Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /** |
2 | ****************************************************************************** |
||
3 | * @file stm32f1xx_hal_rcc.c |
||
4 | * @author MCD Application Team |
||
5 | * @version V1.0.1 |
||
6 | * @date 31-July-2015 |
||
7 | * @brief RCC HAL module driver. |
||
8 | * This file provides firmware functions to manage the following |
||
9 | * functionalities of the Reset and Clock Control (RCC) peripheral: |
||
10 | * + Initialization and de-initialization functions |
||
11 | * + Peripheral Control functions |
||
12 | * |
||
13 | @verbatim |
||
14 | ============================================================================== |
||
15 | ##### RCC specific features ##### |
||
16 | ============================================================================== |
||
17 | [..] |
||
18 | After reset the device is running from Internal High Speed oscillator |
||
19 | (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled, |
||
20 | and all peripherals are off except internal SRAM, Flash and JTAG. |
||
21 | (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses; |
||
22 | all peripherals mapped on these busses are running at HSI speed. |
||
23 | (+) The clock for all peripherals is switched off, except the SRAM and FLASH. |
||
24 | (+) All GPIOs are in input floating state, except the JTAG pins which |
||
25 | are assigned to be used for debug purpose. |
||
26 | [..] Once the device started from reset, the user application has to: |
||
27 | (+) Configure the clock source to be used to drive the System clock |
||
28 | (if the application needs higher frequency/performance) |
||
29 | (+) Configure the System clock frequency and Flash settings |
||
30 | (+) Configure the AHB and APB busses prescalers |
||
31 | (+) Enable the clock for the peripheral(s) to be used |
||
32 | (+) Configure the clock source(s) for peripherals whose clocks are not |
||
33 | derived from the System clock (I2S, RTC, ADC, USB OTG FS) |
||
34 | |||
35 | ##### RCC Limitations ##### |
||
36 | ============================================================================== |
||
37 | [..] |
||
38 | A delay between an RCC peripheral clock enable and the effective peripheral |
||
39 | enabling should be taken into account in order to manage the peripheral read/write |
||
40 | from/to registers. |
||
41 | (+) This delay depends on the peripheral mapping. |
||
42 | (++) AHB & APB peripherals, 1 dummy read is necessary |
||
43 | |||
44 | [..] |
||
45 | Workarounds: |
||
46 | (#) For AHB & APB peripherals, a dummy read to the peripheral register has been |
||
47 | inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro. |
||
48 | |||
49 | @endverbatim |
||
50 | ****************************************************************************** |
||
51 | * @attention |
||
52 | * |
||
53 | * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> |
||
54 | * |
||
55 | * Redistribution and use in source and binary forms, with or without modification, |
||
56 | * are permitted provided that the following conditions are met: |
||
57 | * 1. Redistributions of source code must retain the above copyright notice, |
||
58 | * this list of conditions and the following disclaimer. |
||
59 | * 2. Redistributions in binary form must reproduce the above copyright notice, |
||
60 | * this list of conditions and the following disclaimer in the documentation |
||
61 | * and/or other materials provided with the distribution. |
||
62 | * 3. Neither the name of STMicroelectronics nor the names of its contributors |
||
63 | * may be used to endorse or promote products derived from this software |
||
64 | * without specific prior written permission. |
||
65 | * |
||
66 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||
67 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
68 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
||
69 | * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
||
70 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||
71 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
||
72 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
73 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
||
74 | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
||
75 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
76 | * |
||
77 | ****************************************************************************** |
||
78 | */ |
||
79 | |||
80 | /* Includes ------------------------------------------------------------------*/ |
||
81 | #include "stm32f1xx_hal.h" |
||
82 | |||
83 | /** @addtogroup STM32F1xx_HAL_Driver |
||
84 | * @{ |
||
85 | */ |
||
86 | |||
87 | /** @defgroup RCC RCC |
||
88 | * @brief RCC HAL module driver |
||
89 | * @{ |
||
90 | */ |
||
91 | |||
92 | #ifdef HAL_RCC_MODULE_ENABLED |
||
93 | |||
94 | /* Private typedef -----------------------------------------------------------*/ |
||
95 | /* Private define ------------------------------------------------------------*/ |
||
96 | /** @defgroup RCC_Private_Constants RCC Private Constants |
||
97 | * @{ |
||
98 | */ |
||
99 | /** |
||
100 | * @} |
||
101 | */ |
||
102 | /* Private macro -------------------------------------------------------------*/ |
||
103 | /** @defgroup RCC_Private_Macros RCC Private Macros |
||
104 | * @{ |
||
105 | */ |
||
106 | |||
107 | #define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() |
||
108 | #define MCO1_GPIO_PORT GPIOA |
||
109 | #define MCO1_PIN GPIO_PIN_8 |
||
110 | |||
111 | /** |
||
112 | * @} |
||
113 | */ |
||
114 | |||
115 | /* Private variables ---------------------------------------------------------*/ |
||
116 | /** @defgroup RCC_Private_Variables RCC Private Variables |
||
117 | * @{ |
||
118 | */ |
||
119 | const uint8_t aAPBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9}; |
||
120 | /** |
||
121 | * @} |
||
122 | */ |
||
123 | |||
124 | /* Private function prototypes -----------------------------------------------*/ |
||
125 | /* Exported functions ---------------------------------------------------------*/ |
||
126 | |||
127 | /** @defgroup RCC_Exported_Functions RCC Exported Functions |
||
128 | * @{ |
||
129 | */ |
||
130 | |||
131 | /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions |
||
132 | * @brief Initialization and Configuration functions |
||
133 | * |
||
134 | @verbatim |
||
135 | =============================================================================== |
||
136 | ##### Initialization and de-initialization functions ##### |
||
137 | =============================================================================== |
||
138 | [..] |
||
139 | This section provides functions allowing to configure the internal/external oscillators |
||
140 | (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1 |
||
141 | and APB2). |
||
142 | |||
143 | [..] Internal/external clock and PLL configuration |
||
144 | (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through |
||
145 | the PLL as System clock source. |
||
146 | (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC |
||
147 | clock source. |
||
148 | |||
149 | (#) HSE (high-speed external), 4 to 24 MHz (STM32F100xx) or 4 to 16 MHz (STM32F101x/STM32F102x/STM32F103x) or 3 to 25 MHz (STM32F105x/STM32F107x) crystal oscillator used directly or |
||
150 | through the PLL as System clock source. Can be used also as RTC clock source. |
||
151 | |||
152 | (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. |
||
153 | |||
154 | (#) PLL (clocked by HSI or HSE), featuring different output clocks: |
||
155 | (++) The first output is used to generate the high speed system clock (up to 72 MHz for STM32F10xxx or up to 24 MHz for STM32F100xx) |
||
156 | (++) The second output is used to generate the clock for the USB OTG FS (48 MHz) |
||
157 | |||
158 | (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE() |
||
159 | and if a HSE clock failure occurs(HSE used directly or through PLL as System |
||
160 | clock source), the System clocks automatically switched to HSI and an interrupt |
||
161 | is generated if enabled. The interrupt is linked to the Cortex-M3 NMI |
||
162 | (Non-Maskable Interrupt) exception vector. |
||
163 | |||
164 | (#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI, |
||
165 | HSE or PLL clock (divided by 2) on PA8 pin + PLL2CLK, PLL3CLK/2, PLL3CLK and XTI for STM32F105x/STM32F107x |
||
166 | |||
167 | [..] System, AHB and APB buses clocks configuration |
||
168 | (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI, |
||
169 | HSE and PLL. |
||
170 | The AHB clock (HCLK) is derived from System clock through configurable |
||
171 | prescaler and used to clock the CPU, memory and peripherals mapped |
||
172 | on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived |
||
173 | from AHB clock through configurable prescalers and used to clock |
||
174 | the peripherals mapped on these buses. You can use |
||
175 | "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. |
||
176 | |||
177 | -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: |
||
178 | (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock |
||
179 | divided by 128. |
||
180 | (+@) USB OTG FS and RTC: USB OTG FS require a frequency equal to 48 MHz |
||
181 | to work correctly. This clock is derived of the main PLL through PLL Multiplier. |
||
182 | (+@) I2S interface on STM32F105x/STM32F107x can be derived from PLL3CLK |
||
183 | (+@) IWDG clock which is always the LSI clock. |
||
184 | |||
185 | (#) For STM32F10xxx, the maximum frequency of the SYSCLK and HCLK/PCLK2 is 72 MHz, PCLK1 36 MHz. |
||
186 | For STM32F100xx, the maximum frequency of the SYSCLK and HCLK/PCLK1/PCLK2 is 24 MHz. |
||
187 | Depending on the SYSCLK frequency, the flash latency should be adapted accordingly: |
||
188 | +-----------------------------------------------+ |
||
189 | | Latency | SYSCLK clock frequency (MHz) | |
||
190 | |---------------|-------------------------------| |
||
191 | |0WS(1CPU cycle)| 0 < SYSCLK <= 24 | |
||
192 | |---------------|-------------------------------| |
||
193 | |1WS(2CPU cycle)| 24 < SYSCLK <= 48 | |
||
194 | |---------------|-------------------------------| |
||
195 | |2WS(3CPU cycle)| 48 < SYSCLK <= 72 | |
||
196 | +-----------------------------------------------+ |
||
197 | @endverbatim |
||
198 | * @{ |
||
199 | */ |
||
200 | |||
201 | /** |
||
202 | * @brief Resets the RCC clock configuration to the default reset state. |
||
203 | * @note The default reset state of the clock configuration is given below: |
||
204 | * - HSI ON and used as system clock source |
||
205 | * - HSE and PLL OFF |
||
206 | * - AHB, APB1 and APB2 prescaler set to 1. |
||
207 | * - CSS and MCO1 OFF |
||
208 | * - All interrupts disabled |
||
209 | * @note This function doesn't modify the configuration of the |
||
210 | * - Peripheral clocks |
||
211 | * - LSI, LSE and RTC clocks |
||
212 | * @retval None |
||
213 | */ |
||
214 | void HAL_RCC_DeInit(void) |
||
215 | { |
||
216 | /* Switch SYSCLK to HSI */ |
||
217 | CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW); |
||
218 | |||
219 | /* Reset HSEON, CSSON, & PLLON bits */ |
||
220 | CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON); |
||
221 | |||
222 | /* Reset HSEBYP bit */ |
||
223 | CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); |
||
224 | |||
225 | /* Reset CFGR register */ |
||
226 | CLEAR_REG(RCC->CFGR); |
||
227 | |||
228 | /* Set HSITRIM bits to the reset value */ |
||
229 | MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, ((uint32_t)0x10 << POSITION_VAL(RCC_CR_HSITRIM))); |
||
230 | |||
231 | #if (defined(STM32F105xC) || defined(STM32F107xC) || defined (STM32F100xB) || defined (STM32F100xE)) |
||
232 | /* Reset CFGR2 register */ |
||
233 | CLEAR_REG(RCC->CFGR2); |
||
234 | |||
235 | #endif /* STM32F105xC || STM32F107xC || STM32F100xB || STM32F100xE */ |
||
236 | /* Disable all interrupts */ |
||
237 | CLEAR_REG(RCC->CIR); |
||
238 | } |
||
239 | |||
240 | /** |
||
241 | * @brief Initializes the RCC Oscillators according to the specified parameters in the |
||
242 | * RCC_OscInitTypeDef. |
||
243 | * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
||
244 | * contains the configuration information for the RCC Oscillators. |
||
245 | * @note The PLL is not disabled when used as system clock. |
||
246 | * @note The PLL is not disabled when USB OTG FS clock is enabled (specific to devices with USB FS) |
||
247 | * @retval HAL status |
||
248 | */ |
||
249 | HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
||
250 | { |
||
251 | uint32_t tickstart = 0; |
||
252 | |||
253 | /* Check the parameters */ |
||
254 | assert_param(RCC_OscInitStruct != NULL); |
||
255 | assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); |
||
256 | |||
257 | /*------------------------------- HSE Configuration ------------------------*/ |
||
258 | if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) |
||
259 | { |
||
260 | /* Check the parameters */ |
||
261 | assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); |
||
262 | |||
263 | /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ |
||
264 | if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) |
||
265 | || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE))) |
||
266 | { |
||
267 | if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) |
||
268 | { |
||
269 | return HAL_ERROR; |
||
270 | } |
||
271 | } |
||
272 | else |
||
273 | { |
||
274 | /* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/ |
||
275 | __HAL_RCC_HSE_CONFIG(RCC_HSE_OFF); |
||
276 | |||
277 | /* Get Start Tick */ |
||
278 | tickstart = HAL_GetTick(); |
||
279 | |||
280 | /* Wait till HSE is disabled */ |
||
281 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) |
||
282 | { |
||
283 | if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
||
284 | { |
||
285 | return HAL_TIMEOUT; |
||
286 | } |
||
287 | } |
||
288 | |||
289 | /* Set the new HSE configuration ---------------------------------------*/ |
||
290 | __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); |
||
291 | |||
292 | |||
293 | /* Check the HSE State */ |
||
294 | if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF) |
||
295 | { |
||
296 | /* Get Start Tick */ |
||
297 | tickstart = HAL_GetTick(); |
||
298 | |||
299 | /* Wait till HSE is ready */ |
||
300 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
||
301 | { |
||
302 | if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
||
303 | { |
||
304 | return HAL_TIMEOUT; |
||
305 | } |
||
306 | } |
||
307 | } |
||
308 | else |
||
309 | { |
||
310 | /* Get Start Tick */ |
||
311 | tickstart = HAL_GetTick(); |
||
312 | |||
313 | /* Wait till HSE is bypassed or disabled */ |
||
314 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) |
||
315 | { |
||
316 | if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
||
317 | { |
||
318 | return HAL_TIMEOUT; |
||
319 | } |
||
320 | } |
||
321 | } |
||
322 | } |
||
323 | } |
||
324 | /*----------------------------- HSI Configuration --------------------------*/ |
||
325 | if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) |
||
326 | { |
||
327 | /* Check the parameters */ |
||
328 | assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); |
||
329 | assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); |
||
330 | |||
331 | /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ |
||
332 | if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) |
||
333 | || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI_DIV2))) |
||
334 | { |
||
335 | /* When HSI is used as system clock it will not disabled */ |
||
336 | if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) |
||
337 | { |
||
338 | return HAL_ERROR; |
||
339 | } |
||
340 | /* Otherwise, just the calibration is allowed */ |
||
341 | else |
||
342 | { |
||
343 | /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
||
344 | __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
||
345 | } |
||
346 | } |
||
347 | else |
||
348 | { |
||
349 | /* Check the HSI State */ |
||
350 | if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF) |
||
351 | { |
||
352 | /* Enable the Internal High Speed oscillator (HSI). */ |
||
353 | __HAL_RCC_HSI_ENABLE(); |
||
354 | |||
355 | /* Get Start Tick */ |
||
356 | tickstart = HAL_GetTick(); |
||
357 | |||
358 | /* Wait till HSI is ready */ |
||
359 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
||
360 | { |
||
361 | if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
||
362 | { |
||
363 | return HAL_TIMEOUT; |
||
364 | } |
||
365 | } |
||
366 | |||
367 | /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
||
368 | __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
||
369 | } |
||
370 | else |
||
371 | { |
||
372 | /* Disable the Internal High Speed oscillator (HSI). */ |
||
373 | __HAL_RCC_HSI_DISABLE(); |
||
374 | |||
375 | /* Get Start Tick */ |
||
376 | tickstart = HAL_GetTick(); |
||
377 | |||
378 | /* Wait till HSI is disabled */ |
||
379 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) |
||
380 | { |
||
381 | if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
||
382 | { |
||
383 | return HAL_TIMEOUT; |
||
384 | } |
||
385 | } |
||
386 | } |
||
387 | } |
||
388 | } |
||
389 | /*------------------------------ LSI Configuration -------------------------*/ |
||
390 | if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) |
||
391 | { |
||
392 | /* Check the parameters */ |
||
393 | assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); |
||
394 | |||
395 | /* Check the LSI State */ |
||
396 | if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF) |
||
397 | { |
||
398 | /* Enable the Internal Low Speed oscillator (LSI). */ |
||
399 | __HAL_RCC_LSI_ENABLE(); |
||
400 | |||
401 | /* Get Start Tick */ |
||
402 | tickstart = HAL_GetTick(); |
||
403 | |||
404 | /* Wait till LSI is ready */ |
||
405 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) |
||
406 | { |
||
407 | if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
||
408 | { |
||
409 | return HAL_TIMEOUT; |
||
410 | } |
||
411 | } |
||
412 | /* To have a fully stabilized clock in the specified range, a software temporization of 1ms |
||
413 | should be added.*/ |
||
414 | HAL_Delay(1); |
||
415 | } |
||
416 | else |
||
417 | { |
||
418 | /* Disable the Internal Low Speed oscillator (LSI). */ |
||
419 | __HAL_RCC_LSI_DISABLE(); |
||
420 | |||
421 | /* Get Start Tick */ |
||
422 | tickstart = HAL_GetTick(); |
||
423 | |||
424 | /* Wait till LSI is disabled */ |
||
425 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) |
||
426 | { |
||
427 | if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
||
428 | { |
||
429 | return HAL_TIMEOUT; |
||
430 | } |
||
431 | } |
||
432 | } |
||
433 | } |
||
434 | /*------------------------------ LSE Configuration -------------------------*/ |
||
435 | if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) |
||
436 | { |
||
437 | /* Check the parameters */ |
||
438 | assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); |
||
439 | |||
440 | /* Enable Power Clock*/ |
||
441 | __HAL_RCC_PWR_CLK_ENABLE(); |
||
442 | |||
443 | /* Enable write access to Backup domain */ |
||
444 | SET_BIT(PWR->CR, PWR_CR_DBP); |
||
445 | |||
446 | /* Wait for Backup domain Write protection disable */ |
||
447 | tickstart = HAL_GetTick(); |
||
448 | |||
449 | while((PWR->CR & PWR_CR_DBP) == RESET) |
||
450 | { |
||
451 | if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE) |
||
452 | { |
||
453 | return HAL_TIMEOUT; |
||
454 | } |
||
455 | } |
||
456 | |||
457 | /* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/ |
||
458 | __HAL_RCC_LSE_CONFIG(RCC_LSE_OFF); |
||
459 | |||
460 | /* Get Start Tick */ |
||
461 | tickstart = HAL_GetTick(); |
||
462 | |||
463 | /* Wait till LSE is disabled */ |
||
464 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) |
||
465 | { |
||
466 | if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
||
467 | { |
||
468 | return HAL_TIMEOUT; |
||
469 | } |
||
470 | } |
||
471 | |||
472 | /* Set the new LSE configuration -----------------------------------------*/ |
||
473 | __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); |
||
474 | /* Check the LSE State */ |
||
475 | if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF) |
||
476 | { |
||
477 | /* Get Start Tick */ |
||
478 | tickstart = HAL_GetTick(); |
||
479 | |||
480 | /* Wait till LSE is ready */ |
||
481 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) |
||
482 | { |
||
483 | if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
||
484 | { |
||
485 | return HAL_TIMEOUT; |
||
486 | } |
||
487 | } |
||
488 | } |
||
489 | else |
||
490 | { |
||
491 | /* Get Start Tick */ |
||
492 | tickstart = HAL_GetTick(); |
||
493 | |||
494 | /* Wait till LSE is disabled */ |
||
495 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) |
||
496 | { |
||
497 | if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
||
498 | { |
||
499 | return HAL_TIMEOUT; |
||
500 | } |
||
501 | } |
||
502 | } |
||
503 | } |
||
504 | |||
505 | #if defined(RCC_CR_PLL2ON) |
||
506 | /*-------------------------------- PLL2 Configuration -----------------------*/ |
||
507 | /* Check the parameters */ |
||
508 | assert_param(IS_RCC_PLL2(RCC_OscInitStruct->PLL2.PLL2State)); |
||
509 | if ((RCC_OscInitStruct->PLL2.PLL2State) != RCC_PLL2_NONE) |
||
510 | { |
||
511 | /* This bit can not be cleared if the PLL2 clock is used indirectly as system |
||
512 | clock (i.e. it is used as PLL clock entry that is used as system clock). */ |
||
513 | if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \ |
||
514 | (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \ |
||
515 | ((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2)) |
||
516 | { |
||
517 | return HAL_ERROR; |
||
518 | } |
||
519 | else |
||
520 | { |
||
521 | if((RCC_OscInitStruct->PLL2.PLL2State) == RCC_PLL2_ON) |
||
522 | { |
||
523 | /* Check the parameters */ |
||
524 | assert_param(IS_RCC_PLL2_MUL(RCC_OscInitStruct->PLL2.PLL2MUL)); |
||
525 | assert_param(IS_RCC_HSE_PREDIV2(RCC_OscInitStruct->PLL2.HSEPrediv2Value)); |
||
526 | |||
527 | /* Prediv2 can be written only when the PLLI2S is disabled. */ |
||
528 | /* Return an error only if new value is different from the programmed value */ |
||
529 | if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL3ON) && \ |
||
530 | (__HAL_RCC_HSE_GET_PREDIV2() != RCC_OscInitStruct->PLL2.HSEPrediv2Value)) |
||
531 | { |
||
532 | return HAL_ERROR; |
||
533 | } |
||
534 | |||
535 | /* Disable the main PLL2. */ |
||
536 | __HAL_RCC_PLL2_DISABLE(); |
||
537 | |||
538 | /* Get Start Tick */ |
||
539 | tickstart = HAL_GetTick(); |
||
540 | |||
541 | /* Wait till PLL2 is disabled */ |
||
542 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET) |
||
543 | { |
||
544 | if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE) |
||
545 | { |
||
546 | return HAL_TIMEOUT; |
||
547 | } |
||
548 | } |
||
549 | |||
550 | /* Configure the HSE prediv2 factor --------------------------------*/ |
||
551 | __HAL_RCC_HSE_PREDIV2_CONFIG(RCC_OscInitStruct->PLL2.HSEPrediv2Value); |
||
552 | |||
553 | /* Configure the main PLL2 multiplication factors. */ |
||
554 | __HAL_RCC_PLL2_CONFIG(RCC_OscInitStruct->PLL2.PLL2MUL); |
||
555 | |||
556 | /* Enable the main PLL2. */ |
||
557 | __HAL_RCC_PLL2_ENABLE(); |
||
558 | |||
559 | /* Get Start Tick */ |
||
560 | tickstart = HAL_GetTick(); |
||
561 | |||
562 | /* Wait till PLL2 is ready */ |
||
563 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) == RESET) |
||
564 | { |
||
565 | if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE) |
||
566 | { |
||
567 | return HAL_TIMEOUT; |
||
568 | } |
||
569 | } |
||
570 | } |
||
571 | else |
||
572 | { |
||
573 | /* Set PREDIV1 source to HSE */ |
||
574 | CLEAR_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC); |
||
575 | |||
576 | /* Disable the main PLL2. */ |
||
577 | __HAL_RCC_PLL2_DISABLE(); |
||
578 | |||
579 | /* Get Start Tick */ |
||
580 | tickstart = HAL_GetTick(); |
||
581 | |||
582 | /* Wait till PLL2 is disabled */ |
||
583 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET) |
||
584 | { |
||
585 | if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE) |
||
586 | { |
||
587 | return HAL_TIMEOUT; |
||
588 | } |
||
589 | } |
||
590 | } |
||
591 | } |
||
592 | } |
||
593 | |||
594 | #endif /* RCC_CR_PLL2ON */ |
||
595 | /*-------------------------------- PLL Configuration -----------------------*/ |
||
596 | /* Check the parameters */ |
||
597 | assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); |
||
598 | if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) |
||
599 | { |
||
600 | /* Check if the PLL is used as system clock or not */ |
||
601 | if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
||
602 | { |
||
603 | if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) |
||
604 | { |
||
605 | /* Check the parameters */ |
||
606 | assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); |
||
607 | assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL)); |
||
608 | |||
609 | /* Disable the main PLL. */ |
||
610 | __HAL_RCC_PLL_DISABLE(); |
||
611 | |||
612 | /* Get Start Tick */ |
||
613 | tickstart = HAL_GetTick(); |
||
614 | |||
615 | /* Wait till PLL is disabled */ |
||
616 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
||
617 | { |
||
618 | if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
||
619 | { |
||
620 | return HAL_TIMEOUT; |
||
621 | } |
||
622 | } |
||
623 | |||
624 | /* Configure the HSE prediv factor --------------------------------*/ |
||
625 | /* It can be written only when the PLL is disabled. Not used in PLL source is different than HSE */ |
||
626 | if(RCC_OscInitStruct->PLL.PLLSource == RCC_PLLSOURCE_HSE) |
||
627 | { |
||
628 | /* Check the parameter */ |
||
629 | assert_param(IS_RCC_HSE_PREDIV(RCC_OscInitStruct->HSEPredivValue)); |
||
630 | #if defined(RCC_CFGR2_PREDIV1SRC) |
||
631 | assert_param(IS_RCC_PREDIV1_SOURCE(RCC_OscInitStruct->Prediv1Source)); |
||
632 | |||
633 | /* Set PREDIV1 source */ |
||
634 | SET_BIT(RCC->CFGR2, RCC_OscInitStruct->Prediv1Source); |
||
635 | #endif /* RCC_CFGR2_PREDIV1SRC */ |
||
636 | |||
637 | /* Set PREDIV1 Value */ |
||
638 | __HAL_RCC_HSE_PREDIV_CONFIG(RCC_OscInitStruct->HSEPredivValue); |
||
639 | } |
||
640 | |||
641 | /* Configure the main PLL clock source and multiplication factors. */ |
||
642 | __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
||
643 | RCC_OscInitStruct->PLL.PLLMUL); |
||
644 | /* Enable the main PLL. */ |
||
645 | __HAL_RCC_PLL_ENABLE(); |
||
646 | |||
647 | /* Get Start Tick */ |
||
648 | tickstart = HAL_GetTick(); |
||
649 | |||
650 | /* Wait till PLL is ready */ |
||
651 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
||
652 | { |
||
653 | if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
||
654 | { |
||
655 | return HAL_TIMEOUT; |
||
656 | } |
||
657 | } |
||
658 | } |
||
659 | else |
||
660 | { |
||
661 | /* Disable the main PLL. */ |
||
662 | __HAL_RCC_PLL_DISABLE(); |
||
663 | |||
664 | /* Get Start Tick */ |
||
665 | tickstart = HAL_GetTick(); |
||
666 | |||
667 | /* Wait till PLL is disabled */ |
||
668 | while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
||
669 | { |
||
670 | if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
||
671 | { |
||
672 | return HAL_TIMEOUT; |
||
673 | } |
||
674 | } |
||
675 | } |
||
676 | } |
||
677 | else |
||
678 | { |
||
679 | return HAL_ERROR; |
||
680 | } |
||
681 | } |
||
682 | |||
683 | return HAL_OK; |
||
684 | } |
||
685 | |||
686 | /** |
||
687 | * @brief Initializes the CPU, AHB and APB buses clocks according to the specified |
||
688 | * parameters in the RCC_ClkInitStruct. |
||
689 | * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that |
||
690 | * contains the configuration information for the RCC peripheral. |
||
691 | * @param FLatency FLASH Latency |
||
692 | * The value of this parameter depend on device used within the same series |
||
693 | * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
||
694 | * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function |
||
695 | * |
||
696 | * @note The HSI is used (enabled by hardware) as system clock source after |
||
697 | * startup from Reset, wake-up from STOP and STANDBY mode, or in case |
||
698 | * of failure of the HSE used directly or indirectly as system clock |
||
699 | * (if the Clock Security System CSS is enabled). |
||
700 | * |
||
701 | * @note A switch from one clock source to another occurs only if the target |
||
702 | * clock source is ready (clock stable after startup delay or PLL locked). |
||
703 | * If a clock source which is not yet ready is selected, the switch will |
||
704 | * occur when the clock source will be ready. |
||
705 | * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is |
||
706 | * currently used as system clock source. |
||
707 | * @retval HAL status |
||
708 | */ |
||
709 | HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) |
||
710 | { |
||
711 | uint32_t tickstart = 0; |
||
712 | |||
713 | /* Check the parameters */ |
||
714 | assert_param(RCC_ClkInitStruct != NULL); |
||
715 | assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); |
||
716 | assert_param(IS_FLASH_LATENCY(FLatency)); |
||
717 | |||
718 | /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
||
719 | must be correctly programmed according to the frequency of the CPU clock |
||
720 | (HCLK) of the device. */ |
||
721 | |||
722 | #if defined(FLASH_ACR_LATENCY) |
||
723 | /* Increasing the CPU frequency */ |
||
724 | if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY)) |
||
725 | { |
||
726 | /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
||
727 | __HAL_FLASH_SET_LATENCY(FLatency); |
||
728 | |||
729 | /* Check that the new number of wait states is taken into account to access the Flash |
||
730 | memory by reading the FLASH_ACR register */ |
||
731 | if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) |
||
732 | { |
||
733 | return HAL_ERROR; |
||
734 | } |
||
735 | |||
736 | #endif /* FLASH_ACR_LATENCY */ |
||
737 | /*-------------------------- HCLK Configuration --------------------------*/ |
||
738 | if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
||
739 | { |
||
740 | assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
||
741 | MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
||
742 | } |
||
743 | |||
744 | /*------------------------- SYSCLK Configuration ---------------------------*/ |
||
745 | if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
||
746 | { |
||
747 | assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
||
748 | |||
749 | /* HSE is selected as System Clock Source */ |
||
750 | if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
||
751 | { |
||
752 | /* Check the HSE ready flag */ |
||
753 | if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
||
754 | { |
||
755 | return HAL_ERROR; |
||
756 | } |
||
757 | } |
||
758 | /* PLL is selected as System Clock Source */ |
||
759 | else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
||
760 | { |
||
761 | /* Check the PLL ready flag */ |
||
762 | if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
||
763 | { |
||
764 | return HAL_ERROR; |
||
765 | } |
||
766 | } |
||
767 | /* HSI is selected as System Clock Source */ |
||
768 | else |
||
769 | { |
||
770 | /* Check the HSI ready flag */ |
||
771 | if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
||
772 | { |
||
773 | return HAL_ERROR; |
||
774 | } |
||
775 | } |
||
776 | __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); |
||
777 | |||
778 | /* Get Start Tick */ |
||
779 | tickstart = HAL_GetTick(); |
||
780 | |||
781 | if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
||
782 | { |
||
783 | while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE) |
||
784 | { |
||
785 | if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
||
786 | { |
||
787 | return HAL_TIMEOUT; |
||
788 | } |
||
789 | } |
||
790 | } |
||
791 | else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
||
792 | { |
||
793 | while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
||
794 | { |
||
795 | if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
||
796 | { |
||
797 | return HAL_TIMEOUT; |
||
798 | } |
||
799 | } |
||
800 | } |
||
801 | else |
||
802 | { |
||
803 | while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI) |
||
804 | { |
||
805 | if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
||
806 | { |
||
807 | return HAL_TIMEOUT; |
||
808 | } |
||
809 | } |
||
810 | } |
||
811 | } |
||
812 | #if defined(FLASH_ACR_LATENCY) |
||
813 | } |
||
814 | /* Decreasing the CPU frequency */ |
||
815 | else |
||
816 | { |
||
817 | /*-------------------------- HCLK Configuration --------------------------*/ |
||
818 | if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
||
819 | { |
||
820 | assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
||
821 | MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
||
822 | } |
||
823 | |||
824 | /*------------------------- SYSCLK Configuration -------------------------*/ |
||
825 | if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
||
826 | { |
||
827 | assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
||
828 | |||
829 | /* HSE is selected as System Clock Source */ |
||
830 | if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
||
831 | { |
||
832 | /* Check the HSE ready flag */ |
||
833 | if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
||
834 | { |
||
835 | return HAL_ERROR; |
||
836 | } |
||
837 | } |
||
838 | /* PLL is selected as System Clock Source */ |
||
839 | else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
||
840 | { |
||
841 | /* Check the PLL ready flag */ |
||
842 | if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
||
843 | { |
||
844 | return HAL_ERROR; |
||
845 | } |
||
846 | } |
||
847 | /* HSI is selected as System Clock Source */ |
||
848 | else |
||
849 | { |
||
850 | /* Check the HSI ready flag */ |
||
851 | if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
||
852 | { |
||
853 | return HAL_ERROR; |
||
854 | } |
||
855 | } |
||
856 | __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); |
||
857 | |||
858 | /* Get Start Tick */ |
||
859 | tickstart = HAL_GetTick(); |
||
860 | |||
861 | if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
||
862 | { |
||
863 | while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE) |
||
864 | { |
||
865 | if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
||
866 | { |
||
867 | return HAL_TIMEOUT; |
||
868 | } |
||
869 | } |
||
870 | } |
||
871 | else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
||
872 | { |
||
873 | while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
||
874 | { |
||
875 | if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
||
876 | { |
||
877 | return HAL_TIMEOUT; |
||
878 | } |
||
879 | } |
||
880 | } |
||
881 | else |
||
882 | { |
||
883 | while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI) |
||
884 | { |
||
885 | if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
||
886 | { |
||
887 | return HAL_TIMEOUT; |
||
888 | } |
||
889 | } |
||
890 | } |
||
891 | } |
||
892 | |||
893 | /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
||
894 | __HAL_FLASH_SET_LATENCY(FLatency); |
||
895 | |||
896 | /* Check that the new number of wait states is taken into account to access the Flash |
||
897 | memory by reading the FLASH_ACR register */ |
||
898 | if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) |
||
899 | { |
||
900 | return HAL_ERROR; |
||
901 | } |
||
902 | } |
||
903 | #endif /* FLASH_ACR_LATENCY */ |
||
904 | |||
905 | /*-------------------------- PCLK1 Configuration ---------------------------*/ |
||
906 | if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
||
907 | { |
||
908 | assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); |
||
909 | MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider); |
||
910 | } |
||
911 | |||
912 | /*-------------------------- PCLK2 Configuration ---------------------------*/ |
||
913 | if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
||
914 | { |
||
915 | assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider)); |
||
916 | MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3)); |
||
917 | } |
||
918 | |||
919 | /* Configure the source of time base considering new system clocks settings*/ |
||
920 | HAL_InitTick (TICK_INT_PRIORITY); |
||
921 | |||
922 | return HAL_OK; |
||
923 | } |
||
924 | |||
925 | /** |
||
926 | * @} |
||
927 | */ |
||
928 | |||
929 | /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions |
||
930 | * @brief RCC clocks control functions |
||
931 | * |
||
932 | @verbatim |
||
933 | =============================================================================== |
||
934 | ##### Peripheral Control functions ##### |
||
935 | =============================================================================== |
||
936 | [..] |
||
937 | This subsection provides a set of functions allowing to control the RCC Clocks |
||
938 | frequencies. |
||
939 | |||
940 | @endverbatim |
||
941 | * @{ |
||
942 | */ |
||
943 | |||
944 | /** |
||
945 | * @brief Selects the clock source to output on MCO pin. |
||
946 | * @note MCO pin should be configured in alternate function mode. |
||
947 | * @param RCC_MCOx specifies the output direction for the clock source. |
||
948 | * This parameter can be one of the following values: |
||
949 | * @arg RCC_MCO Clock source to output on MCO1 pin(PA8). |
||
950 | * @param RCC_MCOSource specifies the clock source to output. |
||
951 | * This parameter can be one of the following values: |
||
952 | * @arg RCC_MCO1SOURCE_NOCLOCK No clock selected |
||
953 | * @arg RCC_MCO1SOURCE_SYSCLK System clock selected |
||
954 | * @arg RCC_MCO1SOURCE_HSI HSI oscillator clock selected |
||
955 | * @arg RCC_MCO1SOURCE_HSE HSE oscillator clock selected |
||
956 | * @arg RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source |
||
957 | * @arg RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source (only for connectivity line devices) |
||
958 | * @arg RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source (only for connectivity line devices) |
||
959 | * @arg RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source (only for connectivity line devices) |
||
960 | * @arg RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source (only for connectivity line devices) |
||
961 | * @param RCC_MCODiv specifies the MCO DIV. |
||
962 | * This parameter can be one of the following values: |
||
963 | * @arg RCC_MCODIV_1 no division applied to MCO clock |
||
964 | * @retval None |
||
965 | */ |
||
966 | void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) |
||
967 | { |
||
968 | GPIO_InitTypeDef gpio = {0}; |
||
969 | |||
970 | /* Check the parameters */ |
||
971 | assert_param(IS_RCC_MCO(RCC_MCOx)); |
||
972 | assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
||
973 | assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); |
||
974 | |||
975 | /* MCO Clock Enable */ |
||
976 | MCO1_CLK_ENABLE(); |
||
977 | |||
978 | /* Configure the MCO1 pin in alternate function mode */ |
||
979 | gpio.Pin = MCO1_PIN; |
||
980 | gpio.Mode = GPIO_MODE_AF_PP; |
||
981 | gpio.Speed = GPIO_SPEED_HIGH; |
||
982 | gpio.Pull = GPIO_NOPULL; |
||
983 | HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio); |
||
984 | |||
985 | /* Configure the MCO clock source */ |
||
986 | __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv); |
||
987 | } |
||
988 | |||
989 | /** |
||
990 | * @brief Enables the Clock Security System. |
||
991 | * @note If a failure is detected on the HSE oscillator clock, this oscillator |
||
992 | * is automatically disabled and an interrupt is generated to inform the |
||
993 | * software about the failure (Clock Security System Interrupt, CSSI), |
||
994 | * allowing the MCU to perform rescue operations. The CSSI is linked to |
||
995 | * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector. |
||
996 | * @retval None |
||
997 | */ |
||
998 | void HAL_RCC_EnableCSS(void) |
||
999 | { |
||
1000 | *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE; |
||
1001 | } |
||
1002 | |||
1003 | /** |
||
1004 | * @brief Disables the Clock Security System. |
||
1005 | * @retval None |
||
1006 | */ |
||
1007 | void HAL_RCC_DisableCSS(void) |
||
1008 | { |
||
1009 | *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE; |
||
1010 | } |
||
1011 | |||
1012 | /** |
||
1013 | * @brief Returns the SYSCLK frequency |
||
1014 | * @note The system frequency computed by this function is not the real |
||
1015 | * frequency in the chip. It is calculated based on the predefined |
||
1016 | * constant and the selected clock source: |
||
1017 | * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) |
||
1018 | * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE |
||
1019 | * divided by PREDIV factor(**) |
||
1020 | * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE |
||
1021 | * divided by PREDIV factor(**) or HSI_VALUE(*) multiplied by the PLL factor. |
||
1022 | * @note (*) HSI_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value |
||
1023 | * 8 MHz) but the real value may vary depending on the variations |
||
1024 | * in voltage and temperature. |
||
1025 | * @note (**) HSE_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value |
||
1026 | * 8 MHz), user has to ensure that HSE_VALUE is same as the real |
||
1027 | * frequency of the crystal used. Otherwise, this function may |
||
1028 | * have wrong result. |
||
1029 | * |
||
1030 | * @note The result of this function could be not correct when using fractional |
||
1031 | * value for HSE crystal. |
||
1032 | * |
||
1033 | * @note This function can be used by the user application to compute the |
||
1034 | * baudrate for the communication peripherals or configure other parameters. |
||
1035 | * |
||
1036 | * @note Each time SYSCLK changes, this function must be called to update the |
||
1037 | * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. |
||
1038 | * |
||
1039 | * @retval SYSCLK frequency |
||
1040 | */ |
||
1041 | uint32_t HAL_RCC_GetSysClockFreq(void) |
||
1042 | { |
||
1043 | #if defined(RCC_CFGR2_PREDIV1SRC) |
||
1044 | const uint8_t aPLLMULFactorTable[12] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 13}; |
||
1045 | const uint8_t aPredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16}; |
||
1046 | #else |
||
1047 | const uint8_t aPLLMULFactorTable[16] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16}; |
||
1048 | #if defined(RCC_CFGR2_PREDIV1) |
||
1049 | const uint8_t aPredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16}; |
||
1050 | #else |
||
1051 | const uint8_t aPredivFactorTable[2] = { 1, 2}; |
||
1052 | #endif /*RCC_CFGR2_PREDIV1*/ |
||
1053 | |||
1054 | #endif |
||
1055 | uint32_t tmpreg = 0, prediv = 0, pllclk = 0, pllmul = 0; |
||
1056 | uint32_t sysclockfreq = 0; |
||
1057 | #if defined(RCC_CFGR2_PREDIV1SRC) |
||
1058 | uint32_t prediv2 = 0, pll2mul = 0; |
||
1059 | #endif /*RCC_CFGR2_PREDIV1SRC*/ |
||
1060 | |||
1061 | tmpreg = RCC->CFGR; |
||
1062 | |||
1063 | /* Get SYSCLK source -------------------------------------------------------*/ |
||
1064 | switch (tmpreg & RCC_CFGR_SWS) |
||
1065 | { |
||
1066 | case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */ |
||
1067 | { |
||
1068 | sysclockfreq = HSE_VALUE; |
||
1069 | break; |
||
1070 | } |
||
1071 | case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */ |
||
1072 | { |
||
1073 | pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMULL) >> POSITION_VAL(RCC_CFGR_PLLMULL)]; |
||
1074 | if ((tmpreg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2) |
||
1075 | { |
||
1076 | #if defined(RCC_CFGR2_PREDIV1) |
||
1077 | prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> POSITION_VAL(RCC_CFGR2_PREDIV1)]; |
||
1078 | #else |
||
1079 | prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> POSITION_VAL(RCC_CFGR_PLLXTPRE)]; |
||
1080 | #endif /*RCC_CFGR2_PREDIV1*/ |
||
1081 | #if defined(RCC_CFGR2_PREDIV1SRC) |
||
1082 | |||
1083 | if(HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC)) |
||
1084 | { |
||
1085 | /* PLL2 selected as Prediv1 source */ |
||
1086 | /* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */ |
||
1087 | prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> POSITION_VAL(RCC_CFGR2_PREDIV2)) + 1; |
||
1088 | pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> POSITION_VAL(RCC_CFGR2_PLL2MUL)) + 2; |
||
1089 | pllclk = (uint32_t)((((HSE_VALUE / prediv2) * pll2mul) / prediv) * pllmul); |
||
1090 | } |
||
1091 | else |
||
1092 | { |
||
1093 | /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */ |
||
1094 | pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul); |
||
1095 | } |
||
1096 | |||
1097 | /* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */ |
||
1098 | /* In this case need to divide pllclk by 2 */ |
||
1099 | if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> POSITION_VAL(RCC_CFGR_PLLMULL)]) |
||
1100 | { |
||
1101 | pllclk = pllclk / 2; |
||
1102 | } |
||
1103 | #else |
||
1104 | /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */ |
||
1105 | pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul); |
||
1106 | #endif /*RCC_CFGR2_PREDIV1SRC*/ |
||
1107 | } |
||
1108 | else |
||
1109 | { |
||
1110 | /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */ |
||
1111 | pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul); |
||
1112 | } |
||
1113 | sysclockfreq = pllclk; |
||
1114 | break; |
||
1115 | } |
||
1116 | case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ |
||
1117 | default: /* HSI used as system clock */ |
||
1118 | { |
||
1119 | sysclockfreq = HSI_VALUE; |
||
1120 | break; |
||
1121 | } |
||
1122 | } |
||
1123 | return sysclockfreq; |
||
1124 | } |
||
1125 | |||
1126 | /** |
||
1127 | * @brief Returns the HCLK frequency |
||
1128 | * @note Each time HCLK changes, this function must be called to update the |
||
1129 | * right HCLK value. Otherwise, any configuration based on this function will be incorrect. |
||
1130 | * |
||
1131 | * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
||
1132 | * and updated within this function |
||
1133 | * @retval HCLK frequency |
||
1134 | */ |
||
1135 | uint32_t HAL_RCC_GetHCLKFreq(void) |
||
1136 | { |
||
1137 | SystemCoreClock = HAL_RCC_GetSysClockFreq() >> aAPBAHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)]; |
||
1138 | return SystemCoreClock; |
||
1139 | } |
||
1140 | |||
1141 | /** |
||
1142 | * @brief Returns the PCLK1 frequency |
||
1143 | * @note Each time PCLK1 changes, this function must be called to update the |
||
1144 | * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. |
||
1145 | * @retval PCLK1 frequency |
||
1146 | */ |
||
1147 | uint32_t HAL_RCC_GetPCLK1Freq(void) |
||
1148 | { |
||
1149 | /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
||
1150 | return (HAL_RCC_GetHCLKFreq() >> aAPBAHBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> POSITION_VAL(RCC_CFGR_PPRE1)]); |
||
1151 | } |
||
1152 | |||
1153 | /** |
||
1154 | * @brief Returns the PCLK2 frequency |
||
1155 | * @note Each time PCLK2 changes, this function must be called to update the |
||
1156 | * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. |
||
1157 | * @retval PCLK2 frequency |
||
1158 | */ |
||
1159 | uint32_t HAL_RCC_GetPCLK2Freq(void) |
||
1160 | { |
||
1161 | /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ |
||
1162 | return (HAL_RCC_GetHCLKFreq()>> aAPBAHBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> POSITION_VAL(RCC_CFGR_PPRE2)]); |
||
1163 | } |
||
1164 | |||
1165 | /** |
||
1166 | * @brief Configures the RCC_OscInitStruct according to the internal |
||
1167 | * RCC configuration registers. |
||
1168 | * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
||
1169 | * will be configured. |
||
1170 | * @retval None |
||
1171 | */ |
||
1172 | void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
||
1173 | { |
||
1174 | /* Check the parameters */ |
||
1175 | assert_param(RCC_OscInitStruct != NULL); |
||
1176 | |||
1177 | /* Set all possible values for the Oscillator type parameter ---------------*/ |
||
1178 | RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \ |
||
1179 | | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; |
||
1180 | |||
1181 | #if defined(RCC_CFGR2_PREDIV1SRC) |
||
1182 | /* Get the Prediv1 source --------------------------------------------------*/ |
||
1183 | RCC_OscInitStruct->Prediv1Source = READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC); |
||
1184 | #endif /* RCC_CFGR2_PREDIV1SRC */ |
||
1185 | |||
1186 | /* Get the HSE configuration -----------------------------------------------*/ |
||
1187 | if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP) |
||
1188 | { |
||
1189 | RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; |
||
1190 | } |
||
1191 | else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON) |
||
1192 | { |
||
1193 | RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
||
1194 | } |
||
1195 | else |
||
1196 | { |
||
1197 | RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
||
1198 | } |
||
1199 | RCC_OscInitStruct->HSEPredivValue = __HAL_RCC_HSE_GET_PREDIV(); |
||
1200 | |||
1201 | /* Get the HSI configuration -----------------------------------------------*/ |
||
1202 | if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION) |
||
1203 | { |
||
1204 | RCC_OscInitStruct->HSIState = RCC_HSI_ON; |
||
1205 | } |
||
1206 | else |
||
1207 | { |
||
1208 | RCC_OscInitStruct->HSIState = RCC_HSI_OFF; |
||
1209 | } |
||
1210 | |||
1211 | RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM)); |
||
1212 | |||
1213 | /* Get the LSE configuration -----------------------------------------------*/ |
||
1214 | if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) |
||
1215 | { |
||
1216 | RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
||
1217 | } |
||
1218 | else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON) |
||
1219 | { |
||
1220 | RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
||
1221 | } |
||
1222 | else |
||
1223 | { |
||
1224 | RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
||
1225 | } |
||
1226 | |||
1227 | /* Get the LSI configuration -----------------------------------------------*/ |
||
1228 | if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION) |
||
1229 | { |
||
1230 | RCC_OscInitStruct->LSIState = RCC_LSI_ON; |
||
1231 | } |
||
1232 | else |
||
1233 | { |
||
1234 | RCC_OscInitStruct->LSIState = RCC_LSI_OFF; |
||
1235 | } |
||
1236 | |||
1237 | /* Get the PLL configuration -----------------------------------------------*/ |
||
1238 | if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON) |
||
1239 | { |
||
1240 | RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; |
||
1241 | } |
||
1242 | else |
||
1243 | { |
||
1244 | RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; |
||
1245 | } |
||
1246 | RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC); |
||
1247 | RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMULL); |
||
1248 | #if defined(RCC_CR_PLL2ON) |
||
1249 | /* Get the PLL2 configuration -----------------------------------------------*/ |
||
1250 | if((RCC->CR &RCC_CR_PLL2ON) == RCC_CR_PLL2ON) |
||
1251 | { |
||
1252 | RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_ON; |
||
1253 | } |
||
1254 | else |
||
1255 | { |
||
1256 | RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_OFF; |
||
1257 | } |
||
1258 | RCC_OscInitStruct->PLL2.HSEPrediv2Value = __HAL_RCC_HSE_GET_PREDIV2(); |
||
1259 | RCC_OscInitStruct->PLL2.PLL2MUL = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PLL2MUL); |
||
1260 | #endif /* RCC_CR_PLL2ON */ |
||
1261 | } |
||
1262 | |||
1263 | /** |
||
1264 | * @brief Get the RCC_ClkInitStruct according to the internal |
||
1265 | * RCC configuration registers. |
||
1266 | * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that |
||
1267 | * contains the current clock configuration. |
||
1268 | * @param pFLatency Pointer on the Flash Latency. |
||
1269 | * @retval None |
||
1270 | */ |
||
1271 | void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) |
||
1272 | { |
||
1273 | /* Check the parameters */ |
||
1274 | assert_param(RCC_ClkInitStruct != NULL); |
||
1275 | assert_param(pFLatency != NULL); |
||
1276 | |||
1277 | /* Set all possible values for the Clock type parameter --------------------*/ |
||
1278 | RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; |
||
1279 | |||
1280 | /* Get the SYSCLK configuration --------------------------------------------*/ |
||
1281 | RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); |
||
1282 | |||
1283 | /* Get the HCLK configuration ----------------------------------------------*/ |
||
1284 | RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); |
||
1285 | |||
1286 | /* Get the APB1 configuration ----------------------------------------------*/ |
||
1287 | RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1); |
||
1288 | |||
1289 | /* Get the APB2 configuration ----------------------------------------------*/ |
||
1290 | RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3); |
||
1291 | |||
1292 | #if defined(FLASH_ACR_LATENCY) |
||
1293 | /* Get the Flash Wait State (Latency) configuration ------------------------*/ |
||
1294 | *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); |
||
1295 | #else |
||
1296 | /* For VALUE lines devices, only LATENCY_0 can be set*/ |
||
1297 | *pFLatency = (uint32_t)FLASH_LATENCY_0; |
||
1298 | #endif |
||
1299 | } |
||
1300 | |||
1301 | /** |
||
1302 | * @brief This function handles the RCC CSS interrupt request. |
||
1303 | * @note This API should be called under the NMI_Handler(). |
||
1304 | * @retval None |
||
1305 | */ |
||
1306 | void HAL_RCC_NMI_IRQHandler(void) |
||
1307 | { |
||
1308 | /* Check RCC CSSF flag */ |
||
1309 | if(__HAL_RCC_GET_IT(RCC_IT_CSS)) |
||
1310 | { |
||
1311 | /* RCC Clock Security System interrupt user callback */ |
||
1312 | HAL_RCC_CSSCallback(); |
||
1313 | |||
1314 | /* Clear RCC CSS pending bit */ |
||
1315 | __HAL_RCC_CLEAR_IT(RCC_IT_CSS); |
||
1316 | } |
||
1317 | } |
||
1318 | |||
1319 | /** |
||
1320 | * @brief RCC Clock Security System interrupt callback |
||
1321 | * @retval none |
||
1322 | */ |
||
1323 | __weak void HAL_RCC_CSSCallback(void) |
||
1324 | { |
||
1325 | /* NOTE : This function Should not be modified, when the callback is needed, |
||
1326 | the HAL_RCC_CSSCallback could be implemented in the user file |
||
1327 | */ |
||
1328 | } |
||
1329 | |||
1330 | /** |
||
1331 | * @} |
||
1332 | */ |
||
1333 | |||
1334 | /** |
||
1335 | * @} |
||
1336 | */ |
||
1337 | |||
1338 | #endif /* HAL_RCC_MODULE_ENABLED */ |
||
1339 | /** |
||
1340 | * @} |
||
1341 | */ |
||
1342 | |||
1343 | /** |
||
1344 | * @} |
||
1345 | */ |
||
1346 | |||
1347 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |