Subversion Repositories DashDisplay

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**
2
  ******************************************************************************
3
  * @file    stm32f1xx_hal_rcc.c
4
  * @author  MCD Application Team
5
  * @version V1.0.1
6
  * @date    31-July-2015
7
  * @brief   RCC HAL module driver.
8
  *          This file provides firmware functions to manage the following
9
  *          functionalities of the Reset and Clock Control (RCC) peripheral:
10
  *           + Initialization and de-initialization functions
11
  *           + Peripheral Control functions
12
  *      
13
  @verbatim                
14
  ==============================================================================
15
                      ##### RCC specific features #####
16
  ==============================================================================
17
    [..]  
18
      After reset the device is running from Internal High Speed oscillator
19
      (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled,
20
      and all peripherals are off except internal SRAM, Flash and JTAG.
21
      (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
22
          all peripherals mapped on these busses are running at HSI speed.
23
      (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
24
      (+) All GPIOs are in input floating state, except the JTAG pins which
25
          are assigned to be used for debug purpose.
26
    [..] Once the device started from reset, the user application has to:
27
      (+) Configure the clock source to be used to drive the System clock
28
          (if the application needs higher frequency/performance)
29
      (+) Configure the System clock frequency and Flash settings  
30
      (+) Configure the AHB and APB busses prescalers
31
      (+) Enable the clock for the peripheral(s) to be used
32
      (+) Configure the clock source(s) for peripherals whose clocks are not
33
          derived from the System clock (I2S, RTC, ADC, USB OTG FS)
34
 
35
                      ##### RCC Limitations #####
36
  ==============================================================================
37
    [..]  
38
      A delay between an RCC peripheral clock enable and the effective peripheral
39
      enabling should be taken into account in order to manage the peripheral read/write
40
      from/to registers.
41
      (+) This delay depends on the peripheral mapping.
42
        (++) AHB & APB peripherals, 1 dummy read is necessary
43
 
44
    [..]  
45
      Workarounds:
46
      (#) For AHB & APB peripherals, a dummy read to the peripheral register has been
47
          inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
48
 
49
  @endverbatim
50
  ******************************************************************************
51
  * @attention
52
  *
53
  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
54
  *
55
  * Redistribution and use in source and binary forms, with or without modification,
56
  * are permitted provided that the following conditions are met:
57
  *   1. Redistributions of source code must retain the above copyright notice,
58
  *      this list of conditions and the following disclaimer.
59
  *   2. Redistributions in binary form must reproduce the above copyright notice,
60
  *      this list of conditions and the following disclaimer in the documentation
61
  *      and/or other materials provided with the distribution.
62
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
63
  *      may be used to endorse or promote products derived from this software
64
  *      without specific prior written permission.
65
  *
66
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
67
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
69
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
70
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
72
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
73
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
74
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
75
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
76
  *
77
  ******************************************************************************  
78
*/
79
 
80
/* Includes ------------------------------------------------------------------*/
81
#include "stm32f1xx_hal.h"
82
 
83
/** @addtogroup STM32F1xx_HAL_Driver
84
  * @{
85
  */
86
 
87
/** @defgroup RCC RCC
88
* @brief RCC HAL module driver
89
  * @{
90
  */
91
 
92
#ifdef HAL_RCC_MODULE_ENABLED
93
 
94
/* Private typedef -----------------------------------------------------------*/
95
/* Private define ------------------------------------------------------------*/
96
/** @defgroup RCC_Private_Constants RCC Private Constants
97
 * @{
98
 */
99
/**
100
  * @}
101
  */
102
/* Private macro -------------------------------------------------------------*/
103
/** @defgroup RCC_Private_Macros RCC Private Macros
104
  * @{
105
  */
106
 
107
#define MCO1_CLK_ENABLE()     __HAL_RCC_GPIOA_CLK_ENABLE()
108
#define MCO1_GPIO_PORT        GPIOA
109
#define MCO1_PIN              GPIO_PIN_8
110
 
111
/**
112
  * @}
113
  */
114
 
115
/* Private variables ---------------------------------------------------------*/
116
/** @defgroup RCC_Private_Variables RCC Private Variables
117
  * @{
118
  */
119
const uint8_t aAPBAHBPrescTable[16]       = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
120
/**
121
  * @}
122
  */
123
 
124
/* Private function prototypes -----------------------------------------------*/
125
/* Exported functions ---------------------------------------------------------*/
126
 
127
/** @defgroup RCC_Exported_Functions RCC Exported Functions
128
  * @{
129
  */
130
 
131
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
132
  *  @brief    Initialization and Configuration functions
133
  *
134
  @verbatim    
135
  ===============================================================================
136
           ##### Initialization and de-initialization functions #####
137
  ===============================================================================
138
    [..]
139
      This section provides functions allowing to configure the internal/external oscillators
140
      (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1
141
      and APB2).
142
 
143
    [..] Internal/external clock and PLL configuration
144
      (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
145
          the PLL as System clock source.
146
      (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC
147
          clock source.
148
 
149
      (#) HSE (high-speed external), 4 to 24 MHz (STM32F100xx) or 4 to 16 MHz (STM32F101x/STM32F102x/STM32F103x) or 3 to 25 MHz (STM32F105x/STM32F107x)  crystal oscillator used directly or
150
          through the PLL as System clock source. Can be used also as RTC clock source.
151
 
152
      (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.  
153
 
154
      (#) PLL (clocked by HSI or HSE), featuring different output clocks:
155
        (++) The first output is used to generate the high speed system clock (up to 72 MHz for STM32F10xxx or up to 24 MHz for STM32F100xx)
156
        (++) The second output is used to generate the clock for the USB OTG FS (48 MHz)
157
 
158
      (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
159
          and if a HSE clock failure occurs(HSE used directly or through PLL as System
160
          clock source), the System clocks automatically switched to HSI and an interrupt
161
          is generated if enabled. The interrupt is linked to the Cortex-M3 NMI
162
          (Non-Maskable Interrupt) exception vector.  
163
 
164
      (#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI,  
165
          HSE or PLL clock (divided by 2) on PA8 pin + PLL2CLK, PLL3CLK/2, PLL3CLK and XTI for STM32F105x/STM32F107x
166
 
167
    [..] System, AHB and APB buses clocks configuration
168
      (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
169
          HSE and PLL.
170
          The AHB clock (HCLK) is derived from System clock through configurable
171
          prescaler and used to clock the CPU, memory and peripherals mapped
172
          on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
173
          from AHB clock through configurable prescalers and used to clock
174
          the peripherals mapped on these buses. You can use
175
          "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
176
 
177
      -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
178
          (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock
179
              divided by 128.
180
          (+@) USB OTG FS and RTC: USB OTG FS require a frequency equal to 48 MHz
181
              to work correctly. This clock is derived of the main PLL through PLL Multiplier.
182
          (+@) I2S interface on STM32F105x/STM32F107x can be derived from PLL3CLK
183
          (+@) IWDG clock which is always the LSI clock.
184
 
185
      (#) For STM32F10xxx, the maximum frequency of the SYSCLK and HCLK/PCLK2 is 72 MHz, PCLK1 36 MHz.
186
          For STM32F100xx, the maximum frequency of the SYSCLK and HCLK/PCLK1/PCLK2 is 24 MHz.  
187
             Depending on the SYSCLK frequency, the flash latency should be adapted accordingly:
188
        +-----------------------------------------------+
189
        | Latency       | SYSCLK clock frequency (MHz)  |
190
        |---------------|-------------------------------|
191
        |0WS(1CPU cycle)|       0 < SYSCLK <= 24        |
192
        |---------------|-------------------------------|
193
        |1WS(2CPU cycle)|      24 < SYSCLK <= 48        |
194
        |---------------|-------------------------------|
195
        |2WS(3CPU cycle)|      48 < SYSCLK <= 72        |
196
        +-----------------------------------------------+
197
  @endverbatim
198
  * @{
199
  */
200
 
201
/**
202
  * @brief  Resets the RCC clock configuration to the default reset state.
203
  * @note   The default reset state of the clock configuration is given below:
204
  *            - HSI ON and used as system clock source
205
  *            - HSE and PLL OFF
206
  *            - AHB, APB1 and APB2 prescaler set to 1.
207
  *            - CSS and MCO1 OFF
208
  *            - All interrupts disabled
209
  * @note   This function doesn't modify the configuration of the
210
  *            - Peripheral clocks  
211
  *            - LSI, LSE and RTC clocks
212
  * @retval None
213
  */
214
void HAL_RCC_DeInit(void)
215
{
216
  /* Switch SYSCLK to HSI */
217
  CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW);
218
 
219
  /* Reset HSEON, CSSON, & PLLON bits */
220
  CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON);
221
 
222
  /* Reset HSEBYP bit */
223
  CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
224
 
225
  /* Reset CFGR register */
226
  CLEAR_REG(RCC->CFGR);
227
 
228
  /* Set HSITRIM bits to the reset value */
229
  MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, ((uint32_t)0x10 << POSITION_VAL(RCC_CR_HSITRIM)));
230
 
231
#if (defined(STM32F105xC) || defined(STM32F107xC) || defined (STM32F100xB) || defined (STM32F100xE))
232
  /* Reset CFGR2 register */
233
  CLEAR_REG(RCC->CFGR2);
234
 
235
#endif /* STM32F105xC || STM32F107xC || STM32F100xB || STM32F100xE */
236
  /* Disable all interrupts */
237
  CLEAR_REG(RCC->CIR);
238
}
239
 
240
/**
241
  * @brief  Initializes the RCC Oscillators according to the specified parameters in the
242
  *         RCC_OscInitTypeDef.
243
  * @param  RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
244
  *         contains the configuration information for the RCC Oscillators.
245
  * @note   The PLL is not disabled when used as system clock.
246
  * @note   The PLL is not disabled when USB OTG FS clock is enabled (specific to devices with USB FS)
247
  * @retval HAL status
248
  */
249
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
250
{
251
   uint32_t tickstart = 0;
252
 
253
  /* Check the parameters */
254
  assert_param(RCC_OscInitStruct != NULL);
255
  assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
256
 
257
  /*------------------------------- HSE Configuration ------------------------*/
258
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
259
  {
260
    /* Check the parameters */
261
    assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
262
 
263
    /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
264
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE)
265
       || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
266
    {
267
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
268
      {
269
        return HAL_ERROR;
270
      }
271
    }
272
    else
273
    {
274
      /* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/
275
      __HAL_RCC_HSE_CONFIG(RCC_HSE_OFF);
276
 
277
      /* Get Start Tick */
278
      tickstart = HAL_GetTick();
279
 
280
      /* Wait till HSE is disabled */  
281
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
282
      {
283
        if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
284
        {
285
          return HAL_TIMEOUT;
286
        }
287
      }
288
 
289
      /* Set the new HSE configuration ---------------------------------------*/
290
      __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
291
 
292
 
293
       /* Check the HSE State */
294
      if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
295
      {
296
        /* Get Start Tick */
297
        tickstart = HAL_GetTick();
298
 
299
        /* Wait till HSE is ready */
300
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
301
        {
302
          if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
303
          {
304
            return HAL_TIMEOUT;
305
          }
306
        }
307
      }
308
      else
309
      {
310
        /* Get Start Tick */
311
        tickstart = HAL_GetTick();
312
 
313
        /* Wait till HSE is bypassed or disabled */
314
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
315
        {
316
           if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
317
          {
318
            return HAL_TIMEOUT;
319
          }
320
        }
321
      }
322
    }
323
  }
324
  /*----------------------------- HSI Configuration --------------------------*/
325
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
326
  {
327
    /* Check the parameters */
328
    assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
329
    assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
330
 
331
    /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
332
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
333
       || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI_DIV2)))
334
    {
335
      /* When HSI is used as system clock it will not disabled */
336
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
337
      {
338
        return HAL_ERROR;
339
      }
340
      /* Otherwise, just the calibration is allowed */
341
      else
342
      {
343
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
344
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
345
      }
346
    }
347
    else
348
    {
349
      /* Check the HSI State */
350
      if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
351
      {
352
       /* Enable the Internal High Speed oscillator (HSI). */
353
        __HAL_RCC_HSI_ENABLE();
354
 
355
        /* Get Start Tick */
356
        tickstart = HAL_GetTick();
357
 
358
        /* Wait till HSI is ready */
359
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
360
        {
361
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
362
          {
363
            return HAL_TIMEOUT;
364
          }
365
        }
366
 
367
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
368
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
369
      }
370
      else
371
      {
372
        /* Disable the Internal High Speed oscillator (HSI). */
373
        __HAL_RCC_HSI_DISABLE();
374
 
375
        /* Get Start Tick */
376
        tickstart = HAL_GetTick();
377
 
378
        /* Wait till HSI is disabled */
379
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
380
        {
381
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
382
          {
383
            return HAL_TIMEOUT;
384
          }
385
        }
386
      }
387
    }
388
  }
389
  /*------------------------------ LSI Configuration -------------------------*/
390
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
391
  {
392
    /* Check the parameters */
393
    assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
394
 
395
    /* Check the LSI State */
396
    if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
397
    {
398
      /* Enable the Internal Low Speed oscillator (LSI). */
399
      __HAL_RCC_LSI_ENABLE();
400
 
401
      /* Get Start Tick */
402
      tickstart = HAL_GetTick();
403
 
404
      /* Wait till LSI is ready */  
405
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
406
      {
407
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
408
        {
409
          return HAL_TIMEOUT;
410
        }
411
      }
412
      /*  To have a fully stabilized clock in the specified range, a software temporization of 1ms
413
          should be added.*/
414
      HAL_Delay(1);
415
    }
416
    else
417
    {
418
      /* Disable the Internal Low Speed oscillator (LSI). */
419
      __HAL_RCC_LSI_DISABLE();
420
 
421
      /* Get Start Tick */
422
      tickstart = HAL_GetTick();
423
 
424
      /* Wait till LSI is disabled */  
425
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
426
      {
427
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
428
        {
429
          return HAL_TIMEOUT;
430
        }
431
      }
432
    }
433
  }
434
  /*------------------------------ LSE Configuration -------------------------*/
435
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
436
  {
437
    /* Check the parameters */
438
    assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
439
 
440
    /* Enable Power Clock*/
441
    __HAL_RCC_PWR_CLK_ENABLE();
442
 
443
    /* Enable write access to Backup domain */
444
    SET_BIT(PWR->CR, PWR_CR_DBP);
445
 
446
    /* Wait for Backup domain Write protection disable */
447
    tickstart = HAL_GetTick();
448
 
449
    while((PWR->CR & PWR_CR_DBP) == RESET)
450
    {
451
      if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
452
      {
453
        return HAL_TIMEOUT;
454
      }      
455
    }
456
 
457
    /* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/
458
    __HAL_RCC_LSE_CONFIG(RCC_LSE_OFF);
459
 
460
    /* Get Start Tick */
461
    tickstart = HAL_GetTick();
462
 
463
    /* Wait till LSE is disabled */  
464
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
465
    {
466
      if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
467
      {
468
        return HAL_TIMEOUT;
469
      }
470
    }
471
 
472
    /* Set the new LSE configuration -----------------------------------------*/
473
    __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
474
    /* Check the LSE State */
475
    if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
476
    {
477
      /* Get Start Tick */
478
      tickstart = HAL_GetTick();
479
 
480
      /* Wait till LSE is ready */  
481
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
482
      {
483
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
484
        {
485
          return HAL_TIMEOUT;
486
        }
487
      }
488
    }
489
    else
490
    {
491
      /* Get Start Tick */
492
      tickstart = HAL_GetTick();
493
 
494
      /* Wait till LSE is disabled */  
495
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
496
      {
497
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
498
        {
499
          return HAL_TIMEOUT;
500
        }
501
      }
502
    }
503
  }
504
 
505
#if defined(RCC_CR_PLL2ON)
506
  /*-------------------------------- PLL2 Configuration -----------------------*/
507
  /* Check the parameters */
508
  assert_param(IS_RCC_PLL2(RCC_OscInitStruct->PLL2.PLL2State));
509
  if ((RCC_OscInitStruct->PLL2.PLL2State) != RCC_PLL2_NONE)
510
  {
511
    /* This bit can not be cleared if the PLL2 clock is used indirectly as system
512
      clock (i.e. it is used as PLL clock entry that is used as system clock). */
513
    if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \
514
        (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \
515
        ((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2))
516
    {
517
      return HAL_ERROR;
518
    }
519
    else
520
    {
521
      if((RCC_OscInitStruct->PLL2.PLL2State) == RCC_PLL2_ON)
522
      {
523
        /* Check the parameters */
524
        assert_param(IS_RCC_PLL2_MUL(RCC_OscInitStruct->PLL2.PLL2MUL));
525
        assert_param(IS_RCC_HSE_PREDIV2(RCC_OscInitStruct->PLL2.HSEPrediv2Value));
526
 
527
        /* Prediv2 can be written only when the PLLI2S is disabled. */
528
        /* Return an error only if new value is different from the programmed value */
529
        if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL3ON) && \
530
          (__HAL_RCC_HSE_GET_PREDIV2() != RCC_OscInitStruct->PLL2.HSEPrediv2Value))
531
        {
532
          return HAL_ERROR;
533
        }
534
 
535
        /* Disable the main PLL2. */
536
        __HAL_RCC_PLL2_DISABLE();
537
 
538
        /* Get Start Tick */
539
        tickstart = HAL_GetTick();
540
 
541
        /* Wait till PLL2 is disabled */
542
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
543
        {
544
          if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
545
          {
546
            return HAL_TIMEOUT;
547
          }
548
        }
549
 
550
        /* Configure the HSE prediv2 factor --------------------------------*/
551
        __HAL_RCC_HSE_PREDIV2_CONFIG(RCC_OscInitStruct->PLL2.HSEPrediv2Value);
552
 
553
        /* Configure the main PLL2 multiplication factors. */
554
        __HAL_RCC_PLL2_CONFIG(RCC_OscInitStruct->PLL2.PLL2MUL);
555
 
556
        /* Enable the main PLL2. */
557
        __HAL_RCC_PLL2_ENABLE();
558
 
559
        /* Get Start Tick */
560
        tickstart = HAL_GetTick();
561
 
562
        /* Wait till PLL2 is ready */
563
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY)  == RESET)
564
        {
565
          if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
566
          {
567
            return HAL_TIMEOUT;
568
          }
569
        }
570
      }
571
      else
572
      {
573
       /* Set PREDIV1 source to HSE */
574
        CLEAR_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC);
575
 
576
        /* Disable the main PLL2. */
577
        __HAL_RCC_PLL2_DISABLE();
578
 
579
        /* Get Start Tick */
580
        tickstart = HAL_GetTick();
581
 
582
        /* Wait till PLL2 is disabled */  
583
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY)  != RESET)
584
        {
585
          if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
586
          {
587
            return HAL_TIMEOUT;
588
          }
589
        }
590
      }
591
    }
592
  }
593
 
594
#endif /* RCC_CR_PLL2ON */
595
  /*-------------------------------- PLL Configuration -----------------------*/
596
  /* Check the parameters */
597
  assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
598
  if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
599
  {
600
    /* Check if the PLL is used as system clock or not */
601
    if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
602
    {
603
      if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
604
      {
605
        /* Check the parameters */
606
        assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
607
        assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
608
 
609
        /* Disable the main PLL. */
610
        __HAL_RCC_PLL_DISABLE();
611
 
612
        /* Get Start Tick */
613
        tickstart = HAL_GetTick();
614
 
615
        /* Wait till PLL is disabled */
616
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  != RESET)
617
        {
618
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
619
          {
620
            return HAL_TIMEOUT;
621
          }
622
        }
623
 
624
        /* Configure the HSE prediv factor --------------------------------*/
625
        /* It can be written only when the PLL is disabled. Not used in PLL source is different than HSE */
626
        if(RCC_OscInitStruct->PLL.PLLSource == RCC_PLLSOURCE_HSE)
627
        {
628
          /* Check the parameter */
629
          assert_param(IS_RCC_HSE_PREDIV(RCC_OscInitStruct->HSEPredivValue));
630
#if defined(RCC_CFGR2_PREDIV1SRC)
631
          assert_param(IS_RCC_PREDIV1_SOURCE(RCC_OscInitStruct->Prediv1Source));
632
 
633
          /* Set PREDIV1 source */
634
          SET_BIT(RCC->CFGR2, RCC_OscInitStruct->Prediv1Source);
635
#endif /* RCC_CFGR2_PREDIV1SRC */
636
 
637
          /* Set PREDIV1 Value */
638
          __HAL_RCC_HSE_PREDIV_CONFIG(RCC_OscInitStruct->HSEPredivValue);
639
        }
640
 
641
        /* Configure the main PLL clock source and multiplication factors. */
642
        __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
643
                             RCC_OscInitStruct->PLL.PLLMUL);
644
        /* Enable the main PLL. */
645
        __HAL_RCC_PLL_ENABLE();
646
 
647
        /* Get Start Tick */
648
        tickstart = HAL_GetTick();
649
 
650
        /* Wait till PLL is ready */
651
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  == RESET)
652
        {
653
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
654
          {
655
            return HAL_TIMEOUT;
656
          }
657
        }
658
      }
659
      else
660
      {
661
        /* Disable the main PLL. */
662
        __HAL_RCC_PLL_DISABLE();
663
 
664
        /* Get Start Tick */
665
        tickstart = HAL_GetTick();
666
 
667
        /* Wait till PLL is disabled */  
668
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  != RESET)
669
        {
670
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
671
          {
672
            return HAL_TIMEOUT;
673
          }
674
        }
675
      }
676
    }
677
    else
678
    {
679
      return HAL_ERROR;
680
    }
681
  }
682
 
683
  return HAL_OK;
684
}
685
 
686
/**
687
  * @brief  Initializes the CPU, AHB and APB buses clocks according to the specified
688
  *         parameters in the RCC_ClkInitStruct.
689
  * @param  RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
690
  *         contains the configuration information for the RCC peripheral.
691
  * @param  FLatency FLASH Latency                  
692
  *          The value of this parameter depend on device used within the same series
693
  * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency
694
  *         and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
695
  *
696
  * @note   The HSI is used (enabled by hardware) as system clock source after
697
  *         startup from Reset, wake-up from STOP and STANDBY mode, or in case
698
  *         of failure of the HSE used directly or indirectly as system clock
699
  *         (if the Clock Security System CSS is enabled).
700
  *          
701
  * @note   A switch from one clock source to another occurs only if the target
702
  *         clock source is ready (clock stable after startup delay or PLL locked).
703
  *         If a clock source which is not yet ready is selected, the switch will
704
  *         occur when the clock source will be ready.
705
  *         You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
706
  *         currently used as system clock source.
707
  * @retval HAL status
708
  */
709
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t FLatency)
710
{
711
  uint32_t tickstart = 0;
712
 
713
  /* Check the parameters */
714
  assert_param(RCC_ClkInitStruct != NULL);
715
  assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
716
  assert_param(IS_FLASH_LATENCY(FLatency));
717
 
718
  /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
719
  must be correctly programmed according to the frequency of the CPU clock
720
    (HCLK) of the device. */
721
 
722
#if defined(FLASH_ACR_LATENCY)
723
  /* Increasing the CPU frequency */
724
  if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
725
  {    
726
    /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
727
    __HAL_FLASH_SET_LATENCY(FLatency);
728
 
729
    /* Check that the new number of wait states is taken into account to access the Flash
730
    memory by reading the FLASH_ACR register */
731
    if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
732
    {
733
      return HAL_ERROR;
734
    }
735
 
736
#endif /* FLASH_ACR_LATENCY */
737
    /*-------------------------- HCLK Configuration --------------------------*/
738
    if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
739
    {
740
      assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
741
      MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
742
    }
743
 
744
    /*------------------------- SYSCLK Configuration ---------------------------*/
745
    if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
746
    {    
747
      assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
748
 
749
      /* HSE is selected as System Clock Source */
750
      if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
751
      {
752
        /* Check the HSE ready flag */  
753
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
754
        {
755
          return HAL_ERROR;
756
        }
757
      }
758
      /* PLL is selected as System Clock Source */
759
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
760
      {
761
        /* Check the PLL ready flag */  
762
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
763
        {
764
          return HAL_ERROR;
765
        }
766
      }
767
      /* HSI is selected as System Clock Source */
768
      else
769
      {
770
        /* Check the HSI ready flag */  
771
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
772
        {
773
          return HAL_ERROR;
774
        }
775
      }
776
      __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
777
 
778
      /* Get Start Tick */
779
      tickstart = HAL_GetTick();
780
 
781
      if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
782
      {
783
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
784
        {
785
          if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
786
          {
787
            return HAL_TIMEOUT;
788
          }
789
        }
790
      }
791
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
792
      {
793
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
794
        {
795
          if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
796
          {
797
            return HAL_TIMEOUT;
798
          }
799
        }
800
      }
801
      else
802
      {
803
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
804
        {
805
          if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
806
          {
807
            return HAL_TIMEOUT;
808
          }
809
        }
810
      }      
811
    }    
812
#if defined(FLASH_ACR_LATENCY)
813
  }
814
  /* Decreasing the CPU frequency */
815
  else
816
  {
817
    /*-------------------------- HCLK Configuration --------------------------*/
818
    if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
819
    {
820
      assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
821
      MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
822
    }
823
 
824
    /*------------------------- SYSCLK Configuration -------------------------*/
825
    if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
826
    {    
827
      assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
828
 
829
      /* HSE is selected as System Clock Source */
830
      if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
831
      {
832
        /* Check the HSE ready flag */  
833
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
834
        {
835
          return HAL_ERROR;
836
        }
837
      }
838
      /* PLL is selected as System Clock Source */
839
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
840
      {
841
        /* Check the PLL ready flag */  
842
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
843
        {
844
          return HAL_ERROR;
845
        }
846
      }
847
      /* HSI is selected as System Clock Source */
848
      else
849
      {
850
        /* Check the HSI ready flag */  
851
        if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
852
        {
853
          return HAL_ERROR;
854
        }
855
      }
856
      __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
857
 
858
      /* Get Start Tick */
859
      tickstart = HAL_GetTick();
860
 
861
      if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
862
      {
863
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
864
        {
865
          if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
866
          {
867
            return HAL_TIMEOUT;
868
          }
869
        }
870
      }
871
      else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
872
      {
873
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
874
        {
875
          if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
876
          {
877
            return HAL_TIMEOUT;
878
          }
879
        }
880
      }
881
      else
882
      {
883
        while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
884
        {
885
          if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
886
          {
887
            return HAL_TIMEOUT;
888
          }
889
        }
890
      }      
891
    }
892
 
893
    /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
894
    __HAL_FLASH_SET_LATENCY(FLatency);
895
 
896
    /* Check that the new number of wait states is taken into account to access the Flash
897
    memory by reading the FLASH_ACR register */
898
    if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
899
    {
900
      return HAL_ERROR;
901
    }
902
  }
903
#endif /* FLASH_ACR_LATENCY */
904
 
905
  /*-------------------------- PCLK1 Configuration ---------------------------*/
906
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
907
  {
908
    assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
909
    MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
910
  }
911
 
912
  /*-------------------------- PCLK2 Configuration ---------------------------*/
913
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
914
  {
915
    assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
916
    MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3));
917
  }
918
 
919
  /* Configure the source of time base considering new system clocks settings*/
920
  HAL_InitTick (TICK_INT_PRIORITY);
921
 
922
  return HAL_OK;
923
}
924
 
925
/**
926
  * @}
927
  */
928
 
929
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
930
  *  @brief   RCC clocks control functions
931
  *
932
  @verbatim  
933
  ===============================================================================
934
                  ##### Peripheral Control functions #####
935
  ===============================================================================  
936
    [..]
937
    This subsection provides a set of functions allowing to control the RCC Clocks
938
    frequencies.
939
 
940
  @endverbatim
941
  * @{
942
  */
943
 
944
/**
945
  * @brief  Selects the clock source to output on MCO pin.
946
  * @note   MCO pin should be configured in alternate function mode.
947
  * @param  RCC_MCOx specifies the output direction for the clock source.
948
  *          This parameter can be one of the following values:
949
  *            @arg RCC_MCO Clock source to output on MCO1 pin(PA8).
950
  * @param  RCC_MCOSource specifies the clock source to output.
951
  *          This parameter can be one of the following values:
952
  *            @arg RCC_MCO1SOURCE_NOCLOCK No clock selected
953
  *            @arg RCC_MCO1SOURCE_SYSCLK System clock selected
954
  *            @arg RCC_MCO1SOURCE_HSI HSI oscillator clock selected
955
  *            @arg RCC_MCO1SOURCE_HSE HSE oscillator clock selected
956
  *            @arg RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source
957
  *            @arg RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source (only for connectivity line devices)
958
  *            @arg RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source (only for connectivity line devices)
959
  *            @arg RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source (only for connectivity line devices)
960
  *            @arg RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source (only for connectivity line devices)
961
  * @param  RCC_MCODiv specifies the MCO DIV.
962
  *          This parameter can be one of the following values:
963
  *            @arg RCC_MCODIV_1 no division applied to MCO clock
964
  * @retval None
965
  */
966
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
967
{
968
  GPIO_InitTypeDef gpio = {0};
969
 
970
  /* Check the parameters */
971
  assert_param(IS_RCC_MCO(RCC_MCOx));
972
  assert_param(IS_RCC_MCODIV(RCC_MCODiv));
973
  assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
974
 
975
  /* MCO Clock Enable */
976
  MCO1_CLK_ENABLE();
977
 
978
  /* Configure the MCO1 pin in alternate function mode */
979
  gpio.Pin = MCO1_PIN;
980
  gpio.Mode = GPIO_MODE_AF_PP;
981
  gpio.Speed = GPIO_SPEED_HIGH;
982
  gpio.Pull = GPIO_NOPULL;
983
  HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);
984
 
985
  /* Configure the MCO clock source */
986
  __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
987
}
988
 
989
/**
990
  * @brief  Enables the Clock Security System.
991
  * @note   If a failure is detected on the HSE oscillator clock, this oscillator
992
  *         is automatically disabled and an interrupt is generated to inform the
993
  *         software about the failure (Clock Security System Interrupt, CSSI),
994
  *         allowing the MCU to perform rescue operations. The CSSI is linked to
995
  *         the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector.  
996
  * @retval None
997
  */
998
void HAL_RCC_EnableCSS(void)
999
{
1000
  *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE;
1001
}
1002
 
1003
/**
1004
  * @brief  Disables the Clock Security System.
1005
  * @retval None
1006
  */
1007
void HAL_RCC_DisableCSS(void)
1008
{
1009
  *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE;
1010
}
1011
 
1012
/**
1013
  * @brief  Returns the SYSCLK frequency    
1014
  * @note   The system frequency computed by this function is not the real
1015
  *         frequency in the chip. It is calculated based on the predefined
1016
  *         constant and the selected clock source:
1017
  * @note     If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
1018
  * @note     If SYSCLK source is HSE, function returns a value based on HSE_VALUE
1019
  *           divided by PREDIV factor(**)
1020
  * @note     If SYSCLK source is PLL, function returns a value based on HSE_VALUE
1021
  *           divided by PREDIV factor(**) or HSI_VALUE(*) multiplied by the PLL factor.
1022
  * @note     (*) HSI_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
1023
  *               8 MHz) but the real value may vary depending on the variations
1024
  *               in voltage and temperature.
1025
  * @note     (**) HSE_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
1026
  *                8 MHz), user has to ensure that HSE_VALUE is same as the real
1027
  *                frequency of the crystal used. Otherwise, this function may
1028
  *                have wrong result.
1029
  *                  
1030
  * @note   The result of this function could be not correct when using fractional
1031
  *         value for HSE crystal.
1032
  *          
1033
  * @note   This function can be used by the user application to compute the
1034
  *         baudrate for the communication peripherals or configure other parameters.
1035
  *          
1036
  * @note   Each time SYSCLK changes, this function must be called to update the
1037
  *         right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
1038
  *        
1039
  * @retval SYSCLK frequency
1040
  */
1041
uint32_t HAL_RCC_GetSysClockFreq(void)
1042
{
1043
#if   defined(RCC_CFGR2_PREDIV1SRC)
1044
  const uint8_t aPLLMULFactorTable[12] = {0, 0, 4,  5,  6,  7,  8,  9, 0, 0, 0, 13};
1045
  const uint8_t aPredivFactorTable[16] = { 1, 2,  3,  4,  5,  6,  7,  8, 9,10, 11, 12, 13, 14, 15, 16};
1046
#else
1047
  const uint8_t aPLLMULFactorTable[16] = { 2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 16};
1048
#if defined(RCC_CFGR2_PREDIV1)
1049
  const uint8_t aPredivFactorTable[16] = { 1, 2,  3,  4,  5,  6,  7,  8, 9,10, 11, 12, 13, 14, 15, 16};
1050
#else
1051
  const uint8_t aPredivFactorTable[2] = { 1, 2};
1052
#endif /*RCC_CFGR2_PREDIV1*/
1053
 
1054
#endif
1055
  uint32_t tmpreg = 0, prediv = 0, pllclk = 0, pllmul = 0;
1056
  uint32_t sysclockfreq = 0;
1057
#if defined(RCC_CFGR2_PREDIV1SRC)
1058
  uint32_t prediv2 = 0, pll2mul = 0;
1059
#endif /*RCC_CFGR2_PREDIV1SRC*/
1060
 
1061
  tmpreg = RCC->CFGR;
1062
 
1063
  /* Get SYSCLK source -------------------------------------------------------*/
1064
  switch (tmpreg & RCC_CFGR_SWS)
1065
  {
1066
    case RCC_SYSCLKSOURCE_STATUS_HSE:  /* HSE used as system clock */
1067
    {
1068
      sysclockfreq = HSE_VALUE;
1069
      break;
1070
    }
1071
    case RCC_SYSCLKSOURCE_STATUS_PLLCLK:  /* PLL used as system clock */
1072
    {
1073
      pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMULL) >> POSITION_VAL(RCC_CFGR_PLLMULL)];
1074
      if ((tmpreg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2)
1075
      {
1076
#if defined(RCC_CFGR2_PREDIV1)
1077
        prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> POSITION_VAL(RCC_CFGR2_PREDIV1)];
1078
#else
1079
        prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> POSITION_VAL(RCC_CFGR_PLLXTPRE)];
1080
#endif /*RCC_CFGR2_PREDIV1*/
1081
#if defined(RCC_CFGR2_PREDIV1SRC)
1082
 
1083
        if(HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC))
1084
        {
1085
          /* PLL2 selected as Prediv1 source */
1086
          /* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */
1087
          prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> POSITION_VAL(RCC_CFGR2_PREDIV2)) + 1;
1088
          pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> POSITION_VAL(RCC_CFGR2_PLL2MUL)) + 2;
1089
          pllclk = (uint32_t)((((HSE_VALUE / prediv2) * pll2mul) / prediv) * pllmul);
1090
        }
1091
        else
1092
        {
1093
          /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
1094
          pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul);
1095
        }
1096
 
1097
        /* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */
1098
        /* In this case need to divide pllclk by 2 */
1099
        if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> POSITION_VAL(RCC_CFGR_PLLMULL)])
1100
        {
1101
            pllclk = pllclk / 2;
1102
        }
1103
#else
1104
        /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
1105
        pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul);
1106
#endif /*RCC_CFGR2_PREDIV1SRC*/
1107
      }
1108
      else
1109
      {
1110
        /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
1111
        pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul);
1112
      }
1113
      sysclockfreq = pllclk;
1114
      break;
1115
    }
1116
    case RCC_SYSCLKSOURCE_STATUS_HSI:  /* HSI used as system clock source */
1117
    default: /* HSI used as system clock */
1118
    {
1119
      sysclockfreq = HSI_VALUE;
1120
      break;
1121
    }
1122
  }
1123
  return sysclockfreq;
1124
}
1125
 
1126
/**
1127
  * @brief  Returns the HCLK frequency    
1128
  * @note   Each time HCLK changes, this function must be called to update the
1129
  *         right HCLK value. Otherwise, any configuration based on this function will be incorrect.
1130
  *
1131
  * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency
1132
  *         and updated within this function
1133
  * @retval HCLK frequency
1134
  */
1135
uint32_t HAL_RCC_GetHCLKFreq(void)
1136
{
1137
  SystemCoreClock = HAL_RCC_GetSysClockFreq() >> aAPBAHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)];
1138
  return SystemCoreClock;
1139
}
1140
 
1141
/**
1142
  * @brief  Returns the PCLK1 frequency    
1143
  * @note   Each time PCLK1 changes, this function must be called to update the
1144
  *         right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
1145
  * @retval PCLK1 frequency
1146
  */
1147
uint32_t HAL_RCC_GetPCLK1Freq(void)
1148
{
1149
  /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
1150
  return (HAL_RCC_GetHCLKFreq() >> aAPBAHBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> POSITION_VAL(RCC_CFGR_PPRE1)]);
1151
}    
1152
 
1153
/**
1154
  * @brief  Returns the PCLK2 frequency    
1155
  * @note   Each time PCLK2 changes, this function must be called to update the
1156
  *         right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
1157
  * @retval PCLK2 frequency
1158
  */
1159
uint32_t HAL_RCC_GetPCLK2Freq(void)
1160
{
1161
  /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
1162
  return (HAL_RCC_GetHCLKFreq()>> aAPBAHBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> POSITION_VAL(RCC_CFGR_PPRE2)]);
1163
}
1164
 
1165
/**
1166
  * @brief  Configures the RCC_OscInitStruct according to the internal
1167
  * RCC configuration registers.
1168
  * @param  RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
1169
  * will be configured.
1170
  * @retval None
1171
  */
1172
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
1173
{
1174
  /* Check the parameters */
1175
  assert_param(RCC_OscInitStruct != NULL);
1176
 
1177
  /* Set all possible values for the Oscillator type parameter ---------------*/
1178
  RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI  \
1179
                  | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
1180
 
1181
#if defined(RCC_CFGR2_PREDIV1SRC)
1182
  /* Get the Prediv1 source --------------------------------------------------*/
1183
  RCC_OscInitStruct->Prediv1Source = READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC);
1184
#endif /* RCC_CFGR2_PREDIV1SRC */
1185
 
1186
  /* Get the HSE configuration -----------------------------------------------*/
1187
  if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
1188
  {
1189
    RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
1190
  }
1191
  else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
1192
  {
1193
    RCC_OscInitStruct->HSEState = RCC_HSE_ON;
1194
  }
1195
  else
1196
  {
1197
    RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
1198
  }
1199
  RCC_OscInitStruct->HSEPredivValue = __HAL_RCC_HSE_GET_PREDIV();
1200
 
1201
  /* Get the HSI configuration -----------------------------------------------*/
1202
  if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
1203
  {
1204
    RCC_OscInitStruct->HSIState = RCC_HSI_ON;
1205
  }
1206
  else
1207
  {
1208
    RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
1209
  }
1210
 
1211
  RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM));
1212
 
1213
  /* Get the LSE configuration -----------------------------------------------*/
1214
  if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
1215
  {
1216
    RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
1217
  }
1218
  else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
1219
  {
1220
    RCC_OscInitStruct->LSEState = RCC_LSE_ON;
1221
  }
1222
  else
1223
  {
1224
    RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
1225
  }
1226
 
1227
  /* Get the LSI configuration -----------------------------------------------*/
1228
  if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
1229
  {
1230
    RCC_OscInitStruct->LSIState = RCC_LSI_ON;
1231
  }
1232
  else
1233
  {
1234
    RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
1235
  }
1236
 
1237
  /* Get the PLL configuration -----------------------------------------------*/
1238
  if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
1239
  {
1240
    RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
1241
  }
1242
  else
1243
  {
1244
    RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
1245
  }
1246
  RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
1247
  RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMULL);
1248
#if defined(RCC_CR_PLL2ON)
1249
  /* Get the PLL2 configuration -----------------------------------------------*/
1250
  if((RCC->CR &RCC_CR_PLL2ON) == RCC_CR_PLL2ON)
1251
  {
1252
    RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_ON;
1253
  }
1254
  else
1255
  {
1256
    RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_OFF;
1257
  }
1258
  RCC_OscInitStruct->PLL2.HSEPrediv2Value = __HAL_RCC_HSE_GET_PREDIV2();
1259
  RCC_OscInitStruct->PLL2.PLL2MUL = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PLL2MUL);
1260
#endif /* RCC_CR_PLL2ON */
1261
}
1262
 
1263
/**
1264
  * @brief  Get the RCC_ClkInitStruct according to the internal
1265
  * RCC configuration registers.
1266
  * @param  RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
1267
  * contains the current clock configuration.
1268
  * @param  pFLatency Pointer on the Flash Latency.
1269
  * @retval None
1270
  */
1271
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t *pFLatency)
1272
{
1273
  /* Check the parameters */
1274
  assert_param(RCC_ClkInitStruct != NULL);
1275
  assert_param(pFLatency != NULL);
1276
 
1277
  /* Set all possible values for the Clock type parameter --------------------*/
1278
  RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
1279
 
1280
  /* Get the SYSCLK configuration --------------------------------------------*/
1281
  RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
1282
 
1283
  /* Get the HCLK configuration ----------------------------------------------*/
1284
  RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
1285
 
1286
  /* Get the APB1 configuration ----------------------------------------------*/
1287
  RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);  
1288
 
1289
  /* Get the APB2 configuration ----------------------------------------------*/
1290
  RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3);
1291
 
1292
#if   defined(FLASH_ACR_LATENCY)
1293
  /* Get the Flash Wait State (Latency) configuration ------------------------*/  
1294
  *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
1295
#else
1296
  /* For VALUE lines devices, only LATENCY_0 can be set*/
1297
  *pFLatency = (uint32_t)FLASH_LATENCY_0;
1298
#endif
1299
}
1300
 
1301
/**
1302
  * @brief This function handles the RCC CSS interrupt request.
1303
  * @note This API should be called under the NMI_Handler().
1304
  * @retval None
1305
  */
1306
void HAL_RCC_NMI_IRQHandler(void)
1307
{
1308
  /* Check RCC CSSF flag  */
1309
  if(__HAL_RCC_GET_IT(RCC_IT_CSS))
1310
  {
1311
    /* RCC Clock Security System interrupt user callback */
1312
    HAL_RCC_CSSCallback();
1313
 
1314
    /* Clear RCC CSS pending bit */
1315
    __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
1316
  }
1317
}
1318
 
1319
/**
1320
  * @brief  RCC Clock Security System interrupt callback
1321
  * @retval none
1322
  */
1323
__weak void HAL_RCC_CSSCallback(void)
1324
{
1325
  /* NOTE : This function Should not be modified, when the callback is needed,
1326
    the HAL_RCC_CSSCallback could be implemented in the user file
1327
    */
1328
}
1329
 
1330
/**
1331
  * @}
1332
  */
1333
 
1334
/**
1335
  * @}
1336
  */
1337
 
1338
#endif /* HAL_RCC_MODULE_ENABLED */
1339
/**
1340
  * @}
1341
  */
1342
 
1343
/**
1344
  * @}
1345
  */
1346
 
1347
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/