_TIM_ChannelStateTypeDef channel_state; |
||
6285 | |||
6286 | /* Check the parameters */ |
||
6287 | assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); |
||
6288 | |||
6289 | channel_state = TIM_CHANNEL_STATE_GET(htim, Channel); |
||
6290 | |||
6291 | return channel_state; |
||
6292 | } |
||
6293 | |||
6294 | /** |
||
6295 | * @brief Return actual state of a DMA burst operation. |
||
6296 | * @param htim TIM handle |
||
6297 | * @retval DMA burst state |
||
6298 | */ |
||
6299 | HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(TIM_HandleTypeDef *htim) |
||
6300 | { |
||
6301 | /* Check the parameters */ |
||
6302 | assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); |
||
6303 | |||
6304 | return htim->DMABurstState; |
||
6305 | } |
||
6306 | |||
6307 | /** |
||
6308 | * @} |
||
6309 | */ |
||
6310 | |||
6311 | /** |
||
6312 | * @} |
||
6313 | */ |
||
6314 | |||
6315 | /** @defgroup TIM_Private_Functions TIM Private Functions |
||
6316 | * @{ |
||
6317 | */ |
||
6318 | |||
6319 | /** |
||
6320 | * @brief TIM DMA error callback |
||
6321 | * @param hdma pointer to DMA handle. |
||
6322 | * @retval None |
||
6323 | */ |
||
6324 | void TIM_DMAError(DMA_HandleTypeDef *hdma) |
||
6325 | { |
||
6326 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
||
6327 | |||
6328 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
||
6329 | { |
||
6330 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
||
6331 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
6332 | } |
||
6333 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
||
6334 | { |
||
6335 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
||
6336 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
6337 | } |
||
6338 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
||
6339 | { |
||
6340 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
||
6341 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
||
6342 | } |
||
6343 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
||
6344 | { |
||
6345 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
||
6346 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
||
6347 | } |
||
6348 | else |
||
6349 | { |
||
6350 | htim->State = HAL_TIM_STATE_READY; |
||
6351 | } |
||
6352 | |||
6353 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
6354 | htim->ErrorCallback(htim); |
||
6355 | #else |
||
6356 | HAL_TIM_ErrorCallback(htim); |
||
6357 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
6358 | |||
6359 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
||
6360 | } |
||
6361 | |||
6362 | /** |
||
6363 | * @brief TIM DMA Delay Pulse complete callback. |
||
6364 | * @param hdma pointer to DMA handle. |
||
6365 | * @retval None |
||
6366 | */ |
||
6367 | static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) |
||
6368 | { |
||
6369 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
||
6370 | |||
6371 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
||
6372 | { |
||
6373 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
||
6374 | |||
6375 | if (hdma->Init.Mode == DMA_NORMAL) |
||
6376 | { |
||
6377 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
6378 | } |
||
6379 | } |
||
6380 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
||
6381 | { |
||
6382 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
||
6383 | |||
6384 | if (hdma->Init.Mode == DMA_NORMAL) |
||
6385 | { |
||
6386 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
6387 | } |
||
6388 | } |
||
6389 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
||
6390 | { |
||
6391 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
||
6392 | |||
6393 | if (hdma->Init.Mode == DMA_NORMAL) |
||
6394 | { |
||
6395 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
||
6396 | } |
||
6397 | } |
||
6398 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
||
6399 | { |
||
6400 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
||
6401 | |||
6402 | if (hdma->Init.Mode == DMA_NORMAL) |
||
6403 | { |
||
6404 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
||
6405 | } |
||
6406 | } |
||
6407 | else |
||
6408 | { |
||
6409 | /* nothing to do */ |
||
6410 | } |
||
6411 | |||
6412 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
6413 | htim->PWM_PulseFinishedCallback(htim); |
||
6414 | #else |
||
6415 | HAL_TIM_PWM_PulseFinishedCallback(htim); |
||
6416 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
6417 | |||
6418 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
||
6419 | } |
||
6420 | |||
6421 | /** |
||
6422 | * @brief TIM DMA Delay Pulse half complete callback. |
||
6423 | * @param hdma pointer to DMA handle. |
||
6424 | * @retval None |
||
6425 | */ |
||
6426 | void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma) |
||
6427 | { |
||
6428 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
||
6429 | |||
6430 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
||
6431 | { |
||
6432 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
||
6433 | } |
||
6434 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
||
6435 | { |
||
6436 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
||
6437 | } |
||
6438 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
||
6439 | { |
||
6440 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
||
6441 | } |
||
6442 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
||
6443 | { |
||
6444 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
||
6445 | } |
||
6446 | else |
||
6447 | { |
||
6448 | /* nothing to do */ |
||
6449 | } |
||
6450 | |||
6451 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
6452 | htim->PWM_PulseFinishedHalfCpltCallback(htim); |
||
6453 | #else |
||
6454 | HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim); |
||
6455 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
6456 | |||
6457 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
||
6458 | } |
||
6459 | |||
6460 | /** |
||
6461 | * @brief TIM DMA Capture complete callback. |
||
6462 | * @param hdma pointer to DMA handle. |
||
6463 | * @retval None |
||
6464 | */ |
||
6465 | void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) |
||
6466 | { |
||
6467 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
||
6468 | |||
6469 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
||
6470 | { |
||
6471 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
||
6472 | |||
6473 | if (hdma->Init.Mode == DMA_NORMAL) |
||
6474 | { |
||
6475 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
6476 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY); |
||
6477 | } |
||
6478 | } |
||
6479 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
||
6480 | { |
||
6481 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
||
6482 | |||
6483 | if (hdma->Init.Mode == DMA_NORMAL) |
||
6484 | { |
||
6485 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
6486 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY); |
||
6487 | } |
||
6488 | } |
||
6489 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
||
6490 | { |
||
6491 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
||
6492 | |||
6493 | if (hdma->Init.Mode == DMA_NORMAL) |
||
6494 | { |
||
6495 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
||
6496 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY); |
||
6497 | } |
||
6498 | } |
||
6499 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
||
6500 | { |
||
6501 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
||
6502 | |||
6503 | if (hdma->Init.Mode == DMA_NORMAL) |
||
6504 | { |
||
6505 | TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
||
6506 | TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY); |
||
6507 | } |
||
6508 | } |
||
6509 | else |
||
6510 | { |
||
6511 | /* nothing to do */ |
||
6512 | } |
||
6513 | |||
6514 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
6515 | htim->IC_CaptureCallback(htim); |
||
6516 | #else |
||
6517 | HAL_TIM_IC_CaptureCallback(htim); |
||
6518 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
6519 | |||
6520 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
||
6521 | } |
||
6522 | |||
6523 | /** |
||
6524 | * @brief TIM DMA Capture half complete callback. |
||
6525 | * @param hdma pointer to DMA handle. |
||
6526 | * @retval None |
||
6527 | */ |
||
6528 | void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma) |
||
6529 | { |
||
6530 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
||
6531 | |||
6532 | if (hdma == htim->hdma[TIM_DMA_ID_CC1]) |
||
6533 | { |
||
6534 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; |
||
6535 | } |
||
6536 | else if (hdma == htim->hdma[TIM_DMA_ID_CC2]) |
||
6537 | { |
||
6538 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; |
||
6539 | } |
||
6540 | else if (hdma == htim->hdma[TIM_DMA_ID_CC3]) |
||
6541 | { |
||
6542 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; |
||
6543 | } |
||
6544 | else if (hdma == htim->hdma[TIM_DMA_ID_CC4]) |
||
6545 | { |
||
6546 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; |
||
6547 | } |
||
6548 | else |
||
6549 | { |
||
6550 | /* nothing to do */ |
||
6551 | } |
||
6552 | |||
6553 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
6554 | htim->IC_CaptureHalfCpltCallback(htim); |
||
6555 | #else |
||
6556 | HAL_TIM_IC_CaptureHalfCpltCallback(htim); |
||
6557 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
6558 | |||
6559 | htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; |
||
6560 | } |
||
6561 | |||
6562 | /** |
||
6563 | * @brief TIM DMA Period Elapse complete callback. |
||
6564 | * @param hdma pointer to DMA handle. |
||
6565 | * @retval None |
||
6566 | */ |
||
6567 | static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) |
||
6568 | { |
||
6569 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
||
6570 | |||
6571 | if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL) |
||
6572 | { |
||
6573 | htim->State = HAL_TIM_STATE_READY; |
||
6574 | } |
||
6575 | |||
6576 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
6577 | htim->PeriodElapsedCallback(htim); |
||
6578 | #else |
||
6579 | HAL_TIM_PeriodElapsedCallback(htim); |
||
6580 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
6581 | } |
||
6582 | |||
6583 | /** |
||
6584 | * @brief TIM DMA Period Elapse half complete callback. |
||
6585 | * @param hdma pointer to DMA handle. |
||
6586 | * @retval None |
||
6587 | */ |
||
6588 | static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma) |
||
6589 | { |
||
6590 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
||
6591 | |||
6592 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
6593 | htim->PeriodElapsedHalfCpltCallback(htim); |
||
6594 | #else |
||
6595 | HAL_TIM_PeriodElapsedHalfCpltCallback(htim); |
||
6596 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
6597 | } |
||
6598 | |||
6599 | /** |
||
6600 | * @brief TIM DMA Trigger callback. |
||
6601 | * @param hdma pointer to DMA handle. |
||
6602 | * @retval None |
||
6603 | */ |
||
6604 | static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) |
||
6605 | { |
||
6606 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
||
6607 | |||
6608 | if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL) |
||
6609 | { |
||
6610 | htim->State = HAL_TIM_STATE_READY; |
||
6611 | } |
||
6612 | |||
6613 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
6614 | htim->TriggerCallback(htim); |
||
6615 | #else |
||
6616 | HAL_TIM_TriggerCallback(htim); |
||
6617 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
6618 | } |
||
6619 | |||
6620 | /** |
||
6621 | * @brief TIM DMA Trigger half complete callback. |
||
6622 | * @param hdma pointer to DMA handle. |
||
6623 | * @retval None |
||
6624 | */ |
||
6625 | static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma) |
||
6626 | { |
||
6627 | TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
||
6628 | |||
6629 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
6630 | htim->TriggerHalfCpltCallback(htim); |
||
6631 | #else |
||
6632 | HAL_TIM_TriggerHalfCpltCallback(htim); |
||
6633 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
6634 | } |
||
6635 | |||
6636 | /** |
||
6637 | * @brief Time Base configuration |
||
6638 | * @param TIMx TIM peripheral |
||
6639 | * @param Structure TIM Base configuration structure |
||
6640 | * @retval None |
||
6641 | */ |
||
6642 | void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) |
||
6643 | { |
||
6644 | uint32_t tmpcr1; |
||
6645 | tmpcr1 = TIMx->CR1; |
||
6646 | |||
6647 | /* Set TIM Time Base Unit parameters ---------------------------------------*/ |
||
6648 | if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) |
||
6649 | { |
||
6650 | /* Select the Counter Mode */ |
||
6651 | tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); |
||
6652 | tmpcr1 |= Structure->CounterMode; |
||
6653 | } |
||
6654 | |||
6655 | if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) |
||
6656 | { |
||
6657 | /* Set the clock division */ |
||
6658 | tmpcr1 &= ~TIM_CR1_CKD; |
||
6659 | tmpcr1 |= (uint32_t)Structure->ClockDivision; |
||
6660 | } |
||
6661 | |||
6662 | /* Set the auto-reload preload */ |
||
6663 | MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload); |
||
6664 | |||
6665 | TIMx->CR1 = tmpcr1; |
||
6666 | |||
6667 | /* Set the Autoreload value */ |
||
6668 | TIMx->ARR = (uint32_t)Structure->Period ; |
||
6669 | |||
6670 | /* Set the Prescaler value */ |
||
6671 | TIMx->PSC = Structure->Prescaler; |
||
6672 | |||
6673 | if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) |
||
6674 | { |
||
6675 | /* Set the Repetition Counter value */ |
||
6676 | TIMx->RCR = Structure->RepetitionCounter; |
||
6677 | } |
||
6678 | |||
6679 | /* Generate an update event to reload the Prescaler |
||
6680 | and the repetition counter (only for advanced timer) value immediately */ |
||
6681 | TIMx->EGR = TIM_EGR_UG; |
||
6682 | } |
||
6683 | |||
6684 | /** |
||
6685 | * @brief Timer Output Compare 1 configuration |
||
6686 | * @param TIMx to select the TIM peripheral |
||
6687 | * @param OC_Config The output configuration structure |
||
6688 | * @retval None |
||
6689 | */ |
||
6690 | static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
||
6691 | { |
||
6692 | uint32_t tmpccmrx; |
||
6693 | uint32_t tmpccer; |
||
6694 | uint32_t tmpcr2; |
||
6695 | |||
6696 | /* Disable the Channel 1: Reset the CC1E Bit */ |
||
6697 | TIMx->CCER &= ~TIM_CCER_CC1E; |
||
6698 | |||
6699 | /* Get the TIMx CCER register value */ |
||
6700 | tmpccer = TIMx->CCER; |
||
6701 | /* Get the TIMx CR2 register value */ |
||
6702 | tmpcr2 = TIMx->CR2; |
||
6703 | |||
6704 | /* Get the TIMx CCMR1 register value */ |
||
6705 | tmpccmrx = TIMx->CCMR1; |
||
6706 | |||
6707 | /* Reset the Output Compare Mode Bits */ |
||
6708 | tmpccmrx &= ~TIM_CCMR1_OC1M; |
||
6709 | tmpccmrx &= ~TIM_CCMR1_CC1S; |
||
6710 | /* Select the Output Compare Mode */ |
||
6711 | tmpccmrx |= OC_Config->OCMode; |
||
6712 | |||
6713 | /* Reset the Output Polarity level */ |
||
6714 | tmpccer &= ~TIM_CCER_CC1P; |
||
6715 | /* Set the Output Compare Polarity */ |
||
6716 | tmpccer |= OC_Config->OCPolarity; |
||
6717 | |||
6718 | if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1)) |
||
6719 | { |
||
6720 | /* Check parameters */ |
||
6721 | assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); |
||
6722 | |||
6723 | /* Reset the Output N Polarity level */ |
||
6724 | tmpccer &= ~TIM_CCER_CC1NP; |
||
6725 | /* Set the Output N Polarity */ |
||
6726 | tmpccer |= OC_Config->OCNPolarity; |
||
6727 | /* Reset the Output N State */ |
||
6728 | tmpccer &= ~TIM_CCER_CC1NE; |
||
6729 | } |
||
6730 | |||
6731 | if (IS_TIM_BREAK_INSTANCE(TIMx)) |
||
6732 | { |
||
6733 | /* Check parameters */ |
||
6734 | assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); |
||
6735 | assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
||
6736 | |||
6737 | /* Reset the Output Compare and Output Compare N IDLE State */ |
||
6738 | tmpcr2 &= ~TIM_CR2_OIS1; |
||
6739 | tmpcr2 &= ~TIM_CR2_OIS1N; |
||
6740 | /* Set the Output Idle state */ |
||
6741 | tmpcr2 |= OC_Config->OCIdleState; |
||
6742 | /* Set the Output N Idle state */ |
||
6743 | tmpcr2 |= OC_Config->OCNIdleState; |
||
6744 | } |
||
6745 | |||
6746 | /* Write to TIMx CR2 */ |
||
6747 | TIMx->CR2 = tmpcr2; |
||
6748 | |||
6749 | /* Write to TIMx CCMR1 */ |
||
6750 | TIMx->CCMR1 = tmpccmrx; |
||
6751 | |||
6752 | /* Set the Capture Compare Register value */ |
||
6753 | TIMx->CCR1 = OC_Config->Pulse; |
||
6754 | |||
6755 | /* Write to TIMx CCER */ |
||
6756 | TIMx->CCER = tmpccer; |
||
6757 | } |
||
6758 | |||
6759 | /** |
||
6760 | * @brief Timer Output Compare 2 configuration |
||
6761 | * @param TIMx to select the TIM peripheral |
||
6762 | * @param OC_Config The output configuration structure |
||
6763 | * @retval None |
||
6764 | */ |
||
6765 | void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
||
6766 | { |
||
6767 | uint32_t tmpccmrx; |
||
6768 | uint32_t tmpccer; |
||
6769 | uint32_t tmpcr2; |
||
6770 | |||
6771 | /* Disable the Channel 2: Reset the CC2E Bit */ |
||
6772 | TIMx->CCER &= ~TIM_CCER_CC2E; |
||
6773 | |||
6774 | /* Get the TIMx CCER register value */ |
||
6775 | tmpccer = TIMx->CCER; |
||
6776 | /* Get the TIMx CR2 register value */ |
||
6777 | tmpcr2 = TIMx->CR2; |
||
6778 | |||
6779 | /* Get the TIMx CCMR1 register value */ |
||
6780 | tmpccmrx = TIMx->CCMR1; |
||
6781 | |||
6782 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
||
6783 | tmpccmrx &= ~TIM_CCMR1_OC2M; |
||
6784 | tmpccmrx &= ~TIM_CCMR1_CC2S; |
||
6785 | |||
6786 | /* Select the Output Compare Mode */ |
||
6787 | tmpccmrx |= (OC_Config->OCMode << 8U); |
||
6788 | |||
6789 | /* Reset the Output Polarity level */ |
||
6790 | tmpccer &= ~TIM_CCER_CC2P; |
||
6791 | /* Set the Output Compare Polarity */ |
||
6792 | tmpccer |= (OC_Config->OCPolarity << 4U); |
||
6793 | |||
6794 | if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2)) |
||
6795 | { |
||
6796 | assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); |
||
6797 | |||
6798 | /* Reset the Output N Polarity level */ |
||
6799 | tmpccer &= ~TIM_CCER_CC2NP; |
||
6800 | /* Set the Output N Polarity */ |
||
6801 | tmpccer |= (OC_Config->OCNPolarity << 4U); |
||
6802 | /* Reset the Output N State */ |
||
6803 | tmpccer &= ~TIM_CCER_CC2NE; |
||
6804 | |||
6805 | } |
||
6806 | |||
6807 | if (IS_TIM_BREAK_INSTANCE(TIMx)) |
||
6808 | { |
||
6809 | /* Check parameters */ |
||
6810 | assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); |
||
6811 | assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
||
6812 | |||
6813 | /* Reset the Output Compare and Output Compare N IDLE State */ |
||
6814 | tmpcr2 &= ~TIM_CR2_OIS2; |
||
6815 | tmpcr2 &= ~TIM_CR2_OIS2N; |
||
6816 | /* Set the Output Idle state */ |
||
6817 | tmpcr2 |= (OC_Config->OCIdleState << 2U); |
||
6818 | /* Set the Output N Idle state */ |
||
6819 | tmpcr2 |= (OC_Config->OCNIdleState << 2U); |
||
6820 | } |
||
6821 | |||
6822 | /* Write to TIMx CR2 */ |
||
6823 | TIMx->CR2 = tmpcr2; |
||
6824 | |||
6825 | /* Write to TIMx CCMR1 */ |
||
6826 | TIMx->CCMR1 = tmpccmrx; |
||
6827 | |||
6828 | /* Set the Capture Compare Register value */ |
||
6829 | TIMx->CCR2 = OC_Config->Pulse; |
||
6830 | |||
6831 | /* Write to TIMx CCER */ |
||
6832 | TIMx->CCER = tmpccer; |
||
6833 | } |
||
6834 | |||
6835 | /** |
||
6836 | * @brief Timer Output Compare 3 configuration |
||
6837 | * @param TIMx to select the TIM peripheral |
||
6838 | * @param OC_Config The output configuration structure |
||
6839 | * @retval None |
||
6840 | */ |
||
6841 | static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
||
6842 | { |
||
6843 | uint32_t tmpccmrx; |
||
6844 | uint32_t tmpccer; |
||
6845 | uint32_t tmpcr2; |
||
6846 | |||
6847 | /* Disable the Channel 3: Reset the CC2E Bit */ |
||
6848 | TIMx->CCER &= ~TIM_CCER_CC3E; |
||
6849 | |||
6850 | /* Get the TIMx CCER register value */ |
||
6851 | tmpccer = TIMx->CCER; |
||
6852 | /* Get the TIMx CR2 register value */ |
||
6853 | tmpcr2 = TIMx->CR2; |
||
6854 | |||
6855 | /* Get the TIMx CCMR2 register value */ |
||
6856 | tmpccmrx = TIMx->CCMR2; |
||
6857 | |||
6858 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
||
6859 | tmpccmrx &= ~TIM_CCMR2_OC3M; |
||
6860 | tmpccmrx &= ~TIM_CCMR2_CC3S; |
||
6861 | /* Select the Output Compare Mode */ |
||
6862 | tmpccmrx |= OC_Config->OCMode; |
||
6863 | |||
6864 | /* Reset the Output Polarity level */ |
||
6865 | tmpccer &= ~TIM_CCER_CC3P; |
||
6866 | /* Set the Output Compare Polarity */ |
||
6867 | tmpccer |= (OC_Config->OCPolarity << 8U); |
||
6868 | |||
6869 | if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3)) |
||
6870 | { |
||
6871 | assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); |
||
6872 | |||
6873 | /* Reset the Output N Polarity level */ |
||
6874 | tmpccer &= ~TIM_CCER_CC3NP; |
||
6875 | /* Set the Output N Polarity */ |
||
6876 | tmpccer |= (OC_Config->OCNPolarity << 8U); |
||
6877 | /* Reset the Output N State */ |
||
6878 | tmpccer &= ~TIM_CCER_CC3NE; |
||
6879 | } |
||
6880 | |||
6881 | if (IS_TIM_BREAK_INSTANCE(TIMx)) |
||
6882 | { |
||
6883 | /* Check parameters */ |
||
6884 | assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); |
||
6885 | assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
||
6886 | |||
6887 | /* Reset the Output Compare and Output Compare N IDLE State */ |
||
6888 | tmpcr2 &= ~TIM_CR2_OIS3; |
||
6889 | tmpcr2 &= ~TIM_CR2_OIS3N; |
||
6890 | /* Set the Output Idle state */ |
||
6891 | tmpcr2 |= (OC_Config->OCIdleState << 4U); |
||
6892 | /* Set the Output N Idle state */ |
||
6893 | tmpcr2 |= (OC_Config->OCNIdleState << 4U); |
||
6894 | } |
||
6895 | |||
6896 | /* Write to TIMx CR2 */ |
||
6897 | TIMx->CR2 = tmpcr2; |
||
6898 | |||
6899 | /* Write to TIMx CCMR2 */ |
||
6900 | TIMx->CCMR2 = tmpccmrx; |
||
6901 | |||
6902 | /* Set the Capture Compare Register value */ |
||
6903 | TIMx->CCR3 = OC_Config->Pulse; |
||
6904 | |||
6905 | /* Write to TIMx CCER */ |
||
6906 | TIMx->CCER = tmpccer; |
||
6907 | } |
||
6908 | |||
6909 | /** |
||
6910 | * @brief Timer Output Compare 4 configuration |
||
6911 | * @param TIMx to select the TIM peripheral |
||
6912 | * @param OC_Config The output configuration structure |
||
6913 | * @retval None |
||
6914 | */ |
||
6915 | static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) |
||
6916 | { |
||
6917 | uint32_t tmpccmrx; |
||
6918 | uint32_t tmpccer; |
||
6919 | uint32_t tmpcr2; |
||
6920 | |||
6921 | /* Disable the Channel 4: Reset the CC4E Bit */ |
||
6922 | TIMx->CCER &= ~TIM_CCER_CC4E; |
||
6923 | |||
6924 | /* Get the TIMx CCER register value */ |
||
6925 | tmpccer = TIMx->CCER; |
||
6926 | /* Get the TIMx CR2 register value */ |
||
6927 | tmpcr2 = TIMx->CR2; |
||
6928 | |||
6929 | /* Get the TIMx CCMR2 register value */ |
||
6930 | tmpccmrx = TIMx->CCMR2; |
||
6931 | |||
6932 | /* Reset the Output Compare mode and Capture/Compare selection Bits */ |
||
6933 | tmpccmrx &= ~TIM_CCMR2_OC4M; |
||
6934 | tmpccmrx &= ~TIM_CCMR2_CC4S; |
||
6935 | |||
6936 | /* Select the Output Compare Mode */ |
||
6937 | tmpccmrx |= (OC_Config->OCMode << 8U); |
||
6938 | |||
6939 | /* Reset the Output Polarity level */ |
||
6940 | tmpccer &= ~TIM_CCER_CC4P; |
||
6941 | /* Set the Output Compare Polarity */ |
||
6942 | tmpccer |= (OC_Config->OCPolarity << 12U); |
||
6943 | |||
6944 | if (IS_TIM_BREAK_INSTANCE(TIMx)) |
||
6945 | { |
||
6946 | /* Check parameters */ |
||
6947 | assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); |
||
6948 | |||
6949 | /* Reset the Output Compare IDLE State */ |
||
6950 | tmpcr2 &= ~TIM_CR2_OIS4; |
||
6951 | |||
6952 | /* Set the Output Idle state */ |
||
6953 | tmpcr2 |= (OC_Config->OCIdleState << 6U); |
||
6954 | } |
||
6955 | |||
6956 | /* Write to TIMx CR2 */ |
||
6957 | TIMx->CR2 = tmpcr2; |
||
6958 | |||
6959 | /* Write to TIMx CCMR2 */ |
||
6960 | TIMx->CCMR2 = tmpccmrx; |
||
6961 | |||
6962 | /* Set the Capture Compare Register value */ |
||
6963 | TIMx->CCR4 = OC_Config->Pulse; |
||
6964 | |||
6965 | /* Write to TIMx CCER */ |
||
6966 | TIMx->CCER = tmpccer; |
||
6967 | } |
||
6968 | |||
6969 | /** |
||
6970 | * @brief Slave Timer configuration function |
||
6971 | * @param htim TIM handle |
||
6972 | * @param sSlaveConfig Slave timer configuration |
||
6973 | * @retval None |
||
6974 | */ |
||
6975 | static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, |
||
6976 | TIM_SlaveConfigTypeDef *sSlaveConfig) |
||
6977 | { |
||
6978 | uint32_t tmpsmcr; |
||
6979 | uint32_t tmpccmr1; |
||
6980 | uint32_t tmpccer; |
||
6981 | |||
6982 | /* Get the TIMx SMCR register value */ |
||
6983 | tmpsmcr = htim->Instance->SMCR; |
||
6984 | |||
6985 | /* Reset the Trigger Selection Bits */ |
||
6986 | tmpsmcr &= ~TIM_SMCR_TS; |
||
6987 | /* Set the Input Trigger source */ |
||
6988 | tmpsmcr |= sSlaveConfig->InputTrigger; |
||
6989 | |||
6990 | /* Reset the slave mode Bits */ |
||
6991 | tmpsmcr &= ~TIM_SMCR_SMS; |
||
6992 | /* Set the slave mode */ |
||
6993 | tmpsmcr |= sSlaveConfig->SlaveMode; |
||
6994 | |||
6995 | /* Write to TIMx SMCR */ |
||
6996 | htim->Instance->SMCR = tmpsmcr; |
||
6997 | |||
6998 | /* Configure the trigger prescaler, filter, and polarity */ |
||
6999 | switch (sSlaveConfig->InputTrigger) |
||
7000 | { |
||
7001 | case TIM_TS_ETRF: |
||
7002 | { |
||
7003 | /* Check the parameters */ |
||
7004 | assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance)); |
||
7005 | assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); |
||
7006 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
||
7007 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
||
7008 | /* Configure the ETR Trigger source */ |
||
7009 | TIM_ETR_SetConfig(htim->Instance, |
||
7010 | sSlaveConfig->TriggerPrescaler, |
||
7011 | sSlaveConfig->TriggerPolarity, |
||
7012 | sSlaveConfig->TriggerFilter); |
||
7013 | break; |
||
7014 | } |
||
7015 | |||
7016 | case TIM_TS_TI1F_ED: |
||
7017 | { |
||
7018 | /* Check the parameters */ |
||
7019 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
||
7020 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
||
7021 | |||
7022 | if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED) |
||
7023 | { |
||
7024 | return HAL_ERROR; |
||
7025 | } |
||
7026 | |||
7027 | /* Disable the Channel 1: Reset the CC1E Bit */ |
||
7028 | tmpccer = htim->Instance->CCER; |
||
7029 | htim->Instance->CCER &= ~TIM_CCER_CC1E; |
||
7030 | tmpccmr1 = htim->Instance->CCMR1; |
||
7031 | |||
7032 | /* Set the filter */ |
||
7033 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
||
7034 | tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U); |
||
7035 | |||
7036 | /* Write to TIMx CCMR1 and CCER registers */ |
||
7037 | htim->Instance->CCMR1 = tmpccmr1; |
||
7038 | htim->Instance->CCER = tmpccer; |
||
7039 | break; |
||
7040 | } |
||
7041 | |||
7042 | case TIM_TS_TI1FP1: |
||
7043 | { |
||
7044 | /* Check the parameters */ |
||
7045 | assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); |
||
7046 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
||
7047 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
||
7048 | |||
7049 | /* Configure TI1 Filter and Polarity */ |
||
7050 | TIM_TI1_ConfigInputStage(htim->Instance, |
||
7051 | sSlaveConfig->TriggerPolarity, |
||
7052 | sSlaveConfig->TriggerFilter); |
||
7053 | break; |
||
7054 | } |
||
7055 | |||
7056 | case TIM_TS_TI2FP2: |
||
7057 | { |
||
7058 | /* Check the parameters */ |
||
7059 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
||
7060 | assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); |
||
7061 | assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); |
||
7062 | |||
7063 | /* Configure TI2 Filter and Polarity */ |
||
7064 | TIM_TI2_ConfigInputStage(htim->Instance, |
||
7065 | sSlaveConfig->TriggerPolarity, |
||
7066 | sSlaveConfig->TriggerFilter); |
||
7067 | break; |
||
7068 | } |
||
7069 | |||
7070 | case TIM_TS_ITR0: |
||
7071 | case TIM_TS_ITR1: |
||
7072 | case TIM_TS_ITR2: |
||
7073 | case TIM_TS_ITR3: |
||
7074 | { |
||
7075 | /* Check the parameter */ |
||
7076 | assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); |
||
7077 | break; |
||
7078 | } |
||
7079 | |||
7080 | default: |
||
7081 | break; |
||
7082 | } |
||
7083 | return HAL_OK; |
||
7084 | } |
||
7085 | |||
7086 | /** |
||
7087 | * @brief Configure the TI1 as Input. |
||
7088 | * @param TIMx to select the TIM peripheral. |
||
7089 | * @param TIM_ICPolarity The Input Polarity. |
||
7090 | * This parameter can be one of the following values: |
||
7091 | * @arg TIM_ICPOLARITY_RISING |
||
7092 | * @arg TIM_ICPOLARITY_FALLING |
||
7093 | * @arg TIM_ICPOLARITY_BOTHEDGE |
||
7094 | * @param TIM_ICSelection specifies the input to be used. |
||
7095 | * This parameter can be one of the following values: |
||
7096 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1. |
||
7097 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2. |
||
7098 | * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC. |
||
7099 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
||
7100 | * This parameter must be a value between 0x00 and 0x0F. |
||
7101 | * @retval None |
||
7102 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 |
||
7103 | * (on channel2 path) is used as the input signal. Therefore CCMR1 must be |
||
7104 | * protected against un-initialized filter and polarity values. |
||
7105 | */ |
||
7106 | void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
||
7107 | uint32_t TIM_ICFilter) |
||
7108 | { |
||
7109 | uint32_t tmpccmr1; |
||
7110 | uint32_t tmpccer; |
||
7111 | |||
7112 | /* Disable the Channel 1: Reset the CC1E Bit */ |
||
7113 | TIMx->CCER &= ~TIM_CCER_CC1E; |
||
7114 | tmpccmr1 = TIMx->CCMR1; |
||
7115 | tmpccer = TIMx->CCER; |
||
7116 | |||
7117 | /* Select the Input */ |
||
7118 | if (IS_TIM_CC2_INSTANCE(TIMx) != RESET) |
||
7119 | { |
||
7120 | tmpccmr1 &= ~TIM_CCMR1_CC1S; |
||
7121 | tmpccmr1 |= TIM_ICSelection; |
||
7122 | } |
||
7123 | else |
||
7124 | { |
||
7125 | tmpccmr1 |= TIM_CCMR1_CC1S_0; |
||
7126 | } |
||
7127 | |||
7128 | /* Set the filter */ |
||
7129 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
||
7130 | tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F); |
||
7131 | |||
7132 | /* Select the Polarity and set the CC1E Bit */ |
||
7133 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
||
7134 | tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); |
||
7135 | |||
7136 | /* Write to TIMx CCMR1 and CCER registers */ |
||
7137 | TIMx->CCMR1 = tmpccmr1; |
||
7138 | TIMx->CCER = tmpccer; |
||
7139 | } |
||
7140 | |||
7141 | /** |
||
7142 | * @brief Configure the Polarity and Filter for TI1. |
||
7143 | * @param TIMx to select the TIM peripheral. |
||
7144 | * @param TIM_ICPolarity The Input Polarity. |
||
7145 | * This parameter can be one of the following values: |
||
7146 | * @arg TIM_ICPOLARITY_RISING |
||
7147 | * @arg TIM_ICPOLARITY_FALLING |
||
7148 | * @arg TIM_ICPOLARITY_BOTHEDGE |
||
7149 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
||
7150 | * This parameter must be a value between 0x00 and 0x0F. |
||
7151 | * @retval None |
||
7152 | */ |
||
7153 | static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
||
7154 | { |
||
7155 | uint32_t tmpccmr1; |
||
7156 | uint32_t tmpccer; |
||
7157 | |||
7158 | /* Disable the Channel 1: Reset the CC1E Bit */ |
||
7159 | tmpccer = TIMx->CCER; |
||
7160 | TIMx->CCER &= ~TIM_CCER_CC1E; |
||
7161 | tmpccmr1 = TIMx->CCMR1; |
||
7162 | |||
7163 | /* Set the filter */ |
||
7164 | tmpccmr1 &= ~TIM_CCMR1_IC1F; |
||
7165 | tmpccmr1 |= (TIM_ICFilter << 4U); |
||
7166 | |||
7167 | /* Select the Polarity and set the CC1E Bit */ |
||
7168 | tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); |
||
7169 | tmpccer |= TIM_ICPolarity; |
||
7170 | |||
7171 | /* Write to TIMx CCMR1 and CCER registers */ |
||
7172 | TIMx->CCMR1 = tmpccmr1; |
||
7173 | TIMx->CCER = tmpccer; |
||
7174 | } |
||
7175 | |||
7176 | /** |
||
7177 | * @brief Configure the TI2 as Input. |
||
7178 | * @param TIMx to select the TIM peripheral |
||
7179 | * @param TIM_ICPolarity The Input Polarity. |
||
7180 | * This parameter can be one of the following values: |
||
7181 | * @arg TIM_ICPOLARITY_RISING |
||
7182 | * @arg TIM_ICPOLARITY_FALLING |
||
7183 | * @arg TIM_ICPOLARITY_BOTHEDGE |
||
7184 | * @param TIM_ICSelection specifies the input to be used. |
||
7185 | * This parameter can be one of the following values: |
||
7186 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2. |
||
7187 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1. |
||
7188 | * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC. |
||
7189 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
||
7190 | * This parameter must be a value between 0x00 and 0x0F. |
||
7191 | * @retval None |
||
7192 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 |
||
7193 | * (on channel1 path) is used as the input signal. Therefore CCMR1 must be |
||
7194 | * protected against un-initialized filter and polarity values. |
||
7195 | */ |
||
7196 | static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
||
7197 | uint32_t TIM_ICFilter) |
||
7198 | { |
||
7199 | uint32_t tmpccmr1; |
||
7200 | uint32_t tmpccer; |
||
7201 | |||
7202 | /* Disable the Channel 2: Reset the CC2E Bit */ |
||
7203 | TIMx->CCER &= ~TIM_CCER_CC2E; |
||
7204 | tmpccmr1 = TIMx->CCMR1; |
||
7205 | tmpccer = TIMx->CCER; |
||
7206 | |||
7207 | /* Select the Input */ |
||
7208 | tmpccmr1 &= ~TIM_CCMR1_CC2S; |
||
7209 | tmpccmr1 |= (TIM_ICSelection << 8U); |
||
7210 | |||
7211 | /* Set the filter */ |
||
7212 | tmpccmr1 &= ~TIM_CCMR1_IC2F; |
||
7213 | tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F); |
||
7214 | |||
7215 | /* Select the Polarity and set the CC2E Bit */ |
||
7216 | tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
||
7217 | tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); |
||
7218 | |||
7219 | /* Write to TIMx CCMR1 and CCER registers */ |
||
7220 | TIMx->CCMR1 = tmpccmr1 ; |
||
7221 | TIMx->CCER = tmpccer; |
||
7222 | } |
||
7223 | |||
7224 | /** |
||
7225 | * @brief Configure the Polarity and Filter for TI2. |
||
7226 | * @param TIMx to select the TIM peripheral. |
||
7227 | * @param TIM_ICPolarity The Input Polarity. |
||
7228 | * This parameter can be one of the following values: |
||
7229 | * @arg TIM_ICPOLARITY_RISING |
||
7230 | * @arg TIM_ICPOLARITY_FALLING |
||
7231 | * @arg TIM_ICPOLARITY_BOTHEDGE |
||
7232 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
||
7233 | * This parameter must be a value between 0x00 and 0x0F. |
||
7234 | * @retval None |
||
7235 | */ |
||
7236 | static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) |
||
7237 | { |
||
7238 | uint32_t tmpccmr1; |
||
7239 | uint32_t tmpccer; |
||
7240 | |||
7241 | /* Disable the Channel 2: Reset the CC2E Bit */ |
||
7242 | TIMx->CCER &= ~TIM_CCER_CC2E; |
||
7243 | tmpccmr1 = TIMx->CCMR1; |
||
7244 | tmpccer = TIMx->CCER; |
||
7245 | |||
7246 | /* Set the filter */ |
||
7247 | tmpccmr1 &= ~TIM_CCMR1_IC2F; |
||
7248 | tmpccmr1 |= (TIM_ICFilter << 12U); |
||
7249 | |||
7250 | /* Select the Polarity and set the CC2E Bit */ |
||
7251 | tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); |
||
7252 | tmpccer |= (TIM_ICPolarity << 4U); |
||
7253 | |||
7254 | /* Write to TIMx CCMR1 and CCER registers */ |
||
7255 | TIMx->CCMR1 = tmpccmr1 ; |
||
7256 | TIMx->CCER = tmpccer; |
||
7257 | } |
||
7258 | |||
7259 | /** |
||
7260 | * @brief Configure the TI3 as Input. |
||
7261 | * @param TIMx to select the TIM peripheral |
||
7262 | * @param TIM_ICPolarity The Input Polarity. |
||
7263 | * This parameter can be one of the following values: |
||
7264 | * @arg TIM_ICPOLARITY_RISING |
||
7265 | * @arg TIM_ICPOLARITY_FALLING |
||
7266 | * @param TIM_ICSelection specifies the input to be used. |
||
7267 | * This parameter can be one of the following values: |
||
7268 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3. |
||
7269 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4. |
||
7270 | * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC. |
||
7271 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
||
7272 | * This parameter must be a value between 0x00 and 0x0F. |
||
7273 | * @retval None |
||
7274 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 |
||
7275 | * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
||
7276 | * protected against un-initialized filter and polarity values. |
||
7277 | */ |
||
7278 | static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
||
7279 | uint32_t TIM_ICFilter) |
||
7280 | { |
||
7281 | uint32_t tmpccmr2; |
||
7282 | uint32_t tmpccer; |
||
7283 | |||
7284 | /* Disable the Channel 3: Reset the CC3E Bit */ |
||
7285 | TIMx->CCER &= ~TIM_CCER_CC3E; |
||
7286 | tmpccmr2 = TIMx->CCMR2; |
||
7287 | tmpccer = TIMx->CCER; |
||
7288 | |||
7289 | /* Select the Input */ |
||
7290 | tmpccmr2 &= ~TIM_CCMR2_CC3S; |
||
7291 | tmpccmr2 |= TIM_ICSelection; |
||
7292 | |||
7293 | /* Set the filter */ |
||
7294 | tmpccmr2 &= ~TIM_CCMR2_IC3F; |
||
7295 | tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F); |
||
7296 | |||
7297 | /* Select the Polarity and set the CC3E Bit */ |
||
7298 | tmpccer &= ~(TIM_CCER_CC3P); |
||
7299 | tmpccer |= ((TIM_ICPolarity << 8U) & TIM_CCER_CC3P); |
||
7300 | |||
7301 | /* Write to TIMx CCMR2 and CCER registers */ |
||
7302 | TIMx->CCMR2 = tmpccmr2; |
||
7303 | TIMx->CCER = tmpccer; |
||
7304 | } |
||
7305 | |||
7306 | /** |
||
7307 | * @brief Configure the TI4 as Input. |
||
7308 | * @param TIMx to select the TIM peripheral |
||
7309 | * @param TIM_ICPolarity The Input Polarity. |
||
7310 | * This parameter can be one of the following values: |
||
7311 | * @arg TIM_ICPOLARITY_RISING |
||
7312 | * @arg TIM_ICPOLARITY_FALLING |
||
7313 | * @param TIM_ICSelection specifies the input to be used. |
||
7314 | * This parameter can be one of the following values: |
||
7315 | * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4. |
||
7316 | * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3. |
||
7317 | * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC. |
||
7318 | * @param TIM_ICFilter Specifies the Input Capture Filter. |
||
7319 | * This parameter must be a value between 0x00 and 0x0F. |
||
7320 | * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 |
||
7321 | * (on channel1 path) is used as the input signal. Therefore CCMR2 must be |
||
7322 | * protected against un-initialized filter and polarity values. |
||
7323 | * @retval None |
||
7324 | */ |
||
7325 | static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, |
||
7326 | uint32_t TIM_ICFilter) |
||
7327 | { |
||
7328 | uint32_t tmpccmr2; |
||
7329 | uint32_t tmpccer; |
||
7330 | |||
7331 | /* Disable the Channel 4: Reset the CC4E Bit */ |
||
7332 | TIMx->CCER &= ~TIM_CCER_CC4E; |
||
7333 | tmpccmr2 = TIMx->CCMR2; |
||
7334 | tmpccer = TIMx->CCER; |
||
7335 | |||
7336 | /* Select the Input */ |
||
7337 | tmpccmr2 &= ~TIM_CCMR2_CC4S; |
||
7338 | tmpccmr2 |= (TIM_ICSelection << 8U); |
||
7339 | |||
7340 | /* Set the filter */ |
||
7341 | tmpccmr2 &= ~TIM_CCMR2_IC4F; |
||
7342 | tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F); |
||
7343 | |||
7344 | /* Select the Polarity and set the CC4E Bit */ |
||
7345 | tmpccer &= ~(TIM_CCER_CC4P); |
||
7346 | tmpccer |= ((TIM_ICPolarity << 12U) & TIM_CCER_CC4P); |
||
7347 | |||
7348 | /* Write to TIMx CCMR2 and CCER registers */ |
||
7349 | TIMx->CCMR2 = tmpccmr2; |
||
7350 | TIMx->CCER = tmpccer ; |
||
7351 | } |
||
7352 | |||
7353 | /** |
||
7354 | * @brief Selects the Input Trigger source |
||
7355 | * @param TIMx to select the TIM peripheral |
||
7356 | * @param InputTriggerSource The Input Trigger source. |
||
7357 | * This parameter can be one of the following values: |
||
7358 | * @arg TIM_TS_ITR0: Internal Trigger 0 |
||
7359 | * @arg TIM_TS_ITR1: Internal Trigger 1 |
||
7360 | * @arg TIM_TS_ITR2: Internal Trigger 2 |
||
7361 | * @arg TIM_TS_ITR3: Internal Trigger 3 |
||
7362 | * @arg TIM_TS_TI1F_ED: TI1 Edge Detector |
||
7363 | * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 |
||
7364 | * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 |
||
7365 | * @arg TIM_TS_ETRF: External Trigger input |
||
7366 | * @retval None |
||
7367 | */ |
||
7368 | static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource) |
||
7369 | { |
||
7370 | uint32_t tmpsmcr; |
||
7371 | |||
7372 | /* Get the TIMx SMCR register value */ |
||
7373 | tmpsmcr = TIMx->SMCR; |
||
7374 | /* Reset the TS Bits */ |
||
7375 | tmpsmcr &= ~TIM_SMCR_TS; |
||
7376 | /* Set the Input Trigger source and the slave mode*/ |
||
7377 | tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1); |
||
7378 | /* Write to TIMx SMCR */ |
||
7379 | TIMx->SMCR = tmpsmcr; |
||
7380 | } |
||
7381 | /** |
||
7382 | * @brief Configures the TIMx External Trigger (ETR). |
||
7383 | * @param TIMx to select the TIM peripheral |
||
7384 | * @param TIM_ExtTRGPrescaler The external Trigger Prescaler. |
||
7385 | * This parameter can be one of the following values: |
||
7386 | * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF. |
||
7387 | * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2. |
||
7388 | * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4. |
||
7389 | * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8. |
||
7390 | * @param TIM_ExtTRGPolarity The external Trigger Polarity. |
||
7391 | * This parameter can be one of the following values: |
||
7392 | * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active. |
||
7393 | * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active. |
||
7394 | * @param ExtTRGFilter External Trigger Filter. |
||
7395 | * This parameter must be a value between 0x00 and 0x0F |
||
7396 | * @retval None |
||
7397 | */ |
||
7398 | void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler, |
||
7399 | uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) |
||
7400 | { |
||
7401 | uint32_t tmpsmcr; |
||
7402 | |||
7403 | tmpsmcr = TIMx->SMCR; |
||
7404 | |||
7405 | /* Reset the ETR Bits */ |
||
7406 | tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); |
||
7407 | |||
7408 | /* Set the Prescaler, the Filter value and the Polarity */ |
||
7409 | tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U))); |
||
7410 | |||
7411 | /* Write to TIMx SMCR */ |
||
7412 | TIMx->SMCR = tmpsmcr; |
||
7413 | } |
||
7414 | |||
7415 | /** |
||
7416 | * @brief Enables or disables the TIM Capture Compare Channel x. |
||
7417 | * @param TIMx to select the TIM peripheral |
||
7418 | * @param Channel specifies the TIM Channel |
||
7419 | * This parameter can be one of the following values: |
||
7420 | * @arg TIM_CHANNEL_1: TIM Channel 1 |
||
7421 | * @arg TIM_CHANNEL_2: TIM Channel 2 |
||
7422 | * @arg TIM_CHANNEL_3: TIM Channel 3 |
||
7423 | * @arg TIM_CHANNEL_4: TIM Channel 4 |
||
7424 | * @param ChannelState specifies the TIM Channel CCxE bit new state. |
||
7425 | * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE. |
||
7426 | * @retval None |
||
7427 | */ |
||
7428 | void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState) |
||
7429 | { |
||
7430 | uint32_t tmp; |
||
7431 | |||
7432 | /* Check the parameters */ |
||
7433 | assert_param(IS_TIM_CC1_INSTANCE(TIMx)); |
||
7434 | assert_param(IS_TIM_CHANNELS(Channel)); |
||
7435 | |||
7436 | tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */ |
||
7437 | |||
7438 | /* Reset the CCxE Bit */ |
||
7439 | TIMx->CCER &= ~tmp; |
||
7440 | |||
7441 | /* Set or reset the CCxE Bit */ |
||
7442 | TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */ |
||
7443 | } |
||
7444 | |||
7445 | #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1) |
||
7446 | /** |
||
7447 | * @brief Reset interrupt callbacks to the legacy weak callbacks. |
||
7448 | * @param htim pointer to a TIM_HandleTypeDef structure that contains |
||
7449 | * the configuration information for TIM module. |
||
7450 | * @retval None |
||
7451 | */ |
||
7452 | void TIM_ResetCallback(TIM_HandleTypeDef *htim) |
||
7453 | { |
||
7454 | /* Reset the TIM callback to the legacy weak callbacks */ |
||
7455 | htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback; |
||
7456 | htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback; |
||
7457 | htim->TriggerCallback = HAL_TIM_TriggerCallback; |
||
7458 | htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback; |
||
7459 | htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback; |
||
7460 | htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback; |
||
7461 | htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback; |
||
7462 | htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback; |
||
7463 | htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback; |
||
7464 | htim->ErrorCallback = HAL_TIM_ErrorCallback; |
||
7465 | htim->CommutationCallback = HAL_TIMEx_CommutCallback; |
||
7466 | htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback; |
||
7467 | htim->BreakCallback = HAL_TIMEx_BreakCallback; |
||
7468 | } |
||
7469 | #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */ |
||
7470 | |||
7471 | /** |
||
7472 | * @} |
||
7473 | */ |
||
7474 | |||
7475 | #endif /* HAL_TIM_MODULE_ENABLED */ |
||
7476 | /** |
||
7477 | * @} |
||
7478 | */ |
||
7479 | |||
7480 | /** |
||
7481 | * @} |
||
7482 | */ |
||
7483 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |