Subversion Repositories LedShow

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**
2
  ******************************************************************************
3
  * @file    stm32f1xx_hal_spi.c
4
  * @author  MCD Application Team
5
  * @brief   SPI HAL module driver.
6
  *          This file provides firmware functions to manage the following
7
  *          functionalities of the Serial Peripheral Interface (SPI) peripheral:
8
  *           + Initialization and de-initialization functions
9
  *           + IO operation functions
10
  *           + Peripheral Control functions
11
  *           + Peripheral State functions
12
  *
13
  @verbatim
14
  ==============================================================================
15
                        ##### How to use this driver #####
16
  ==============================================================================
17
    [..]
18
      The SPI HAL driver can be used as follows:
19
 
20
      (#) Declare a SPI_HandleTypeDef handle structure, for example:
21
          SPI_HandleTypeDef  hspi;
22
 
23
      (#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit() API:
24
          (##) Enable the SPIx interface clock
25
          (##) SPI pins configuration
26
              (+++) Enable the clock for the SPI GPIOs
27
              (+++) Configure these SPI pins as alternate function push-pull
28
          (##) NVIC configuration if you need to use interrupt process
29
              (+++) Configure the SPIx interrupt priority
30
              (+++) Enable the NVIC SPI IRQ handle
31
          (##) DMA Configuration if you need to use DMA process
32
              (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive Channel
33
              (+++) Enable the DMAx clock
34
              (+++) Configure the DMA handle parameters
35
              (+++) Configure the DMA Tx or Rx Channel
36
              (+++) Associate the initilalized hdma_tx(or _rx) handle to the hspi DMA Tx (or Rx) handle
37
              (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Channel
38
 
39
      (#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS
40
          management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure.
41
 
42
      (#) Initialize the SPI registers by calling the HAL_SPI_Init() API:
43
          (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
44
              by calling the customized HAL_SPI_MspInit() API.
45
     [..]
46
       Circular mode restriction:
47
      (#) The DMA circular mode cannot be used when the SPI is configured in these modes:
48
          (##) Master 2Lines RxOnly
49
          (##) Master 1Line Rx
50
      (#) The CRC feature is not managed when the DMA circular mode is enabled
51
      (#) When the SPI DMA Pause/Stop features are used, we must use the following APIs
52
          the HAL_SPI_DMAPause()/ HAL_SPI_DMAStop() only under the SPI callbacks
53
     [..]
54
       Master Receive mode restriction:
55
      (#) In Master unidirectional receive-only mode (MSTR =1, BIDIMODE=0, RXONLY=0) or
56
          bidirectional receive mode (MSTR=1, BIDIMODE=1, BIDIOE=0), to ensure that the SPI
57
          does not initiate a new transfer the following procedure has to be respected:
58
          (##) HAL_SPI_DeInit()
59
          (##) HAL_SPI_Init()
60
 
61
  @endverbatim
62
 
63
    Using the HAL it is not possible to reach all supported SPI frequency with the differents SPI Modes,
64
    the following tables resume the max SPI frequency reached with data size 8bits/16bits,
65
    according to frequency used on APBx Peripheral Clock (fPCLK) used by the SPI instance :
66
 
67
   DataSize = SPI_DATASIZE_8BIT:
68
   +--------------------------------------------------------------------------------------------------+
69
   |         |                | 2Lines Fullduplex     |     2Lines RxOnly     |        1Line          |
70
   | Process | Tranfert mode  |-----------------------|-----------------------|-----------------------|
71
   |         |                |  Master   |  Slave    |  Master   |  Slave    |  Master   |  Slave    |
72
   |==================================================================================================|
73
   |    T    |     Polling    |  fPCLK/2  | fPCLK/16  |    NA     |    NA     |    NA     |    NA     |
74
   |    X    |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
75
   |    /    |     Interrupt  |  fPCLK/8  | fPCLK/32  |    NA     |    NA     |    NA     |    NA     |
76
   |    R    |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
77
   |    X    |       DMA      |  fPCLK/2  | fPCLK/4   |    NA     |    NA     |    NA     |    NA     |
78
   |=========|================|===========|===========|===========|===========|===========|===========|
79
   |         |     Polling    |  fPCLK/4  | fPCLK/8   | fPCLK/8   | fPCLK/16  | fPCLK/64  | fPCLK/2   |
80
   |         |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
81
   |    R    |     Interrupt  |  fPCLK/8  | fPCLK/16  | fPCLK/32  | fPCLK/16  | fPCLK/64  | fPCLK/4   |
82
   |    X    |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
83
   |         |       DMA      |  fPCLK/2  | fPCLK/16  | fPCLK/8   | fPCLK/16  | fPCLK/64  | fPCLK/2   |
84
   |=========|================|===========|===========|===========|===========|===========|===========|
85
   |         |     Polling    |  fPCLK/2  |  fPCLK/2  |    NA     |    NA     |  fPCLK/2  | fPCLK/32  |
86
   |         |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
87
   |    T    |     Interrupt  |  fPCLK/8  | fPCLK/16  |    NA     |    NA     |  fPCLK/2  | fPCLK/64  |
88
   |    X    |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
89
   |         |       DMA      |  fPCLK/2  |  fPCLK/4  |    NA     |    NA     |  fPCLK/2  | fPCLK/32  |
90
   +--------------------------------------------------------------------------------------------------+
91
 
92
   DataSize = SPI_DATASIZE_16BIT:
93
   +--------------------------------------------------------------------------------------------------+
94
   |         |                | 2Lines Fullduplex     |     2Lines RxOnly     |        1Line          |
95
   | Process | Tranfert mode  |-----------------------|-----------------------|-----------------------|
96
   |         |                |  Master   |  Slave    |  Master   |  Slave    |  Master   |  Slave    |
97
   |==================================================================================================|
98
   |    T    |     Polling    |  fPCLK/4  | fPCLK/4   |    NA     |    NA     |    NA     |    NA     |
99
   |    X    |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
100
   |    /    |     Interrupt  |  fPCLK/8  | fPCLK/16  |    NA     |    NA     |    NA     |    NA     |
101
   |    R    |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
102
   |    X    |       DMA      |  fPCLK/2  | fPCLK/4   |    NA     |    NA     |    NA     |    NA     |
103
   |=========|================|===========|===========|===========|===========|===========|===========|
104
   |         |     Polling    |  fPCLK/4  |  fPCLK/8  | fPCLK/4   | fPCLK/8   | fPCLK/64  | fPCLK/2   |
105
   |         |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
106
   |    R    |     Interrupt  |  fPCLK/8  |  fPCLK/8  | fPCLK/128 | fPCLK/8   | fPCLK/128 | fPCLK/4   |
107
   |    X    |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
108
   |         |       DMA      |  fPCLK/2  |  fPCLK/2  | fPCLK/128 | fPCLK/16  | fPCLK/64  | fPCLK/2   |
109
   |=========|================|===========|===========|===========|===========|===========|===========|
110
   |         |     Polling    |  fPCLK/2  |  fPCLK/4  |    NA     |    NA     |  fPCLK/4  | fPCLK/8   |
111
   |         |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
112
   |    T    |     Interrupt  |  fPCLK/4  |  fPCLK/8  |    NA     |    NA     |  fPCLK/4  | fPCLK/4   |
113
   |    X    |----------------|-----------|-----------|-----------|-----------|-----------|-----------|
114
   |         |       DMA      |  fPCLK/2  |  fPCLK/2  |    NA     |    NA     |  fPCLK/4  | fPCLK/8   |
115
   +--------------------------------------------------------------------------------------------------+
116
     [..]
117
       (@) The max SPI frequency depend on SPI data size (8bits, 16bits),
118
           SPI mode(2 Lines fullduplex, 2 lines RxOnly, 1 line TX/RX) and Process mode (Polling, IT, DMA).
119
       (@)
120
            (+@) TX/RX processes are HAL_SPI_TransmitReceive(), HAL_SPI_TransmitReceive_IT() and HAL_SPI_TransmitReceive_DMA()
121
            (+@) RX processes are HAL_SPI_Receive(), HAL_SPI_Receive_IT() and HAL_SPI_Receive_DMA()
122
            (+@) TX processes are HAL_SPI_Transmit(), HAL_SPI_Transmit_IT() and HAL_SPI_Transmit_DMA()
123
  ******************************************************************************
124
  * @attention
125
  *
126
  * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
127
  *
128
  * Redistribution and use in source and binary forms, with or without modification,
129
  * are permitted provided that the following conditions are met:
130
  *   1. Redistributions of source code must retain the above copyright notice,
131
  *      this list of conditions and the following disclaimer.
132
  *   2. Redistributions in binary form must reproduce the above copyright notice,
133
  *      this list of conditions and the following disclaimer in the documentation
134
  *      and/or other materials provided with the distribution.
135
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
136
  *      may be used to endorse or promote products derived from this software
137
  *      without specific prior written permission.
138
  *
139
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
140
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
141
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
142
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
143
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
144
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
145
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
146
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
147
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
148
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
149
  *
150
  ******************************************************************************
151
  */
152
 
153
/* Includes ------------------------------------------------------------------*/
154
#include "stm32f1xx_hal.h"
155
 
156
/** @addtogroup STM32F1xx_HAL_Driver
157
  * @{
158
  */
159
/** @defgroup SPI SPI
160
  * @brief SPI HAL module driver
161
  * @{
162
  */
163
#ifdef HAL_SPI_MODULE_ENABLED
164
 
165
/* Private typedef -----------------------------------------------------------*/
166
/* Private defines -----------------------------------------------------------*/
167
/** @defgroup SPI_Private_Constants SPI Private Constants
168
  * @{
169
  */
170
#define SPI_DEFAULT_TIMEOUT 100U
171
/**
172
  * @}
173
  */
174
 
175
/* Private macros ------------------------------------------------------------*/
176
/* Private variables ---------------------------------------------------------*/
177
/* Private function prototypes -----------------------------------------------*/
178
/** @addtogroup SPI_Private_Functions
179
  * @{
180
  */
181
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
182
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
183
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma);
184
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma);
185
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma);
186
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma);
187
static void SPI_DMAError(DMA_HandleTypeDef *hdma);
188
static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma);
189
static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
190
static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
191
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout, uint32_t Tickstart);
192
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
193
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
194
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
195
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
196
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
197
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
198
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
199
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
200
#if (USE_SPI_CRC != 0U)
201
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
202
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
203
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
204
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
205
#endif /* USE_SPI_CRC */
206
static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi);
207
static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi);
208
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi);
209
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi);
210
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi);
211
static HAL_StatusTypeDef SPI_CheckFlag_BSY(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart);
212
/**
213
  * @}
214
  */
215
 
216
/* Exported functions --------------------------------------------------------*/
217
/** @defgroup SPI_Exported_Functions SPI Exported Functions
218
  * @{
219
  */
220
 
221
/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions
222
 *  @brief    Initialization and Configuration functions
223
 *
224
@verbatim
225
 ===============================================================================
226
              ##### Initialization and de-initialization functions #####
227
 ===============================================================================
228
    [..]  This subsection provides a set of functions allowing to initialize and
229
          de-initialize the SPIx peripheral:
230
 
231
      (+) User must implement HAL_SPI_MspInit() function in which he configures
232
          all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
233
 
234
      (+) Call the function HAL_SPI_Init() to configure the selected device with
235
          the selected configuration:
236
        (++) Mode
237
        (++) Direction
238
        (++) Data Size
239
        (++) Clock Polarity and Phase
240
        (++) NSS Management
241
        (++) BaudRate Prescaler
242
        (++) FirstBit
243
        (++) TIMode
244
        (++) CRC Calculation
245
        (++) CRC Polynomial if CRC enabled
246
 
247
      (+) Call the function HAL_SPI_DeInit() to restore the default configuration
248
          of the selected SPIx peripheral.
249
 
250
@endverbatim
251
  * @{
252
  */
253
 
254
/**
255
  * @brief  Initialize the SPI according to the specified parameters
256
  *         in the SPI_InitTypeDef and initialize the associated handle.
257
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
258
  *               the configuration information for SPI module.
259
  * @retval HAL status
260
  */
261
__weak HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi)
262
{
263
  /* Check the SPI handle allocation */
264
  if(hspi == NULL)
265
  {
266
    return HAL_ERROR;
267
  }
268
 
269
  /* Check the parameters */
270
  assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
271
  assert_param(IS_SPI_MODE(hspi->Init.Mode));
272
  assert_param(IS_SPI_DIRECTION(hspi->Init.Direction));
273
  assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize));
274
  assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity));
275
  assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase));
276
  assert_param(IS_SPI_NSS(hspi->Init.NSS));
277
  assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
278
  assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit));
279
 
280
#if (USE_SPI_CRC != 0U)
281
  assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation));
282
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
283
  {
284
    assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial));
285
  }
286
#else
287
  hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
288
#endif /* USE_SPI_CRC */
289
 
290
  if(hspi->State == HAL_SPI_STATE_RESET)
291
  {
292
    /* Allocate lock resource and initialize it */
293
    hspi->Lock = HAL_UNLOCKED;
294
 
295
    /* Init the low level hardware : GPIO, CLOCK, NVIC... */
296
    HAL_SPI_MspInit(hspi);
297
  }
298
 
299
  hspi->State = HAL_SPI_STATE_BUSY;
300
 
301
  /* Disable the selected SPI peripheral */
302
  __HAL_SPI_DISABLE(hspi);
303
 
304
  /*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/
305
  /* Configure : SPI Mode, Communication Mode, Data size, Clock polarity and phase, NSS management,
306
  Communication speed, First bit and CRC calculation state */
307
  WRITE_REG(hspi->Instance->CR1, (hspi->Init.Mode | hspi->Init.Direction | hspi->Init.DataSize |
308
                                  hspi->Init.CLKPolarity | hspi->Init.CLKPhase | (hspi->Init.NSS & SPI_CR1_SSM) |
309
                                  hspi->Init.BaudRatePrescaler | hspi->Init.FirstBit  | hspi->Init.CRCCalculation) );
310
 
311
  /* Configure : NSS management */
312
  WRITE_REG(hspi->Instance->CR2, (((hspi->Init.NSS >> 16U) & SPI_CR2_SSOE) | hspi->Init.TIMode));
313
 
314
#if (USE_SPI_CRC != 0U)
315
  /*---------------------------- SPIx CRCPOLY Configuration ------------------*/
316
  /* Configure : CRC Polynomial */
317
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
318
  {
319
    WRITE_REG(hspi->Instance->CRCPR, hspi->Init.CRCPolynomial);
320
  }
321
#endif /* USE_SPI_CRC */
322
 
323
#if defined(SPI_I2SCFGR_I2SMOD)
324
  /* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */
325
  CLEAR_BIT(hspi->Instance->I2SCFGR, SPI_I2SCFGR_I2SMOD);
326
#endif /* SPI_I2SCFGR_I2SMOD */
327
 
328
  hspi->ErrorCode = HAL_SPI_ERROR_NONE;
329
  hspi->State     = HAL_SPI_STATE_READY;
330
 
331
  return HAL_OK;
332
}
333
 
334
/**
335
  * @brief  De Initialize the SPI peripheral.
336
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
337
  *               the configuration information for SPI module.
338
  * @retval HAL status
339
  */
340
HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi)
341
{
342
  /* Check the SPI handle allocation */
343
  if(hspi == NULL)
344
  {
345
    return HAL_ERROR;
346
  }
347
 
348
  /* Check SPI Instance parameter */
349
  assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
350
 
351
  hspi->State = HAL_SPI_STATE_BUSY;
352
 
353
  /* Disable the SPI Peripheral Clock */
354
  __HAL_SPI_DISABLE(hspi);
355
 
356
  /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
357
  HAL_SPI_MspDeInit(hspi);
358
 
359
  hspi->ErrorCode = HAL_SPI_ERROR_NONE;
360
  hspi->State = HAL_SPI_STATE_RESET;
361
 
362
  /* Release Lock */
363
  __HAL_UNLOCK(hspi);
364
 
365
  return HAL_OK;
366
}
367
 
368
/**
369
  * @brief  Initialize the SPI MSP.
370
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
371
  *               the configuration information for SPI module.
372
  * @retval None
373
  */
374
__weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
375
{
376
  /* Prevent unused argument(s) compilation warning */
377
  UNUSED(hspi);
378
  /* NOTE : This function should not be modified, when the callback is needed,
379
            the HAL_SPI_MspInit should be implemented in the user file
380
  */
381
}
382
 
383
/**
384
  * @brief  De-Initialize the SPI MSP.
385
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
386
  *               the configuration information for SPI module.
387
  * @retval None
388
  */
389
__weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi)
390
{
391
  /* Prevent unused argument(s) compilation warning */
392
  UNUSED(hspi);
393
  /* NOTE : This function should not be modified, when the callback is needed,
394
            the HAL_SPI_MspDeInit should be implemented in the user file
395
  */
396
}
397
 
398
/**
399
  * @}
400
  */
401
 
402
/** @defgroup SPI_Exported_Functions_Group2 IO operation functions
403
 *  @brief   Data transfers functions
404
 *
405
@verbatim
406
  ==============================================================================
407
                      ##### IO operation functions #####
408
 ===============================================================================
409
 [..]
410
    This subsection provides a set of functions allowing to manage the SPI
411
    data transfers.
412
 
413
    [..] The SPI supports master and slave mode :
414
 
415
    (#) There are two modes of transfer:
416
       (++) Blocking mode: The communication is performed in polling mode.
417
            The HAL status of all data processing is returned by the same function
418
            after finishing transfer.
419
       (++) No-Blocking mode: The communication is performed using Interrupts
420
            or DMA, These APIs return the HAL status.
421
            The end of the data processing will be indicated through the
422
            dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when
423
            using DMA mode.
424
            The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks
425
            will be executed respectively at the end of the transmit or Receive process
426
            The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected
427
 
428
    (#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA)
429
        exist for 1Line (simplex) and 2Lines (full duplex) modes.
430
 
431
@endverbatim
432
  * @{
433
  */
434
 
435
/**
436
  * @brief  Transmit an amount of data in blocking mode.
437
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
438
  *               the configuration information for SPI module.
439
  * @param  pData: pointer to data buffer
440
  * @param  Size: amount of data to be sent
441
  * @param  Timeout: Timeout duration
442
  * @retval HAL status
443
  */
444
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
445
{
446
  uint32_t tickstart = 0U;
447
  HAL_StatusTypeDef errorcode = HAL_OK;
448
 
449
  /* Check Direction parameter */
450
  assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
451
 
452
  /* Process Locked */
453
  __HAL_LOCK(hspi);
454
 
455
  /* Init tickstart for timeout management*/
456
  tickstart = HAL_GetTick();
457
 
458
  if(hspi->State != HAL_SPI_STATE_READY)
459
  {
460
    errorcode = HAL_BUSY;
461
    goto error;
462
  }
463
 
464
  if((pData == NULL ) || (Size == 0U))
465
  {
466
    errorcode = HAL_ERROR;
467
    goto error;
468
  }
469
 
470
  /* Set the transaction information */
471
  hspi->State       = HAL_SPI_STATE_BUSY_TX;
472
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
473
  hspi->pTxBuffPtr  = (uint8_t *)pData;
474
  hspi->TxXferSize  = Size;
475
  hspi->TxXferCount = Size;
476
 
477
  /*Init field not used in handle to zero */
478
  hspi->pRxBuffPtr  = (uint8_t *)NULL;
479
  hspi->RxXferSize  = 0U;
480
  hspi->RxXferCount = 0U;
481
  hspi->TxISR       = NULL;
482
  hspi->RxISR       = NULL;
483
 
484
  /* Configure communication direction : 1Line */
485
  if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
486
  {
487
    SPI_1LINE_TX(hspi);
488
  }
489
 
490
#if (USE_SPI_CRC != 0U)
491
  /* Reset CRC Calculation */
492
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
493
  {
494
    SPI_RESET_CRC(hspi);
495
  }
496
#endif /* USE_SPI_CRC */
497
 
498
  /* Check if the SPI is already enabled */
499
  if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
500
  {
501
    /* Enable SPI peripheral */
502
    __HAL_SPI_ENABLE(hspi);
503
  }
504
 
505
  /* Transmit data in 16 Bit mode */
506
  if(hspi->Init.DataSize == SPI_DATASIZE_16BIT)
507
  {
508
    if((hspi->Init.Mode == SPI_MODE_SLAVE) || (hspi->TxXferCount == 0x01))
509
    {
510
      hspi->Instance->DR = *((uint16_t *)pData);
511
      pData += sizeof(uint16_t);
512
      hspi->TxXferCount--;
513
    }
514
    /* Transmit data in 16 Bit mode */
515
    while (hspi->TxXferCount > 0U)
516
    {
517
      /* Wait until TXE flag is set to send data */
518
      if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE))
519
      {
520
          hspi->Instance->DR = *((uint16_t *)pData);
521
          pData += sizeof(uint16_t);
522
          hspi->TxXferCount--;
523
      }
524
      else
525
      {
526
        /* Timeout management */
527
        if((Timeout == 0U) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >=  Timeout)))
528
        {
529
          errorcode = HAL_TIMEOUT;
530
          goto error;
531
        }
532
      }
533
    }
534
  }
535
  /* Transmit data in 8 Bit mode */
536
  else
537
  {
538
    if((hspi->Init.Mode == SPI_MODE_SLAVE)|| (hspi->TxXferCount == 0x01))
539
    {
540
      *((__IO uint8_t*)&hspi->Instance->DR) = (*pData);
541
      pData += sizeof(uint8_t);
542
      hspi->TxXferCount--;
543
    }
544
    while (hspi->TxXferCount > 0U)
545
    {
546
      /* Wait until TXE flag is set to send data */
547
      if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE))
548
      {
549
        *((__IO uint8_t*)&hspi->Instance->DR) = (*pData);
550
        pData += sizeof(uint8_t);
551
        hspi->TxXferCount--;
552
      }
553
      else
554
      {
555
        /* Timeout management */
556
        if((Timeout == 0U) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >=  Timeout)))
557
        {
558
          errorcode = HAL_TIMEOUT;
559
          goto error;
560
        }
561
      }
562
    }
563
  }
564
 
565
  /* Wait until TXE flag */
566
  if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_TXE, SET, Timeout, tickstart) != HAL_OK)
567
  {
568
    errorcode = HAL_TIMEOUT;
569
    goto error;
570
  }
571
 
572
  /* Check Busy flag */
573
  if(SPI_CheckFlag_BSY(hspi, Timeout, tickstart) != HAL_OK)
574
  {
575
    errorcode = HAL_ERROR;
576
    hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
577
    goto error;
578
  }
579
 
580
  /* Clear overrun flag in 2 Lines communication mode because received is not read */
581
  if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
582
  {
583
    __HAL_SPI_CLEAR_OVRFLAG(hspi);
584
  }
585
#if (USE_SPI_CRC != 0U)
586
  /* Enable CRC Transmission */
587
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
588
  {
589
     SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
590
  }
591
#endif /* USE_SPI_CRC */
592
 
593
  if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
594
  {
595
    errorcode = HAL_ERROR;
596
  }
597
 
598
error:
599
  hspi->State = HAL_SPI_STATE_READY;
600
  /* Process Unlocked */
601
  __HAL_UNLOCK(hspi);
602
  return errorcode;
603
}
604
 
605
/**
606
  * @brief  Receive an amount of data in blocking mode.
607
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
608
  *               the configuration information for SPI module.
609
  * @param  pData: pointer to data buffer
610
  * @param  Size: amount of data to be received
611
  * @param  Timeout: Timeout duration
612
  * @retval HAL status
613
  */
614
HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
615
{
616
#if (USE_SPI_CRC != 0U)
617
  __IO uint16_t tmpreg = 0U;
618
#endif /* USE_SPI_CRC */
619
  uint32_t tickstart = 0U;
620
  HAL_StatusTypeDef errorcode = HAL_OK;
621
 
622
  if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
623
  {
624
     hspi->State = HAL_SPI_STATE_BUSY_RX;
625
     /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
626
    return HAL_SPI_TransmitReceive(hspi,pData,pData,Size,Timeout);
627
  }
628
 
629
  /* Process Locked */
630
  __HAL_LOCK(hspi);
631
 
632
  /* Init tickstart for timeout management*/
633
  tickstart = HAL_GetTick();
634
 
635
  if(hspi->State != HAL_SPI_STATE_READY)
636
  {
637
    errorcode = HAL_BUSY;
638
    goto error;
639
  }
640
 
641
  if((pData == NULL ) || (Size == 0U))
642
  {
643
    errorcode = HAL_ERROR;
644
    goto error;
645
  }
646
 
647
  /* Set the transaction information */
648
  hspi->State       = HAL_SPI_STATE_BUSY_RX;
649
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
650
  hspi->pRxBuffPtr  = (uint8_t *)pData;
651
  hspi->RxXferSize  = Size;
652
  hspi->RxXferCount = Size;
653
 
654
  /*Init field not used in handle to zero */
655
  hspi->pTxBuffPtr  = (uint8_t *)NULL;
656
  hspi->TxXferSize  = 0U;
657
  hspi->TxXferCount = 0U;
658
  hspi->RxISR       = NULL;
659
  hspi->TxISR       = NULL;
660
 
661
#if (USE_SPI_CRC != 0U)
662
  /* Reset CRC Calculation */
663
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
664
  {
665
    SPI_RESET_CRC(hspi);
666
    /* this is done to handle the CRCNEXT before the latest data */
667
    hspi->RxXferCount--;
668
  }
669
#endif /* USE_SPI_CRC */
670
 
671
  /* Configure communication direction: 1Line */
672
  if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
673
  {
674
    SPI_1LINE_RX(hspi);
675
  }
676
 
677
  /* Check if the SPI is already enabled */
678
  if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
679
  {
680
    /* Enable SPI peripheral */
681
    __HAL_SPI_ENABLE(hspi);
682
  }
683
 
684
    /* Receive data in 8 Bit mode */
685
  if(hspi->Init.DataSize == SPI_DATASIZE_8BIT)
686
  {
687
    /* Transfer loop */
688
    while(hspi->RxXferCount > 0U)
689
    {
690
      /* Check the RXNE flag */
691
      if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE))
692
      {
693
        /* read the received data */
694
        (* (uint8_t *)pData)= *(__IO uint8_t *)&hspi->Instance->DR;
695
        pData += sizeof(uint8_t);
696
        hspi->RxXferCount--;
697
      }
698
      else
699
      {
700
        /* Timeout management */
701
        if((Timeout == 0U) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >=  Timeout)))
702
        {
703
          errorcode = HAL_TIMEOUT;
704
          goto error;
705
        }
706
      }
707
    }
708
  }
709
  else
710
  {
711
    /* Transfer loop */
712
    while(hspi->RxXferCount > 0U)
713
    {
714
      /* Check the RXNE flag */
715
      if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE))
716
      {
717
        *((uint16_t*)pData) = hspi->Instance->DR;
718
        pData += sizeof(uint16_t);
719
        hspi->RxXferCount--;
720
      }
721
      else
722
      {
723
        /* Timeout management */
724
        if((Timeout == 0U) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >=  Timeout)))
725
        {
726
          errorcode = HAL_TIMEOUT;
727
          goto error;
728
        }
729
      }
730
    }
731
  }
732
 
733
#if (USE_SPI_CRC != 0U)
734
  /* Handle the CRC Transmission */
735
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
736
  {
737
    /* freeze the CRC before the latest data */
738
    SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
739
 
740
    /* Read the latest data */
741
    if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
742
    {
743
      /* the latest data has not been received */
744
      errorcode = HAL_TIMEOUT;
745
      goto error;
746
    }
747
 
748
    /* Receive last data in 16 Bit mode */
749
    if(hspi->Init.DataSize == SPI_DATASIZE_16BIT)
750
    {
751
      *((uint16_t*)pData) = hspi->Instance->DR;
752
    }
753
    /* Receive last data in 8 Bit mode */
754
    else
755
    {
756
      (*(uint8_t *)pData) = *(__IO uint8_t *)&hspi->Instance->DR;
757
    }
758
 
759
    /* Wait the CRC data */
760
    if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
761
    {
762
      SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
763
      errorcode = HAL_TIMEOUT;
764
      goto error;
765
    }
766
 
767
    /* Read CRC to Flush DR and RXNE flag */
768
    tmpreg = hspi->Instance->DR;
769
    /* To avoid GCC warning */
770
    UNUSED(tmpreg);
771
  }
772
#endif /* USE_SPI_CRC */
773
 
774
  /* Check the end of the transaction */
775
  if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
776
  {
777
    /* Disable SPI peripheral */
778
    __HAL_SPI_DISABLE(hspi);
779
  }
780
 
781
#if (USE_SPI_CRC != 0U)
782
    /* Check if CRC error occurred */
783
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
784
    {
785
      /* Check if CRC error is valid or not (workaround to be applied or not) */
786
      if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
787
      {
788
        SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
789
 
790
        /* Reset CRC Calculation */
791
        SPI_RESET_CRC(hspi);
792
      }
793
      else
794
      {
795
        __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
796
      }
797
    }
798
#endif /* USE_SPI_CRC */
799
 
800
  if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
801
  {
802
    errorcode = HAL_ERROR;
803
  }
804
 
805
error :
806
  hspi->State = HAL_SPI_STATE_READY;
807
  __HAL_UNLOCK(hspi);
808
  return errorcode;
809
}
810
 
811
/**
812
  * @brief  Transmit and Receive an amount of data in blocking mode.
813
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
814
  *               the configuration information for SPI module.
815
  * @param  pTxData: pointer to transmission data buffer
816
  * @param  pRxData: pointer to reception data buffer
817
  * @param  Size: amount of data to be sent and received
818
  * @param  Timeout: Timeout duration
819
  * @retval HAL status
820
  */
821
HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)
822
{
823
  uint32_t tmp = 0U, tmp1 = 0U;
824
#if (USE_SPI_CRC != 0U)
825
  __IO uint16_t tmpreg1 = 0U;
826
#endif /* USE_SPI_CRC */
827
  uint32_t tickstart = 0U;
828
  /* Variable used to alternate Rx and Tx during transfer */
829
  uint32_t txallowed = 1U;
830
  HAL_StatusTypeDef errorcode = HAL_OK;
831
 
832
  /* Check Direction parameter */
833
  assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
834
 
835
  /* Process Locked */
836
  __HAL_LOCK(hspi);
837
 
838
  /* Init tickstart for timeout management*/
839
  tickstart = HAL_GetTick();
840
 
841
  tmp  = hspi->State;
842
  tmp1 = hspi->Init.Mode;
843
 
844
  if(!((tmp == HAL_SPI_STATE_READY) || \
845
    ((tmp1 == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp == HAL_SPI_STATE_BUSY_RX))))
846
  {
847
    errorcode = HAL_BUSY;
848
    goto error;
849
  }
850
 
851
  if((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
852
  {
853
    errorcode = HAL_ERROR;
854
    goto error;
855
  }
856
 
857
  /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
858
  if(hspi->State == HAL_SPI_STATE_READY)
859
  {
860
    hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
861
  }
862
 
863
  /* Set the transaction information */
864
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
865
  hspi->pRxBuffPtr  = (uint8_t *)pRxData;
866
  hspi->RxXferCount = Size;
867
  hspi->RxXferSize  = Size;
868
  hspi->pTxBuffPtr  = (uint8_t *)pTxData;
869
  hspi->TxXferCount = Size;
870
  hspi->TxXferSize  = Size;
871
 
872
  /*Init field not used in handle to zero */
873
  hspi->RxISR       = NULL;
874
  hspi->TxISR       = NULL;
875
 
876
#if (USE_SPI_CRC != 0U)
877
  /* Reset CRC Calculation */
878
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
879
  {
880
    SPI_RESET_CRC(hspi);
881
  }
882
#endif /* USE_SPI_CRC */
883
 
884
  /* Check if the SPI is already enabled */
885
  if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
886
  {
887
    /* Enable SPI peripheral */
888
    __HAL_SPI_ENABLE(hspi);
889
  }
890
 
891
  /* Transmit and Receive data in 16 Bit mode */
892
  if(hspi->Init.DataSize == SPI_DATASIZE_16BIT)
893
  {
894
    if((hspi->Init.Mode == SPI_MODE_SLAVE) || (hspi->TxXferCount == 0x01U))
895
    {
896
      hspi->Instance->DR = *((uint16_t *)pTxData);
897
      pTxData += sizeof(uint16_t);
898
      hspi->TxXferCount--;
899
    }
900
    while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U))
901
    {
902
      /* Check TXE flag */
903
      if(txallowed && (hspi->TxXferCount > 0U) && (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)))
904
      {
905
        hspi->Instance->DR = *((uint16_t *)pTxData);
906
        pTxData += sizeof(uint16_t);
907
        hspi->TxXferCount--;
908
        /* Next Data is a reception (Rx). Tx not allowed */
909
        txallowed = 0U;
910
 
911
#if (USE_SPI_CRC != 0U)
912
        /* Enable CRC Transmission */
913
        if((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
914
        {
915
          SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
916
        }
917
#endif /* USE_SPI_CRC */
918
      }
919
 
920
      /* Check RXNE flag */
921
      if((hspi->RxXferCount > 0U) && (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)))
922
      {
923
        *((uint16_t *)pRxData) = hspi->Instance->DR;
924
        pRxData += sizeof(uint16_t);
925
        hspi->RxXferCount--;
926
        /* Next Data is a Transmission (Tx). Tx is allowed */
927
        txallowed = 1U;
928
      }
929
      if((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >=  Timeout))
930
      {
931
        errorcode = HAL_TIMEOUT;
932
        goto error;
933
      }
934
    }
935
  }
936
  /* Transmit and Receive data in 8 Bit mode */
937
  else
938
  {
939
    if((hspi->Init.Mode == SPI_MODE_SLAVE) || (hspi->TxXferCount == 0x01U))
940
    {
941
      *((__IO uint8_t*)&hspi->Instance->DR) = (*pTxData);
942
      pTxData += sizeof(uint8_t);
943
      hspi->TxXferCount--;
944
    }
945
    while((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U))
946
    {
947
      /* check TXE flag */
948
      if(txallowed && (hspi->TxXferCount > 0U) && (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)))
949
      {
950
        *(__IO uint8_t *)&hspi->Instance->DR = (*pTxData++);
951
        hspi->TxXferCount--;
952
        /* Next Data is a reception (Rx). Tx not allowed */
953
        txallowed = 0U;
954
 
955
#if (USE_SPI_CRC != 0U)
956
        /* Enable CRC Transmission */
957
        if((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
958
        {
959
          SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
960
        }
961
#endif /* USE_SPI_CRC */
962
      }
963
 
964
      /* Wait until RXNE flag is reset */
965
      if((hspi->RxXferCount > 0U) && (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)))
966
      {
967
        (*(uint8_t *)pRxData++) = hspi->Instance->DR;
968
        hspi->RxXferCount--;
969
        /* Next Data is a Transmission (Tx). Tx is allowed */
970
        txallowed = 1U;
971
      }
972
      if((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >=  Timeout))
973
      {
974
        errorcode = HAL_TIMEOUT;
975
        goto error;
976
      }
977
    }
978
  }
979
 
980
#if (USE_SPI_CRC != 0U)
981
  /* Read CRC from DR to close CRC calculation process */
982
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
983
  {
984
    /* Wait until TXE flag */
985
    if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
986
    {
987
      /* Error on the CRC reception */
988
      SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
989
      errorcode = HAL_TIMEOUT;
990
      goto error;
991
    }
992
    /* Read CRC */
993
    tmpreg1 = hspi->Instance->DR;
994
    /* To avoid GCC warning */
995
    UNUSED(tmpreg1);
996
  }
997
 
998
  /* Check if CRC error occurred */
999
  if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
1000
  {
1001
    /* Check if CRC error is valid or not (workaround to be applied or not) */
1002
    if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
1003
    {
1004
      SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
1005
 
1006
      /* Reset CRC Calculation */
1007
      SPI_RESET_CRC(hspi);
1008
 
1009
          errorcode = HAL_ERROR;
1010
    }
1011
    else
1012
    {
1013
      __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
1014
    }
1015
  }
1016
#endif /* USE_SPI_CRC */
1017
 
1018
  /* Wait until TXE flag */
1019
  if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_TXE, SET, Timeout, tickstart) != HAL_OK)
1020
  {
1021
    errorcode = HAL_TIMEOUT;
1022
    goto error;
1023
  }
1024
 
1025
  /* Check Busy flag */
1026
  if(SPI_CheckFlag_BSY(hspi, Timeout, tickstart) != HAL_OK)
1027
  {
1028
    errorcode = HAL_ERROR;
1029
    hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
1030
    goto error;
1031
  }
1032
 
1033
  /* Clear overrun flag in 2 Lines communication mode because received is not read */
1034
  if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
1035
  {
1036
    __HAL_SPI_CLEAR_OVRFLAG(hspi);
1037
  }
1038
 
1039
error :
1040
  hspi->State = HAL_SPI_STATE_READY;
1041
  __HAL_UNLOCK(hspi);
1042
  return errorcode;
1043
}
1044
 
1045
/**
1046
  * @brief  Transmit an amount of data in non-blocking mode with Interrupt.
1047
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
1048
  *               the configuration information for SPI module.
1049
  * @param  pData: pointer to data buffer
1050
  * @param  Size: amount of data to be sent
1051
  * @retval HAL status
1052
  */
1053
HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
1054
{
1055
  HAL_StatusTypeDef errorcode = HAL_OK;
1056
 
1057
  /* Check Direction parameter */
1058
  assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
1059
 
1060
  /* Process Locked */
1061
  __HAL_LOCK(hspi);
1062
 
1063
  if((pData == NULL) || (Size == 0U))
1064
  {
1065
    errorcode = HAL_ERROR;
1066
    goto error;
1067
  }
1068
 
1069
  if(hspi->State != HAL_SPI_STATE_READY)
1070
  {
1071
    errorcode = HAL_BUSY;
1072
    goto error;
1073
  }
1074
 
1075
  /* Set the transaction information */
1076
  hspi->State       = HAL_SPI_STATE_BUSY_TX;
1077
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
1078
  hspi->pTxBuffPtr  = (uint8_t *)pData;
1079
  hspi->TxXferSize  = Size;
1080
  hspi->TxXferCount = Size;
1081
 
1082
  /* Init field not used in handle to zero */
1083
  hspi->pRxBuffPtr  = (uint8_t *)NULL;
1084
  hspi->RxXferSize  = 0U;
1085
  hspi->RxXferCount = 0U;
1086
  hspi->RxISR       = NULL;
1087
 
1088
  /* Set the function for IT treatment */
1089
  if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
1090
  {
1091
    hspi->TxISR = SPI_TxISR_16BIT;
1092
  }
1093
  else
1094
  {
1095
    hspi->TxISR = SPI_TxISR_8BIT;
1096
  }
1097
 
1098
  /* Configure communication direction : 1Line */
1099
  if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
1100
  {
1101
    SPI_1LINE_TX(hspi);
1102
  }
1103
 
1104
#if (USE_SPI_CRC != 0U)
1105
  /* Reset CRC Calculation */
1106
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
1107
  {
1108
    SPI_RESET_CRC(hspi);
1109
  }
1110
#endif /* USE_SPI_CRC */
1111
 
1112
  if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
1113
  {
1114
    /* Enable TXE interrupt */
1115
    __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE));
1116
  }
1117
  else
1118
  {
1119
    /* Enable TXE and ERR interrupt */
1120
    __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
1121
  }
1122
 
1123
  /* Check if the SPI is already enabled */
1124
  if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
1125
  {
1126
    /* Enable SPI peripheral */
1127
    __HAL_SPI_ENABLE(hspi);
1128
  }
1129
 
1130
error :
1131
  __HAL_UNLOCK(hspi);
1132
  return errorcode;
1133
}
1134
 
1135
/**
1136
  * @brief  Receive an amount of data in non-blocking mode with Interrupt.
1137
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
1138
  *               the configuration information for SPI module.
1139
  * @param  pData: pointer to data buffer
1140
  * @param  Size: amount of data to be sent
1141
  * @retval HAL status
1142
  */
1143
HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
1144
{
1145
  HAL_StatusTypeDef errorcode = HAL_OK;
1146
 
1147
  if((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER))
1148
  {
1149
     hspi->State = HAL_SPI_STATE_BUSY_RX;
1150
     /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
1151
     return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size);
1152
  }
1153
 
1154
  /* Process Locked */
1155
  __HAL_LOCK(hspi);
1156
 
1157
  if(hspi->State != HAL_SPI_STATE_READY)
1158
  {
1159
    errorcode = HAL_BUSY;
1160
    goto error;
1161
  }
1162
 
1163
  if((pData == NULL) || (Size == 0U))
1164
  {
1165
    errorcode = HAL_ERROR;
1166
    goto error;
1167
  }
1168
 
1169
  /* Set the transaction information */
1170
  hspi->State       = HAL_SPI_STATE_BUSY_RX;
1171
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
1172
  hspi->pRxBuffPtr  = (uint8_t *)pData;
1173
  hspi->RxXferSize  = Size;
1174
  hspi->RxXferCount = Size;
1175
 
1176
  /* Init field not used in handle to zero */
1177
  hspi->pTxBuffPtr  = (uint8_t *)NULL;
1178
  hspi->TxXferSize  = 0U;
1179
  hspi->TxXferCount = 0U;
1180
  hspi->TxISR       = NULL;
1181
 
1182
  /* Set the function for IT treatment */
1183
  if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
1184
  {
1185
    hspi->RxISR = SPI_RxISR_16BIT;
1186
  }
1187
  else
1188
  {
1189
    hspi->RxISR = SPI_RxISR_8BIT;
1190
  }
1191
 
1192
  /* Configure communication direction : 1Line */
1193
  if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
1194
  {
1195
    SPI_1LINE_RX(hspi);
1196
  }
1197
 
1198
#if (USE_SPI_CRC != 0U)
1199
  /* Reset CRC Calculation */
1200
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
1201
  {
1202
    SPI_RESET_CRC(hspi);
1203
  }
1204
#endif /* USE_SPI_CRC */
1205
 
1206
  /* Enable TXE and ERR interrupt */
1207
  __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
1208
 
1209
  /* Note : The SPI must be enabled after unlocking current process
1210
            to avoid the risk of SPI interrupt handle execution before current
1211
            process unlock */
1212
 
1213
  /* Check if the SPI is already enabled */
1214
  if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
1215
  {
1216
    /* Enable SPI peripheral */
1217
    __HAL_SPI_ENABLE(hspi);
1218
  }
1219
 
1220
error :
1221
  /* Process Unlocked */
1222
  __HAL_UNLOCK(hspi);
1223
  return errorcode;
1224
}
1225
 
1226
/**
1227
  * @brief  Transmit and Receive an amount of data in non-blocking mode with Interrupt.
1228
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
1229
  *               the configuration information for SPI module.
1230
  * @param  pTxData: pointer to transmission data buffer
1231
  * @param  pRxData: pointer to reception data buffer
1232
  * @param  Size: amount of data to be sent and received
1233
  * @retval HAL status
1234
  */
1235
HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
1236
{
1237
  uint32_t tmp = 0U, tmp1 = 0U;
1238
  HAL_StatusTypeDef errorcode = HAL_OK;
1239
 
1240
  /* Check Direction parameter */
1241
  assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
1242
 
1243
  /* Process locked */
1244
  __HAL_LOCK(hspi);
1245
 
1246
  tmp  = hspi->State;
1247
  tmp1 = hspi->Init.Mode;
1248
 
1249
  if(!((tmp == HAL_SPI_STATE_READY) || \
1250
    ((tmp1 == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp == HAL_SPI_STATE_BUSY_RX))))
1251
  {
1252
    errorcode = HAL_BUSY;
1253
    goto error;
1254
  }
1255
 
1256
  if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0U))
1257
  {
1258
    errorcode = HAL_ERROR;
1259
    goto error;
1260
  }
1261
 
1262
  /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
1263
  if(hspi->State == HAL_SPI_STATE_READY)
1264
  {
1265
    hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
1266
  }
1267
 
1268
  /* Set the transaction information */
1269
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
1270
  hspi->pTxBuffPtr  = (uint8_t *)pTxData;
1271
  hspi->TxXferSize  = Size;
1272
  hspi->TxXferCount = Size;
1273
  hspi->pRxBuffPtr  = (uint8_t *)pRxData;
1274
  hspi->RxXferSize  = Size;
1275
  hspi->RxXferCount = Size;
1276
 
1277
  /* Set the function for IT treatment */
1278
  if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
1279
  {
1280
    hspi->RxISR     = SPI_2linesRxISR_16BIT;
1281
    hspi->TxISR     = SPI_2linesTxISR_16BIT;
1282
  }
1283
  else
1284
  {
1285
    hspi->RxISR     = SPI_2linesRxISR_8BIT;
1286
    hspi->TxISR     = SPI_2linesTxISR_8BIT;
1287
  }
1288
 
1289
#if (USE_SPI_CRC != 0U)
1290
  /* Reset CRC Calculation */
1291
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
1292
  {
1293
    SPI_RESET_CRC(hspi);
1294
  }
1295
#endif /* USE_SPI_CRC */
1296
 
1297
  /* Enable TXE, RXNE and ERR interrupt */
1298
  __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
1299
 
1300
  /* Check if the SPI is already enabled */
1301
  if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
1302
  {
1303
    /* Enable SPI peripheral */
1304
    __HAL_SPI_ENABLE(hspi);
1305
  }
1306
 
1307
error :
1308
  /* Process Unlocked */
1309
  __HAL_UNLOCK(hspi);
1310
  return errorcode;
1311
}
1312
 
1313
/**
1314
  * @brief  Transmit an amount of data in non-blocking mode with DMA.
1315
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
1316
  *               the configuration information for SPI module.
1317
  * @param  pData: pointer to data buffer
1318
  * @param  Size: amount of data to be sent
1319
  * @retval HAL status
1320
  */
1321
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
1322
{
1323
  HAL_StatusTypeDef errorcode = HAL_OK;
1324
 
1325
  /* Check Direction parameter */
1326
  assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
1327
 
1328
  /* Process Locked */
1329
  __HAL_LOCK(hspi);
1330
 
1331
  if(hspi->State != HAL_SPI_STATE_READY)
1332
  {
1333
    errorcode = HAL_BUSY;
1334
    goto error;
1335
  }
1336
 
1337
  if((pData == NULL) || (Size == 0U))
1338
  {
1339
    errorcode = HAL_ERROR;
1340
    goto error;
1341
  }
1342
 
1343
  /* Set the transaction information */
1344
  hspi->State       = HAL_SPI_STATE_BUSY_TX;
1345
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
1346
  hspi->pTxBuffPtr  = (uint8_t *)pData;
1347
  hspi->TxXferSize  = Size;
1348
  hspi->TxXferCount = Size;
1349
 
1350
  /* Init field not used in handle to zero */
1351
  hspi->pRxBuffPtr  = (uint8_t *)NULL;
1352
  hspi->TxISR       = NULL;
1353
  hspi->RxISR       = NULL;
1354
  hspi->RxXferSize  = 0U;
1355
  hspi->RxXferCount = 0U;
1356
 
1357
  /* Configure communication direction : 1Line */
1358
  if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
1359
  {
1360
    SPI_1LINE_TX(hspi);
1361
  }
1362
 
1363
#if (USE_SPI_CRC != 0U)
1364
  /* Reset CRC Calculation */
1365
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
1366
  {
1367
    SPI_RESET_CRC(hspi);
1368
  }
1369
#endif /* USE_SPI_CRC */
1370
 
1371
  /* Set the SPI TxDMA Half transfer complete callback */
1372
  hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt;
1373
 
1374
  /* Set the SPI TxDMA transfer complete callback */
1375
  hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt;
1376
 
1377
  /* Set the DMA error callback */
1378
  hspi->hdmatx->XferErrorCallback = SPI_DMAError;
1379
 
1380
  /* Set the DMA AbortCpltCallback */
1381
  hspi->hdmatx->XferAbortCallback = NULL;
1382
 
1383
  /* Enable the Tx DMA Stream */
1384
  HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);
1385
 
1386
  /* Check if the SPI is already enabled */
1387
  if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
1388
  {
1389
    /* Enable SPI peripheral */
1390
    __HAL_SPI_ENABLE(hspi);
1391
  }
1392
 
1393
  /* Enable the SPI Error Interrupt Bit */
1394
  SET_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
1395
 
1396
  /* Enable Tx DMA Request */
1397
  SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
1398
 
1399
error :
1400
  /* Process Unlocked */
1401
  __HAL_UNLOCK(hspi);
1402
  return errorcode;
1403
}
1404
 
1405
/**
1406
  * @brief  Receive an amount of data in non-blocking mode with DMA.
1407
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
1408
  *               the configuration information for SPI module.
1409
  * @param  pData: pointer to data buffer
1410
  * @note   When the CRC feature is enabled the pData Length must be Size + 1.
1411
  * @param  Size: amount of data to be sent
1412
  * @retval HAL status
1413
  */
1414
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
1415
{
1416
  HAL_StatusTypeDef errorcode = HAL_OK;
1417
 
1418
  if((hspi->Init.Direction == SPI_DIRECTION_2LINES)&&(hspi->Init.Mode == SPI_MODE_MASTER))
1419
  {
1420
     hspi->State = HAL_SPI_STATE_BUSY_RX;
1421
     /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
1422
     return HAL_SPI_TransmitReceive_DMA(hspi, pData, pData, Size);
1423
  }
1424
 
1425
  /* Process Locked */
1426
  __HAL_LOCK(hspi);
1427
 
1428
  if(hspi->State != HAL_SPI_STATE_READY)
1429
  {
1430
    errorcode = HAL_BUSY;
1431
    goto error;
1432
  }
1433
 
1434
  if((pData == NULL) || (Size == 0U))
1435
  {
1436
    errorcode = HAL_ERROR;
1437
    goto error;
1438
  }
1439
 
1440
  /* Set the transaction information */
1441
  hspi->State       = HAL_SPI_STATE_BUSY_RX;
1442
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
1443
  hspi->pRxBuffPtr  = (uint8_t *)pData;
1444
  hspi->RxXferSize  = Size;
1445
  hspi->RxXferCount = Size;
1446
 
1447
  /*Init field not used in handle to zero */
1448
  hspi->RxISR       = NULL;
1449
  hspi->TxISR       = NULL;
1450
  hspi->TxXferSize  = 0U;
1451
  hspi->TxXferCount = 0U;
1452
 
1453
  /* Configure communication direction : 1Line */
1454
  if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
1455
  {
1456
    SPI_1LINE_RX(hspi);
1457
  }
1458
 
1459
#if (USE_SPI_CRC != 0U)
1460
  /* Reset CRC Calculation */
1461
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
1462
  {
1463
    SPI_RESET_CRC(hspi);
1464
  }
1465
#endif /* USE_SPI_CRC */
1466
 
1467
  /* Set the SPI RxDMA Half transfer complete callback */
1468
  hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
1469
 
1470
  /* Set the SPI Rx DMA transfer complete callback */
1471
  hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
1472
 
1473
  /* Set the DMA error callback */
1474
  hspi->hdmarx->XferErrorCallback = SPI_DMAError;
1475
 
1476
 /* Set the DMA AbortCpltCallback */
1477
  hspi->hdmarx->XferAbortCallback = NULL;
1478
 
1479
  /* Enable the Rx DMA Stream */
1480
  HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount);
1481
 
1482
  /* Check if the SPI is already enabled */
1483
  if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
1484
  {
1485
    /* Enable SPI peripheral */
1486
    __HAL_SPI_ENABLE(hspi);
1487
  }
1488
 
1489
  /* Enable the SPI Error Interrupt Bit */
1490
  SET_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
1491
 
1492
  /* Enable Rx DMA Request */
1493
  SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
1494
 
1495
error:
1496
  /* Process Unlocked */
1497
  __HAL_UNLOCK(hspi);
1498
  return errorcode;
1499
}
1500
 
1501
/**
1502
  * @brief  Transmit and Receive an amount of data in non-blocking mode with DMA.
1503
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
1504
  *               the configuration information for SPI module.
1505
  * @param  pTxData: pointer to transmission data buffer
1506
  * @param  pRxData: pointer to reception data buffer
1507
  * @note   When the CRC feature is enabled the pRxData Length must be Size + 1
1508
  * @param  Size: amount of data to be sent
1509
  * @retval HAL status
1510
  */
1511
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
1512
{
1513
  uint32_t tmp = 0U, tmp1 = 0U;
1514
  HAL_StatusTypeDef errorcode = HAL_OK;
1515
 
1516
  /* Check Direction parameter */
1517
  assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
1518
 
1519
  /* Process locked */
1520
  __HAL_LOCK(hspi);
1521
 
1522
  tmp  = hspi->State;
1523
  tmp1 = hspi->Init.Mode;
1524
  if(!((tmp == HAL_SPI_STATE_READY) ||
1525
      ((tmp1 == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmp == HAL_SPI_STATE_BUSY_RX))))
1526
  {
1527
    errorcode = HAL_BUSY;
1528
    goto error;
1529
  }
1530
 
1531
  if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0U))
1532
  {
1533
    errorcode = HAL_ERROR;
1534
    goto error;
1535
  }
1536
 
1537
  /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
1538
  if(hspi->State == HAL_SPI_STATE_READY)
1539
  {
1540
    hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
1541
  }
1542
 
1543
  /* Set the transaction information */
1544
  hspi->ErrorCode   = HAL_SPI_ERROR_NONE;
1545
  hspi->pTxBuffPtr  = (uint8_t*)pTxData;
1546
  hspi->TxXferSize  = Size;
1547
  hspi->TxXferCount = Size;
1548
  hspi->pRxBuffPtr  = (uint8_t*)pRxData;
1549
  hspi->RxXferSize  = Size;
1550
  hspi->RxXferCount = Size;
1551
 
1552
  /* Init field not used in handle to zero */
1553
  hspi->RxISR       = NULL;
1554
  hspi->TxISR       = NULL;
1555
 
1556
#if (USE_SPI_CRC != 0U)
1557
  /* Reset CRC Calculation */
1558
  if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
1559
  {
1560
    SPI_RESET_CRC(hspi);
1561
  }
1562
#endif /* USE_SPI_CRC */
1563
 
1564
  /* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */
1565
  if(hspi->State == HAL_SPI_STATE_BUSY_RX)
1566
  {
1567
    /* Set the SPI Rx DMA Half transfer complete callback */
1568
    hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
1569
    hspi->hdmarx->XferCpltCallback     = SPI_DMAReceiveCplt;
1570
  }
1571
  else
1572
  {
1573
    /* Set the SPI Tx/Rx DMA Half transfer complete callback */
1574
    hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt;
1575
    hspi->hdmarx->XferCpltCallback     = SPI_DMATransmitReceiveCplt;
1576
  }
1577
 
1578
  /* Set the DMA error callback */
1579
  hspi->hdmarx->XferErrorCallback = SPI_DMAError;
1580
 
1581
  /* Set the DMA AbortCpltCallback */
1582
  hspi->hdmarx->XferAbortCallback = NULL;
1583
 
1584
  /* Enable the Rx DMA Stream */
1585
  HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount);
1586
 
1587
  /* Enable Rx DMA Request */
1588
  SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
1589
 
1590
  /* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing
1591
  is performed in DMA reception complete callback  */
1592
  hspi->hdmatx->XferHalfCpltCallback = NULL;
1593
  hspi->hdmatx->XferCpltCallback     = NULL;
1594
  hspi->hdmatx->XferErrorCallback    = NULL;
1595
  hspi->hdmatx->XferAbortCallback    = NULL;
1596
 
1597
  /* Enable the Tx DMA Stream */
1598
  HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);
1599
 
1600
  /* Check if the SPI is already enabled */
1601
  if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
1602
  {
1603
    /* Enable SPI peripheral */
1604
    __HAL_SPI_ENABLE(hspi);
1605
  }
1606
  /* Enable the SPI Error Interrupt Bit */
1607
  SET_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
1608
 
1609
  /* Enable Tx DMA Request */
1610
  SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
1611
 
1612
error :
1613
  /* Process Unlocked */
1614
  __HAL_UNLOCK(hspi);
1615
  return errorcode;
1616
}
1617
 
1618
/**
1619
  * @brief  Abort ongoing transfer (blocking mode).
1620
  * @param  hspi SPI handle.
1621
  * @note   This procedure could be used for aborting any ongoing transfer (Tx and Rx),
1622
  *         started in Interrupt or DMA mode.
1623
  *         This procedure performs following operations :
1624
  *           - Disable SPI Interrupts (depending of transfer direction)
1625
  *           - Disable the DMA transfer in the peripheral register (if enabled)
1626
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1627
  *           - Set handle State to READY
1628
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1629
  * @note   Once transfer is aborted, the __HAL_SPI_CLEAR_OVRFLAG() macro must be called in user application
1630
  *         before starting new SPI receive process.
1631
  * @retval HAL status
1632
*/
1633
HAL_StatusTypeDef HAL_SPI_Abort(SPI_HandleTypeDef *hspi)
1634
{
1635
  __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
1636
 
1637
  /* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */
1638
  if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE))
1639
  {
1640
    hspi->TxISR = SPI_AbortTx_ISR;
1641
  }
1642
 
1643
  if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE))
1644
  {
1645
    hspi->RxISR = SPI_AbortRx_ISR;
1646
  }
1647
 
1648
  /* Clear ERRIE interrupts in case of DMA Mode */
1649
  CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
1650
 
1651
  /* Disable the SPI DMA Tx or SPI DMA Rx request if enabled */
1652
  if ((HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) || (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)))
1653
  {
1654
    /* Abort the SPI DMA Tx channel : use blocking DMA Abort API (no callback) */  
1655
    if(hspi->hdmatx != NULL)
1656
    {
1657
      /* Set the SPI DMA Abort callback :
1658
      will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */
1659
      hspi->hdmatx->XferAbortCallback = NULL;
1660
 
1661
      /* Abort DMA Tx Handle linked to SPI Peripheral */
1662
      HAL_DMA_Abort(hspi->hdmatx);
1663
 
1664
      /* Disable Tx DMA Request */
1665
      CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN));
1666
 
1667
      /* Wait until TXE flag is set */
1668
      do
1669
      {
1670
        if(count-- == 0U)
1671
        {
1672
          SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
1673
          break;
1674
        }
1675
      }
1676
      while((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);      
1677
    }
1678
    /* Abort the SPI DMA Rx channel : use blocking DMA Abort API (no callback) */
1679
    if(hspi->hdmarx != NULL)
1680
    {
1681
      /* Set the SPI DMA Abort callback :
1682
      will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */
1683
      hspi->hdmarx->XferAbortCallback = NULL;
1684
 
1685
      /* Abort DMA Rx Handle linked to SPI Peripheral */
1686
      HAL_DMA_Abort(hspi->hdmarx);
1687
 
1688
      /* Disable peripheral */
1689
      __HAL_SPI_DISABLE(hspi);
1690
 
1691
      /* Disable Rx DMA Request */
1692
      CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXDMAEN));
1693
 
1694
    }
1695
  }
1696
  /* Reset Tx and Rx transfer counters */
1697
  hspi->RxXferCount = 0U;
1698
  hspi->TxXferCount = 0U;
1699
 
1700
  /* Reset errorCode */
1701
  hspi->ErrorCode = HAL_SPI_ERROR_NONE;
1702
 
1703
  /* Clear the Error flags in the SR register */
1704
  __HAL_SPI_CLEAR_OVRFLAG(hspi);
1705
 
1706
  /* Restore hspi->state to ready */
1707
  hspi->State = HAL_SPI_STATE_READY;
1708
 
1709
  return HAL_OK;
1710
}
1711
 
1712
/**
1713
  * @brief  Abort ongoing transfer (Interrupt mode).
1714
  * @param  hspi SPI handle.
1715
  * @note   This procedure could be used for aborting any ongoing transfer (Tx and Rx),
1716
  *         started in Interrupt or DMA mode.
1717
  *         This procedure performs following operations :
1718
  *           - Disable SPI Interrupts (depending of transfer direction)
1719
  *           - Disable the DMA transfer in the peripheral register (if enabled)
1720
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1721
  *           - Set handle State to READY
1722
  *           - At abort completion, call user abort complete callback
1723
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
1724
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
1725
  * @note   Once transfer is aborted, the __HAL_SPI_CLEAR_OVRFLAG() macro must be called in user application
1726
  *         before starting new SPI receive process.
1727
  * @retval HAL status
1728
*/
1729
HAL_StatusTypeDef HAL_SPI_Abort_IT(SPI_HandleTypeDef *hspi)
1730
{
1731
  uint32_t abortcplt;
1732
 
1733
  /* Change Rx and Tx Irq Handler to Disable TXEIE, RXNEIE and ERRIE interrupts */
1734
  if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE))
1735
  {
1736
    hspi->TxISR = SPI_AbortTx_ISR;
1737
  }
1738
 
1739
  if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE))
1740
  {
1741
    hspi->RxISR = SPI_AbortRx_ISR;
1742
  }
1743
 
1744
  /* Clear ERRIE interrupts in case of DMA Mode */
1745
  CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
1746
 
1747
  abortcplt = 1U;
1748
 
1749
  /* If DMA Tx and/or DMA Rx Handles are associated to SPI Handle, DMA Abort complete callbacks should be initialised
1750
     before any call to DMA Abort functions */  
1751
  /* DMA Tx Handle is valid */
1752
  if(hspi->hdmatx != NULL)
1753
  {
1754
    /* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
1755
       Otherwise, set it to NULL */
1756
    if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))
1757
    {
1758
      hspi->hdmatx->XferAbortCallback = SPI_DMATxAbortCallback;
1759
    }
1760
    else
1761
    {
1762
      hspi->hdmatx->XferAbortCallback = NULL;
1763
    }
1764
  }  
1765
  /* DMA Rx Handle is valid */
1766
  if(hspi->hdmarx != NULL)
1767
  {
1768
    /* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
1769
       Otherwise, set it to NULL */
1770
    if(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN))
1771
    {
1772
      hspi->hdmarx->XferAbortCallback = SPI_DMARxAbortCallback;
1773
    }
1774
    else
1775
    {
1776
      hspi->hdmarx->XferAbortCallback = NULL;
1777
    }
1778
  }
1779
 
1780
  /* Disable the SPI DMA Tx or the SPI Rx request if enabled */
1781
  if((HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN)) && (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)))
1782
  {
1783
    /* Abort the SPI DMA Tx channel */
1784
    if(hspi->hdmatx != NULL)
1785
    {
1786
      /* Abort DMA Tx Handle linked to SPI Peripheral */
1787
      if(HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK)
1788
      {
1789
        hspi->hdmatx->XferAbortCallback = NULL;
1790
      }
1791
      else
1792
      {
1793
        abortcplt = 0U;
1794
      }
1795
    }
1796
    /* Abort the SPI DMA Rx channel */
1797
    if(hspi->hdmarx != NULL)
1798
    {
1799
      /* Abort DMA Rx Handle linked to SPI Peripheral */
1800
      if(HAL_DMA_Abort_IT(hspi->hdmarx)!=  HAL_OK)
1801
      {
1802
        hspi->hdmarx->XferAbortCallback = NULL;
1803
        abortcplt = 1U;
1804
      }
1805
      else
1806
      {
1807
        abortcplt = 0U;
1808
      }
1809
    }
1810
  }
1811
 
1812
  /* Disable the SPI DMA Tx or the SPI Rx request if enabled */
1813
  if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))
1814
  {
1815
    /* Abort the SPI DMA Tx channel */
1816
    if(hspi->hdmatx != NULL)
1817
    {
1818
      /* Abort DMA Tx Handle linked to SPI Peripheral */
1819
      if(HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK)
1820
      {
1821
        hspi->hdmatx->XferAbortCallback = NULL;
1822
      }
1823
      else
1824
      {
1825
        abortcplt = 0U;
1826
      }
1827
    }
1828
  }
1829
  /* Disable the SPI DMA Tx or the SPI Rx request if enabled */
1830
  if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN))
1831
  {
1832
    /* Abort the SPI DMA Rx channel */
1833
    if(hspi->hdmarx != NULL)
1834
    {
1835
      /* Abort DMA Rx Handle linked to SPI Peripheral */
1836
      if(HAL_DMA_Abort_IT(hspi->hdmarx)!=  HAL_OK)
1837
      {
1838
        hspi->hdmarx->XferAbortCallback = NULL;
1839
      }
1840
      else
1841
      {
1842
        abortcplt = 0U;
1843
      }
1844
    }
1845
  }
1846
 
1847
  if(abortcplt == 1U)
1848
  {
1849
    /* Reset Tx and Rx transfer counters */
1850
    hspi->RxXferCount = 0U;
1851
    hspi->TxXferCount = 0U;
1852
 
1853
    /* Reset errorCode */
1854
    hspi->ErrorCode = HAL_SPI_ERROR_NONE;
1855
 
1856
    /* Clear the Error flags in the SR register */
1857
    __HAL_SPI_CLEAR_OVRFLAG(hspi);
1858
 
1859
    /* Restore hspi->State to Ready */
1860
    hspi->State = HAL_SPI_STATE_READY;
1861
 
1862
    /* As no DMA to be aborted, call directly user Abort complete callback */
1863
    HAL_SPI_AbortCpltCallback(hspi);
1864
  }
1865
  return HAL_OK;
1866
}
1867
 
1868
/**
1869
  * @brief  Pause the DMA Transfer.
1870
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
1871
  *               the configuration information for the specified SPI module.
1872
  * @retval HAL status
1873
  */
1874
HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi)
1875
{
1876
  /* Process Locked */
1877
  __HAL_LOCK(hspi);
1878
 
1879
  /* Disable the SPI DMA Tx & Rx requests */
1880
  CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
1881
 
1882
  /* Process Unlocked */
1883
  __HAL_UNLOCK(hspi);
1884
 
1885
  return HAL_OK;
1886
}
1887
 
1888
/**
1889
  * @brief  Resume the DMA Transfer.
1890
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
1891
  *               the configuration information for the specified SPI module.
1892
  * @retval HAL status
1893
  */
1894
HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi)
1895
{
1896
  /* Process Locked */
1897
  __HAL_LOCK(hspi);
1898
 
1899
  /* Enable the SPI DMA Tx & Rx requests */
1900
  SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
1901
 
1902
  /* Process Unlocked */
1903
  __HAL_UNLOCK(hspi);
1904
 
1905
  return HAL_OK;
1906
}
1907
 
1908
/**
1909
  * @brief Stop the DMA Transfer.
1910
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
1911
  *               the configuration information for the specified SPI module.
1912
  * @retval HAL status
1913
  */
1914
HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi)
1915
{
1916
  /* The Lock is not implemented on this API to allow the user application
1917
     to call the HAL SPI API under callbacks HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback():
1918
     when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
1919
     and the correspond call back is executed HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback()
1920
     */
1921
 
1922
  /* Abort the SPI DMA tx Stream */
1923
  if(hspi->hdmatx != NULL)
1924
  {
1925
    HAL_DMA_Abort(hspi->hdmatx);
1926
  }
1927
  /* Abort the SPI DMA rx Stream */
1928
  if(hspi->hdmarx != NULL)
1929
  {
1930
    HAL_DMA_Abort(hspi->hdmarx);
1931
  }
1932
 
1933
  /* Disable the SPI DMA Tx & Rx requests */
1934
  CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
1935
  hspi->State = HAL_SPI_STATE_READY;
1936
  return HAL_OK;
1937
}
1938
 
1939
/**
1940
  * @brief  Handle SPI interrupt request.
1941
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
1942
  *               the configuration information for the specified SPI module.
1943
  * @retval None
1944
  */
1945
void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi)
1946
{
1947
  uint32_t itsource = hspi->Instance->CR2;
1948
  uint32_t itflag   = hspi->Instance->SR;
1949
 
1950
  /* SPI in mode Receiver ----------------------------------------------------*/
1951
  if(((itflag & SPI_FLAG_OVR) == RESET) &&
1952
     ((itflag & SPI_FLAG_RXNE) != RESET) && ((itsource & SPI_IT_RXNE) != RESET))
1953
  {
1954
    hspi->RxISR(hspi);
1955
    return;
1956
  }
1957
 
1958
  /* SPI in mode Transmitter -------------------------------------------------*/
1959
  if(((itflag & SPI_FLAG_TXE) != RESET) && ((itsource & SPI_IT_TXE) != RESET))
1960
  {
1961
    hspi->TxISR(hspi);
1962
    return;
1963
  }
1964
 
1965
  /* SPI in Error Treatment --------------------------------------------------*/
1966
  if(((itflag & (SPI_FLAG_MODF | SPI_FLAG_OVR)) != RESET) && ((itsource & SPI_IT_ERR) != RESET))
1967
  {
1968
    /* SPI Overrun error interrupt occurred ----------------------------------*/
1969
    if((itflag & SPI_FLAG_OVR) != RESET)
1970
    {
1971
      if(hspi->State != HAL_SPI_STATE_BUSY_TX)
1972
      {
1973
        SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_OVR);
1974
        __HAL_SPI_CLEAR_OVRFLAG(hspi);
1975
      }
1976
      else
1977
      {
1978
        __HAL_SPI_CLEAR_OVRFLAG(hspi);
1979
        return;
1980
      }
1981
    }
1982
 
1983
    /* SPI Mode Fault error interrupt occurred -------------------------------*/
1984
    if((itflag & SPI_FLAG_MODF) != RESET)
1985
    {
1986
      SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_MODF);
1987
      __HAL_SPI_CLEAR_MODFFLAG(hspi);
1988
    }
1989
 
1990
    if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
1991
    {
1992
      /* Disable all interrupts */
1993
      __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE | SPI_IT_TXE | SPI_IT_ERR);
1994
 
1995
      hspi->State = HAL_SPI_STATE_READY;
1996
      /* Disable the SPI DMA requests if enabled */
1997
      if ((HAL_IS_BIT_SET(itsource, SPI_CR2_TXDMAEN))||(HAL_IS_BIT_SET(itsource, SPI_CR2_RXDMAEN)))
1998
      {
1999
        CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN));
2000
 
2001
        /* Abort the SPI DMA Rx channel */
2002
        if(hspi->hdmarx != NULL)
2003
        {
2004
          /* Set the SPI DMA Abort callback :
2005
          will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
2006
          hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError;
2007
          HAL_DMA_Abort_IT(hspi->hdmarx);
2008
        }
2009
        /* Abort the SPI DMA Tx channel */
2010
        if(hspi->hdmatx != NULL)
2011
        {
2012
          /* Set the SPI DMA Abort callback :
2013
          will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
2014
          hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError;
2015
          HAL_DMA_Abort_IT(hspi->hdmatx);
2016
        }
2017
      }
2018
      else
2019
      {
2020
        /* Call user error callback */
2021
        HAL_SPI_ErrorCallback(hspi);
2022
      }
2023
    }
2024
    return;
2025
  }
2026
}
2027
 
2028
/**
2029
  * @brief Tx Transfer completed callback.
2030
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2031
  *               the configuration information for SPI module.
2032
  * @retval None
2033
  */
2034
__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
2035
{
2036
  /* Prevent unused argument(s) compilation warning */
2037
  UNUSED(hspi);
2038
  /* NOTE : This function should not be modified, when the callback is needed,
2039
            the HAL_SPI_TxCpltCallback should be implemented in the user file
2040
  */
2041
}
2042
 
2043
/**
2044
  * @brief Rx Transfer completed callback.
2045
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2046
  *               the configuration information for SPI module.
2047
  * @retval None
2048
  */
2049
__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
2050
{
2051
  /* Prevent unused argument(s) compilation warning */
2052
  UNUSED(hspi);
2053
  /* NOTE : This function should not be modified, when the callback is needed,
2054
            the HAL_SPI_RxCpltCallback should be implemented in the user file
2055
  */
2056
}
2057
 
2058
/**
2059
  * @brief Tx and Rx Transfer completed callback.
2060
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2061
  *               the configuration information for SPI module.
2062
  * @retval None
2063
  */
2064
__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
2065
{
2066
  /* Prevent unused argument(s) compilation warning */
2067
  UNUSED(hspi);
2068
  /* NOTE : This function should not be modified, when the callback is needed,
2069
            the HAL_SPI_TxRxCpltCallback should be implemented in the user file
2070
  */
2071
}
2072
 
2073
/**
2074
  * @brief Tx Half Transfer completed callback.
2075
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2076
  *               the configuration information for SPI module.
2077
  * @retval None
2078
  */
2079
__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi)
2080
{
2081
  /* Prevent unused argument(s) compilation warning */
2082
  UNUSED(hspi);
2083
  /* NOTE : This function should not be modified, when the callback is needed,
2084
            the HAL_SPI_TxHalfCpltCallback should be implemented in the user file
2085
  */
2086
}
2087
 
2088
/**
2089
  * @brief Rx Half Transfer completed callback.
2090
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2091
  *               the configuration information for SPI module.
2092
  * @retval None
2093
  */
2094
__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi)
2095
{
2096
  /* Prevent unused argument(s) compilation warning */
2097
  UNUSED(hspi);
2098
  /* NOTE : This function should not be modified, when the callback is needed,
2099
            the HAL_SPI_RxHalfCpltCallback() should be implemented in the user file
2100
  */
2101
}
2102
 
2103
/**
2104
  * @brief Tx and Rx Half Transfer callback.
2105
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2106
  *               the configuration information for SPI module.
2107
  * @retval None
2108
  */
2109
__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi)
2110
{
2111
  /* Prevent unused argument(s) compilation warning */
2112
  UNUSED(hspi);
2113
  /* NOTE : This function should not be modified, when the callback is needed,
2114
            the HAL_SPI_TxRxHalfCpltCallback() should be implemented in the user file
2115
  */
2116
}
2117
 
2118
/**
2119
  * @brief SPI error callback.
2120
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2121
  *               the configuration information for SPI module.
2122
  * @retval None
2123
  */
2124
 __weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
2125
{
2126
  /* Prevent unused argument(s) compilation warning */
2127
  UNUSED(hspi);
2128
  /* NOTE : This function should not be modified, when the callback is needed,
2129
            the HAL_SPI_ErrorCallback should be implemented in the user file
2130
   */
2131
  /* NOTE : The ErrorCode parameter in the hspi handle is updated by the SPI processes
2132
            and user can use HAL_SPI_GetError() API to check the latest error occurred
2133
  */
2134
}
2135
 
2136
/**
2137
  * @brief  SPI Abort Complete callback.
2138
  * @param  hspi SPI handle.
2139
  * @retval None
2140
  */
2141
__weak void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi)
2142
{
2143
  /* Prevent unused argument(s) compilation warning */
2144
  UNUSED(hspi);
2145
 
2146
  /* NOTE : This function should not be modified, when the callback is needed,
2147
            the HAL_SPI_AbortCpltCallback can be implemented in the user file.
2148
   */
2149
}
2150
 
2151
/**
2152
  * @}
2153
  */
2154
 
2155
/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions
2156
  * @brief   SPI control functions
2157
  *
2158
@verbatim
2159
 ===============================================================================
2160
                      ##### Peripheral State and Errors functions #####
2161
 ===============================================================================
2162
    [..]
2163
    This subsection provides a set of functions allowing to control the SPI.
2164
     (+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral
2165
     (+) HAL_SPI_GetError() check in run-time Errors occurring during communication
2166
@endverbatim
2167
  * @{
2168
  */
2169
 
2170
/**
2171
  * @brief  Return the SPI handle state.
2172
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2173
  *               the configuration information for SPI module.
2174
  * @retval SPI state
2175
  */
2176
HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi)
2177
{
2178
  /* Return SPI handle state */
2179
  return hspi->State;
2180
}
2181
 
2182
/**
2183
  * @brief  Return the SPI error code.
2184
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2185
  *               the configuration information for SPI module.
2186
  * @retval SPI error code in bitmap format
2187
  */
2188
uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi)
2189
{
2190
  /* Return SPI ErrorCode */
2191
  return hspi->ErrorCode;
2192
}
2193
 
2194
/**
2195
  * @}
2196
  */
2197
 
2198
/**
2199
  * @}
2200
  */
2201
 
2202
/** @addtogroup SPI_Private_Functions
2203
  * @brief   Private functions
2204
  * @{
2205
  */
2206
 
2207
/**
2208
  * @brief DMA SPI transmit process complete callback.
2209
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
2210
  *               the configuration information for the specified DMA module.
2211
  * @retval None
2212
  */
2213
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma)
2214
{
2215
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2216
  uint32_t tickstart = 0U;
2217
 
2218
  /* Init tickstart for timeout managment*/
2219
  tickstart = HAL_GetTick();
2220
 
2221
  /* DMA Normal Mode */
2222
  if((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
2223
  {
2224
    /* Disable Tx DMA Request */
2225
    CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
2226
 
2227
    /* Check the end of the transaction */
2228
    if(SPI_CheckFlag_BSY(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
2229
    {
2230
      SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
2231
    }
2232
 
2233
    /* Clear overrun flag in 2 Lines communication mode because received data is not read */
2234
    if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
2235
    {
2236
      __HAL_SPI_CLEAR_OVRFLAG(hspi);
2237
    }
2238
 
2239
    hspi->TxXferCount = 0U;
2240
    hspi->State = HAL_SPI_STATE_READY;
2241
 
2242
    if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
2243
    {
2244
      HAL_SPI_ErrorCallback(hspi);
2245
      return;
2246
    }
2247
  }
2248
  HAL_SPI_TxCpltCallback(hspi);
2249
}
2250
 
2251
/**
2252
  * @brief DMA SPI receive process complete callback.
2253
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
2254
  *               the configuration information for the specified DMA module.
2255
  * @retval None
2256
  */
2257
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
2258
{
2259
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2260
#if (USE_SPI_CRC != 0U)
2261
  uint32_t tickstart = 0U;
2262
  __IO uint16_t tmpreg = 0U;
2263
 
2264
  /* Init tickstart for timeout management*/
2265
  tickstart = HAL_GetTick();
2266
#endif /* USE_SPI_CRC */
2267
 
2268
  if((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
2269
  {
2270
#if (USE_SPI_CRC != 0U)
2271
    /* CRC handling */
2272
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
2273
    {
2274
      /* Wait until RXNE flag */
2275
      if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
2276
      {
2277
        /* Error on the CRC reception */
2278
        SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
2279
      }
2280
      /* Read CRC */
2281
      tmpreg = hspi->Instance->DR;
2282
      /* To avoid GCC warning */
2283
      UNUSED(tmpreg);
2284
    }
2285
#endif /* USE_SPI_CRC */
2286
 
2287
    /* Disable Rx/Tx DMA Request (done by default to handle the case master rx direction 2 lines) */
2288
    CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
2289
 
2290
    /* Check the end of the transaction */
2291
    if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
2292
    {
2293
      /* Disable SPI peripheral */
2294
      __HAL_SPI_DISABLE(hspi);
2295
    }
2296
 
2297
    hspi->RxXferCount = 0U;
2298
    hspi->State = HAL_SPI_STATE_READY;
2299
 
2300
#if (USE_SPI_CRC != 0U)
2301
    /* Check if CRC error occurred */
2302
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
2303
    {
2304
      /* Check if CRC error is valid or not (workaround to be applied or not) */
2305
      if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
2306
      {
2307
        SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
2308
 
2309
        /* Reset CRC Calculation */
2310
        SPI_RESET_CRC(hspi);
2311
    }
2312
      else
2313
      {
2314
        __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
2315
      }
2316
    }
2317
#endif /* USE_SPI_CRC */
2318
 
2319
    if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
2320
    {
2321
      HAL_SPI_ErrorCallback(hspi);
2322
      return;
2323
    }
2324
  }
2325
  HAL_SPI_RxCpltCallback(hspi);
2326
}
2327
 
2328
/**
2329
  * @brief  DMA SPI transmit receive process complete callback.
2330
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
2331
  *               the configuration information for the specified DMA module.
2332
  * @retval None
2333
  */
2334
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma)
2335
{
2336
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2337
  uint32_t tickstart = 0U;
2338
#if (USE_SPI_CRC != 0U)
2339
  __IO int16_t tmpreg = 0U;
2340
#endif /* USE_SPI_CRC */
2341
  /* Init tickstart for timeout management*/
2342
  tickstart = HAL_GetTick();
2343
 
2344
  if((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
2345
  {
2346
#if (USE_SPI_CRC != 0U)
2347
    /* CRC handling */
2348
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
2349
    {
2350
      /* Wait the CRC data */
2351
      if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
2352
      {
2353
        SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
2354
      }
2355
      /* Read CRC to Flush DR and RXNE flag */
2356
      tmpreg = hspi->Instance->DR;
2357
      /* To avoid GCC warning */
2358
      UNUSED(tmpreg);
2359
    }
2360
#endif /* USE_SPI_CRC */
2361
    /* Check the end of the transaction */
2362
    if(SPI_CheckFlag_BSY(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
2363
    {
2364
      SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
2365
    }
2366
 
2367
    /* Disable Rx/Tx DMA Request */
2368
    CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
2369
 
2370
    hspi->TxXferCount = 0U;
2371
    hspi->RxXferCount = 0U;
2372
    hspi->State = HAL_SPI_STATE_READY;
2373
 
2374
#if (USE_SPI_CRC != 0U)
2375
    /* Check if CRC error occurred */
2376
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
2377
    {
2378
      /* Check if CRC error is valid or not (workaround to be applied or not) */
2379
      if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
2380
      {
2381
        SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
2382
 
2383
        /* Reset CRC Calculation */
2384
        SPI_RESET_CRC(hspi);
2385
    }
2386
      else
2387
      {
2388
        __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
2389
      }
2390
    }
2391
#endif /* USE_SPI_CRC */
2392
 
2393
    if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
2394
    {
2395
      HAL_SPI_ErrorCallback(hspi);
2396
      return;
2397
    }
2398
  }
2399
  HAL_SPI_TxRxCpltCallback(hspi);
2400
}
2401
 
2402
/**
2403
  * @brief  DMA SPI half transmit process complete callback.
2404
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
2405
  *               the configuration information for the specified DMA module.
2406
  * @retval None
2407
  */
2408
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma)
2409
{
2410
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2411
 
2412
  HAL_SPI_TxHalfCpltCallback(hspi);
2413
}
2414
 
2415
/**
2416
  * @brief  DMA SPI half receive process complete callback
2417
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
2418
  *               the configuration information for the specified DMA module.
2419
  * @retval None
2420
  */
2421
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma)
2422
{
2423
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2424
 
2425
  HAL_SPI_RxHalfCpltCallback(hspi);
2426
}
2427
 
2428
/**
2429
  * @brief  DMA SPI half transmit receive process complete callback.
2430
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
2431
  *               the configuration information for the specified DMA module.
2432
  * @retval None
2433
  */
2434
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma)
2435
{
2436
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2437
 
2438
  HAL_SPI_TxRxHalfCpltCallback(hspi);
2439
}
2440
 
2441
/**
2442
  * @brief  DMA SPI communication error callback.
2443
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
2444
  *               the configuration information for the specified DMA module.
2445
  * @retval None
2446
  */
2447
static void SPI_DMAError(DMA_HandleTypeDef *hdma)
2448
{
2449
  SPI_HandleTypeDef* hspi = (SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2450
 
2451
/* Stop the disable DMA transfer on SPI side */
2452
  CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
2453
 
2454
  SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
2455
  hspi->State = HAL_SPI_STATE_READY;
2456
  HAL_SPI_ErrorCallback(hspi);
2457
}
2458
 
2459
/**
2460
  * @brief  DMA SPI communication abort callback, when initiated by HAL services on Error
2461
  *         (To be called at end of DMA Abort procedure following error occurrence).
2462
  * @param  hdma DMA handle.
2463
  * @retval None
2464
  */
2465
static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma)
2466
{
2467
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2468
  hspi->RxXferCount = 0U;
2469
  hspi->TxXferCount = 0U;
2470
 
2471
  HAL_SPI_ErrorCallback(hspi);
2472
}
2473
 
2474
/**
2475
  * @brief  DMA SPI Tx communication abort callback, when initiated by user
2476
  *         (To be called at end of DMA Tx Abort procedure following user abort request).
2477
  * @note   When this callback is executed, User Abort complete call back is called only if no
2478
  *         Abort still ongoing for Rx DMA Handle.
2479
  * @param  hdma DMA handle.
2480
  * @retval None
2481
  */
2482
static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
2483
{
2484
  __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
2485
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2486
 
2487
  hspi->hdmatx->XferAbortCallback = NULL;
2488
 
2489
  /* Disable Tx DMA Request */
2490
  CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN );
2491
 
2492
  /* Wait until TXE flag is set */
2493
  do
2494
  {
2495
    if(count-- == 0U)
2496
    {
2497
      SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
2498
      break;
2499
    }
2500
  }
2501
  while((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
2502
 
2503
  /* Check if an Abort process is still ongoing */
2504
  if(hspi->hdmarx != NULL)
2505
  {
2506
    if(hspi->hdmarx->XferAbortCallback != NULL)
2507
    {
2508
      return;
2509
    }
2510
  }
2511
 
2512
  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
2513
  hspi->RxXferCount = 0U;
2514
  hspi->TxXferCount = 0U;
2515
 
2516
  /* Reset errorCode */
2517
  hspi->ErrorCode = HAL_SPI_ERROR_NONE;
2518
 
2519
  /* Restore hspi->State to Ready */
2520
  hspi->State  = HAL_SPI_STATE_READY;
2521
 
2522
  /* Call user Abort complete callback */
2523
  HAL_SPI_AbortCpltCallback(hspi);
2524
}
2525
 
2526
/**
2527
  * @brief  DMA SPI Rx communication abort callback, when initiated by user
2528
  *         (To be called at end of DMA Rx Abort procedure following user abort request).
2529
  * @note   When this callback is executed, User Abort complete call back is called only if no
2530
  *         Abort still ongoing for Tx DMA Handle.
2531
  * @param  hdma DMA handle.
2532
  * @retval None
2533
  */
2534
static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
2535
{
2536
  SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
2537
 
2538
  /* Disable SPI Peripheral */
2539
  __HAL_SPI_DISABLE(hspi);
2540
 
2541
  hspi->hdmarx->XferAbortCallback = NULL;
2542
 
2543
  /* Disable Rx DMA Request */
2544
  CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
2545
 
2546
  /* Check if an Abort process is still ongoing */
2547
  if(hspi->hdmatx != NULL)
2548
  {
2549
    if(hspi->hdmatx->XferAbortCallback != NULL)
2550
    {
2551
      return;
2552
    }
2553
  }
2554
 
2555
  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
2556
  hspi->RxXferCount = 0U;
2557
  hspi->TxXferCount = 0U;
2558
 
2559
  /* Reset errorCode */
2560
  hspi->ErrorCode = HAL_SPI_ERROR_NONE;
2561
 
2562
  /* Clear the Error flags in the SR register */
2563
  __HAL_SPI_CLEAR_OVRFLAG(hspi);
2564
 
2565
  /* Restore hspi->State to Ready */
2566
  hspi->State  = HAL_SPI_STATE_READY;
2567
 
2568
  /* Call user Abort complete callback */
2569
  HAL_SPI_AbortCpltCallback(hspi);
2570
}
2571
 
2572
/**
2573
  * @brief  Rx 8-bit handler for Transmit and Receive in Interrupt mode.
2574
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2575
  *               the configuration information for SPI module.
2576
  * @retval None
2577
  */
2578
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
2579
{
2580
  /* Receive data in 8bit mode */
2581
  *hspi->pRxBuffPtr++ = *((__IO uint8_t *)&hspi->Instance->DR);
2582
  hspi->RxXferCount--;
2583
 
2584
  /* check end of the reception */
2585
  if(hspi->RxXferCount == 0U)
2586
  {
2587
#if (USE_SPI_CRC != 0U)
2588
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
2589
    {
2590
      hspi->RxISR =  SPI_2linesRxISR_8BITCRC;
2591
      return;
2592
    }
2593
#endif /* USE_SPI_CRC */
2594
 
2595
    /* Disable RXNE interrupt */
2596
    __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
2597
 
2598
    if(hspi->TxXferCount == 0U)
2599
    {
2600
      SPI_CloseRxTx_ISR(hspi);
2601
    }
2602
  }
2603
}
2604
 
2605
#if (USE_SPI_CRC != 0U)
2606
/**
2607
  * @brief  Rx 8-bit handler for Transmit and Receive in Interrupt mode.
2608
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2609
  *               the configuration information for SPI module.
2610
  * @retval None
2611
  */
2612
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
2613
{
2614
  __IO uint8_t tmpreg = 0U;
2615
 
2616
  /* Read data register to flush CRC */
2617
  tmpreg = *((__IO uint8_t *)&hspi->Instance->DR);
2618
 
2619
  /* To avoid GCC warning */
2620
 
2621
  UNUSED(tmpreg);
2622
 
2623
   /* Disable RXNE interrupt */
2624
  __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
2625
 
2626
  if(hspi->TxXferCount == 0U)
2627
  {
2628
    SPI_CloseRxTx_ISR(hspi);
2629
  }
2630
}
2631
#endif /* USE_SPI_CRC */
2632
 
2633
/**
2634
  * @brief  Tx 8-bit handler for Transmit and Receive in Interrupt mode.
2635
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2636
  *               the configuration information for SPI module.
2637
  * @retval None
2638
  */
2639
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
2640
{
2641
  *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
2642
  hspi->TxXferCount--;
2643
 
2644
  /* check the end of the transmission */
2645
  if(hspi->TxXferCount == 0U)
2646
  {
2647
#if (USE_SPI_CRC != 0U)
2648
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
2649
    {
2650
      SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
2651
      __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
2652
      return;
2653
    }
2654
#endif /* USE_SPI_CRC */
2655
 
2656
    /* Disable TXE interrupt */
2657
    __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
2658
 
2659
    if(hspi->RxXferCount == 0U)
2660
    {
2661
      SPI_CloseRxTx_ISR(hspi);
2662
    }
2663
  }
2664
}
2665
 
2666
/**
2667
  * @brief  Rx 16-bit handler for Transmit and Receive in Interrupt mode.
2668
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2669
  *               the configuration information for SPI module.
2670
  * @retval None
2671
  */
2672
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
2673
{
2674
  /* Receive data in 16 Bit mode */
2675
  *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
2676
  hspi->pRxBuffPtr += sizeof(uint16_t);
2677
  hspi->RxXferCount--;
2678
 
2679
  if(hspi->RxXferCount == 0U)
2680
  {
2681
#if (USE_SPI_CRC != 0U)
2682
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
2683
    {
2684
      hspi->RxISR =  SPI_2linesRxISR_16BITCRC;
2685
      return;
2686
    }
2687
#endif /* USE_SPI_CRC */
2688
 
2689
    /* Disable RXNE interrupt */
2690
    __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
2691
 
2692
    if(hspi->TxXferCount == 0U)
2693
    {
2694
      SPI_CloseRxTx_ISR(hspi);
2695
    }
2696
  }
2697
}
2698
 
2699
#if (USE_SPI_CRC != 0U)
2700
/**
2701
  * @brief  Manage the CRC 16-bit receive for Transmit and Receive in Interrupt mode.
2702
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2703
  *               the configuration information for SPI module.
2704
  * @retval None
2705
  */
2706
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
2707
{
2708
  /* Receive data in 16 Bit mode */
2709
  __IO uint16_t tmpreg = 0U;
2710
 
2711
  /* Read data register to flush CRC */
2712
  tmpreg = hspi->Instance->DR;
2713
 
2714
  /* To avoid GCC warning */
2715
  UNUSED(tmpreg);
2716
 
2717
  /* Disable RXNE interrupt */
2718
  __HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
2719
 
2720
  SPI_CloseRxTx_ISR(hspi);
2721
}
2722
#endif /* USE_SPI_CRC */
2723
 
2724
/**
2725
  * @brief  Tx 16-bit handler for Transmit and Receive in Interrupt mode.
2726
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2727
  *               the configuration information for SPI module.
2728
  * @retval None
2729
  */
2730
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
2731
{
2732
  /* Transmit data in 16 Bit mode */
2733
  hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
2734
  hspi->pTxBuffPtr += sizeof(uint16_t);
2735
  hspi->TxXferCount--;
2736
 
2737
  /* Enable CRC Transmission */
2738
  if(hspi->TxXferCount == 0U)
2739
  {
2740
#if (USE_SPI_CRC != 0U)
2741
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
2742
    {
2743
      SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
2744
      __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
2745
      return;
2746
    }
2747
#endif /* USE_SPI_CRC */
2748
 
2749
    /* Disable TXE interrupt */
2750
    __HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
2751
 
2752
    if(hspi->RxXferCount == 0U)
2753
    {
2754
      SPI_CloseRxTx_ISR(hspi);
2755
    }
2756
  }
2757
}
2758
 
2759
#if (USE_SPI_CRC != 0U)
2760
/**
2761
  * @brief  Manage the CRC 8-bit receive in Interrupt context.
2762
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2763
  *               the configuration information for SPI module.
2764
  * @retval None
2765
  */
2766
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
2767
{
2768
  __IO uint8_t tmpreg = 0U;
2769
 
2770
  /* Read data register to flush CRC */
2771
  tmpreg = *((__IO uint8_t*)&hspi->Instance->DR);
2772
 
2773
  /* To avoid GCC warning */
2774
  UNUSED(tmpreg);
2775
 
2776
  SPI_CloseRx_ISR(hspi);
2777
}
2778
#endif /* USE_SPI_CRC */
2779
 
2780
/**
2781
  * @brief  Manage the receive 8-bit in Interrupt context.
2782
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2783
  *               the configuration information for SPI module.
2784
  * @retval None
2785
  */
2786
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
2787
{
2788
  *hspi->pRxBuffPtr++ = (*(__IO uint8_t *)&hspi->Instance->DR);
2789
  hspi->RxXferCount--;
2790
 
2791
#if (USE_SPI_CRC != 0U)
2792
  /* Enable CRC Transmission */
2793
  if((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
2794
  {
2795
    SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
2796
  }
2797
#endif /* USE_SPI_CRC */
2798
 
2799
  if(hspi->RxXferCount == 0U)
2800
  {
2801
#if (USE_SPI_CRC != 0U)
2802
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
2803
    {
2804
      hspi->RxISR =  SPI_RxISR_8BITCRC;
2805
      return;
2806
    }
2807
#endif /* USE_SPI_CRC */
2808
    SPI_CloseRx_ISR(hspi);
2809
  }
2810
}
2811
 
2812
#if (USE_SPI_CRC != 0U)
2813
/**
2814
  * @brief  Manage the CRC 16-bit receive in Interrupt context.
2815
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2816
  *               the configuration information for SPI module.
2817
  * @retval None
2818
  */
2819
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
2820
{
2821
  __IO uint16_t tmpreg = 0U;
2822
 
2823
  /* Read data register to flush CRC */
2824
  tmpreg = hspi->Instance->DR;
2825
 
2826
  /* To avoid GCC warning */
2827
  UNUSED(tmpreg);
2828
 
2829
  /* Disable RXNE and ERR interrupt */
2830
  __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
2831
 
2832
  SPI_CloseRx_ISR(hspi);
2833
}
2834
#endif /* USE_SPI_CRC */
2835
 
2836
/**
2837
  * @brief  Manage the 16-bit receive in Interrupt context.
2838
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2839
  *               the configuration information for SPI module.
2840
  * @retval None
2841
  */
2842
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
2843
{
2844
  *((uint16_t *)hspi->pRxBuffPtr) = hspi->Instance->DR;
2845
  hspi->pRxBuffPtr += sizeof(uint16_t);
2846
  hspi->RxXferCount--;
2847
 
2848
#if (USE_SPI_CRC != 0U)
2849
  /* Enable CRC Transmission */
2850
  if((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
2851
  {
2852
    SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
2853
  }
2854
#endif /* USE_SPI_CRC */
2855
 
2856
  if(hspi->RxXferCount == 0U)
2857
  {
2858
#if (USE_SPI_CRC != 0U)
2859
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
2860
    {
2861
      hspi->RxISR = SPI_RxISR_16BITCRC;
2862
      return;
2863
    }
2864
#endif /* USE_SPI_CRC */
2865
    SPI_CloseRx_ISR(hspi);
2866
  }
2867
}
2868
 
2869
/**
2870
  * @brief  Handle the data 8-bit transmit in Interrupt mode.
2871
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2872
  *               the configuration information for SPI module.
2873
  * @retval None
2874
  */
2875
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
2876
{
2877
  *(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
2878
  hspi->TxXferCount--;
2879
 
2880
  if(hspi->TxXferCount == 0U)
2881
  {
2882
#if (USE_SPI_CRC != 0U)
2883
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
2884
    {
2885
      /* Enable CRC Transmission */
2886
      SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
2887
    }
2888
#endif /* USE_SPI_CRC */
2889
    SPI_CloseTx_ISR(hspi);
2890
  }
2891
}
2892
 
2893
/**
2894
  * @brief  Handle the data 16-bit transmit in Interrupt mode.
2895
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2896
  *               the configuration information for SPI module.
2897
  * @retval None
2898
  */
2899
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
2900
{
2901
  /* Transmit data in 16 Bit mode */
2902
  hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
2903
  hspi->pTxBuffPtr += sizeof(uint16_t);
2904
  hspi->TxXferCount--;
2905
 
2906
  if(hspi->TxXferCount == 0U)
2907
  {
2908
#if (USE_SPI_CRC != 0U)
2909
    if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
2910
    {
2911
      /* Enable CRC Transmission */
2912
      SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
2913
    }
2914
#endif /* USE_SPI_CRC */
2915
    SPI_CloseTx_ISR(hspi);
2916
  }
2917
}
2918
 
2919
/**
2920
  * @brief Handle SPI Communication Timeout.
2921
  * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
2922
  *              the configuration information for SPI module.
2923
  * @param Flag: SPI flag to check
2924
  * @param State: flag state to check
2925
  * @param Timeout: Timeout duration
2926
  * @param Tickstart: tick start value
2927
  * @retval HAL status
2928
  */
2929
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout, uint32_t Tickstart)
2930
{
2931
  while((((hspi->Instance->SR & Flag) == (Flag)) ? SET : RESET) != State)
2932
  {
2933
    if(Timeout != HAL_MAX_DELAY)
2934
    {
2935
      if((Timeout == 0U) || ((HAL_GetTick()-Tickstart) >= Timeout))
2936
      {
2937
        /* Disable the SPI and reset the CRC: the CRC value should be cleared
2938
        on both master and slave sides in order to resynchronize the master
2939
        and slave for their respective CRC calculation */
2940
 
2941
        /* Disable TXE, RXNE and ERR interrupts for the interrupt process */
2942
        __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
2943
 
2944
        if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
2945
        {
2946
          /* Disable SPI peripheral */
2947
          __HAL_SPI_DISABLE(hspi);
2948
        }
2949
 
2950
        /* Reset CRC Calculation */
2951
        if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
2952
        {
2953
          SPI_RESET_CRC(hspi);
2954
        }
2955
 
2956
        hspi->State= HAL_SPI_STATE_READY;
2957
 
2958
        /* Process Unlocked */
2959
        __HAL_UNLOCK(hspi);
2960
 
2961
        return HAL_TIMEOUT;
2962
      }
2963
    }
2964
  }
2965
 
2966
  return HAL_OK;
2967
}
2968
/**
2969
  * @brief Handle to check BSY flag before start a new transaction.
2970
  * @param hspi: pointer to a SPI_HandleTypeDef structure that contains
2971
  *              the configuration information for SPI module.
2972
  * @param Timeout: Timeout duration
2973
  * @param Tickstart: tick start value
2974
  * @retval HAL status
2975
  */
2976
static HAL_StatusTypeDef SPI_CheckFlag_BSY(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart)
2977
{
2978
  /* Control the BSY flag */
2979
  if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK)
2980
  {
2981
    SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
2982
    return HAL_TIMEOUT;
2983
  }
2984
  return HAL_OK;
2985
}
2986
 
2987
/**
2988
  * @brief  Handle the end of the RXTX transaction.
2989
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
2990
  *               the configuration information for SPI module.
2991
  * @retval None
2992
  */
2993
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi)
2994
{
2995
  uint32_t tickstart = 0U;
2996
  __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
2997
  /* Init tickstart for timeout managment*/
2998
  tickstart = HAL_GetTick();
2999
 
3000
  /* Disable ERR interrupt */
3001
  __HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
3002
 
3003
  /* Wait until TXE flag is set */
3004
  do
3005
  {
3006
    if(count-- == 0U)
3007
    {
3008
      SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
3009
      break;
3010
    }
3011
  }
3012
  while((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
3013
 
3014
  /* Check the end of the transaction */
3015
  if(SPI_CheckFlag_BSY(hspi, SPI_DEFAULT_TIMEOUT, tickstart)!=HAL_OK)
3016
  {
3017
    SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
3018
  }
3019
 
3020
  /* Clear overrun flag in 2 Lines communication mode because received is not read */
3021
  if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
3022
  {
3023
    __HAL_SPI_CLEAR_OVRFLAG(hspi);
3024
  }
3025
 
3026
#if (USE_SPI_CRC != 0U)
3027
  /* Check if CRC error occurred */
3028
  if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
3029
  {
3030
    /* Check if CRC error is valid or not (workaround to be applied or not) */
3031
    if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
3032
    {
3033
      hspi->State = HAL_SPI_STATE_READY;
3034
      SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
3035
 
3036
      /* Reset CRC Calculation */
3037
      SPI_RESET_CRC(hspi);
3038
 
3039
    HAL_SPI_ErrorCallback(hspi);
3040
    }
3041
    else
3042
    {
3043
      __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
3044
    }
3045
  }
3046
  else
3047
  {
3048
#endif /* USE_SPI_CRC */
3049
    if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
3050
    {
3051
      if(hspi->State == HAL_SPI_STATE_BUSY_RX)
3052
      {
3053
        hspi->State = HAL_SPI_STATE_READY;
3054
        HAL_SPI_RxCpltCallback(hspi);
3055
      }
3056
      else
3057
      {
3058
        hspi->State = HAL_SPI_STATE_READY;
3059
        HAL_SPI_TxRxCpltCallback(hspi);
3060
      }
3061
    }
3062
    else
3063
    {
3064
      hspi->State = HAL_SPI_STATE_READY;
3065
      HAL_SPI_ErrorCallback(hspi);
3066
    }
3067
#if (USE_SPI_CRC != 0U)
3068
  }
3069
#endif /* USE_SPI_CRC */
3070
}
3071
 
3072
/**
3073
  * @brief  Handle the end of the RX transaction.
3074
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
3075
  *               the configuration information for SPI module.
3076
  * @retval None
3077
  */
3078
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi)
3079
{
3080
    /* Disable RXNE and ERR interrupt */
3081
    __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
3082
 
3083
    /* Check the end of the transaction */
3084
    if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
3085
    {
3086
      /* Disable SPI peripheral */
3087
      __HAL_SPI_DISABLE(hspi);
3088
    }
3089
 
3090
    /* Clear overrun flag in 2 Lines communication mode because received is not read */
3091
    if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
3092
    {
3093
      __HAL_SPI_CLEAR_OVRFLAG(hspi);
3094
    }
3095
    hspi->State = HAL_SPI_STATE_READY;
3096
 
3097
#if (USE_SPI_CRC != 0U)
3098
    /* Check if CRC error occurred */
3099
    if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
3100
    {
3101
      /* Check if CRC error is valid or not (workaround to be applied or not) */
3102
      if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
3103
      {
3104
        SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
3105
 
3106
        /* Reset CRC Calculation */
3107
        SPI_RESET_CRC(hspi);
3108
 
3109
         HAL_SPI_ErrorCallback(hspi);
3110
      }
3111
      else
3112
      {
3113
        __HAL_SPI_CLEAR_CRCERRFLAG(hspi);
3114
      }
3115
    }
3116
    else
3117
    {
3118
#endif /* USE_SPI_CRC */
3119
      if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
3120
      {
3121
        HAL_SPI_RxCpltCallback(hspi);
3122
      }
3123
      else
3124
      {
3125
        HAL_SPI_ErrorCallback(hspi);
3126
      }
3127
#if (USE_SPI_CRC != 0U)
3128
    }
3129
#endif /* USE_SPI_CRC */
3130
}
3131
 
3132
/**
3133
  * @brief  Handle the end of the TX transaction.
3134
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
3135
  *               the configuration information for SPI module.
3136
  * @retval None
3137
  */
3138
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi)
3139
{
3140
  uint32_t tickstart = 0U;
3141
  __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
3142
 
3143
  /* Init tickstart for timeout management*/
3144
  tickstart = HAL_GetTick();
3145
 
3146
  /* Wait until TXE flag is set */
3147
  do
3148
  {
3149
    if(count-- == 0U)
3150
    {
3151
      SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
3152
      break;
3153
    }
3154
  }
3155
  while((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
3156
 
3157
  /* Disable TXE and ERR interrupt */
3158
  __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
3159
 
3160
  /* Check Busy flag */
3161
  if(SPI_CheckFlag_BSY(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
3162
  {
3163
    SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
3164
  }
3165
 
3166
  /* Clear overrun flag in 2 Lines communication mode because received is not read */
3167
  if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
3168
  {
3169
    __HAL_SPI_CLEAR_OVRFLAG(hspi);
3170
  }
3171
 
3172
  hspi->State = HAL_SPI_STATE_READY;
3173
  if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
3174
  {
3175
    HAL_SPI_ErrorCallback(hspi);
3176
  }
3177
  else
3178
  {
3179
    HAL_SPI_TxCpltCallback(hspi);
3180
  }
3181
}
3182
 
3183
/**
3184
  * @}
3185
  */
3186
 
3187
/**
3188
  * @brief  Handle abort a Tx or Rx transaction.
3189
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
3190
  *               the configuration information for SPI module.
3191
  * @retval None
3192
  */
3193
static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi)
3194
{
3195
  __IO uint32_t tmpreg = 0U;
3196
  __IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
3197
 
3198
  /* Wait until TXE flag is set */
3199
  do
3200
  {
3201
    if(count-- == 0U)
3202
    {
3203
      SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
3204
      break;
3205
    }
3206
  }
3207
  while((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
3208
 
3209
  /* Disable SPI Peripheral */
3210
  __HAL_SPI_DISABLE(hspi);    
3211
 
3212
  /* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */
3213
  CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXEIE | SPI_CR2_RXNEIE | SPI_CR2_ERRIE));
3214
 
3215
  /* Flush DR Register */
3216
  tmpreg = (*(__IO uint32_t *)&hspi->Instance->DR);
3217
 
3218
  /* To avoid GCC warning */
3219
  UNUSED(tmpreg);
3220
}
3221
 
3222
/**
3223
  * @brief  Handle abort a Tx or Rx transaction.
3224
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
3225
  *               the configuration information for SPI module.
3226
  * @retval None
3227
  */
3228
static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi)
3229
{
3230
  /* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */
3231
  CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXEIE | SPI_CR2_RXNEIE | SPI_CR2_ERRIE));
3232
 
3233
  /* Disable SPI Peripheral */
3234
  __HAL_SPI_DISABLE(hspi);
3235
}
3236
 
3237
/**
3238
  * @brief  Checks if encountered CRC error could be corresponding to wrongly detected errors
3239
  *         according to SPI instance, Device type, and revision ID.
3240
  * @param  hspi: pointer to a SPI_HandleTypeDef structure that contains
3241
  *               the configuration information for SPI module.
3242
  * @retval CRC error validity (SPI_INVALID_CRC_ERROR or SPI_VALID_CRC_ERROR).  
3243
*/
3244
__weak uint8_t SPI_ISCRCErrorValid(SPI_HandleTypeDef *hspi)
3245
{
3246
  /* Prevent unused argument(s) compilation warning */
3247
  UNUSED(hspi);
3248
 
3249
  return (SPI_VALID_CRC_ERROR);
3250
}
3251
/**
3252
  * @}
3253
  */
3254
#endif /* HAL_SPI_MODULE_ENABLED */
3255
 
3256
/**
3257
  * @}
3258
  */
3259
 
3260
/**
3261
  * @}
3262
  */
3263
 
3264
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/