Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 3 | mjames | 1 | /** |
| 2 | ****************************************************************************** |
||
| 3 | * @file stm32f1xx_hal_nand.c |
||
| 4 | * @author MCD Application Team |
||
| 5 | * @brief NAND HAL module driver. |
||
| 6 | * This file provides a generic firmware to drive NAND memories mounted |
||
| 7 | * as external device. |
||
| 8 | * |
||
| 9 | ****************************************************************************** |
||
| 10 | * @attention |
||
| 11 | * |
||
| 12 | * Copyright (c) 2016 STMicroelectronics. |
||
| 13 | * All rights reserved. |
||
| 14 | * |
||
| 15 | * This software is licensed under terms that can be found in the LICENSE file |
||
| 16 | * in the root directory of this software component. |
||
| 17 | * If no LICENSE file comes with this software, it is provided AS-IS. |
||
| 18 | * |
||
| 19 | ****************************************************************************** |
||
| 20 | @verbatim |
||
| 21 | ============================================================================== |
||
| 22 | ##### How to use this driver ##### |
||
| 23 | ============================================================================== |
||
| 24 | [..] |
||
| 25 | This driver is a generic layered driver which contains a set of APIs used to |
||
| 26 | control NAND flash memories. It uses the FSMC layer functions to interface |
||
| 27 | with NAND devices. This driver is used as follows: |
||
| 28 | |||
| 29 | (+) NAND flash memory configuration sequence using the function HAL_NAND_Init() |
||
| 30 | with control and timing parameters for both common and attribute spaces. |
||
| 31 | |||
| 32 | (+) Read NAND flash memory maker and device IDs using the function |
||
| 33 | HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef |
||
| 34 | structure declared by the function caller. |
||
| 35 | |||
| 36 | (+) Access NAND flash memory by read/write operations using the functions |
||
| 37 | HAL_NAND_Read_Page_8b()/HAL_NAND_Read_SpareArea_8b(), |
||
| 38 | HAL_NAND_Write_Page_8b()/HAL_NAND_Write_SpareArea_8b(), |
||
| 39 | HAL_NAND_Read_Page_16b()/HAL_NAND_Read_SpareArea_16b(), |
||
| 40 | HAL_NAND_Write_Page_16b()/HAL_NAND_Write_SpareArea_16b() |
||
| 41 | to read/write page(s)/spare area(s). These functions use specific device |
||
| 42 | information (Block, page size..) predefined by the user in the NAND_DeviceConfigTypeDef |
||
| 43 | structure. The read/write address information is contained by the Nand_Address_Typedef |
||
| 44 | structure passed as parameter. |
||
| 45 | |||
| 46 | (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset(). |
||
| 47 | |||
| 48 | (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block(). |
||
| 49 | The erase block address information is contained in the Nand_Address_Typedef |
||
| 50 | structure passed as parameter. |
||
| 51 | |||
| 52 | (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status(). |
||
| 53 | |||
| 54 | (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/ |
||
| 55 | HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction |
||
| 56 | feature or the function HAL_NAND_GetECC() to get the ECC correction code. |
||
| 57 | |||
| 58 | (+) You can monitor the NAND device HAL state by calling the function |
||
| 59 | HAL_NAND_GetState() |
||
| 60 | |||
| 61 | [..] |
||
| 62 | (@) This driver is a set of generic APIs which handle standard NAND flash operations. |
||
| 63 | If a NAND flash device contains different operations and/or implementations, |
||
| 64 | it should be implemented separately. |
||
| 65 | |||
| 66 | *** Callback registration *** |
||
| 67 | ============================================= |
||
| 68 | [..] |
||
| 69 | The compilation define USE_HAL_NAND_REGISTER_CALLBACKS when set to 1 |
||
| 70 | allows the user to configure dynamically the driver callbacks. |
||
| 71 | |||
| 72 | Use Functions HAL_NAND_RegisterCallback() to register a user callback, |
||
| 73 | it allows to register following callbacks: |
||
| 74 | (+) MspInitCallback : NAND MspInit. |
||
| 75 | (+) MspDeInitCallback : NAND MspDeInit. |
||
| 76 | This function takes as parameters the HAL peripheral handle, the Callback ID |
||
| 77 | and a pointer to the user callback function. |
||
| 78 | |||
| 79 | Use function HAL_NAND_UnRegisterCallback() to reset a callback to the default |
||
| 80 | weak (overridden) function. It allows to reset following callbacks: |
||
| 81 | (+) MspInitCallback : NAND MspInit. |
||
| 82 | (+) MspDeInitCallback : NAND MspDeInit. |
||
| 83 | This function) takes as parameters the HAL peripheral handle and the Callback ID. |
||
| 84 | |||
| 85 | By default, after the HAL_NAND_Init and if the state is HAL_NAND_STATE_RESET |
||
| 86 | all callbacks are reset to the corresponding legacy weak (overridden) functions. |
||
| 87 | Exception done for MspInit and MspDeInit callbacks that are respectively |
||
| 88 | reset to the legacy weak (overridden) functions in the HAL_NAND_Init |
||
| 89 | and HAL_NAND_DeInit only when these callbacks are null (not registered beforehand). |
||
| 90 | If not, MspInit or MspDeInit are not null, the HAL_NAND_Init and HAL_NAND_DeInit |
||
| 91 | keep and use the user MspInit/MspDeInit callbacks (registered beforehand) |
||
| 92 | |||
| 93 | Callbacks can be registered/unregistered in READY state only. |
||
| 94 | Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered |
||
| 95 | in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used |
||
| 96 | during the Init/DeInit. |
||
| 97 | In that case first register the MspInit/MspDeInit user callbacks |
||
| 98 | using HAL_NAND_RegisterCallback before calling HAL_NAND_DeInit |
||
| 99 | or HAL_NAND_Init function. |
||
| 100 | |||
| 101 | When The compilation define USE_HAL_NAND_REGISTER_CALLBACKS is set to 0 or |
||
| 102 | not defined, the callback registering feature is not available |
||
| 103 | and weak (overridden) callbacks are used. |
||
| 104 | |||
| 105 | @endverbatim |
||
| 106 | ****************************************************************************** |
||
| 107 | */ |
||
| 108 | |||
| 109 | /* Includes ------------------------------------------------------------------*/ |
||
| 110 | #include "stm32f1xx_hal.h" |
||
| 111 | |||
| 112 | #if defined(FSMC_BANK3) |
||
| 113 | |||
| 114 | /** @addtogroup STM32F1xx_HAL_Driver |
||
| 115 | * @{ |
||
| 116 | */ |
||
| 117 | |||
| 118 | #ifdef HAL_NAND_MODULE_ENABLED |
||
| 119 | |||
| 120 | /** @defgroup NAND NAND |
||
| 121 | * @brief NAND HAL module driver |
||
| 122 | * @{ |
||
| 123 | */ |
||
| 124 | |||
| 125 | /* Private typedef -----------------------------------------------------------*/ |
||
| 126 | /* Private Constants ------------------------------------------------------------*/ |
||
| 127 | /* Private macro -------------------------------------------------------------*/ |
||
| 128 | /* Private variables ---------------------------------------------------------*/ |
||
| 129 | /* Private function prototypes -----------------------------------------------*/ |
||
| 130 | /* Exported functions ---------------------------------------------------------*/ |
||
| 131 | |||
| 132 | /** @defgroup NAND_Exported_Functions NAND Exported Functions |
||
| 133 | * @{ |
||
| 134 | */ |
||
| 135 | |||
| 136 | /** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions |
||
| 137 | * @brief Initialization and Configuration functions |
||
| 138 | * |
||
| 139 | @verbatim |
||
| 140 | ============================================================================== |
||
| 141 | ##### NAND Initialization and de-initialization functions ##### |
||
| 142 | ============================================================================== |
||
| 143 | [..] |
||
| 144 | This section provides functions allowing to initialize/de-initialize |
||
| 145 | the NAND memory |
||
| 146 | |||
| 147 | @endverbatim |
||
| 148 | * @{ |
||
| 149 | */ |
||
| 150 | |||
| 151 | /** |
||
| 152 | * @brief Perform NAND memory Initialization sequence |
||
| 153 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 154 | * the configuration information for NAND module. |
||
| 155 | * @param ComSpace_Timing pointer to Common space timing structure |
||
| 156 | * @param AttSpace_Timing pointer to Attribute space timing structure |
||
| 157 | * @retval HAL status |
||
| 158 | */ |
||
| 159 | HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FSMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, |
||
| 160 | FSMC_NAND_PCC_TimingTypeDef *AttSpace_Timing) |
||
| 161 | { |
||
| 162 | /* Check the NAND handle state */ |
||
| 163 | if (hnand == NULL) |
||
| 164 | { |
||
| 165 | return HAL_ERROR; |
||
| 166 | } |
||
| 167 | |||
| 168 | if (hnand->State == HAL_NAND_STATE_RESET) |
||
| 169 | { |
||
| 170 | /* Allocate lock resource and initialize it */ |
||
| 171 | hnand->Lock = HAL_UNLOCKED; |
||
| 172 | |||
| 173 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
||
| 174 | if (hnand->MspInitCallback == NULL) |
||
| 175 | { |
||
| 176 | hnand->MspInitCallback = HAL_NAND_MspInit; |
||
| 177 | } |
||
| 178 | hnand->ItCallback = HAL_NAND_ITCallback; |
||
| 179 | |||
| 180 | /* Init the low level hardware */ |
||
| 181 | hnand->MspInitCallback(hnand); |
||
| 182 | #else |
||
| 183 | /* Initialize the low level hardware (MSP) */ |
||
| 184 | HAL_NAND_MspInit(hnand); |
||
| 185 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
||
| 186 | } |
||
| 187 | |||
| 188 | /* Initialize NAND control Interface */ |
||
| 189 | (void)FSMC_NAND_Init(hnand->Instance, &(hnand->Init)); |
||
| 190 | |||
| 191 | /* Initialize NAND common space timing Interface */ |
||
| 192 | (void)FSMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank); |
||
| 193 | |||
| 194 | /* Initialize NAND attribute space timing Interface */ |
||
| 195 | (void)FSMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank); |
||
| 196 | |||
| 197 | /* Enable the NAND device */ |
||
| 198 | __FSMC_NAND_ENABLE(hnand->Instance, hnand->Init.NandBank); |
||
| 199 | |||
| 200 | /* Update the NAND controller state */ |
||
| 201 | hnand->State = HAL_NAND_STATE_READY; |
||
| 202 | |||
| 203 | return HAL_OK; |
||
| 204 | } |
||
| 205 | |||
| 206 | /** |
||
| 207 | * @brief Perform NAND memory De-Initialization sequence |
||
| 208 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 209 | * the configuration information for NAND module. |
||
| 210 | * @retval HAL status |
||
| 211 | */ |
||
| 212 | HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand) |
||
| 213 | { |
||
| 214 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
||
| 215 | if (hnand->MspDeInitCallback == NULL) |
||
| 216 | { |
||
| 217 | hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
||
| 218 | } |
||
| 219 | |||
| 220 | /* DeInit the low level hardware */ |
||
| 221 | hnand->MspDeInitCallback(hnand); |
||
| 222 | #else |
||
| 223 | /* Initialize the low level hardware (MSP) */ |
||
| 224 | HAL_NAND_MspDeInit(hnand); |
||
| 225 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
||
| 226 | |||
| 227 | /* Configure the NAND registers with their reset values */ |
||
| 228 | (void)FSMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank); |
||
| 229 | |||
| 230 | /* Reset the NAND controller state */ |
||
| 231 | hnand->State = HAL_NAND_STATE_RESET; |
||
| 232 | |||
| 233 | /* Release Lock */ |
||
| 234 | __HAL_UNLOCK(hnand); |
||
| 235 | |||
| 236 | return HAL_OK; |
||
| 237 | } |
||
| 238 | |||
| 239 | /** |
||
| 240 | * @brief NAND MSP Init |
||
| 241 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 242 | * the configuration information for NAND module. |
||
| 243 | * @retval None |
||
| 244 | */ |
||
| 245 | __weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand) |
||
| 246 | { |
||
| 247 | /* Prevent unused argument(s) compilation warning */ |
||
| 248 | UNUSED(hnand); |
||
| 249 | |||
| 250 | /* NOTE : This function Should not be modified, when the callback is needed, |
||
| 251 | the HAL_NAND_MspInit could be implemented in the user file |
||
| 252 | */ |
||
| 253 | } |
||
| 254 | |||
| 255 | /** |
||
| 256 | * @brief NAND MSP DeInit |
||
| 257 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 258 | * the configuration information for NAND module. |
||
| 259 | * @retval None |
||
| 260 | */ |
||
| 261 | __weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand) |
||
| 262 | { |
||
| 263 | /* Prevent unused argument(s) compilation warning */ |
||
| 264 | UNUSED(hnand); |
||
| 265 | |||
| 266 | /* NOTE : This function Should not be modified, when the callback is needed, |
||
| 267 | the HAL_NAND_MspDeInit could be implemented in the user file |
||
| 268 | */ |
||
| 269 | } |
||
| 270 | |||
| 271 | |||
| 272 | /** |
||
| 273 | * @brief This function handles NAND device interrupt request. |
||
| 274 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 275 | * the configuration information for NAND module. |
||
| 276 | * @retval HAL status |
||
| 277 | */ |
||
| 278 | void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand) |
||
| 279 | { |
||
| 280 | /* Check NAND interrupt Rising edge flag */ |
||
| 281 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_RISING_EDGE)) |
||
| 282 | { |
||
| 283 | /* NAND interrupt callback*/ |
||
| 284 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
||
| 285 | hnand->ItCallback(hnand); |
||
| 286 | #else |
||
| 287 | HAL_NAND_ITCallback(hnand); |
||
| 288 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
||
| 289 | |||
| 290 | /* Clear NAND interrupt Rising edge pending bit */ |
||
| 291 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_RISING_EDGE); |
||
| 292 | } |
||
| 293 | |||
| 294 | /* Check NAND interrupt Level flag */ |
||
| 295 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_LEVEL)) |
||
| 296 | { |
||
| 297 | /* NAND interrupt callback*/ |
||
| 298 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
||
| 299 | hnand->ItCallback(hnand); |
||
| 300 | #else |
||
| 301 | HAL_NAND_ITCallback(hnand); |
||
| 302 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
||
| 303 | |||
| 304 | /* Clear NAND interrupt Level pending bit */ |
||
| 305 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_LEVEL); |
||
| 306 | } |
||
| 307 | |||
| 308 | /* Check NAND interrupt Falling edge flag */ |
||
| 309 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FALLING_EDGE)) |
||
| 310 | { |
||
| 311 | /* NAND interrupt callback*/ |
||
| 312 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
||
| 313 | hnand->ItCallback(hnand); |
||
| 314 | #else |
||
| 315 | HAL_NAND_ITCallback(hnand); |
||
| 316 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
||
| 317 | |||
| 318 | /* Clear NAND interrupt Falling edge pending bit */ |
||
| 319 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FALLING_EDGE); |
||
| 320 | } |
||
| 321 | |||
| 322 | /* Check NAND interrupt FIFO empty flag */ |
||
| 323 | if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FEMPT)) |
||
| 324 | { |
||
| 325 | /* NAND interrupt callback*/ |
||
| 326 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
||
| 327 | hnand->ItCallback(hnand); |
||
| 328 | #else |
||
| 329 | HAL_NAND_ITCallback(hnand); |
||
| 330 | #endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ |
||
| 331 | |||
| 332 | /* Clear NAND interrupt FIFO empty pending bit */ |
||
| 333 | __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FEMPT); |
||
| 334 | } |
||
| 335 | |||
| 336 | } |
||
| 337 | |||
| 338 | /** |
||
| 339 | * @brief NAND interrupt feature callback |
||
| 340 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 341 | * the configuration information for NAND module. |
||
| 342 | * @retval None |
||
| 343 | */ |
||
| 344 | __weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand) |
||
| 345 | { |
||
| 346 | /* Prevent unused argument(s) compilation warning */ |
||
| 347 | UNUSED(hnand); |
||
| 348 | |||
| 349 | /* NOTE : This function Should not be modified, when the callback is needed, |
||
| 350 | the HAL_NAND_ITCallback could be implemented in the user file |
||
| 351 | */ |
||
| 352 | } |
||
| 353 | |||
| 354 | /** |
||
| 355 | * @} |
||
| 356 | */ |
||
| 357 | |||
| 358 | /** @defgroup NAND_Exported_Functions_Group2 Input and Output functions |
||
| 359 | * @brief Input Output and memory control functions |
||
| 360 | * |
||
| 361 | @verbatim |
||
| 362 | ============================================================================== |
||
| 363 | ##### NAND Input and Output functions ##### |
||
| 364 | ============================================================================== |
||
| 365 | [..] |
||
| 366 | This section provides functions allowing to use and control the NAND |
||
| 367 | memory |
||
| 368 | |||
| 369 | @endverbatim |
||
| 370 | * @{ |
||
| 371 | */ |
||
| 372 | |||
| 373 | /** |
||
| 374 | * @brief Read the NAND memory electronic signature |
||
| 375 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 376 | * the configuration information for NAND module. |
||
| 377 | * @param pNAND_ID NAND ID structure |
||
| 378 | * @retval HAL status |
||
| 379 | */ |
||
| 380 | HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID) |
||
| 381 | { |
||
| 382 | __IO uint32_t data = 0; |
||
| 383 | __IO uint32_t data1 = 0; |
||
| 384 | uint32_t deviceaddress; |
||
| 385 | |||
| 386 | /* Check the NAND controller state */ |
||
| 387 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 388 | { |
||
| 389 | return HAL_BUSY; |
||
| 390 | } |
||
| 391 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 392 | { |
||
| 393 | /* Process Locked */ |
||
| 394 | __HAL_LOCK(hnand); |
||
| 395 | |||
| 396 | /* Update the NAND controller state */ |
||
| 397 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 398 | |||
| 399 | /* Identify the device address */ |
||
| 400 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 401 | { |
||
| 402 | deviceaddress = NAND_DEVICE1; |
||
| 403 | } |
||
| 404 | else |
||
| 405 | { |
||
| 406 | deviceaddress = NAND_DEVICE2; |
||
| 407 | } |
||
| 408 | |||
| 409 | /* Send Read ID command sequence */ |
||
| 410 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_READID; |
||
| 411 | __DSB(); |
||
| 412 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; |
||
| 413 | __DSB(); |
||
| 414 | |||
| 415 | /* Read the electronic signature from NAND flash */ |
||
| 416 | if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) |
||
| 417 | { |
||
| 418 | data = *(__IO uint32_t *)deviceaddress; |
||
| 419 | |||
| 420 | /* Return the data read */ |
||
| 421 | pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); |
||
| 422 | pNAND_ID->Device_Id = ADDR_2ND_CYCLE(data); |
||
| 423 | pNAND_ID->Third_Id = ADDR_3RD_CYCLE(data); |
||
| 424 | pNAND_ID->Fourth_Id = ADDR_4TH_CYCLE(data); |
||
| 425 | } |
||
| 426 | else |
||
| 427 | { |
||
| 428 | data = *(__IO uint32_t *)deviceaddress; |
||
| 429 | data1 = *((__IO uint32_t *)deviceaddress + 4); |
||
| 430 | |||
| 431 | /* Return the data read */ |
||
| 432 | pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); |
||
| 433 | pNAND_ID->Device_Id = ADDR_3RD_CYCLE(data); |
||
| 434 | pNAND_ID->Third_Id = ADDR_1ST_CYCLE(data1); |
||
| 435 | pNAND_ID->Fourth_Id = ADDR_3RD_CYCLE(data1); |
||
| 436 | } |
||
| 437 | |||
| 438 | /* Update the NAND controller state */ |
||
| 439 | hnand->State = HAL_NAND_STATE_READY; |
||
| 440 | |||
| 441 | /* Process unlocked */ |
||
| 442 | __HAL_UNLOCK(hnand); |
||
| 443 | } |
||
| 444 | else |
||
| 445 | { |
||
| 446 | return HAL_ERROR; |
||
| 447 | } |
||
| 448 | |||
| 449 | return HAL_OK; |
||
| 450 | } |
||
| 451 | |||
| 452 | /** |
||
| 453 | * @brief NAND memory reset |
||
| 454 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 455 | * the configuration information for NAND module. |
||
| 456 | * @retval HAL status |
||
| 457 | */ |
||
| 458 | HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand) |
||
| 459 | { |
||
| 460 | uint32_t deviceaddress; |
||
| 461 | |||
| 462 | /* Check the NAND controller state */ |
||
| 463 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 464 | { |
||
| 465 | return HAL_BUSY; |
||
| 466 | } |
||
| 467 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 468 | { |
||
| 469 | /* Process Locked */ |
||
| 470 | __HAL_LOCK(hnand); |
||
| 471 | |||
| 472 | /* Update the NAND controller state */ |
||
| 473 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 474 | |||
| 475 | /* Identify the device address */ |
||
| 476 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 477 | { |
||
| 478 | deviceaddress = NAND_DEVICE1; |
||
| 479 | } |
||
| 480 | else |
||
| 481 | { |
||
| 482 | deviceaddress = NAND_DEVICE2; |
||
| 483 | } |
||
| 484 | |||
| 485 | /* Send NAND reset command */ |
||
| 486 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = 0xFF; |
||
| 487 | |||
| 488 | /* Update the NAND controller state */ |
||
| 489 | hnand->State = HAL_NAND_STATE_READY; |
||
| 490 | |||
| 491 | /* Process unlocked */ |
||
| 492 | __HAL_UNLOCK(hnand); |
||
| 493 | } |
||
| 494 | else |
||
| 495 | { |
||
| 496 | return HAL_ERROR; |
||
| 497 | } |
||
| 498 | |||
| 499 | return HAL_OK; |
||
| 500 | |||
| 501 | } |
||
| 502 | |||
| 503 | /** |
||
| 504 | * @brief Configure the device: Enter the physical parameters of the device |
||
| 505 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 506 | * the configuration information for NAND module. |
||
| 507 | * @param pDeviceConfig pointer to NAND_DeviceConfigTypeDef structure |
||
| 508 | * @retval HAL status |
||
| 509 | */ |
||
| 510 | HAL_StatusTypeDef HAL_NAND_ConfigDevice(NAND_HandleTypeDef *hnand, NAND_DeviceConfigTypeDef *pDeviceConfig) |
||
| 511 | { |
||
| 512 | hnand->Config.PageSize = pDeviceConfig->PageSize; |
||
| 513 | hnand->Config.SpareAreaSize = pDeviceConfig->SpareAreaSize; |
||
| 514 | hnand->Config.BlockSize = pDeviceConfig->BlockSize; |
||
| 515 | hnand->Config.BlockNbr = pDeviceConfig->BlockNbr; |
||
| 516 | hnand->Config.PlaneSize = pDeviceConfig->PlaneSize; |
||
| 517 | hnand->Config.PlaneNbr = pDeviceConfig->PlaneNbr; |
||
| 518 | hnand->Config.ExtraCommandEnable = pDeviceConfig->ExtraCommandEnable; |
||
| 519 | |||
| 520 | return HAL_OK; |
||
| 521 | } |
||
| 522 | |||
| 523 | /** |
||
| 524 | * @brief Read Page(s) from NAND memory block (8-bits addressing) |
||
| 525 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 526 | * the configuration information for NAND module. |
||
| 527 | * @param pAddress pointer to NAND address structure |
||
| 528 | * @param pBuffer pointer to destination read buffer |
||
| 529 | * @param NumPageToRead number of pages to read from block |
||
| 530 | * @retval HAL status |
||
| 531 | */ |
||
| 532 | HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
||
| 533 | uint8_t *pBuffer, uint32_t NumPageToRead) |
||
| 534 | { |
||
| 535 | uint32_t index; |
||
| 536 | uint32_t tickstart; |
||
| 537 | uint32_t deviceaddress; |
||
| 538 | uint32_t numpagesread = 0U; |
||
| 539 | uint32_t nandaddress; |
||
| 540 | uint32_t nbpages = NumPageToRead; |
||
| 541 | uint8_t *buff = pBuffer; |
||
| 542 | |||
| 543 | /* Check the NAND controller state */ |
||
| 544 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 545 | { |
||
| 546 | return HAL_BUSY; |
||
| 547 | } |
||
| 548 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 549 | { |
||
| 550 | /* Process Locked */ |
||
| 551 | __HAL_LOCK(hnand); |
||
| 552 | |||
| 553 | /* Update the NAND controller state */ |
||
| 554 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 555 | |||
| 556 | /* Identify the device address */ |
||
| 557 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 558 | { |
||
| 559 | deviceaddress = NAND_DEVICE1; |
||
| 560 | } |
||
| 561 | else |
||
| 562 | { |
||
| 563 | deviceaddress = NAND_DEVICE2; |
||
| 564 | } |
||
| 565 | |||
| 566 | /* NAND raw address calculation */ |
||
| 567 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
||
| 568 | |||
| 569 | /* Page(s) read loop */ |
||
| 570 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
||
| 571 | { |
||
| 572 | /* Send read page command sequence */ |
||
| 573 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
||
| 574 | __DSB(); |
||
| 575 | |||
| 576 | /* Cards with page size <= 512 bytes */ |
||
| 577 | if ((hnand->Config.PageSize) <= 512U) |
||
| 578 | { |
||
| 579 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 580 | { |
||
| 581 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 582 | __DSB(); |
||
| 583 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 584 | __DSB(); |
||
| 585 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 586 | __DSB(); |
||
| 587 | } |
||
| 588 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 589 | { |
||
| 590 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 591 | __DSB(); |
||
| 592 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 593 | __DSB(); |
||
| 594 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 595 | __DSB(); |
||
| 596 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 597 | __DSB(); |
||
| 598 | } |
||
| 599 | } |
||
| 600 | else /* (hnand->Config.PageSize) > 512 */ |
||
| 601 | { |
||
| 602 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 603 | { |
||
| 604 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 605 | __DSB(); |
||
| 606 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 607 | __DSB(); |
||
| 608 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 609 | __DSB(); |
||
| 610 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 611 | __DSB(); |
||
| 612 | } |
||
| 613 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 614 | { |
||
| 615 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 616 | __DSB(); |
||
| 617 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 618 | __DSB(); |
||
| 619 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 620 | __DSB(); |
||
| 621 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 622 | __DSB(); |
||
| 623 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 624 | __DSB(); |
||
| 625 | } |
||
| 626 | } |
||
| 627 | |||
| 628 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
||
| 629 | __DSB(); |
||
| 630 | |||
| 631 | |||
| 632 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
||
| 633 | { |
||
| 634 | /* Get tick */ |
||
| 635 | tickstart = HAL_GetTick(); |
||
| 636 | |||
| 637 | /* Read status until NAND is ready */ |
||
| 638 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
||
| 639 | { |
||
| 640 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
||
| 641 | { |
||
| 642 | /* Update the NAND controller state */ |
||
| 643 | hnand->State = HAL_NAND_STATE_ERROR; |
||
| 644 | |||
| 645 | /* Process unlocked */ |
||
| 646 | __HAL_UNLOCK(hnand); |
||
| 647 | |||
| 648 | return HAL_TIMEOUT; |
||
| 649 | } |
||
| 650 | } |
||
| 651 | |||
| 652 | /* Go back to read mode */ |
||
| 653 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
||
| 654 | __DSB(); |
||
| 655 | } |
||
| 656 | |||
| 657 | /* Get Data into Buffer */ |
||
| 658 | for (index = 0U; index < hnand->Config.PageSize; index++) |
||
| 659 | { |
||
| 660 | *buff = *(uint8_t *)deviceaddress; |
||
| 661 | buff++; |
||
| 662 | } |
||
| 663 | |||
| 664 | /* Increment read pages number */ |
||
| 665 | numpagesread++; |
||
| 666 | |||
| 667 | /* Decrement pages to read */ |
||
| 668 | nbpages--; |
||
| 669 | |||
| 670 | /* Increment the NAND address */ |
||
| 671 | nandaddress = (uint32_t)(nandaddress + 1U); |
||
| 672 | } |
||
| 673 | |||
| 674 | /* Update the NAND controller state */ |
||
| 675 | hnand->State = HAL_NAND_STATE_READY; |
||
| 676 | |||
| 677 | /* Process unlocked */ |
||
| 678 | __HAL_UNLOCK(hnand); |
||
| 679 | } |
||
| 680 | else |
||
| 681 | { |
||
| 682 | return HAL_ERROR; |
||
| 683 | } |
||
| 684 | |||
| 685 | return HAL_OK; |
||
| 686 | } |
||
| 687 | |||
| 688 | /** |
||
| 689 | * @brief Read Page(s) from NAND memory block (16-bits addressing) |
||
| 690 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 691 | * the configuration information for NAND module. |
||
| 692 | * @param pAddress pointer to NAND address structure |
||
| 693 | * @param pBuffer pointer to destination read buffer. pBuffer should be 16bits aligned |
||
| 694 | * @param NumPageToRead number of pages to read from block |
||
| 695 | * @retval HAL status |
||
| 696 | */ |
||
| 697 | HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
||
| 698 | uint16_t *pBuffer, uint32_t NumPageToRead) |
||
| 699 | { |
||
| 700 | uint32_t index; |
||
| 701 | uint32_t tickstart; |
||
| 702 | uint32_t deviceaddress; |
||
| 703 | uint32_t numpagesread = 0U; |
||
| 704 | uint32_t nandaddress; |
||
| 705 | uint32_t nbpages = NumPageToRead; |
||
| 706 | uint16_t *buff = pBuffer; |
||
| 707 | |||
| 708 | /* Check the NAND controller state */ |
||
| 709 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 710 | { |
||
| 711 | return HAL_BUSY; |
||
| 712 | } |
||
| 713 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 714 | { |
||
| 715 | /* Process Locked */ |
||
| 716 | __HAL_LOCK(hnand); |
||
| 717 | |||
| 718 | /* Update the NAND controller state */ |
||
| 719 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 720 | |||
| 721 | /* Identify the device address */ |
||
| 722 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 723 | { |
||
| 724 | deviceaddress = NAND_DEVICE1; |
||
| 725 | } |
||
| 726 | else |
||
| 727 | { |
||
| 728 | deviceaddress = NAND_DEVICE2; |
||
| 729 | } |
||
| 730 | |||
| 731 | /* NAND raw address calculation */ |
||
| 732 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
||
| 733 | |||
| 734 | /* Page(s) read loop */ |
||
| 735 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
||
| 736 | { |
||
| 737 | /* Send read page command sequence */ |
||
| 738 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
||
| 739 | __DSB(); |
||
| 740 | |||
| 741 | /* Cards with page size <= 512 bytes */ |
||
| 742 | if ((hnand->Config.PageSize) <= 512U) |
||
| 743 | { |
||
| 744 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 745 | { |
||
| 746 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 747 | __DSB(); |
||
| 748 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 749 | __DSB(); |
||
| 750 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 751 | __DSB(); |
||
| 752 | } |
||
| 753 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 754 | { |
||
| 755 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 756 | __DSB(); |
||
| 757 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 758 | __DSB(); |
||
| 759 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 760 | __DSB(); |
||
| 761 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 762 | __DSB(); |
||
| 763 | } |
||
| 764 | } |
||
| 765 | else /* (hnand->Config.PageSize) > 512 */ |
||
| 766 | { |
||
| 767 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 768 | { |
||
| 769 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 770 | __DSB(); |
||
| 771 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 772 | __DSB(); |
||
| 773 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 774 | __DSB(); |
||
| 775 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 776 | __DSB(); |
||
| 777 | } |
||
| 778 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 779 | { |
||
| 780 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 781 | __DSB(); |
||
| 782 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 783 | __DSB(); |
||
| 784 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 785 | __DSB(); |
||
| 786 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 787 | __DSB(); |
||
| 788 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 789 | __DSB(); |
||
| 790 | } |
||
| 791 | } |
||
| 792 | |||
| 793 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
||
| 794 | __DSB(); |
||
| 795 | |||
| 796 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
||
| 797 | { |
||
| 798 | /* Get tick */ |
||
| 799 | tickstart = HAL_GetTick(); |
||
| 800 | |||
| 801 | /* Read status until NAND is ready */ |
||
| 802 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
||
| 803 | { |
||
| 804 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
||
| 805 | { |
||
| 806 | /* Update the NAND controller state */ |
||
| 807 | hnand->State = HAL_NAND_STATE_ERROR; |
||
| 808 | |||
| 809 | /* Process unlocked */ |
||
| 810 | __HAL_UNLOCK(hnand); |
||
| 811 | |||
| 812 | return HAL_TIMEOUT; |
||
| 813 | } |
||
| 814 | } |
||
| 815 | |||
| 816 | /* Go back to read mode */ |
||
| 817 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
||
| 818 | __DSB(); |
||
| 819 | } |
||
| 820 | |||
| 821 | /* Calculate PageSize */ |
||
| 822 | if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) |
||
| 823 | { |
||
| 824 | hnand->Config.PageSize = hnand->Config.PageSize / 2U; |
||
| 825 | } |
||
| 826 | else |
||
| 827 | { |
||
| 828 | /* Do nothing */ |
||
| 829 | /* Keep the same PageSize for FMC_NAND_MEM_BUS_WIDTH_16*/ |
||
| 830 | } |
||
| 831 | |||
| 832 | /* Get Data into Buffer */ |
||
| 833 | for (index = 0U; index < hnand->Config.PageSize; index++) |
||
| 834 | { |
||
| 835 | *buff = *(uint16_t *)deviceaddress; |
||
| 836 | buff++; |
||
| 837 | } |
||
| 838 | |||
| 839 | /* Increment read pages number */ |
||
| 840 | numpagesread++; |
||
| 841 | |||
| 842 | /* Decrement pages to read */ |
||
| 843 | nbpages--; |
||
| 844 | |||
| 845 | /* Increment the NAND address */ |
||
| 846 | nandaddress = (uint32_t)(nandaddress + 1U); |
||
| 847 | } |
||
| 848 | |||
| 849 | /* Update the NAND controller state */ |
||
| 850 | hnand->State = HAL_NAND_STATE_READY; |
||
| 851 | |||
| 852 | /* Process unlocked */ |
||
| 853 | __HAL_UNLOCK(hnand); |
||
| 854 | } |
||
| 855 | else |
||
| 856 | { |
||
| 857 | return HAL_ERROR; |
||
| 858 | } |
||
| 859 | |||
| 860 | return HAL_OK; |
||
| 861 | } |
||
| 862 | |||
| 863 | /** |
||
| 864 | * @brief Write Page(s) to NAND memory block (8-bits addressing) |
||
| 865 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 866 | * the configuration information for NAND module. |
||
| 867 | * @param pAddress pointer to NAND address structure |
||
| 868 | * @param pBuffer pointer to source buffer to write |
||
| 869 | * @param NumPageToWrite number of pages to write to block |
||
| 870 | * @retval HAL status |
||
| 871 | */ |
||
| 872 | HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
||
| 873 | const uint8_t *pBuffer, uint32_t NumPageToWrite) |
||
| 874 | { |
||
| 875 | uint32_t index; |
||
| 876 | uint32_t tickstart; |
||
| 877 | uint32_t deviceaddress; |
||
| 878 | uint32_t numpageswritten = 0U; |
||
| 879 | uint32_t nandaddress; |
||
| 880 | uint32_t nbpages = NumPageToWrite; |
||
| 881 | const uint8_t *buff = pBuffer; |
||
| 882 | |||
| 883 | /* Check the NAND controller state */ |
||
| 884 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 885 | { |
||
| 886 | return HAL_BUSY; |
||
| 887 | } |
||
| 888 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 889 | { |
||
| 890 | /* Process Locked */ |
||
| 891 | __HAL_LOCK(hnand); |
||
| 892 | |||
| 893 | /* Update the NAND controller state */ |
||
| 894 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 895 | |||
| 896 | /* Identify the device address */ |
||
| 897 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 898 | { |
||
| 899 | deviceaddress = NAND_DEVICE1; |
||
| 900 | } |
||
| 901 | else |
||
| 902 | { |
||
| 903 | deviceaddress = NAND_DEVICE2; |
||
| 904 | } |
||
| 905 | |||
| 906 | /* NAND raw address calculation */ |
||
| 907 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
||
| 908 | |||
| 909 | /* Page(s) write loop */ |
||
| 910 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
||
| 911 | { |
||
| 912 | /* Send write page command sequence */ |
||
| 913 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
||
| 914 | __DSB(); |
||
| 915 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
||
| 916 | __DSB(); |
||
| 917 | |||
| 918 | /* Cards with page size <= 512 bytes */ |
||
| 919 | if ((hnand->Config.PageSize) <= 512U) |
||
| 920 | { |
||
| 921 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 922 | { |
||
| 923 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 924 | __DSB(); |
||
| 925 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 926 | __DSB(); |
||
| 927 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 928 | __DSB(); |
||
| 929 | } |
||
| 930 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 931 | { |
||
| 932 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 933 | __DSB(); |
||
| 934 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 935 | __DSB(); |
||
| 936 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 937 | __DSB(); |
||
| 938 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 939 | __DSB(); |
||
| 940 | } |
||
| 941 | } |
||
| 942 | else /* (hnand->Config.PageSize) > 512 */ |
||
| 943 | { |
||
| 944 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 945 | { |
||
| 946 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 947 | __DSB(); |
||
| 948 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 949 | __DSB(); |
||
| 950 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 951 | __DSB(); |
||
| 952 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 953 | __DSB(); |
||
| 954 | } |
||
| 955 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 956 | { |
||
| 957 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 958 | __DSB(); |
||
| 959 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 960 | __DSB(); |
||
| 961 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 962 | __DSB(); |
||
| 963 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 964 | __DSB(); |
||
| 965 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 966 | __DSB(); |
||
| 967 | } |
||
| 968 | } |
||
| 969 | |||
| 970 | /* Write data to memory */ |
||
| 971 | for (index = 0U; index < hnand->Config.PageSize; index++) |
||
| 972 | { |
||
| 973 | *(__IO uint8_t *)deviceaddress = *buff; |
||
| 974 | buff++; |
||
| 975 | __DSB(); |
||
| 976 | } |
||
| 977 | |||
| 978 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
||
| 979 | __DSB(); |
||
| 980 | |||
| 981 | /* Get tick */ |
||
| 982 | tickstart = HAL_GetTick(); |
||
| 983 | |||
| 984 | /* Read status until NAND is ready */ |
||
| 985 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
||
| 986 | { |
||
| 987 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
||
| 988 | { |
||
| 989 | /* Update the NAND controller state */ |
||
| 990 | hnand->State = HAL_NAND_STATE_ERROR; |
||
| 991 | |||
| 992 | /* Process unlocked */ |
||
| 993 | __HAL_UNLOCK(hnand); |
||
| 994 | |||
| 995 | return HAL_TIMEOUT; |
||
| 996 | } |
||
| 997 | } |
||
| 998 | |||
| 999 | /* Increment written pages number */ |
||
| 1000 | numpageswritten++; |
||
| 1001 | |||
| 1002 | /* Decrement pages to write */ |
||
| 1003 | nbpages--; |
||
| 1004 | |||
| 1005 | /* Increment the NAND address */ |
||
| 1006 | nandaddress = (uint32_t)(nandaddress + 1U); |
||
| 1007 | } |
||
| 1008 | |||
| 1009 | /* Update the NAND controller state */ |
||
| 1010 | hnand->State = HAL_NAND_STATE_READY; |
||
| 1011 | |||
| 1012 | /* Process unlocked */ |
||
| 1013 | __HAL_UNLOCK(hnand); |
||
| 1014 | } |
||
| 1015 | else |
||
| 1016 | { |
||
| 1017 | return HAL_ERROR; |
||
| 1018 | } |
||
| 1019 | |||
| 1020 | return HAL_OK; |
||
| 1021 | } |
||
| 1022 | |||
| 1023 | /** |
||
| 1024 | * @brief Write Page(s) to NAND memory block (16-bits addressing) |
||
| 1025 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 1026 | * the configuration information for NAND module. |
||
| 1027 | * @param pAddress pointer to NAND address structure |
||
| 1028 | * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned |
||
| 1029 | * @param NumPageToWrite number of pages to write to block |
||
| 1030 | * @retval HAL status |
||
| 1031 | */ |
||
| 1032 | HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
||
| 1033 | const uint16_t *pBuffer, uint32_t NumPageToWrite) |
||
| 1034 | { |
||
| 1035 | uint32_t index; |
||
| 1036 | uint32_t tickstart; |
||
| 1037 | uint32_t deviceaddress; |
||
| 1038 | uint32_t numpageswritten = 0U; |
||
| 1039 | uint32_t nandaddress; |
||
| 1040 | uint32_t nbpages = NumPageToWrite; |
||
| 1041 | const uint16_t *buff = pBuffer; |
||
| 1042 | |||
| 1043 | /* Check the NAND controller state */ |
||
| 1044 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 1045 | { |
||
| 1046 | return HAL_BUSY; |
||
| 1047 | } |
||
| 1048 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 1049 | { |
||
| 1050 | /* Process Locked */ |
||
| 1051 | __HAL_LOCK(hnand); |
||
| 1052 | |||
| 1053 | /* Update the NAND controller state */ |
||
| 1054 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 1055 | |||
| 1056 | /* Identify the device address */ |
||
| 1057 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 1058 | { |
||
| 1059 | deviceaddress = NAND_DEVICE1; |
||
| 1060 | } |
||
| 1061 | else |
||
| 1062 | { |
||
| 1063 | deviceaddress = NAND_DEVICE2; |
||
| 1064 | } |
||
| 1065 | |||
| 1066 | /* NAND raw address calculation */ |
||
| 1067 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
||
| 1068 | |||
| 1069 | /* Page(s) write loop */ |
||
| 1070 | while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
||
| 1071 | { |
||
| 1072 | /* Send write page command sequence */ |
||
| 1073 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
||
| 1074 | __DSB(); |
||
| 1075 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
||
| 1076 | __DSB(); |
||
| 1077 | |||
| 1078 | /* Cards with page size <= 512 bytes */ |
||
| 1079 | if ((hnand->Config.PageSize) <= 512U) |
||
| 1080 | { |
||
| 1081 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 1082 | { |
||
| 1083 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1084 | __DSB(); |
||
| 1085 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1086 | __DSB(); |
||
| 1087 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1088 | __DSB(); |
||
| 1089 | } |
||
| 1090 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 1091 | { |
||
| 1092 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1093 | __DSB(); |
||
| 1094 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1095 | __DSB(); |
||
| 1096 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1097 | __DSB(); |
||
| 1098 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 1099 | __DSB(); |
||
| 1100 | } |
||
| 1101 | } |
||
| 1102 | else /* (hnand->Config.PageSize) > 512 */ |
||
| 1103 | { |
||
| 1104 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 1105 | { |
||
| 1106 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1107 | __DSB(); |
||
| 1108 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1109 | __DSB(); |
||
| 1110 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1111 | __DSB(); |
||
| 1112 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1113 | __DSB(); |
||
| 1114 | } |
||
| 1115 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 1116 | { |
||
| 1117 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1118 | __DSB(); |
||
| 1119 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1120 | __DSB(); |
||
| 1121 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1122 | __DSB(); |
||
| 1123 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1124 | __DSB(); |
||
| 1125 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 1126 | __DSB(); |
||
| 1127 | } |
||
| 1128 | } |
||
| 1129 | |||
| 1130 | /* Calculate PageSize */ |
||
| 1131 | if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8) |
||
| 1132 | { |
||
| 1133 | hnand->Config.PageSize = hnand->Config.PageSize / 2U; |
||
| 1134 | } |
||
| 1135 | else |
||
| 1136 | { |
||
| 1137 | /* Do nothing */ |
||
| 1138 | /* Keep the same PageSize for FMC_NAND_MEM_BUS_WIDTH_16*/ |
||
| 1139 | } |
||
| 1140 | |||
| 1141 | /* Write data to memory */ |
||
| 1142 | for (index = 0U; index < hnand->Config.PageSize; index++) |
||
| 1143 | { |
||
| 1144 | *(__IO uint16_t *)deviceaddress = *buff; |
||
| 1145 | buff++; |
||
| 1146 | __DSB(); |
||
| 1147 | } |
||
| 1148 | |||
| 1149 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
||
| 1150 | __DSB(); |
||
| 1151 | |||
| 1152 | /* Get tick */ |
||
| 1153 | tickstart = HAL_GetTick(); |
||
| 1154 | |||
| 1155 | /* Read status until NAND is ready */ |
||
| 1156 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
||
| 1157 | { |
||
| 1158 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
||
| 1159 | { |
||
| 1160 | /* Update the NAND controller state */ |
||
| 1161 | hnand->State = HAL_NAND_STATE_ERROR; |
||
| 1162 | |||
| 1163 | /* Process unlocked */ |
||
| 1164 | __HAL_UNLOCK(hnand); |
||
| 1165 | |||
| 1166 | return HAL_TIMEOUT; |
||
| 1167 | } |
||
| 1168 | } |
||
| 1169 | |||
| 1170 | /* Increment written pages number */ |
||
| 1171 | numpageswritten++; |
||
| 1172 | |||
| 1173 | /* Decrement pages to write */ |
||
| 1174 | nbpages--; |
||
| 1175 | |||
| 1176 | /* Increment the NAND address */ |
||
| 1177 | nandaddress = (uint32_t)(nandaddress + 1U); |
||
| 1178 | } |
||
| 1179 | |||
| 1180 | /* Update the NAND controller state */ |
||
| 1181 | hnand->State = HAL_NAND_STATE_READY; |
||
| 1182 | |||
| 1183 | /* Process unlocked */ |
||
| 1184 | __HAL_UNLOCK(hnand); |
||
| 1185 | } |
||
| 1186 | else |
||
| 1187 | { |
||
| 1188 | return HAL_ERROR; |
||
| 1189 | } |
||
| 1190 | |||
| 1191 | return HAL_OK; |
||
| 1192 | } |
||
| 1193 | |||
| 1194 | /** |
||
| 1195 | * @brief Read Spare area(s) from NAND memory (8-bits addressing) |
||
| 1196 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 1197 | * the configuration information for NAND module. |
||
| 1198 | * @param pAddress pointer to NAND address structure |
||
| 1199 | * @param pBuffer pointer to source buffer to write |
||
| 1200 | * @param NumSpareAreaToRead Number of spare area to read |
||
| 1201 | * @retval HAL status |
||
| 1202 | */ |
||
| 1203 | HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
||
| 1204 | uint8_t *pBuffer, uint32_t NumSpareAreaToRead) |
||
| 1205 | { |
||
| 1206 | uint32_t index; |
||
| 1207 | uint32_t tickstart; |
||
| 1208 | uint32_t deviceaddress; |
||
| 1209 | uint32_t numsparearearead = 0U; |
||
| 1210 | uint32_t nandaddress; |
||
| 1211 | uint32_t columnaddress; |
||
| 1212 | uint32_t nbspare = NumSpareAreaToRead; |
||
| 1213 | uint8_t *buff = pBuffer; |
||
| 1214 | |||
| 1215 | /* Check the NAND controller state */ |
||
| 1216 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 1217 | { |
||
| 1218 | return HAL_BUSY; |
||
| 1219 | } |
||
| 1220 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 1221 | { |
||
| 1222 | /* Process Locked */ |
||
| 1223 | __HAL_LOCK(hnand); |
||
| 1224 | |||
| 1225 | /* Update the NAND controller state */ |
||
| 1226 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 1227 | |||
| 1228 | /* Identify the device address */ |
||
| 1229 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 1230 | { |
||
| 1231 | deviceaddress = NAND_DEVICE1; |
||
| 1232 | } |
||
| 1233 | else |
||
| 1234 | { |
||
| 1235 | deviceaddress = NAND_DEVICE2; |
||
| 1236 | } |
||
| 1237 | |||
| 1238 | /* NAND raw address calculation */ |
||
| 1239 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
||
| 1240 | |||
| 1241 | /* Column in page address */ |
||
| 1242 | columnaddress = COLUMN_ADDRESS(hnand); |
||
| 1243 | |||
| 1244 | /* Spare area(s) read loop */ |
||
| 1245 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
||
| 1246 | { |
||
| 1247 | /* Cards with page size <= 512 bytes */ |
||
| 1248 | if ((hnand->Config.PageSize) <= 512U) |
||
| 1249 | { |
||
| 1250 | /* Send read spare area command sequence */ |
||
| 1251 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
||
| 1252 | __DSB(); |
||
| 1253 | |||
| 1254 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 1255 | { |
||
| 1256 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1257 | __DSB(); |
||
| 1258 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1259 | __DSB(); |
||
| 1260 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1261 | __DSB(); |
||
| 1262 | } |
||
| 1263 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 1264 | { |
||
| 1265 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1266 | __DSB(); |
||
| 1267 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1268 | __DSB(); |
||
| 1269 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1270 | __DSB(); |
||
| 1271 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 1272 | __DSB(); |
||
| 1273 | } |
||
| 1274 | } |
||
| 1275 | else /* (hnand->Config.PageSize) > 512 */ |
||
| 1276 | { |
||
| 1277 | /* Send read spare area command sequence */ |
||
| 1278 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
||
| 1279 | __DSB(); |
||
| 1280 | |||
| 1281 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 1282 | { |
||
| 1283 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
||
| 1284 | __DSB(); |
||
| 1285 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
||
| 1286 | __DSB(); |
||
| 1287 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1288 | __DSB(); |
||
| 1289 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1290 | __DSB(); |
||
| 1291 | } |
||
| 1292 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 1293 | { |
||
| 1294 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
||
| 1295 | __DSB(); |
||
| 1296 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
||
| 1297 | __DSB(); |
||
| 1298 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1299 | __DSB(); |
||
| 1300 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1301 | __DSB(); |
||
| 1302 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 1303 | __DSB(); |
||
| 1304 | } |
||
| 1305 | } |
||
| 1306 | |||
| 1307 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
||
| 1308 | __DSB(); |
||
| 1309 | |||
| 1310 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
||
| 1311 | { |
||
| 1312 | /* Get tick */ |
||
| 1313 | tickstart = HAL_GetTick(); |
||
| 1314 | |||
| 1315 | /* Read status until NAND is ready */ |
||
| 1316 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
||
| 1317 | { |
||
| 1318 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
||
| 1319 | { |
||
| 1320 | /* Update the NAND controller state */ |
||
| 1321 | hnand->State = HAL_NAND_STATE_ERROR; |
||
| 1322 | |||
| 1323 | /* Process unlocked */ |
||
| 1324 | __HAL_UNLOCK(hnand); |
||
| 1325 | |||
| 1326 | return HAL_TIMEOUT; |
||
| 1327 | } |
||
| 1328 | } |
||
| 1329 | |||
| 1330 | /* Go back to read mode */ |
||
| 1331 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
||
| 1332 | __DSB(); |
||
| 1333 | } |
||
| 1334 | |||
| 1335 | /* Get Data into Buffer */ |
||
| 1336 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
||
| 1337 | { |
||
| 1338 | *buff = *(uint8_t *)deviceaddress; |
||
| 1339 | buff++; |
||
| 1340 | } |
||
| 1341 | |||
| 1342 | /* Increment read spare areas number */ |
||
| 1343 | numsparearearead++; |
||
| 1344 | |||
| 1345 | /* Decrement spare areas to read */ |
||
| 1346 | nbspare--; |
||
| 1347 | |||
| 1348 | /* Increment the NAND address */ |
||
| 1349 | nandaddress = (uint32_t)(nandaddress + 1U); |
||
| 1350 | } |
||
| 1351 | |||
| 1352 | /* Update the NAND controller state */ |
||
| 1353 | hnand->State = HAL_NAND_STATE_READY; |
||
| 1354 | |||
| 1355 | /* Process unlocked */ |
||
| 1356 | __HAL_UNLOCK(hnand); |
||
| 1357 | } |
||
| 1358 | else |
||
| 1359 | { |
||
| 1360 | return HAL_ERROR; |
||
| 1361 | } |
||
| 1362 | |||
| 1363 | return HAL_OK; |
||
| 1364 | } |
||
| 1365 | |||
| 1366 | /** |
||
| 1367 | * @brief Read Spare area(s) from NAND memory (16-bits addressing) |
||
| 1368 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 1369 | * the configuration information for NAND module. |
||
| 1370 | * @param pAddress pointer to NAND address structure |
||
| 1371 | * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. |
||
| 1372 | * @param NumSpareAreaToRead Number of spare area to read |
||
| 1373 | * @retval HAL status |
||
| 1374 | */ |
||
| 1375 | HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
||
| 1376 | uint16_t *pBuffer, uint32_t NumSpareAreaToRead) |
||
| 1377 | { |
||
| 1378 | uint32_t index; |
||
| 1379 | uint32_t tickstart; |
||
| 1380 | uint32_t deviceaddress; |
||
| 1381 | uint32_t numsparearearead = 0U; |
||
| 1382 | uint32_t nandaddress; |
||
| 1383 | uint32_t columnaddress; |
||
| 1384 | uint32_t nbspare = NumSpareAreaToRead; |
||
| 1385 | uint16_t *buff = pBuffer; |
||
| 1386 | |||
| 1387 | /* Check the NAND controller state */ |
||
| 1388 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 1389 | { |
||
| 1390 | return HAL_BUSY; |
||
| 1391 | } |
||
| 1392 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 1393 | { |
||
| 1394 | /* Process Locked */ |
||
| 1395 | __HAL_LOCK(hnand); |
||
| 1396 | |||
| 1397 | /* Update the NAND controller state */ |
||
| 1398 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 1399 | |||
| 1400 | /* Identify the device address */ |
||
| 1401 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 1402 | { |
||
| 1403 | deviceaddress = NAND_DEVICE1; |
||
| 1404 | } |
||
| 1405 | else |
||
| 1406 | { |
||
| 1407 | deviceaddress = NAND_DEVICE2; |
||
| 1408 | } |
||
| 1409 | |||
| 1410 | /* NAND raw address calculation */ |
||
| 1411 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
||
| 1412 | |||
| 1413 | /* Column in page address */ |
||
| 1414 | columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand)); |
||
| 1415 | |||
| 1416 | /* Spare area(s) read loop */ |
||
| 1417 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
||
| 1418 | { |
||
| 1419 | /* Cards with page size <= 512 bytes */ |
||
| 1420 | if ((hnand->Config.PageSize) <= 512U) |
||
| 1421 | { |
||
| 1422 | /* Send read spare area command sequence */ |
||
| 1423 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
||
| 1424 | __DSB(); |
||
| 1425 | |||
| 1426 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 1427 | { |
||
| 1428 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1429 | __DSB(); |
||
| 1430 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1431 | __DSB(); |
||
| 1432 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1433 | __DSB(); |
||
| 1434 | } |
||
| 1435 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 1436 | { |
||
| 1437 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1438 | __DSB(); |
||
| 1439 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1440 | __DSB(); |
||
| 1441 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1442 | __DSB(); |
||
| 1443 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 1444 | __DSB(); |
||
| 1445 | } |
||
| 1446 | } |
||
| 1447 | else /* (hnand->Config.PageSize) > 512 */ |
||
| 1448 | { |
||
| 1449 | /* Send read spare area command sequence */ |
||
| 1450 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
||
| 1451 | __DSB(); |
||
| 1452 | |||
| 1453 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 1454 | { |
||
| 1455 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
||
| 1456 | __DSB(); |
||
| 1457 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
||
| 1458 | __DSB(); |
||
| 1459 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1460 | __DSB(); |
||
| 1461 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1462 | __DSB(); |
||
| 1463 | } |
||
| 1464 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 1465 | { |
||
| 1466 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
||
| 1467 | __DSB(); |
||
| 1468 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
||
| 1469 | __DSB(); |
||
| 1470 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1471 | __DSB(); |
||
| 1472 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1473 | __DSB(); |
||
| 1474 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 1475 | __DSB(); |
||
| 1476 | } |
||
| 1477 | } |
||
| 1478 | |||
| 1479 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; |
||
| 1480 | __DSB(); |
||
| 1481 | |||
| 1482 | if (hnand->Config.ExtraCommandEnable == ENABLE) |
||
| 1483 | { |
||
| 1484 | /* Get tick */ |
||
| 1485 | tickstart = HAL_GetTick(); |
||
| 1486 | |||
| 1487 | /* Read status until NAND is ready */ |
||
| 1488 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
||
| 1489 | { |
||
| 1490 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
||
| 1491 | { |
||
| 1492 | /* Update the NAND controller state */ |
||
| 1493 | hnand->State = HAL_NAND_STATE_ERROR; |
||
| 1494 | |||
| 1495 | /* Process unlocked */ |
||
| 1496 | __HAL_UNLOCK(hnand); |
||
| 1497 | |||
| 1498 | return HAL_TIMEOUT; |
||
| 1499 | } |
||
| 1500 | } |
||
| 1501 | |||
| 1502 | /* Go back to read mode */ |
||
| 1503 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); |
||
| 1504 | __DSB(); |
||
| 1505 | } |
||
| 1506 | |||
| 1507 | /* Get Data into Buffer */ |
||
| 1508 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
||
| 1509 | { |
||
| 1510 | *buff = *(uint16_t *)deviceaddress; |
||
| 1511 | buff++; |
||
| 1512 | } |
||
| 1513 | |||
| 1514 | /* Increment read spare areas number */ |
||
| 1515 | numsparearearead++; |
||
| 1516 | |||
| 1517 | /* Decrement spare areas to read */ |
||
| 1518 | nbspare--; |
||
| 1519 | |||
| 1520 | /* Increment the NAND address */ |
||
| 1521 | nandaddress = (uint32_t)(nandaddress + 1U); |
||
| 1522 | } |
||
| 1523 | |||
| 1524 | /* Update the NAND controller state */ |
||
| 1525 | hnand->State = HAL_NAND_STATE_READY; |
||
| 1526 | |||
| 1527 | /* Process unlocked */ |
||
| 1528 | __HAL_UNLOCK(hnand); |
||
| 1529 | } |
||
| 1530 | else |
||
| 1531 | { |
||
| 1532 | return HAL_ERROR; |
||
| 1533 | } |
||
| 1534 | |||
| 1535 | return HAL_OK; |
||
| 1536 | } |
||
| 1537 | |||
| 1538 | /** |
||
| 1539 | * @brief Write Spare area(s) to NAND memory (8-bits addressing) |
||
| 1540 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 1541 | * the configuration information for NAND module. |
||
| 1542 | * @param pAddress pointer to NAND address structure |
||
| 1543 | * @param pBuffer pointer to source buffer to write |
||
| 1544 | * @param NumSpareAreaTowrite number of spare areas to write to block |
||
| 1545 | * @retval HAL status |
||
| 1546 | */ |
||
| 1547 | HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
||
| 1548 | const uint8_t *pBuffer, uint32_t NumSpareAreaTowrite) |
||
| 1549 | { |
||
| 1550 | uint32_t index; |
||
| 1551 | uint32_t tickstart; |
||
| 1552 | uint32_t deviceaddress; |
||
| 1553 | uint32_t numspareareawritten = 0U; |
||
| 1554 | uint32_t nandaddress; |
||
| 1555 | uint32_t columnaddress; |
||
| 1556 | uint32_t nbspare = NumSpareAreaTowrite; |
||
| 1557 | const uint8_t *buff = pBuffer; |
||
| 1558 | |||
| 1559 | /* Check the NAND controller state */ |
||
| 1560 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 1561 | { |
||
| 1562 | return HAL_BUSY; |
||
| 1563 | } |
||
| 1564 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 1565 | { |
||
| 1566 | /* Process Locked */ |
||
| 1567 | __HAL_LOCK(hnand); |
||
| 1568 | |||
| 1569 | /* Update the NAND controller state */ |
||
| 1570 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 1571 | |||
| 1572 | /* Identify the device address */ |
||
| 1573 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 1574 | { |
||
| 1575 | deviceaddress = NAND_DEVICE1; |
||
| 1576 | } |
||
| 1577 | else |
||
| 1578 | { |
||
| 1579 | deviceaddress = NAND_DEVICE2; |
||
| 1580 | } |
||
| 1581 | |||
| 1582 | /* Page address calculation */ |
||
| 1583 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
||
| 1584 | |||
| 1585 | /* Column in page address */ |
||
| 1586 | columnaddress = COLUMN_ADDRESS(hnand); |
||
| 1587 | |||
| 1588 | /* Spare area(s) write loop */ |
||
| 1589 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
||
| 1590 | { |
||
| 1591 | /* Cards with page size <= 512 bytes */ |
||
| 1592 | if ((hnand->Config.PageSize) <= 512U) |
||
| 1593 | { |
||
| 1594 | /* Send write Spare area command sequence */ |
||
| 1595 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
||
| 1596 | __DSB(); |
||
| 1597 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
||
| 1598 | __DSB(); |
||
| 1599 | |||
| 1600 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 1601 | { |
||
| 1602 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1603 | __DSB(); |
||
| 1604 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1605 | __DSB(); |
||
| 1606 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1607 | __DSB(); |
||
| 1608 | } |
||
| 1609 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 1610 | { |
||
| 1611 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1612 | __DSB(); |
||
| 1613 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1614 | __DSB(); |
||
| 1615 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1616 | __DSB(); |
||
| 1617 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 1618 | __DSB(); |
||
| 1619 | } |
||
| 1620 | } |
||
| 1621 | else /* (hnand->Config.PageSize) > 512 */ |
||
| 1622 | { |
||
| 1623 | /* Send write Spare area command sequence */ |
||
| 1624 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
||
| 1625 | __DSB(); |
||
| 1626 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
||
| 1627 | __DSB(); |
||
| 1628 | |||
| 1629 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 1630 | { |
||
| 1631 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
||
| 1632 | __DSB(); |
||
| 1633 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
||
| 1634 | __DSB(); |
||
| 1635 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1636 | __DSB(); |
||
| 1637 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1638 | __DSB(); |
||
| 1639 | } |
||
| 1640 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 1641 | { |
||
| 1642 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
||
| 1643 | __DSB(); |
||
| 1644 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
||
| 1645 | __DSB(); |
||
| 1646 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1647 | __DSB(); |
||
| 1648 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1649 | __DSB(); |
||
| 1650 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 1651 | __DSB(); |
||
| 1652 | } |
||
| 1653 | } |
||
| 1654 | |||
| 1655 | /* Write data to memory */ |
||
| 1656 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
||
| 1657 | { |
||
| 1658 | *(__IO uint8_t *)deviceaddress = *buff; |
||
| 1659 | buff++; |
||
| 1660 | __DSB(); |
||
| 1661 | } |
||
| 1662 | |||
| 1663 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
||
| 1664 | __DSB(); |
||
| 1665 | |||
| 1666 | /* Get tick */ |
||
| 1667 | tickstart = HAL_GetTick(); |
||
| 1668 | |||
| 1669 | /* Read status until NAND is ready */ |
||
| 1670 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
||
| 1671 | { |
||
| 1672 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
||
| 1673 | { |
||
| 1674 | /* Update the NAND controller state */ |
||
| 1675 | hnand->State = HAL_NAND_STATE_ERROR; |
||
| 1676 | |||
| 1677 | /* Process unlocked */ |
||
| 1678 | __HAL_UNLOCK(hnand); |
||
| 1679 | |||
| 1680 | return HAL_TIMEOUT; |
||
| 1681 | } |
||
| 1682 | } |
||
| 1683 | |||
| 1684 | /* Increment written spare areas number */ |
||
| 1685 | numspareareawritten++; |
||
| 1686 | |||
| 1687 | /* Decrement spare areas to write */ |
||
| 1688 | nbspare--; |
||
| 1689 | |||
| 1690 | /* Increment the NAND address */ |
||
| 1691 | nandaddress = (uint32_t)(nandaddress + 1U); |
||
| 1692 | } |
||
| 1693 | |||
| 1694 | /* Update the NAND controller state */ |
||
| 1695 | hnand->State = HAL_NAND_STATE_READY; |
||
| 1696 | |||
| 1697 | /* Process unlocked */ |
||
| 1698 | __HAL_UNLOCK(hnand); |
||
| 1699 | } |
||
| 1700 | else |
||
| 1701 | { |
||
| 1702 | return HAL_ERROR; |
||
| 1703 | } |
||
| 1704 | |||
| 1705 | return HAL_OK; |
||
| 1706 | } |
||
| 1707 | |||
| 1708 | /** |
||
| 1709 | * @brief Write Spare area(s) to NAND memory (16-bits addressing) |
||
| 1710 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 1711 | * the configuration information for NAND module. |
||
| 1712 | * @param pAddress pointer to NAND address structure |
||
| 1713 | * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. |
||
| 1714 | * @param NumSpareAreaTowrite number of spare areas to write to block |
||
| 1715 | * @retval HAL status |
||
| 1716 | */ |
||
| 1717 | HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress, |
||
| 1718 | const uint16_t *pBuffer, uint32_t NumSpareAreaTowrite) |
||
| 1719 | { |
||
| 1720 | uint32_t index; |
||
| 1721 | uint32_t tickstart; |
||
| 1722 | uint32_t deviceaddress; |
||
| 1723 | uint32_t numspareareawritten = 0U; |
||
| 1724 | uint32_t nandaddress; |
||
| 1725 | uint32_t columnaddress; |
||
| 1726 | uint32_t nbspare = NumSpareAreaTowrite; |
||
| 1727 | const uint16_t *buff = pBuffer; |
||
| 1728 | |||
| 1729 | /* Check the NAND controller state */ |
||
| 1730 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 1731 | { |
||
| 1732 | return HAL_BUSY; |
||
| 1733 | } |
||
| 1734 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 1735 | { |
||
| 1736 | /* Process Locked */ |
||
| 1737 | __HAL_LOCK(hnand); |
||
| 1738 | |||
| 1739 | /* Update the NAND controller state */ |
||
| 1740 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 1741 | |||
| 1742 | /* Identify the device address */ |
||
| 1743 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 1744 | { |
||
| 1745 | deviceaddress = NAND_DEVICE1; |
||
| 1746 | } |
||
| 1747 | else |
||
| 1748 | { |
||
| 1749 | deviceaddress = NAND_DEVICE2; |
||
| 1750 | } |
||
| 1751 | |||
| 1752 | /* NAND raw address calculation */ |
||
| 1753 | nandaddress = ARRAY_ADDRESS(pAddress, hnand); |
||
| 1754 | |||
| 1755 | /* Column in page address */ |
||
| 1756 | columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand)); |
||
| 1757 | |||
| 1758 | /* Spare area(s) write loop */ |
||
| 1759 | while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) |
||
| 1760 | { |
||
| 1761 | /* Cards with page size <= 512 bytes */ |
||
| 1762 | if ((hnand->Config.PageSize) <= 512U) |
||
| 1763 | { |
||
| 1764 | /* Send write Spare area command sequence */ |
||
| 1765 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; |
||
| 1766 | __DSB(); |
||
| 1767 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
||
| 1768 | __DSB(); |
||
| 1769 | |||
| 1770 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 1771 | { |
||
| 1772 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1773 | __DSB(); |
||
| 1774 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1775 | __DSB(); |
||
| 1776 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1777 | __DSB(); |
||
| 1778 | } |
||
| 1779 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 1780 | { |
||
| 1781 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; |
||
| 1782 | __DSB(); |
||
| 1783 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1784 | __DSB(); |
||
| 1785 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1786 | __DSB(); |
||
| 1787 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 1788 | __DSB(); |
||
| 1789 | } |
||
| 1790 | } |
||
| 1791 | else /* (hnand->Config.PageSize) > 512 */ |
||
| 1792 | { |
||
| 1793 | /* Send write Spare area command sequence */ |
||
| 1794 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; |
||
| 1795 | __DSB(); |
||
| 1796 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; |
||
| 1797 | __DSB(); |
||
| 1798 | |||
| 1799 | if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) |
||
| 1800 | { |
||
| 1801 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
||
| 1802 | __DSB(); |
||
| 1803 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
||
| 1804 | __DSB(); |
||
| 1805 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1806 | __DSB(); |
||
| 1807 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1808 | __DSB(); |
||
| 1809 | } |
||
| 1810 | else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ |
||
| 1811 | { |
||
| 1812 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); |
||
| 1813 | __DSB(); |
||
| 1814 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); |
||
| 1815 | __DSB(); |
||
| 1816 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); |
||
| 1817 | __DSB(); |
||
| 1818 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); |
||
| 1819 | __DSB(); |
||
| 1820 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); |
||
| 1821 | __DSB(); |
||
| 1822 | } |
||
| 1823 | } |
||
| 1824 | |||
| 1825 | /* Write data to memory */ |
||
| 1826 | for (index = 0U; index < hnand->Config.SpareAreaSize; index++) |
||
| 1827 | { |
||
| 1828 | *(__IO uint16_t *)deviceaddress = *buff; |
||
| 1829 | buff++; |
||
| 1830 | __DSB(); |
||
| 1831 | } |
||
| 1832 | |||
| 1833 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; |
||
| 1834 | __DSB(); |
||
| 1835 | |||
| 1836 | /* Get tick */ |
||
| 1837 | tickstart = HAL_GetTick(); |
||
| 1838 | |||
| 1839 | /* Read status until NAND is ready */ |
||
| 1840 | while (HAL_NAND_Read_Status(hnand) != NAND_READY) |
||
| 1841 | { |
||
| 1842 | if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) |
||
| 1843 | { |
||
| 1844 | /* Update the NAND controller state */ |
||
| 1845 | hnand->State = HAL_NAND_STATE_ERROR; |
||
| 1846 | |||
| 1847 | /* Process unlocked */ |
||
| 1848 | __HAL_UNLOCK(hnand); |
||
| 1849 | |||
| 1850 | return HAL_TIMEOUT; |
||
| 1851 | } |
||
| 1852 | } |
||
| 1853 | |||
| 1854 | /* Increment written spare areas number */ |
||
| 1855 | numspareareawritten++; |
||
| 1856 | |||
| 1857 | /* Decrement spare areas to write */ |
||
| 1858 | nbspare--; |
||
| 1859 | |||
| 1860 | /* Increment the NAND address */ |
||
| 1861 | nandaddress = (uint32_t)(nandaddress + 1U); |
||
| 1862 | } |
||
| 1863 | |||
| 1864 | /* Update the NAND controller state */ |
||
| 1865 | hnand->State = HAL_NAND_STATE_READY; |
||
| 1866 | |||
| 1867 | /* Process unlocked */ |
||
| 1868 | __HAL_UNLOCK(hnand); |
||
| 1869 | } |
||
| 1870 | else |
||
| 1871 | { |
||
| 1872 | return HAL_ERROR; |
||
| 1873 | } |
||
| 1874 | |||
| 1875 | return HAL_OK; |
||
| 1876 | } |
||
| 1877 | |||
| 1878 | /** |
||
| 1879 | * @brief NAND memory Block erase |
||
| 1880 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 1881 | * the configuration information for NAND module. |
||
| 1882 | * @param pAddress pointer to NAND address structure |
||
| 1883 | * @retval HAL status |
||
| 1884 | */ |
||
| 1885 | HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, const NAND_AddressTypeDef *pAddress) |
||
| 1886 | { |
||
| 1887 | uint32_t deviceaddress; |
||
| 1888 | |||
| 1889 | /* Check the NAND controller state */ |
||
| 1890 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 1891 | { |
||
| 1892 | return HAL_BUSY; |
||
| 1893 | } |
||
| 1894 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 1895 | { |
||
| 1896 | /* Process Locked */ |
||
| 1897 | __HAL_LOCK(hnand); |
||
| 1898 | |||
| 1899 | /* Update the NAND controller state */ |
||
| 1900 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 1901 | |||
| 1902 | /* Identify the device address */ |
||
| 1903 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 1904 | { |
||
| 1905 | deviceaddress = NAND_DEVICE1; |
||
| 1906 | } |
||
| 1907 | else |
||
| 1908 | { |
||
| 1909 | deviceaddress = NAND_DEVICE2; |
||
| 1910 | } |
||
| 1911 | |||
| 1912 | /* Send Erase block command sequence */ |
||
| 1913 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE0; |
||
| 1914 | __DSB(); |
||
| 1915 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
||
| 1916 | __DSB(); |
||
| 1917 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
||
| 1918 | __DSB(); |
||
| 1919 | *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); |
||
| 1920 | __DSB(); |
||
| 1921 | |||
| 1922 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE1; |
||
| 1923 | __DSB(); |
||
| 1924 | |||
| 1925 | /* Update the NAND controller state */ |
||
| 1926 | hnand->State = HAL_NAND_STATE_READY; |
||
| 1927 | |||
| 1928 | /* Process unlocked */ |
||
| 1929 | __HAL_UNLOCK(hnand); |
||
| 1930 | } |
||
| 1931 | else |
||
| 1932 | { |
||
| 1933 | return HAL_ERROR; |
||
| 1934 | } |
||
| 1935 | |||
| 1936 | return HAL_OK; |
||
| 1937 | } |
||
| 1938 | |||
| 1939 | /** |
||
| 1940 | * @brief Increment the NAND memory address |
||
| 1941 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 1942 | * the configuration information for NAND module. |
||
| 1943 | * @param pAddress pointer to NAND address structure |
||
| 1944 | * @retval The new status of the increment address operation. It can be: |
||
| 1945 | * - NAND_VALID_ADDRESS: When the new address is valid address |
||
| 1946 | * - NAND_INVALID_ADDRESS: When the new address is invalid address |
||
| 1947 | */ |
||
| 1948 | uint32_t HAL_NAND_Address_Inc(const NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) |
||
| 1949 | { |
||
| 1950 | uint32_t status = NAND_VALID_ADDRESS; |
||
| 1951 | |||
| 1952 | /* Increment page address */ |
||
| 1953 | pAddress->Page++; |
||
| 1954 | |||
| 1955 | /* Check NAND address is valid */ |
||
| 1956 | if (pAddress->Page == hnand->Config.BlockSize) |
||
| 1957 | { |
||
| 1958 | pAddress->Page = 0; |
||
| 1959 | pAddress->Block++; |
||
| 1960 | |||
| 1961 | if (pAddress->Block == hnand->Config.PlaneSize) |
||
| 1962 | { |
||
| 1963 | pAddress->Block = 0; |
||
| 1964 | pAddress->Plane++; |
||
| 1965 | |||
| 1966 | if (pAddress->Plane == (hnand->Config.PlaneNbr)) |
||
| 1967 | { |
||
| 1968 | status = NAND_INVALID_ADDRESS; |
||
| 1969 | } |
||
| 1970 | } |
||
| 1971 | } |
||
| 1972 | |||
| 1973 | return (status); |
||
| 1974 | } |
||
| 1975 | |||
| 1976 | #if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) |
||
| 1977 | /** |
||
| 1978 | * @brief Register a User NAND Callback |
||
| 1979 | * To be used to override the weak predefined callback |
||
| 1980 | * @param hnand : NAND handle |
||
| 1981 | * @param CallbackId : ID of the callback to be registered |
||
| 1982 | * This parameter can be one of the following values: |
||
| 1983 | * @arg @ref HAL_NAND_MSP_INIT_CB_ID NAND MspInit callback ID |
||
| 1984 | * @arg @ref HAL_NAND_MSP_DEINIT_CB_ID NAND MspDeInit callback ID |
||
| 1985 | * @arg @ref HAL_NAND_IT_CB_ID NAND IT callback ID |
||
| 1986 | * @param pCallback : pointer to the Callback function |
||
| 1987 | * @retval status |
||
| 1988 | */ |
||
| 1989 | HAL_StatusTypeDef HAL_NAND_RegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId, |
||
| 1990 | pNAND_CallbackTypeDef pCallback) |
||
| 1991 | { |
||
| 1992 | HAL_StatusTypeDef status = HAL_OK; |
||
| 1993 | |||
| 1994 | if (pCallback == NULL) |
||
| 1995 | { |
||
| 1996 | return HAL_ERROR; |
||
| 1997 | } |
||
| 1998 | |||
| 1999 | if (hnand->State == HAL_NAND_STATE_READY) |
||
| 2000 | { |
||
| 2001 | switch (CallbackId) |
||
| 2002 | { |
||
| 2003 | case HAL_NAND_MSP_INIT_CB_ID : |
||
| 2004 | hnand->MspInitCallback = pCallback; |
||
| 2005 | break; |
||
| 2006 | case HAL_NAND_MSP_DEINIT_CB_ID : |
||
| 2007 | hnand->MspDeInitCallback = pCallback; |
||
| 2008 | break; |
||
| 2009 | case HAL_NAND_IT_CB_ID : |
||
| 2010 | hnand->ItCallback = pCallback; |
||
| 2011 | break; |
||
| 2012 | default : |
||
| 2013 | /* update return status */ |
||
| 2014 | status = HAL_ERROR; |
||
| 2015 | break; |
||
| 2016 | } |
||
| 2017 | } |
||
| 2018 | else if (hnand->State == HAL_NAND_STATE_RESET) |
||
| 2019 | { |
||
| 2020 | switch (CallbackId) |
||
| 2021 | { |
||
| 2022 | case HAL_NAND_MSP_INIT_CB_ID : |
||
| 2023 | hnand->MspInitCallback = pCallback; |
||
| 2024 | break; |
||
| 2025 | case HAL_NAND_MSP_DEINIT_CB_ID : |
||
| 2026 | hnand->MspDeInitCallback = pCallback; |
||
| 2027 | break; |
||
| 2028 | default : |
||
| 2029 | /* update return status */ |
||
| 2030 | status = HAL_ERROR; |
||
| 2031 | break; |
||
| 2032 | } |
||
| 2033 | } |
||
| 2034 | else |
||
| 2035 | { |
||
| 2036 | /* update return status */ |
||
| 2037 | status = HAL_ERROR; |
||
| 2038 | } |
||
| 2039 | |||
| 2040 | } |
||
| 2041 | |||
| 2042 | /** |
||
| 2043 | * @brief Unregister a User NAND Callback |
||
| 2044 | * NAND Callback is redirected to the weak predefined callback |
||
| 2045 | * @param hnand : NAND handle |
||
| 2046 | * @param CallbackId : ID of the callback to be unregistered |
||
| 2047 | * This parameter can be one of the following values: |
||
| 2048 | * @arg @ref HAL_NAND_MSP_INIT_CB_ID NAND MspInit callback ID |
||
| 2049 | * @arg @ref HAL_NAND_MSP_DEINIT_CB_ID NAND MspDeInit callback ID |
||
| 2050 | * @arg @ref HAL_NAND_IT_CB_ID NAND IT callback ID |
||
| 2051 | * @retval status |
||
| 2052 | */ |
||
| 2053 | HAL_StatusTypeDef HAL_NAND_UnRegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId) |
||
| 2054 | { |
||
| 2055 | HAL_StatusTypeDef status = HAL_OK; |
||
| 2056 | |||
| 2057 | if (hnand->State == HAL_NAND_STATE_READY) |
||
| 2058 | { |
||
| 2059 | switch (CallbackId) |
||
| 2060 | { |
||
| 2061 | case HAL_NAND_MSP_INIT_CB_ID : |
||
| 2062 | hnand->MspInitCallback = HAL_NAND_MspInit; |
||
| 2063 | break; |
||
| 2064 | case HAL_NAND_MSP_DEINIT_CB_ID : |
||
| 2065 | hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
||
| 2066 | break; |
||
| 2067 | case HAL_NAND_IT_CB_ID : |
||
| 2068 | hnand->ItCallback = HAL_NAND_ITCallback; |
||
| 2069 | break; |
||
| 2070 | default : |
||
| 2071 | /* update return status */ |
||
| 2072 | status = HAL_ERROR; |
||
| 2073 | break; |
||
| 2074 | } |
||
| 2075 | } |
||
| 2076 | else if (hnand->State == HAL_NAND_STATE_RESET) |
||
| 2077 | { |
||
| 2078 | switch (CallbackId) |
||
| 2079 | { |
||
| 2080 | case HAL_NAND_MSP_INIT_CB_ID : |
||
| 2081 | hnand->MspInitCallback = HAL_NAND_MspInit; |
||
| 2082 | break; |
||
| 2083 | case HAL_NAND_MSP_DEINIT_CB_ID : |
||
| 2084 | hnand->MspDeInitCallback = HAL_NAND_MspDeInit; |
||
| 2085 | break; |
||
| 2086 | default : |
||
| 2087 | /* update return status */ |
||
| 2088 | status = HAL_ERROR; |
||
| 2089 | break; |
||
| 2090 | } |
||
| 2091 | } |
||
| 2092 | else |
||
| 2093 | { |
||
| 2094 | /* update return status */ |
||
| 2095 | status = HAL_ERROR; |
||
| 2096 | } |
||
| 2097 | |||
| 2098 | } |
||
| 2099 | #endif /* USE_HAL_NAND_REGISTER_CALLBACKS */ |
||
| 2100 | |||
| 2101 | /** |
||
| 2102 | * @} |
||
| 2103 | */ |
||
| 2104 | |||
| 2105 | /** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions |
||
| 2106 | * @brief management functions |
||
| 2107 | * |
||
| 2108 | @verbatim |
||
| 2109 | ============================================================================== |
||
| 2110 | ##### NAND Control functions ##### |
||
| 2111 | ============================================================================== |
||
| 2112 | [..] |
||
| 2113 | This subsection provides a set of functions allowing to control dynamically |
||
| 2114 | the NAND interface. |
||
| 2115 | |||
| 2116 | @endverbatim |
||
| 2117 | * @{ |
||
| 2118 | */ |
||
| 2119 | |||
| 2120 | |||
| 2121 | /** |
||
| 2122 | * @brief Enables dynamically NAND ECC feature. |
||
| 2123 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 2124 | * the configuration information for NAND module. |
||
| 2125 | * @retval HAL status |
||
| 2126 | */ |
||
| 2127 | HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand) |
||
| 2128 | { |
||
| 2129 | /* Check the NAND controller state */ |
||
| 2130 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 2131 | { |
||
| 2132 | return HAL_BUSY; |
||
| 2133 | } |
||
| 2134 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 2135 | { |
||
| 2136 | /* Update the NAND state */ |
||
| 2137 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 2138 | |||
| 2139 | /* Enable ECC feature */ |
||
| 2140 | (void)FSMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank); |
||
| 2141 | |||
| 2142 | /* Update the NAND state */ |
||
| 2143 | hnand->State = HAL_NAND_STATE_READY; |
||
| 2144 | } |
||
| 2145 | else |
||
| 2146 | { |
||
| 2147 | return HAL_ERROR; |
||
| 2148 | } |
||
| 2149 | |||
| 2150 | return HAL_OK; |
||
| 2151 | } |
||
| 2152 | |||
| 2153 | /** |
||
| 2154 | * @brief Disables dynamically FSMC_NAND ECC feature. |
||
| 2155 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 2156 | * the configuration information for NAND module. |
||
| 2157 | * @retval HAL status |
||
| 2158 | */ |
||
| 2159 | HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand) |
||
| 2160 | { |
||
| 2161 | /* Check the NAND controller state */ |
||
| 2162 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 2163 | { |
||
| 2164 | return HAL_BUSY; |
||
| 2165 | } |
||
| 2166 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 2167 | { |
||
| 2168 | /* Update the NAND state */ |
||
| 2169 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 2170 | |||
| 2171 | /* Disable ECC feature */ |
||
| 2172 | (void)FSMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank); |
||
| 2173 | |||
| 2174 | /* Update the NAND state */ |
||
| 2175 | hnand->State = HAL_NAND_STATE_READY; |
||
| 2176 | } |
||
| 2177 | else |
||
| 2178 | { |
||
| 2179 | return HAL_ERROR; |
||
| 2180 | } |
||
| 2181 | |||
| 2182 | return HAL_OK; |
||
| 2183 | } |
||
| 2184 | |||
| 2185 | /** |
||
| 2186 | * @brief Disables dynamically NAND ECC feature. |
||
| 2187 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 2188 | * the configuration information for NAND module. |
||
| 2189 | * @param ECCval pointer to ECC value |
||
| 2190 | * @param Timeout maximum timeout to wait |
||
| 2191 | * @retval HAL status |
||
| 2192 | */ |
||
| 2193 | HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout) |
||
| 2194 | { |
||
| 2195 | HAL_StatusTypeDef status; |
||
| 2196 | |||
| 2197 | /* Check the NAND controller state */ |
||
| 2198 | if (hnand->State == HAL_NAND_STATE_BUSY) |
||
| 2199 | { |
||
| 2200 | return HAL_BUSY; |
||
| 2201 | } |
||
| 2202 | else if (hnand->State == HAL_NAND_STATE_READY) |
||
| 2203 | { |
||
| 2204 | /* Update the NAND state */ |
||
| 2205 | hnand->State = HAL_NAND_STATE_BUSY; |
||
| 2206 | |||
| 2207 | /* Get NAND ECC value */ |
||
| 2208 | status = FSMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout); |
||
| 2209 | |||
| 2210 | /* Update the NAND state */ |
||
| 2211 | hnand->State = HAL_NAND_STATE_READY; |
||
| 2212 | } |
||
| 2213 | else |
||
| 2214 | { |
||
| 2215 | return HAL_ERROR; |
||
| 2216 | } |
||
| 2217 | |||
| 2218 | return status; |
||
| 2219 | } |
||
| 2220 | |||
| 2221 | /** |
||
| 2222 | * @} |
||
| 2223 | */ |
||
| 2224 | |||
| 2225 | |||
| 2226 | /** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions |
||
| 2227 | * @brief Peripheral State functions |
||
| 2228 | * |
||
| 2229 | @verbatim |
||
| 2230 | ============================================================================== |
||
| 2231 | ##### NAND State functions ##### |
||
| 2232 | ============================================================================== |
||
| 2233 | [..] |
||
| 2234 | This subsection permits to get in run-time the status of the NAND controller |
||
| 2235 | and the data flow. |
||
| 2236 | |||
| 2237 | @endverbatim |
||
| 2238 | * @{ |
||
| 2239 | */ |
||
| 2240 | |||
| 2241 | /** |
||
| 2242 | * @brief return the NAND state |
||
| 2243 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 2244 | * the configuration information for NAND module. |
||
| 2245 | * @retval HAL state |
||
| 2246 | */ |
||
| 2247 | HAL_NAND_StateTypeDef HAL_NAND_GetState(const NAND_HandleTypeDef *hnand) |
||
| 2248 | { |
||
| 2249 | return hnand->State; |
||
| 2250 | } |
||
| 2251 | |||
| 2252 | /** |
||
| 2253 | * @brief NAND memory read status |
||
| 2254 | * @param hnand pointer to a NAND_HandleTypeDef structure that contains |
||
| 2255 | * the configuration information for NAND module. |
||
| 2256 | * @retval NAND status |
||
| 2257 | */ |
||
| 2258 | uint32_t HAL_NAND_Read_Status(const NAND_HandleTypeDef *hnand) |
||
| 2259 | { |
||
| 2260 | uint32_t data; |
||
| 2261 | uint32_t deviceaddress; |
||
| 2262 | UNUSED(hnand); |
||
| 2263 | |||
| 2264 | /* Identify the device address */ |
||
| 2265 | if (hnand->Init.NandBank == FSMC_NAND_BANK2) |
||
| 2266 | { |
||
| 2267 | deviceaddress = NAND_DEVICE1; |
||
| 2268 | } |
||
| 2269 | else |
||
| 2270 | { |
||
| 2271 | deviceaddress = NAND_DEVICE2; |
||
| 2272 | } |
||
| 2273 | |||
| 2274 | /* Send Read status operation command */ |
||
| 2275 | *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_STATUS; |
||
| 2276 | |||
| 2277 | /* Read status register data */ |
||
| 2278 | data = *(__IO uint8_t *)deviceaddress; |
||
| 2279 | |||
| 2280 | /* Return the status */ |
||
| 2281 | if ((data & NAND_ERROR) == NAND_ERROR) |
||
| 2282 | { |
||
| 2283 | return NAND_ERROR; |
||
| 2284 | } |
||
| 2285 | else if ((data & NAND_READY) == NAND_READY) |
||
| 2286 | { |
||
| 2287 | return NAND_READY; |
||
| 2288 | } |
||
| 2289 | else |
||
| 2290 | { |
||
| 2291 | return NAND_BUSY; |
||
| 2292 | } |
||
| 2293 | } |
||
| 2294 | |||
| 2295 | /** |
||
| 2296 | * @} |
||
| 2297 | */ |
||
| 2298 | |||
| 2299 | /** |
||
| 2300 | * @} |
||
| 2301 | */ |
||
| 2302 | |||
| 2303 | /** |
||
| 2304 | * @} |
||
| 2305 | */ |
||
| 2306 | |||
| 2307 | #endif /* HAL_NAND_MODULE_ENABLED */ |
||
| 2308 | |||
| 2309 | /** |
||
| 2310 | * @} |
||
| 2311 | */ |
||
| 2312 | |||
| 2313 | #endif /* FSMC_BANK3 */ |