Subversion Repositories AFRtranscoder

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**
2
  ******************************************************************************
3
  * @file    stm32f1xx_ll_tim.h
4
  * @author  MCD Application Team
5
  * @brief   Header file of TIM LL module.
6
  ******************************************************************************
7
  * @attention
8
  *
9
  * Copyright (c) 2016 STMicroelectronics.
10
  * All rights reserved.
11
  *
12
  * This software is licensed under terms that can be found in the LICENSE file
13
  * in the root directory of this software component.
14
  * If no LICENSE file comes with this software, it is provided AS-IS.
15
  *
16
  ******************************************************************************
17
  */
18
 
19
/* Define to prevent recursive inclusion -------------------------------------*/
20
#ifndef __STM32F1xx_LL_TIM_H
21
#define __STM32F1xx_LL_TIM_H
22
 
23
#ifdef __cplusplus
24
extern "C" {
25
#endif
26
 
27
/* Includes ------------------------------------------------------------------*/
28
#include "stm32f1xx.h"
29
 
30
/** @addtogroup STM32F1xx_LL_Driver
31
  * @{
32
  */
33
 
34
#if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17)
35
 
36
/** @defgroup TIM_LL TIM
37
  * @{
38
  */
39
 
40
/* Private types -------------------------------------------------------------*/
41
/* Private variables ---------------------------------------------------------*/
42
/** @defgroup TIM_LL_Private_Variables TIM Private Variables
43
  * @{
44
  */
45
static const uint8_t OFFSET_TAB_CCMRx[] =
46
{
47
  0x00U,   /* 0: TIMx_CH1  */
48
  0x00U,   /* 1: TIMx_CH1N */
49
  0x00U,   /* 2: TIMx_CH2  */
50
  0x00U,   /* 3: TIMx_CH2N */
51
  0x04U,   /* 4: TIMx_CH3  */
52
  0x04U,   /* 5: TIMx_CH3N */
53
  0x04U    /* 6: TIMx_CH4  */
54
};
55
 
56
static const uint8_t SHIFT_TAB_OCxx[] =
57
{
58
  0U,            /* 0: OC1M, OC1FE, OC1PE */
59
  0U,            /* 1: - NA */
60
  8U,            /* 2: OC2M, OC2FE, OC2PE */
61
  0U,            /* 3: - NA */
62
  0U,            /* 4: OC3M, OC3FE, OC3PE */
63
  0U,            /* 5: - NA */
64
  8U             /* 6: OC4M, OC4FE, OC4PE */
65
};
66
 
67
static const uint8_t SHIFT_TAB_ICxx[] =
68
{
69
  0U,            /* 0: CC1S, IC1PSC, IC1F */
70
  0U,            /* 1: - NA */
71
  8U,            /* 2: CC2S, IC2PSC, IC2F */
72
  0U,            /* 3: - NA */
73
  0U,            /* 4: CC3S, IC3PSC, IC3F */
74
  0U,            /* 5: - NA */
75
  8U             /* 6: CC4S, IC4PSC, IC4F */
76
};
77
 
78
static const uint8_t SHIFT_TAB_CCxP[] =
79
{
80
  0U,            /* 0: CC1P */
81
  2U,            /* 1: CC1NP */
82
  4U,            /* 2: CC2P */
83
  6U,            /* 3: CC2NP */
84
  8U,            /* 4: CC3P */
85
  10U,           /* 5: CC3NP */
86
  12U            /* 6: CC4P */
87
};
88
 
89
static const uint8_t SHIFT_TAB_OISx[] =
90
{
91
  0U,            /* 0: OIS1 */
92
  1U,            /* 1: OIS1N */
93
  2U,            /* 2: OIS2 */
94
  3U,            /* 3: OIS2N */
95
  4U,            /* 4: OIS3 */
96
  5U,            /* 5: OIS3N */
97
  6U             /* 6: OIS4 */
98
};
99
/**
100
  * @}
101
  */
102
 
103
/* Private constants ---------------------------------------------------------*/
104
/** @defgroup TIM_LL_Private_Constants TIM Private Constants
105
  * @{
106
  */
107
 
108
 
109
 
110
/* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
111
#define DT_DELAY_1 ((uint8_t)0x7F)
112
#define DT_DELAY_2 ((uint8_t)0x3F)
113
#define DT_DELAY_3 ((uint8_t)0x1F)
114
#define DT_DELAY_4 ((uint8_t)0x1F)
115
 
116
/* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
117
#define DT_RANGE_1 ((uint8_t)0x00)
118
#define DT_RANGE_2 ((uint8_t)0x80)
119
#define DT_RANGE_3 ((uint8_t)0xC0)
120
#define DT_RANGE_4 ((uint8_t)0xE0)
121
 
122
 
123
/**
124
  * @}
125
  */
126
 
127
/* Private macros ------------------------------------------------------------*/
128
/** @defgroup TIM_LL_Private_Macros TIM Private Macros
129
  * @{
130
  */
131
/** @brief  Convert channel id into channel index.
132
  * @param  __CHANNEL__ This parameter can be one of the following values:
133
  *         @arg @ref LL_TIM_CHANNEL_CH1
134
  *         @arg @ref LL_TIM_CHANNEL_CH1N
135
  *         @arg @ref LL_TIM_CHANNEL_CH2
136
  *         @arg @ref LL_TIM_CHANNEL_CH2N
137
  *         @arg @ref LL_TIM_CHANNEL_CH3
138
  *         @arg @ref LL_TIM_CHANNEL_CH3N
139
  *         @arg @ref LL_TIM_CHANNEL_CH4
140
  * @retval none
141
  */
142
#define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
143
  (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
144
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
145
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
146
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
147
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
148
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U : 6U)
149
 
150
/** @brief  Calculate the deadtime sampling period(in ps).
151
  * @param  __TIMCLK__ timer input clock frequency (in Hz).
152
  * @param  __CKD__ This parameter can be one of the following values:
153
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
154
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
155
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
156
  * @retval none
157
  */
158
#define TIM_CALC_DTS(__TIMCLK__, __CKD__)                                                        \
159
  (((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__))         : \
160
   ((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
161
   ((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
162
/**
163
  * @}
164
  */
165
 
166
 
167
/* Exported types ------------------------------------------------------------*/
168
#if defined(USE_FULL_LL_DRIVER)
169
/** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
170
  * @{
171
  */
172
 
173
/**
174
  * @brief  TIM Time Base configuration structure definition.
175
  */
176
typedef struct
177
{
178
  uint16_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
179
                                   This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
180
 
181
                                   This feature can be modified afterwards using unitary function
182
                                   @ref LL_TIM_SetPrescaler().*/
183
 
184
  uint32_t CounterMode;       /*!< Specifies the counter mode.
185
                                   This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
186
 
187
                                   This feature can be modified afterwards using unitary function
188
                                   @ref LL_TIM_SetCounterMode().*/
189
 
190
  uint32_t Autoreload;        /*!< Specifies the auto reload value to be loaded into the active
191
                                   Auto-Reload Register at the next update event.
192
                                   This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
193
                                   Some timer instances may support 32 bits counters. In that case this parameter must
194
                                   be a number between 0x0000 and 0xFFFFFFFF.
195
 
196
                                   This feature can be modified afterwards using unitary function
197
                                   @ref LL_TIM_SetAutoReload().*/
198
 
199
  uint32_t ClockDivision;     /*!< Specifies the clock division.
200
                                   This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
201
 
202
                                   This feature can be modified afterwards using unitary function
203
                                   @ref LL_TIM_SetClockDivision().*/
204
 
205
  uint32_t RepetitionCounter;  /*!< Specifies the repetition counter value. Each time the RCR downcounter
206
                                   reaches zero, an update event is generated and counting restarts
207
                                   from the RCR value (N).
208
                                   This means in PWM mode that (N+1) corresponds to:
209
                                      - the number of PWM periods in edge-aligned mode
210
                                      - the number of half PWM period in center-aligned mode
211
                                   GP timers: this parameter must be a number between Min_Data = 0x00 and
212
                                   Max_Data = 0xFF.
213
                                   Advanced timers: this parameter must be a number between Min_Data = 0x0000 and
214
                                   Max_Data = 0xFFFF.
215
 
216
                                   This feature can be modified afterwards using unitary function
217
                                   @ref LL_TIM_SetRepetitionCounter().*/
218
} LL_TIM_InitTypeDef;
219
 
220
/**
221
  * @brief  TIM Output Compare configuration structure definition.
222
  */
223
typedef struct
224
{
225
  uint32_t OCMode;        /*!< Specifies the output mode.
226
                               This parameter can be a value of @ref TIM_LL_EC_OCMODE.
227
 
228
                               This feature can be modified afterwards using unitary function
229
                               @ref LL_TIM_OC_SetMode().*/
230
 
231
  uint32_t OCState;       /*!< Specifies the TIM Output Compare state.
232
                               This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
233
 
234
                               This feature can be modified afterwards using unitary functions
235
                               @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
236
 
237
  uint32_t OCNState;      /*!< Specifies the TIM complementary Output Compare state.
238
                               This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
239
 
240
                               This feature can be modified afterwards using unitary functions
241
                               @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
242
 
243
  uint32_t CompareValue;  /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
244
                               This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
245
 
246
                               This feature can be modified afterwards using unitary function
247
                               LL_TIM_OC_SetCompareCHx (x=1..6).*/
248
 
249
  uint32_t OCPolarity;    /*!< Specifies the output polarity.
250
                               This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
251
 
252
                               This feature can be modified afterwards using unitary function
253
                               @ref LL_TIM_OC_SetPolarity().*/
254
 
255
  uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
256
                               This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
257
 
258
                               This feature can be modified afterwards using unitary function
259
                               @ref LL_TIM_OC_SetPolarity().*/
260
 
261
 
262
  uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
263
                               This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
264
 
265
                               This feature can be modified afterwards using unitary function
266
                               @ref LL_TIM_OC_SetIdleState().*/
267
 
268
  uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
269
                               This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
270
 
271
                               This feature can be modified afterwards using unitary function
272
                               @ref LL_TIM_OC_SetIdleState().*/
273
} LL_TIM_OC_InitTypeDef;
274
 
275
/**
276
  * @brief  TIM Input Capture configuration structure definition.
277
  */
278
 
279
typedef struct
280
{
281
 
282
  uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
283
                               This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
284
 
285
                               This feature can be modified afterwards using unitary function
286
                               @ref LL_TIM_IC_SetPolarity().*/
287
 
288
  uint32_t ICActiveInput; /*!< Specifies the input.
289
                               This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
290
 
291
                               This feature can be modified afterwards using unitary function
292
                               @ref LL_TIM_IC_SetActiveInput().*/
293
 
294
  uint32_t ICPrescaler;   /*!< Specifies the Input Capture Prescaler.
295
                               This parameter can be a value of @ref TIM_LL_EC_ICPSC.
296
 
297
                               This feature can be modified afterwards using unitary function
298
                               @ref LL_TIM_IC_SetPrescaler().*/
299
 
300
  uint32_t ICFilter;      /*!< Specifies the input capture filter.
301
                               This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
302
 
303
                               This feature can be modified afterwards using unitary function
304
                               @ref LL_TIM_IC_SetFilter().*/
305
} LL_TIM_IC_InitTypeDef;
306
 
307
 
308
/**
309
  * @brief  TIM Encoder interface configuration structure definition.
310
  */
311
typedef struct
312
{
313
  uint32_t EncoderMode;     /*!< Specifies the encoder resolution (x2 or x4).
314
                                 This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
315
 
316
                                 This feature can be modified afterwards using unitary function
317
                                 @ref LL_TIM_SetEncoderMode().*/
318
 
319
  uint32_t IC1Polarity;     /*!< Specifies the active edge of TI1 input.
320
                                 This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
321
 
322
                                 This feature can be modified afterwards using unitary function
323
                                 @ref LL_TIM_IC_SetPolarity().*/
324
 
325
  uint32_t IC1ActiveInput;  /*!< Specifies the TI1 input source
326
                                 This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
327
 
328
                                 This feature can be modified afterwards using unitary function
329
                                 @ref LL_TIM_IC_SetActiveInput().*/
330
 
331
  uint32_t IC1Prescaler;    /*!< Specifies the TI1 input prescaler value.
332
                                 This parameter can be a value of @ref TIM_LL_EC_ICPSC.
333
 
334
                                 This feature can be modified afterwards using unitary function
335
                                 @ref LL_TIM_IC_SetPrescaler().*/
336
 
337
  uint32_t IC1Filter;       /*!< Specifies the TI1 input filter.
338
                                 This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
339
 
340
                                 This feature can be modified afterwards using unitary function
341
                                 @ref LL_TIM_IC_SetFilter().*/
342
 
343
  uint32_t IC2Polarity;      /*!< Specifies the active edge of TI2 input.
344
                                 This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
345
 
346
                                 This feature can be modified afterwards using unitary function
347
                                 @ref LL_TIM_IC_SetPolarity().*/
348
 
349
  uint32_t IC2ActiveInput;  /*!< Specifies the TI2 input source
350
                                 This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
351
 
352
                                 This feature can be modified afterwards using unitary function
353
                                 @ref LL_TIM_IC_SetActiveInput().*/
354
 
355
  uint32_t IC2Prescaler;    /*!< Specifies the TI2 input prescaler value.
356
                                 This parameter can be a value of @ref TIM_LL_EC_ICPSC.
357
 
358
                                 This feature can be modified afterwards using unitary function
359
                                 @ref LL_TIM_IC_SetPrescaler().*/
360
 
361
  uint32_t IC2Filter;       /*!< Specifies the TI2 input filter.
362
                                 This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
363
 
364
                                 This feature can be modified afterwards using unitary function
365
                                 @ref LL_TIM_IC_SetFilter().*/
366
 
367
} LL_TIM_ENCODER_InitTypeDef;
368
 
369
/**
370
  * @brief  TIM Hall sensor interface configuration structure definition.
371
  */
372
typedef struct
373
{
374
 
375
  uint32_t IC1Polarity;        /*!< Specifies the active edge of TI1 input.
376
                                    This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
377
 
378
                                    This feature can be modified afterwards using unitary function
379
                                    @ref LL_TIM_IC_SetPolarity().*/
380
 
381
  uint32_t IC1Prescaler;       /*!< Specifies the TI1 input prescaler value.
382
                                    Prescaler must be set to get a maximum counter period longer than the
383
                                    time interval between 2 consecutive changes on the Hall inputs.
384
                                    This parameter can be a value of @ref TIM_LL_EC_ICPSC.
385
 
386
                                    This feature can be modified afterwards using unitary function
387
                                    @ref LL_TIM_IC_SetPrescaler().*/
388
 
389
  uint32_t IC1Filter;          /*!< Specifies the TI1 input filter.
390
                                    This parameter can be a value of
391
                                    @ref TIM_LL_EC_IC_FILTER.
392
 
393
                                    This feature can be modified afterwards using unitary function
394
                                    @ref LL_TIM_IC_SetFilter().*/
395
 
396
  uint32_t CommutationDelay;   /*!< Specifies the compare value to be loaded into the Capture Compare Register.
397
                                    A positive pulse (TRGO event) is generated with a programmable delay every time
398
                                    a change occurs on the Hall inputs.
399
                                    This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
400
 
401
                                    This feature can be modified afterwards using unitary function
402
                                    @ref LL_TIM_OC_SetCompareCH2().*/
403
} LL_TIM_HALLSENSOR_InitTypeDef;
404
 
405
/**
406
  * @brief  BDTR (Break and Dead Time) structure definition
407
  */
408
typedef struct
409
{
410
  uint32_t OSSRState;            /*!< Specifies the Off-State selection used in Run mode.
411
                                      This parameter can be a value of @ref TIM_LL_EC_OSSR
412
 
413
                                      This feature can be modified afterwards using unitary function
414
                                      @ref LL_TIM_SetOffStates()
415
 
416
                                      @note This bit-field cannot be modified as long as LOCK level 2 has been
417
                                       programmed. */
418
 
419
  uint32_t OSSIState;            /*!< Specifies the Off-State used in Idle state.
420
                                      This parameter can be a value of @ref TIM_LL_EC_OSSI
421
 
422
                                      This feature can be modified afterwards using unitary function
423
                                      @ref LL_TIM_SetOffStates()
424
 
425
                                      @note This bit-field cannot be modified as long as LOCK level 2 has been
426
                                      programmed. */
427
 
428
  uint32_t LockLevel;            /*!< Specifies the LOCK level parameters.
429
                                      This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
430
 
431
                                      @note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR
432
                                      register has been written, their content is frozen until the next reset.*/
433
 
434
  uint8_t DeadTime;              /*!< Specifies the delay time between the switching-off and the
435
                                      switching-on of the outputs.
436
                                      This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
437
 
438
                                      This feature can be modified afterwards using unitary function
439
                                      @ref LL_TIM_OC_SetDeadTime()
440
 
441
                                      @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been
442
                                       programmed. */
443
 
444
  uint16_t BreakState;           /*!< Specifies whether the TIM Break input is enabled or not.
445
                                      This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
446
 
447
                                      This feature can be modified afterwards using unitary functions
448
                                      @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
449
 
450
                                      @note This bit-field can not be modified as long as LOCK level 1 has been
451
                                      programmed. */
452
 
453
  uint32_t BreakPolarity;        /*!< Specifies the TIM Break Input pin polarity.
454
                                      This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
455
 
456
                                      This feature can be modified afterwards using unitary function
457
                                      @ref LL_TIM_ConfigBRK()
458
 
459
                                      @note This bit-field can not be modified as long as LOCK level 1 has been
460
                                      programmed. */
461
 
462
  uint32_t AutomaticOutput;      /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
463
                                      This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
464
 
465
                                      This feature can be modified afterwards using unitary functions
466
                                      @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
467
 
468
                                      @note This bit-field can not be modified as long as LOCK level 1 has been
469
                                      programmed. */
470
} LL_TIM_BDTR_InitTypeDef;
471
 
472
/**
473
  * @}
474
  */
475
#endif /* USE_FULL_LL_DRIVER */
476
 
477
/* Exported constants --------------------------------------------------------*/
478
/** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
479
  * @{
480
  */
481
 
482
/** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
483
  * @brief    Flags defines which can be used with LL_TIM_ReadReg function.
484
  * @{
485
  */
486
#define LL_TIM_SR_UIF                          TIM_SR_UIF           /*!< Update interrupt flag */
487
#define LL_TIM_SR_CC1IF                        TIM_SR_CC1IF         /*!< Capture/compare 1 interrupt flag */
488
#define LL_TIM_SR_CC2IF                        TIM_SR_CC2IF         /*!< Capture/compare 2 interrupt flag */
489
#define LL_TIM_SR_CC3IF                        TIM_SR_CC3IF         /*!< Capture/compare 3 interrupt flag */
490
#define LL_TIM_SR_CC4IF                        TIM_SR_CC4IF         /*!< Capture/compare 4 interrupt flag */
491
#define LL_TIM_SR_COMIF                        TIM_SR_COMIF         /*!< COM interrupt flag */
492
#define LL_TIM_SR_TIF                          TIM_SR_TIF           /*!< Trigger interrupt flag */
493
#define LL_TIM_SR_BIF                          TIM_SR_BIF           /*!< Break interrupt flag */
494
#define LL_TIM_SR_CC1OF                        TIM_SR_CC1OF         /*!< Capture/Compare 1 overcapture flag */
495
#define LL_TIM_SR_CC2OF                        TIM_SR_CC2OF         /*!< Capture/Compare 2 overcapture flag */
496
#define LL_TIM_SR_CC3OF                        TIM_SR_CC3OF         /*!< Capture/Compare 3 overcapture flag */
497
#define LL_TIM_SR_CC4OF                        TIM_SR_CC4OF         /*!< Capture/Compare 4 overcapture flag */
498
/**
499
  * @}
500
  */
501
 
502
#if defined(USE_FULL_LL_DRIVER)
503
/** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
504
  * @{
505
  */
506
#define LL_TIM_BREAK_DISABLE            0x00000000U             /*!< Break function disabled */
507
#define LL_TIM_BREAK_ENABLE             TIM_BDTR_BKE            /*!< Break function enabled */
508
/**
509
  * @}
510
  */
511
 
512
/** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
513
  * @{
514
  */
515
#define LL_TIM_AUTOMATICOUTPUT_DISABLE         0x00000000U             /*!< MOE can be set only by software */
516
#define LL_TIM_AUTOMATICOUTPUT_ENABLE          TIM_BDTR_AOE            /*!< MOE can be set by software or automatically at the next update event */
517
/**
518
  * @}
519
  */
520
#endif /* USE_FULL_LL_DRIVER */
521
 
522
/** @defgroup TIM_LL_EC_IT IT Defines
523
  * @brief    IT defines which can be used with LL_TIM_ReadReg and  LL_TIM_WriteReg functions.
524
  * @{
525
  */
526
#define LL_TIM_DIER_UIE                        TIM_DIER_UIE         /*!< Update interrupt enable */
527
#define LL_TIM_DIER_CC1IE                      TIM_DIER_CC1IE       /*!< Capture/compare 1 interrupt enable */
528
#define LL_TIM_DIER_CC2IE                      TIM_DIER_CC2IE       /*!< Capture/compare 2 interrupt enable */
529
#define LL_TIM_DIER_CC3IE                      TIM_DIER_CC3IE       /*!< Capture/compare 3 interrupt enable */
530
#define LL_TIM_DIER_CC4IE                      TIM_DIER_CC4IE       /*!< Capture/compare 4 interrupt enable */
531
#define LL_TIM_DIER_COMIE                      TIM_DIER_COMIE       /*!< COM interrupt enable */
532
#define LL_TIM_DIER_TIE                        TIM_DIER_TIE         /*!< Trigger interrupt enable */
533
#define LL_TIM_DIER_BIE                        TIM_DIER_BIE         /*!< Break interrupt enable */
534
/**
535
  * @}
536
  */
537
 
538
/** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
539
  * @{
540
  */
541
#define LL_TIM_UPDATESOURCE_REGULAR            0x00000000U          /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
542
#define LL_TIM_UPDATESOURCE_COUNTER            TIM_CR1_URS          /*!< Only counter overflow/underflow generates an update request */
543
/**
544
  * @}
545
  */
546
 
547
/** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
548
  * @{
549
  */
550
#define LL_TIM_ONEPULSEMODE_SINGLE             TIM_CR1_OPM          /*!< Counter stops counting at the next update event */
551
#define LL_TIM_ONEPULSEMODE_REPETITIVE         0x00000000U          /*!< Counter is not stopped at update event */
552
/**
553
  * @}
554
  */
555
 
556
/** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
557
  * @{
558
  */
559
#define LL_TIM_COUNTERMODE_UP                  0x00000000U          /*!<Counter used as upcounter */
560
#define LL_TIM_COUNTERMODE_DOWN                TIM_CR1_DIR          /*!< Counter used as downcounter */
561
#define LL_TIM_COUNTERMODE_CENTER_DOWN         TIM_CR1_CMS_0        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting down. */
562
#define LL_TIM_COUNTERMODE_CENTER_UP           TIM_CR1_CMS_1        /*!<The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up */
563
#define LL_TIM_COUNTERMODE_CENTER_UP_DOWN      TIM_CR1_CMS          /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up or down. */
564
/**
565
  * @}
566
  */
567
 
568
/** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
569
  * @{
570
  */
571
#define LL_TIM_CLOCKDIVISION_DIV1              0x00000000U          /*!< tDTS=tCK_INT */
572
#define LL_TIM_CLOCKDIVISION_DIV2              TIM_CR1_CKD_0        /*!< tDTS=2*tCK_INT */
573
#define LL_TIM_CLOCKDIVISION_DIV4              TIM_CR1_CKD_1        /*!< tDTS=4*tCK_INT */
574
/**
575
  * @}
576
  */
577
 
578
/** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
579
  * @{
580
  */
581
#define LL_TIM_COUNTERDIRECTION_UP             0x00000000U          /*!< Timer counter counts up */
582
#define LL_TIM_COUNTERDIRECTION_DOWN           TIM_CR1_DIR          /*!< Timer counter counts down */
583
/**
584
  * @}
585
  */
586
 
587
/** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare  Update Source
588
  * @{
589
  */
590
#define LL_TIM_CCUPDATESOURCE_COMG_ONLY        0x00000000U          /*!< Capture/compare control bits are updated by setting the COMG bit only */
591
#define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI    TIM_CR2_CCUS         /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
592
/**
593
  * @}
594
  */
595
 
596
/** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
597
  * @{
598
  */
599
#define LL_TIM_CCDMAREQUEST_CC                 0x00000000U          /*!< CCx DMA request sent when CCx event occurs */
600
#define LL_TIM_CCDMAREQUEST_UPDATE             TIM_CR2_CCDS         /*!< CCx DMA requests sent when update event occurs */
601
/**
602
  * @}
603
  */
604
 
605
/** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
606
  * @{
607
  */
608
#define LL_TIM_LOCKLEVEL_OFF                   0x00000000U          /*!< LOCK OFF - No bit is write protected */
609
#define LL_TIM_LOCKLEVEL_1                     TIM_BDTR_LOCK_0      /*!< LOCK Level 1 */
610
#define LL_TIM_LOCKLEVEL_2                     TIM_BDTR_LOCK_1      /*!< LOCK Level 2 */
611
#define LL_TIM_LOCKLEVEL_3                     TIM_BDTR_LOCK        /*!< LOCK Level 3 */
612
/**
613
  * @}
614
  */
615
 
616
/** @defgroup TIM_LL_EC_CHANNEL Channel
617
  * @{
618
  */
619
#define LL_TIM_CHANNEL_CH1                     TIM_CCER_CC1E     /*!< Timer input/output channel 1 */
620
#define LL_TIM_CHANNEL_CH1N                    TIM_CCER_CC1NE    /*!< Timer complementary output channel 1 */
621
#define LL_TIM_CHANNEL_CH2                     TIM_CCER_CC2E     /*!< Timer input/output channel 2 */
622
#define LL_TIM_CHANNEL_CH2N                    TIM_CCER_CC2NE    /*!< Timer complementary output channel 2 */
623
#define LL_TIM_CHANNEL_CH3                     TIM_CCER_CC3E     /*!< Timer input/output channel 3 */
624
#define LL_TIM_CHANNEL_CH3N                    TIM_CCER_CC3NE    /*!< Timer complementary output channel 3 */
625
#define LL_TIM_CHANNEL_CH4                     TIM_CCER_CC4E     /*!< Timer input/output channel 4 */
626
/**
627
  * @}
628
  */
629
 
630
#if defined(USE_FULL_LL_DRIVER)
631
/** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
632
  * @{
633
  */
634
#define LL_TIM_OCSTATE_DISABLE                 0x00000000U             /*!< OCx is not active */
635
#define LL_TIM_OCSTATE_ENABLE                  TIM_CCER_CC1E           /*!< OCx signal is output on the corresponding output pin */
636
/**
637
  * @}
638
  */
639
#endif /* USE_FULL_LL_DRIVER */
640
 
641
/** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
642
  * @{
643
  */
644
#define LL_TIM_OCMODE_FROZEN                   0x00000000U                                              /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
645
#define LL_TIM_OCMODE_ACTIVE                   TIM_CCMR1_OC1M_0                                         /*!<OCyREF is forced high on compare match*/
646
#define LL_TIM_OCMODE_INACTIVE                 TIM_CCMR1_OC1M_1                                         /*!<OCyREF is forced low on compare match*/
647
#define LL_TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF toggles on compare match*/
648
#define LL_TIM_OCMODE_FORCED_INACTIVE          TIM_CCMR1_OC1M_2                                         /*!<OCyREF is forced low*/
649
#define LL_TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF is forced high*/
650
#define LL_TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1)                    /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive.  In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
651
#define LL_TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active.  In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
652
/**
653
  * @}
654
  */
655
 
656
/** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
657
  * @{
658
  */
659
#define LL_TIM_OCPOLARITY_HIGH                 0x00000000U                 /*!< OCxactive high*/
660
#define LL_TIM_OCPOLARITY_LOW                  TIM_CCER_CC1P               /*!< OCxactive low*/
661
/**
662
  * @}
663
  */
664
 
665
/** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
666
  * @{
667
  */
668
#define LL_TIM_OCIDLESTATE_LOW                 0x00000000U             /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
669
#define LL_TIM_OCIDLESTATE_HIGH                TIM_CR2_OIS1            /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
670
/**
671
  * @}
672
  */
673
 
674
 
675
/** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
676
  * @{
677
  */
678
#define LL_TIM_ACTIVEINPUT_DIRECTTI            (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
679
#define LL_TIM_ACTIVEINPUT_INDIRECTTI          (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
680
#define LL_TIM_ACTIVEINPUT_TRC                 (TIM_CCMR1_CC1S << 16U)   /*!< ICx is mapped on TRC */
681
/**
682
  * @}
683
  */
684
 
685
/** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
686
  * @{
687
  */
688
#define LL_TIM_ICPSC_DIV1                      0x00000000U                    /*!< No prescaler, capture is done each time an edge is detected on the capture input */
689
#define LL_TIM_ICPSC_DIV2                      (TIM_CCMR1_IC1PSC_0 << 16U)    /*!< Capture is done once every 2 events */
690
#define LL_TIM_ICPSC_DIV4                      (TIM_CCMR1_IC1PSC_1 << 16U)    /*!< Capture is done once every 4 events */
691
#define LL_TIM_ICPSC_DIV8                      (TIM_CCMR1_IC1PSC << 16U)      /*!< Capture is done once every 8 events */
692
/**
693
  * @}
694
  */
695
 
696
/** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
697
  * @{
698
  */
699
#define LL_TIM_IC_FILTER_FDIV1                 0x00000000U                                                        /*!< No filter, sampling is done at fDTS */
700
#define LL_TIM_IC_FILTER_FDIV1_N2              (TIM_CCMR1_IC1F_0 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=2 */
701
#define LL_TIM_IC_FILTER_FDIV1_N4              (TIM_CCMR1_IC1F_1 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=4 */
702
#define LL_TIM_IC_FILTER_FDIV1_N8              ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fCK_INT, N=8 */
703
#define LL_TIM_IC_FILTER_FDIV2_N6              (TIM_CCMR1_IC1F_2 << 16U)                                          /*!< fSAMPLING=fDTS/2, N=6 */
704
#define LL_TIM_IC_FILTER_FDIV2_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/2, N=8 */
705
#define LL_TIM_IC_FILTER_FDIV4_N6              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/4, N=6 */
706
#define LL_TIM_IC_FILTER_FDIV4_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/4, N=8 */
707
#define LL_TIM_IC_FILTER_FDIV8_N6              (TIM_CCMR1_IC1F_3 << 16U)                                          /*!< fSAMPLING=fDTS/8, N=6 */
708
#define LL_TIM_IC_FILTER_FDIV8_N8              ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/8, N=8 */
709
#define LL_TIM_IC_FILTER_FDIV16_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/16, N=5 */
710
#define LL_TIM_IC_FILTER_FDIV16_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/16, N=6 */
711
#define LL_TIM_IC_FILTER_FDIV16_N8             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U)                     /*!< fSAMPLING=fDTS/16, N=8 */
712
#define LL_TIM_IC_FILTER_FDIV32_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/32, N=5 */
713
#define LL_TIM_IC_FILTER_FDIV32_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)  /*!< fSAMPLING=fDTS/32, N=6 */
714
#define LL_TIM_IC_FILTER_FDIV32_N8             (TIM_CCMR1_IC1F << 16U)                                            /*!< fSAMPLING=fDTS/32, N=8 */
715
/**
716
  * @}
717
  */
718
 
719
/** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
720
  * @{
721
  */
722
#define LL_TIM_IC_POLARITY_RISING              0x00000000U                      /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
723
#define LL_TIM_IC_POLARITY_FALLING             TIM_CCER_CC1P                    /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
724
/**
725
  * @}
726
  */
727
 
728
/** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
729
  * @{
730
  */
731
#define LL_TIM_CLOCKSOURCE_INTERNAL            0x00000000U                                          /*!< The timer is clocked by the internal clock provided from the RCC */
732
#define LL_TIM_CLOCKSOURCE_EXT_MODE1           (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)   /*!< Counter counts at each rising or falling edge on a selected input*/
733
#define LL_TIM_CLOCKSOURCE_EXT_MODE2           TIM_SMCR_ECE                                         /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
734
/**
735
  * @}
736
  */
737
 
738
/** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
739
  * @{
740
  */
741
#define LL_TIM_ENCODERMODE_X2_TI1                     TIM_SMCR_SMS_0                                                     /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
742
#define LL_TIM_ENCODERMODE_X2_TI2                     TIM_SMCR_SMS_1                                                     /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
743
#define LL_TIM_ENCODERMODE_X4_TI12                   (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)                                   /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
744
/**
745
  * @}
746
  */
747
 
748
/** @defgroup TIM_LL_EC_TRGO Trigger Output
749
  * @{
750
  */
751
#define LL_TIM_TRGO_RESET                      0x00000000U                                     /*!< UG bit from the TIMx_EGR register is used as trigger output */
752
#define LL_TIM_TRGO_ENABLE                     TIM_CR2_MMS_0                                   /*!< Counter Enable signal (CNT_EN) is used as trigger output */
753
#define LL_TIM_TRGO_UPDATE                     TIM_CR2_MMS_1                                   /*!< Update event is used as trigger output */
754
#define LL_TIM_TRGO_CC1IF                      (TIM_CR2_MMS_1 | TIM_CR2_MMS_0)                 /*!< CC1 capture or a compare match is used as trigger output */
755
#define LL_TIM_TRGO_OC1REF                     TIM_CR2_MMS_2                                   /*!< OC1REF signal is used as trigger output */
756
#define LL_TIM_TRGO_OC2REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_0)                 /*!< OC2REF signal is used as trigger output */
757
#define LL_TIM_TRGO_OC3REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1)                 /*!< OC3REF signal is used as trigger output */
758
#define LL_TIM_TRGO_OC4REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
759
/**
760
  * @}
761
  */
762
 
763
 
764
/** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
765
  * @{
766
  */
767
#define LL_TIM_SLAVEMODE_DISABLED              0x00000000U                         /*!< Slave mode disabled */
768
#define LL_TIM_SLAVEMODE_RESET                 TIM_SMCR_SMS_2                      /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
769
#define LL_TIM_SLAVEMODE_GATED                 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)   /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
770
#define LL_TIM_SLAVEMODE_TRIGGER               (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)   /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
771
/**
772
  * @}
773
  */
774
 
775
/** @defgroup TIM_LL_EC_TS Trigger Selection
776
  * @{
777
  */
778
#define LL_TIM_TS_ITR0                         0x00000000U                                                     /*!< Internal Trigger 0 (ITR0) is used as trigger input */
779
#define LL_TIM_TS_ITR1                         TIM_SMCR_TS_0                                                   /*!< Internal Trigger 1 (ITR1) is used as trigger input */
780
#define LL_TIM_TS_ITR2                         TIM_SMCR_TS_1                                                   /*!< Internal Trigger 2 (ITR2) is used as trigger input */
781
#define LL_TIM_TS_ITR3                         (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)                                 /*!< Internal Trigger 3 (ITR3) is used as trigger input */
782
#define LL_TIM_TS_TI1F_ED                      TIM_SMCR_TS_2                                                   /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
783
#define LL_TIM_TS_TI1FP1                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_0)                                 /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
784
#define LL_TIM_TS_TI2FP2                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_1)                                 /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
785
#define LL_TIM_TS_ETRF                         (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Filtered external Trigger (ETRF) is used as trigger input */
786
/**
787
  * @}
788
  */
789
 
790
/** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
791
  * @{
792
  */
793
#define LL_TIM_ETR_POLARITY_NONINVERTED        0x00000000U             /*!< ETR is non-inverted, active at high level or rising edge */
794
#define LL_TIM_ETR_POLARITY_INVERTED           TIM_SMCR_ETP            /*!< ETR is inverted, active at low level or falling edge */
795
/**
796
  * @}
797
  */
798
 
799
/** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
800
  * @{
801
  */
802
#define LL_TIM_ETR_PRESCALER_DIV1              0x00000000U             /*!< ETR prescaler OFF */
803
#define LL_TIM_ETR_PRESCALER_DIV2              TIM_SMCR_ETPS_0         /*!< ETR frequency is divided by 2 */
804
#define LL_TIM_ETR_PRESCALER_DIV4              TIM_SMCR_ETPS_1         /*!< ETR frequency is divided by 4 */
805
#define LL_TIM_ETR_PRESCALER_DIV8              TIM_SMCR_ETPS           /*!< ETR frequency is divided by 8 */
806
/**
807
  * @}
808
  */
809
 
810
/** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
811
  * @{
812
  */
813
#define LL_TIM_ETR_FILTER_FDIV1                0x00000000U                                          /*!< No filter, sampling is done at fDTS */
814
#define LL_TIM_ETR_FILTER_FDIV1_N2             TIM_SMCR_ETF_0                                       /*!< fSAMPLING=fCK_INT, N=2 */
815
#define LL_TIM_ETR_FILTER_FDIV1_N4             TIM_SMCR_ETF_1                                       /*!< fSAMPLING=fCK_INT, N=4 */
816
#define LL_TIM_ETR_FILTER_FDIV1_N8             (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fCK_INT, N=8 */
817
#define LL_TIM_ETR_FILTER_FDIV2_N6             TIM_SMCR_ETF_2                                       /*!< fSAMPLING=fDTS/2, N=6 */
818
#define LL_TIM_ETR_FILTER_FDIV2_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/2, N=8 */
819
#define LL_TIM_ETR_FILTER_FDIV4_N6             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/4, N=6 */
820
#define LL_TIM_ETR_FILTER_FDIV4_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/4, N=8 */
821
#define LL_TIM_ETR_FILTER_FDIV8_N6             TIM_SMCR_ETF_3                                       /*!< fSAMPLING=fDTS/8, N=8 */
822
#define LL_TIM_ETR_FILTER_FDIV8_N8             (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/16, N=5 */
823
#define LL_TIM_ETR_FILTER_FDIV16_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/16, N=6 */
824
#define LL_TIM_ETR_FILTER_FDIV16_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/16, N=8 */
825
#define LL_TIM_ETR_FILTER_FDIV16_N8            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2)                    /*!< fSAMPLING=fDTS/16, N=5 */
826
#define LL_TIM_ETR_FILTER_FDIV32_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/32, N=5 */
827
#define LL_TIM_ETR_FILTER_FDIV32_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)   /*!< fSAMPLING=fDTS/32, N=6 */
828
#define LL_TIM_ETR_FILTER_FDIV32_N8            TIM_SMCR_ETF                                         /*!< fSAMPLING=fDTS/32, N=8 */
829
/**
830
  * @}
831
  */
832
 
833
 
834
/** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
835
  * @{
836
  */
837
#define LL_TIM_BREAK_POLARITY_LOW              0x00000000U               /*!< Break input BRK is active low */
838
#define LL_TIM_BREAK_POLARITY_HIGH             TIM_BDTR_BKP              /*!< Break input BRK is active high */
839
/**
840
  * @}
841
  */
842
 
843
 
844
 
845
 
846
/** @defgroup TIM_LL_EC_OSSI OSSI
847
  * @{
848
  */
849
#define LL_TIM_OSSI_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
850
#define LL_TIM_OSSI_ENABLE                     TIM_BDTR_OSSI           /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
851
/**
852
  * @}
853
  */
854
 
855
/** @defgroup TIM_LL_EC_OSSR OSSR
856
  * @{
857
  */
858
#define LL_TIM_OSSR_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
859
#define LL_TIM_OSSR_ENABLE                     TIM_BDTR_OSSR           /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
860
/**
861
  * @}
862
  */
863
 
864
 
865
/** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
866
  * @{
867
  */
868
#define LL_TIM_DMABURST_BASEADDR_CR1           0x00000000U                                                      /*!< TIMx_CR1 register is the DMA base address for DMA burst */
869
#define LL_TIM_DMABURST_BASEADDR_CR2           TIM_DCR_DBA_0                                                    /*!< TIMx_CR2 register is the DMA base address for DMA burst */
870
#define LL_TIM_DMABURST_BASEADDR_SMCR          TIM_DCR_DBA_1                                                    /*!< TIMx_SMCR register is the DMA base address for DMA burst */
871
#define LL_TIM_DMABURST_BASEADDR_DIER          (TIM_DCR_DBA_1 |  TIM_DCR_DBA_0)                                 /*!< TIMx_DIER register is the DMA base address for DMA burst */
872
#define LL_TIM_DMABURST_BASEADDR_SR            TIM_DCR_DBA_2                                                    /*!< TIMx_SR register is the DMA base address for DMA burst */
873
#define LL_TIM_DMABURST_BASEADDR_EGR           (TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                                  /*!< TIMx_EGR register is the DMA base address for DMA burst */
874
#define LL_TIM_DMABURST_BASEADDR_CCMR1         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
875
#define LL_TIM_DMABURST_BASEADDR_CCMR2         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
876
#define LL_TIM_DMABURST_BASEADDR_CCER          TIM_DCR_DBA_3                                                    /*!< TIMx_CCER register is the DMA base address for DMA burst */
877
#define LL_TIM_DMABURST_BASEADDR_CNT           (TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                                  /*!< TIMx_CNT register is the DMA base address for DMA burst */
878
#define LL_TIM_DMABURST_BASEADDR_PSC           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                                  /*!< TIMx_PSC register is the DMA base address for DMA burst */
879
#define LL_TIM_DMABURST_BASEADDR_ARR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_ARR register is the DMA base address for DMA burst */
880
#define LL_TIM_DMABURST_BASEADDR_RCR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_2)                                  /*!< TIMx_RCR register is the DMA base address for DMA burst */
881
#define LL_TIM_DMABURST_BASEADDR_CCR1          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
882
#define LL_TIM_DMABURST_BASEADDR_CCR2          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
883
#define LL_TIM_DMABURST_BASEADDR_CCR3          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
884
#define LL_TIM_DMABURST_BASEADDR_CCR4          TIM_DCR_DBA_4                                                    /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
885
#define LL_TIM_DMABURST_BASEADDR_BDTR          (TIM_DCR_DBA_4 | TIM_DCR_DBA_0)                                  /*!< TIMx_BDTR register is the DMA base address for DMA burst */
886
/**
887
  * @}
888
  */
889
 
890
/** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
891
  * @{
892
  */
893
#define LL_TIM_DMABURST_LENGTH_1TRANSFER       0x00000000U                                                     /*!< Transfer is done to 1 register starting from the DMA burst base address */
894
#define LL_TIM_DMABURST_LENGTH_2TRANSFERS      TIM_DCR_DBL_0                                                   /*!< Transfer is done to 2 registers starting from the DMA burst base address */
895
#define LL_TIM_DMABURST_LENGTH_3TRANSFERS      TIM_DCR_DBL_1                                                   /*!< Transfer is done to 3 registers starting from the DMA burst base address */
896
#define LL_TIM_DMABURST_LENGTH_4TRANSFERS      (TIM_DCR_DBL_1 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 4 registers starting from the DMA burst base address */
897
#define LL_TIM_DMABURST_LENGTH_5TRANSFERS      TIM_DCR_DBL_2                                                   /*!< Transfer is done to 5 registers starting from the DMA burst base address */
898
#define LL_TIM_DMABURST_LENGTH_6TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 6 registers starting from the DMA burst base address */
899
#define LL_TIM_DMABURST_LENGTH_7TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 7 registers starting from the DMA burst base address */
900
#define LL_TIM_DMABURST_LENGTH_8TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 1 registers starting from the DMA burst base address */
901
#define LL_TIM_DMABURST_LENGTH_9TRANSFERS      TIM_DCR_DBL_3                                                   /*!< Transfer is done to 9 registers starting from the DMA burst base address */
902
#define LL_TIM_DMABURST_LENGTH_10TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 10 registers starting from the DMA burst base address */
903
#define LL_TIM_DMABURST_LENGTH_11TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 11 registers starting from the DMA burst base address */
904
#define LL_TIM_DMABURST_LENGTH_12TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 12 registers starting from the DMA burst base address */
905
#define LL_TIM_DMABURST_LENGTH_13TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 13 registers starting from the DMA burst base address */
906
#define LL_TIM_DMABURST_LENGTH_14TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 14 registers starting from the DMA burst base address */
907
#define LL_TIM_DMABURST_LENGTH_15TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 15 registers starting from the DMA burst base address */
908
#define LL_TIM_DMABURST_LENGTH_16TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
909
#define LL_TIM_DMABURST_LENGTH_17TRANSFERS     TIM_DCR_DBL_4                                                   /*!< Transfer is done to 17 registers starting from the DMA burst base address */
910
#define LL_TIM_DMABURST_LENGTH_18TRANSFERS     (TIM_DCR_DBL_4 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 18 registers starting from the DMA burst base address */
911
/**
912
  * @}
913
  */
914
 
915
 
916
 
917
/**
918
  * @}
919
  */
920
 
921
/* Exported macro ------------------------------------------------------------*/
922
/** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
923
  * @{
924
  */
925
 
926
/** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
927
  * @{
928
  */
929
/**
930
  * @brief  Write a value in TIM register.
931
  * @param  __INSTANCE__ TIM Instance
932
  * @param  __REG__ Register to be written
933
  * @param  __VALUE__ Value to be written in the register
934
  * @retval None
935
  */
936
#define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
937
 
938
/**
939
  * @brief  Read a value in TIM register.
940
  * @param  __INSTANCE__ TIM Instance
941
  * @param  __REG__ Register to be read
942
  * @retval Register value
943
  */
944
#define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
945
/**
946
  * @}
947
  */
948
 
949
/**
950
  * @brief  HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
951
  * @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
952
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
953
  * @param  __CKD__ This parameter can be one of the following values:
954
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
955
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
956
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
957
  * @param  __DT__ deadtime duration (in ns)
958
  * @retval DTG[0:7]
959
  */
960
#define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__)  \
961
  ( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))    ?  \
962
    (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__)))  & DT_DELAY_1) :      \
963
    (((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
964
    (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),   \
965
                                                 (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
966
    (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
967
    (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
968
                                                 (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
969
    (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ?  \
970
    (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
971
                                                 (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
972
    0U)
973
 
974
/**
975
  * @brief  HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
976
  * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
977
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
978
  * @param  __CNTCLK__ counter clock frequency (in Hz)
979
  * @retval Prescaler value  (between Min_Data=0 and Max_Data=65535)
980
  */
981
#define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__)   \
982
  (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((((__TIMCLK__) + (__CNTCLK__)/2U)/(__CNTCLK__)) - 1U) : 0U)
983
 
984
/**
985
  * @brief  HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
986
  * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
987
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
988
  * @param  __PSC__ prescaler
989
  * @param  __FREQ__ output signal frequency (in Hz)
990
  * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
991
  */
992
#define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
993
  ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
994
 
995
/**
996
  * @brief  HELPER macro calculating the compare value required to achieve the required timer output compare
997
  *         active/inactive delay.
998
  * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
999
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
1000
  * @param  __PSC__ prescaler
1001
  * @param  __DELAY__ timer output compare active/inactive delay (in us)
1002
  * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
1003
  */
1004
#define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__)  \
1005
  ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
1006
              / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
1007
 
1008
/**
1009
  * @brief  HELPER macro calculating the auto-reload value to achieve the required pulse duration
1010
  *         (when the timer operates in one pulse mode).
1011
  * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
1012
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
1013
  * @param  __PSC__ prescaler
1014
  * @param  __DELAY__ timer output compare active/inactive delay (in us)
1015
  * @param  __PULSE__ pulse duration (in us)
1016
  * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1017
  */
1018
#define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
1019
  ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
1020
              + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
1021
 
1022
/**
1023
  * @brief  HELPER macro retrieving the ratio of the input capture prescaler
1024
  * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
1025
  * @param  __ICPSC__ This parameter can be one of the following values:
1026
  *         @arg @ref LL_TIM_ICPSC_DIV1
1027
  *         @arg @ref LL_TIM_ICPSC_DIV2
1028
  *         @arg @ref LL_TIM_ICPSC_DIV4
1029
  *         @arg @ref LL_TIM_ICPSC_DIV8
1030
  * @retval Input capture prescaler ratio (1, 2, 4 or 8)
1031
  */
1032
#define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__)  \
1033
  ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
1034
 
1035
 
1036
/**
1037
  * @}
1038
  */
1039
 
1040
/* Exported functions --------------------------------------------------------*/
1041
/** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
1042
  * @{
1043
  */
1044
 
1045
/** @defgroup TIM_LL_EF_Time_Base Time Base configuration
1046
  * @{
1047
  */
1048
/**
1049
  * @brief  Enable timer counter.
1050
  * @rmtoll CR1          CEN           LL_TIM_EnableCounter
1051
  * @param  TIMx Timer instance
1052
  * @retval None
1053
  */
1054
__STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
1055
{
1056
  SET_BIT(TIMx->CR1, TIM_CR1_CEN);
1057
}
1058
 
1059
/**
1060
  * @brief  Disable timer counter.
1061
  * @rmtoll CR1          CEN           LL_TIM_DisableCounter
1062
  * @param  TIMx Timer instance
1063
  * @retval None
1064
  */
1065
__STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
1066
{
1067
  CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
1068
}
1069
 
1070
/**
1071
  * @brief  Indicates whether the timer counter is enabled.
1072
  * @rmtoll CR1          CEN           LL_TIM_IsEnabledCounter
1073
  * @param  TIMx Timer instance
1074
  * @retval State of bit (1 or 0).
1075
  */
1076
__STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(const TIM_TypeDef *TIMx)
1077
{
1078
  return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
1079
}
1080
 
1081
/**
1082
  * @brief  Enable update event generation.
1083
  * @rmtoll CR1          UDIS          LL_TIM_EnableUpdateEvent
1084
  * @param  TIMx Timer instance
1085
  * @retval None
1086
  */
1087
__STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
1088
{
1089
  CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
1090
}
1091
 
1092
/**
1093
  * @brief  Disable update event generation.
1094
  * @rmtoll CR1          UDIS          LL_TIM_DisableUpdateEvent
1095
  * @param  TIMx Timer instance
1096
  * @retval None
1097
  */
1098
__STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
1099
{
1100
  SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
1101
}
1102
 
1103
/**
1104
  * @brief  Indicates whether update event generation is enabled.
1105
  * @rmtoll CR1          UDIS          LL_TIM_IsEnabledUpdateEvent
1106
  * @param  TIMx Timer instance
1107
  * @retval Inverted state of bit (0 or 1).
1108
  */
1109
__STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef *TIMx)
1110
{
1111
  return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
1112
}
1113
 
1114
/**
1115
  * @brief  Set update event source
1116
  * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
1117
  *       generate an update interrupt or DMA request if enabled:
1118
  *        - Counter overflow/underflow
1119
  *        - Setting the UG bit
1120
  *        - Update generation through the slave mode controller
1121
  * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
1122
  *       overflow/underflow generates an update interrupt or DMA request if enabled.
1123
  * @rmtoll CR1          URS           LL_TIM_SetUpdateSource
1124
  * @param  TIMx Timer instance
1125
  * @param  UpdateSource This parameter can be one of the following values:
1126
  *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1127
  *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1128
  * @retval None
1129
  */
1130
__STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
1131
{
1132
  MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
1133
}
1134
 
1135
/**
1136
  * @brief  Get actual event update source
1137
  * @rmtoll CR1          URS           LL_TIM_GetUpdateSource
1138
  * @param  TIMx Timer instance
1139
  * @retval Returned value can be one of the following values:
1140
  *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1141
  *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1142
  */
1143
__STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(const TIM_TypeDef *TIMx)
1144
{
1145
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
1146
}
1147
 
1148
/**
1149
  * @brief  Set one pulse mode (one shot v.s. repetitive).
1150
  * @rmtoll CR1          OPM           LL_TIM_SetOnePulseMode
1151
  * @param  TIMx Timer instance
1152
  * @param  OnePulseMode This parameter can be one of the following values:
1153
  *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1154
  *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1155
  * @retval None
1156
  */
1157
__STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
1158
{
1159
  MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
1160
}
1161
 
1162
/**
1163
  * @brief  Get actual one pulse mode.
1164
  * @rmtoll CR1          OPM           LL_TIM_GetOnePulseMode
1165
  * @param  TIMx Timer instance
1166
  * @retval Returned value can be one of the following values:
1167
  *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1168
  *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1169
  */
1170
__STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(const TIM_TypeDef *TIMx)
1171
{
1172
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
1173
}
1174
 
1175
/**
1176
  * @brief  Set the timer counter counting mode.
1177
  * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1178
  *       check whether or not the counter mode selection feature is supported
1179
  *       by a timer instance.
1180
  * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1181
  *       requires a timer reset to avoid unexpected direction
1182
  *       due to DIR bit readonly in center aligned mode.
1183
  * @rmtoll CR1          DIR           LL_TIM_SetCounterMode\n
1184
  *         CR1          CMS           LL_TIM_SetCounterMode
1185
  * @param  TIMx Timer instance
1186
  * @param  CounterMode This parameter can be one of the following values:
1187
  *         @arg @ref LL_TIM_COUNTERMODE_UP
1188
  *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1189
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1190
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1191
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1192
  * @retval None
1193
  */
1194
__STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
1195
{
1196
  MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
1197
}
1198
 
1199
/**
1200
  * @brief  Get actual counter mode.
1201
  * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1202
  *       check whether or not the counter mode selection feature is supported
1203
  *       by a timer instance.
1204
  * @rmtoll CR1          DIR           LL_TIM_GetCounterMode\n
1205
  *         CR1          CMS           LL_TIM_GetCounterMode
1206
  * @param  TIMx Timer instance
1207
  * @retval Returned value can be one of the following values:
1208
  *         @arg @ref LL_TIM_COUNTERMODE_UP
1209
  *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1210
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1211
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1212
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1213
  */
1214
__STATIC_INLINE uint32_t LL_TIM_GetCounterMode(const TIM_TypeDef *TIMx)
1215
{
1216
  uint32_t counter_mode;
1217
 
1218
  counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CMS));
1219
 
1220
  if (counter_mode == 0U)
1221
  {
1222
    counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1223
  }
1224
 
1225
  return counter_mode;
1226
}
1227
 
1228
/**
1229
  * @brief  Enable auto-reload (ARR) preload.
1230
  * @rmtoll CR1          ARPE          LL_TIM_EnableARRPreload
1231
  * @param  TIMx Timer instance
1232
  * @retval None
1233
  */
1234
__STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
1235
{
1236
  SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
1237
}
1238
 
1239
/**
1240
  * @brief  Disable auto-reload (ARR) preload.
1241
  * @rmtoll CR1          ARPE          LL_TIM_DisableARRPreload
1242
  * @param  TIMx Timer instance
1243
  * @retval None
1244
  */
1245
__STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
1246
{
1247
  CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
1248
}
1249
 
1250
/**
1251
  * @brief  Indicates whether auto-reload (ARR) preload is enabled.
1252
  * @rmtoll CR1          ARPE          LL_TIM_IsEnabledARRPreload
1253
  * @param  TIMx Timer instance
1254
  * @retval State of bit (1 or 0).
1255
  */
1256
__STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(const TIM_TypeDef *TIMx)
1257
{
1258
  return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
1259
}
1260
 
1261
/**
1262
  * @brief  Set the division ratio between the timer clock  and the sampling clock used by the dead-time generators
1263
  *         (when supported) and the digital filters.
1264
  * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1265
  *       whether or not the clock division feature is supported by the timer
1266
  *       instance.
1267
  * @rmtoll CR1          CKD           LL_TIM_SetClockDivision
1268
  * @param  TIMx Timer instance
1269
  * @param  ClockDivision This parameter can be one of the following values:
1270
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1271
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1272
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1273
  * @retval None
1274
  */
1275
__STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
1276
{
1277
  MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
1278
}
1279
 
1280
/**
1281
  * @brief  Get the actual division ratio between the timer clock  and the sampling clock used by the dead-time
1282
  *         generators (when supported) and the digital filters.
1283
  * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1284
  *       whether or not the clock division feature is supported by the timer
1285
  *       instance.
1286
  * @rmtoll CR1          CKD           LL_TIM_GetClockDivision
1287
  * @param  TIMx Timer instance
1288
  * @retval Returned value can be one of the following values:
1289
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1290
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1291
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1292
  */
1293
__STATIC_INLINE uint32_t LL_TIM_GetClockDivision(const TIM_TypeDef *TIMx)
1294
{
1295
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
1296
}
1297
 
1298
/**
1299
  * @brief  Set the counter value.
1300
  * @rmtoll CNT          CNT           LL_TIM_SetCounter
1301
  * @param  TIMx Timer instance
1302
  * @param  Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF)
1303
  * @retval None
1304
  */
1305
__STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
1306
{
1307
  WRITE_REG(TIMx->CNT, Counter);
1308
}
1309
 
1310
/**
1311
  * @brief  Get the counter value.
1312
  * @rmtoll CNT          CNT           LL_TIM_GetCounter
1313
  * @param  TIMx Timer instance
1314
  * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF)
1315
  */
1316
__STATIC_INLINE uint32_t LL_TIM_GetCounter(const TIM_TypeDef *TIMx)
1317
{
1318
  return (uint32_t)(READ_REG(TIMx->CNT));
1319
}
1320
 
1321
/**
1322
  * @brief  Get the current direction of the counter
1323
  * @rmtoll CR1          DIR           LL_TIM_GetDirection
1324
  * @param  TIMx Timer instance
1325
  * @retval Returned value can be one of the following values:
1326
  *         @arg @ref LL_TIM_COUNTERDIRECTION_UP
1327
  *         @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
1328
  */
1329
__STATIC_INLINE uint32_t LL_TIM_GetDirection(const TIM_TypeDef *TIMx)
1330
{
1331
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1332
}
1333
 
1334
/**
1335
  * @brief  Set the prescaler value.
1336
  * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
1337
  * @note The prescaler can be changed on the fly as this control register is buffered. The new
1338
  *       prescaler ratio is taken into account at the next update event.
1339
  * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
1340
  * @rmtoll PSC          PSC           LL_TIM_SetPrescaler
1341
  * @param  TIMx Timer instance
1342
  * @param  Prescaler between Min_Data=0 and Max_Data=65535
1343
  * @retval None
1344
  */
1345
__STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
1346
{
1347
  WRITE_REG(TIMx->PSC, Prescaler);
1348
}
1349
 
1350
/**
1351
  * @brief  Get the prescaler value.
1352
  * @rmtoll PSC          PSC           LL_TIM_GetPrescaler
1353
  * @param  TIMx Timer instance
1354
  * @retval  Prescaler value between Min_Data=0 and Max_Data=65535
1355
  */
1356
__STATIC_INLINE uint32_t LL_TIM_GetPrescaler(const TIM_TypeDef *TIMx)
1357
{
1358
  return (uint32_t)(READ_REG(TIMx->PSC));
1359
}
1360
 
1361
/**
1362
  * @brief  Set the auto-reload value.
1363
  * @note The counter is blocked while the auto-reload value is null.
1364
  * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
1365
  * @rmtoll ARR          ARR           LL_TIM_SetAutoReload
1366
  * @param  TIMx Timer instance
1367
  * @param  AutoReload between Min_Data=0 and Max_Data=65535
1368
  * @retval None
1369
  */
1370
__STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
1371
{
1372
  WRITE_REG(TIMx->ARR, AutoReload);
1373
}
1374
 
1375
/**
1376
  * @brief  Get the auto-reload value.
1377
  * @rmtoll ARR          ARR           LL_TIM_GetAutoReload
1378
  * @param  TIMx Timer instance
1379
  * @retval Auto-reload value
1380
  */
1381
__STATIC_INLINE uint32_t LL_TIM_GetAutoReload(const TIM_TypeDef *TIMx)
1382
{
1383
  return (uint32_t)(READ_REG(TIMx->ARR));
1384
}
1385
 
1386
/**
1387
  * @brief  Set the repetition counter value.
1388
  * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1389
  *       whether or not a timer instance supports a repetition counter.
1390
  * @rmtoll RCR          REP           LL_TIM_SetRepetitionCounter
1391
  * @param  TIMx Timer instance
1392
  * @param  RepetitionCounter between Min_Data=0 and Max_Data=255 or 65535 for advanced timer.
1393
  * @retval None
1394
  */
1395
__STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
1396
{
1397
  WRITE_REG(TIMx->RCR, RepetitionCounter);
1398
}
1399
 
1400
/**
1401
  * @brief  Get the repetition counter value.
1402
  * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1403
  *       whether or not a timer instance supports a repetition counter.
1404
  * @rmtoll RCR          REP           LL_TIM_GetRepetitionCounter
1405
  * @param  TIMx Timer instance
1406
  * @retval Repetition counter value
1407
  */
1408
__STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(const TIM_TypeDef *TIMx)
1409
{
1410
  return (uint32_t)(READ_REG(TIMx->RCR));
1411
}
1412
 
1413
/**
1414
  * @}
1415
  */
1416
 
1417
/** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
1418
  * @{
1419
  */
1420
/**
1421
  * @brief  Enable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1422
  * @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
1423
  *       they are updated only when a commutation event (COM) occurs.
1424
  * @note Only on channels that have a complementary output.
1425
  * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1426
  *       whether or not a timer instance is able to generate a commutation event.
1427
  * @rmtoll CR2          CCPC          LL_TIM_CC_EnablePreload
1428
  * @param  TIMx Timer instance
1429
  * @retval None
1430
  */
1431
__STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
1432
{
1433
  SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
1434
}
1435
 
1436
/**
1437
  * @brief  Disable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1438
  * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1439
  *       whether or not a timer instance is able to generate a commutation event.
1440
  * @rmtoll CR2          CCPC          LL_TIM_CC_DisablePreload
1441
  * @param  TIMx Timer instance
1442
  * @retval None
1443
  */
1444
__STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
1445
{
1446
  CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
1447
}
1448
 
1449
/**
1450
  * @brief  Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
1451
  * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1452
  *       whether or not a timer instance is able to generate a commutation event.
1453
  * @rmtoll CR2          CCUS          LL_TIM_CC_SetUpdate
1454
  * @param  TIMx Timer instance
1455
  * @param  CCUpdateSource This parameter can be one of the following values:
1456
  *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
1457
  *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
1458
  * @retval None
1459
  */
1460
__STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
1461
{
1462
  MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
1463
}
1464
 
1465
/**
1466
  * @brief  Set the trigger of the capture/compare DMA request.
1467
  * @rmtoll CR2          CCDS          LL_TIM_CC_SetDMAReqTrigger
1468
  * @param  TIMx Timer instance
1469
  * @param  DMAReqTrigger This parameter can be one of the following values:
1470
  *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1471
  *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1472
  * @retval None
1473
  */
1474
__STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
1475
{
1476
  MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
1477
}
1478
 
1479
/**
1480
  * @brief  Get actual trigger of the capture/compare DMA request.
1481
  * @rmtoll CR2          CCDS          LL_TIM_CC_GetDMAReqTrigger
1482
  * @param  TIMx Timer instance
1483
  * @retval Returned value can be one of the following values:
1484
  *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1485
  *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1486
  */
1487
__STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef *TIMx)
1488
{
1489
  return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
1490
}
1491
 
1492
/**
1493
  * @brief  Set the lock level to freeze the
1494
  *         configuration of several capture/compare parameters.
1495
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
1496
  *       the lock mechanism is supported by a timer instance.
1497
  * @rmtoll BDTR         LOCK          LL_TIM_CC_SetLockLevel
1498
  * @param  TIMx Timer instance
1499
  * @param  LockLevel This parameter can be one of the following values:
1500
  *         @arg @ref LL_TIM_LOCKLEVEL_OFF
1501
  *         @arg @ref LL_TIM_LOCKLEVEL_1
1502
  *         @arg @ref LL_TIM_LOCKLEVEL_2
1503
  *         @arg @ref LL_TIM_LOCKLEVEL_3
1504
  * @retval None
1505
  */
1506
__STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
1507
{
1508
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
1509
}
1510
 
1511
/**
1512
  * @brief  Enable capture/compare channels.
1513
  * @rmtoll CCER         CC1E          LL_TIM_CC_EnableChannel\n
1514
  *         CCER         CC1NE         LL_TIM_CC_EnableChannel\n
1515
  *         CCER         CC2E          LL_TIM_CC_EnableChannel\n
1516
  *         CCER         CC2NE         LL_TIM_CC_EnableChannel\n
1517
  *         CCER         CC3E          LL_TIM_CC_EnableChannel\n
1518
  *         CCER         CC3NE         LL_TIM_CC_EnableChannel\n
1519
  *         CCER         CC4E          LL_TIM_CC_EnableChannel
1520
  * @param  TIMx Timer instance
1521
  * @param  Channels This parameter can be a combination of the following values:
1522
  *         @arg @ref LL_TIM_CHANNEL_CH1
1523
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1524
  *         @arg @ref LL_TIM_CHANNEL_CH2
1525
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1526
  *         @arg @ref LL_TIM_CHANNEL_CH3
1527
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1528
  *         @arg @ref LL_TIM_CHANNEL_CH4
1529
  * @retval None
1530
  */
1531
__STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1532
{
1533
  SET_BIT(TIMx->CCER, Channels);
1534
}
1535
 
1536
/**
1537
  * @brief  Disable capture/compare channels.
1538
  * @rmtoll CCER         CC1E          LL_TIM_CC_DisableChannel\n
1539
  *         CCER         CC1NE         LL_TIM_CC_DisableChannel\n
1540
  *         CCER         CC2E          LL_TIM_CC_DisableChannel\n
1541
  *         CCER         CC2NE         LL_TIM_CC_DisableChannel\n
1542
  *         CCER         CC3E          LL_TIM_CC_DisableChannel\n
1543
  *         CCER         CC3NE         LL_TIM_CC_DisableChannel\n
1544
  *         CCER         CC4E          LL_TIM_CC_DisableChannel
1545
  * @param  TIMx Timer instance
1546
  * @param  Channels This parameter can be a combination of the following values:
1547
  *         @arg @ref LL_TIM_CHANNEL_CH1
1548
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1549
  *         @arg @ref LL_TIM_CHANNEL_CH2
1550
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1551
  *         @arg @ref LL_TIM_CHANNEL_CH3
1552
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1553
  *         @arg @ref LL_TIM_CHANNEL_CH4
1554
  * @retval None
1555
  */
1556
__STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1557
{
1558
  CLEAR_BIT(TIMx->CCER, Channels);
1559
}
1560
 
1561
/**
1562
  * @brief  Indicate whether channel(s) is(are) enabled.
1563
  * @rmtoll CCER         CC1E          LL_TIM_CC_IsEnabledChannel\n
1564
  *         CCER         CC1NE         LL_TIM_CC_IsEnabledChannel\n
1565
  *         CCER         CC2E          LL_TIM_CC_IsEnabledChannel\n
1566
  *         CCER         CC2NE         LL_TIM_CC_IsEnabledChannel\n
1567
  *         CCER         CC3E          LL_TIM_CC_IsEnabledChannel\n
1568
  *         CCER         CC3NE         LL_TIM_CC_IsEnabledChannel\n
1569
  *         CCER         CC4E          LL_TIM_CC_IsEnabledChannel
1570
  * @param  TIMx Timer instance
1571
  * @param  Channels This parameter can be a combination of the following values:
1572
  *         @arg @ref LL_TIM_CHANNEL_CH1
1573
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1574
  *         @arg @ref LL_TIM_CHANNEL_CH2
1575
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1576
  *         @arg @ref LL_TIM_CHANNEL_CH3
1577
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1578
  *         @arg @ref LL_TIM_CHANNEL_CH4
1579
  * @retval State of bit (1 or 0).
1580
  */
1581
__STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef *TIMx, uint32_t Channels)
1582
{
1583
  return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
1584
}
1585
 
1586
/**
1587
  * @}
1588
  */
1589
 
1590
/** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
1591
  * @{
1592
  */
1593
/**
1594
  * @brief  Configure an output channel.
1595
  * @rmtoll CCMR1        CC1S          LL_TIM_OC_ConfigOutput\n
1596
  *         CCMR1        CC2S          LL_TIM_OC_ConfigOutput\n
1597
  *         CCMR2        CC3S          LL_TIM_OC_ConfigOutput\n
1598
  *         CCMR2        CC4S          LL_TIM_OC_ConfigOutput\n
1599
  *         CCER         CC1P          LL_TIM_OC_ConfigOutput\n
1600
  *         CCER         CC2P          LL_TIM_OC_ConfigOutput\n
1601
  *         CCER         CC3P          LL_TIM_OC_ConfigOutput\n
1602
  *         CCER         CC4P          LL_TIM_OC_ConfigOutput\n
1603
  *         CR2          OIS1          LL_TIM_OC_ConfigOutput\n
1604
  *         CR2          OIS2          LL_TIM_OC_ConfigOutput\n
1605
  *         CR2          OIS3          LL_TIM_OC_ConfigOutput\n
1606
  *         CR2          OIS4          LL_TIM_OC_ConfigOutput
1607
  * @param  TIMx Timer instance
1608
  * @param  Channel This parameter can be one of the following values:
1609
  *         @arg @ref LL_TIM_CHANNEL_CH1
1610
  *         @arg @ref LL_TIM_CHANNEL_CH2
1611
  *         @arg @ref LL_TIM_CHANNEL_CH3
1612
  *         @arg @ref LL_TIM_CHANNEL_CH4
1613
  * @param  Configuration This parameter must be a combination of all the following values:
1614
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
1615
  *         @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
1616
  * @retval None
1617
  */
1618
__STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
1619
{
1620
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1621
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1622
  CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
1623
  MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
1624
             (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
1625
  MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
1626
             (Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
1627
}
1628
 
1629
/**
1630
  * @brief  Define the behavior of the output reference signal OCxREF from which
1631
  *         OCx and OCxN (when relevant) are derived.
1632
  * @rmtoll CCMR1        OC1M          LL_TIM_OC_SetMode\n
1633
  *         CCMR1        OC2M          LL_TIM_OC_SetMode\n
1634
  *         CCMR2        OC3M          LL_TIM_OC_SetMode\n
1635
  *         CCMR2        OC4M          LL_TIM_OC_SetMode
1636
  * @param  TIMx Timer instance
1637
  * @param  Channel This parameter can be one of the following values:
1638
  *         @arg @ref LL_TIM_CHANNEL_CH1
1639
  *         @arg @ref LL_TIM_CHANNEL_CH2
1640
  *         @arg @ref LL_TIM_CHANNEL_CH3
1641
  *         @arg @ref LL_TIM_CHANNEL_CH4
1642
  * @param  Mode This parameter can be one of the following values:
1643
  *         @arg @ref LL_TIM_OCMODE_FROZEN
1644
  *         @arg @ref LL_TIM_OCMODE_ACTIVE
1645
  *         @arg @ref LL_TIM_OCMODE_INACTIVE
1646
  *         @arg @ref LL_TIM_OCMODE_TOGGLE
1647
  *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
1648
  *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
1649
  *         @arg @ref LL_TIM_OCMODE_PWM1
1650
  *         @arg @ref LL_TIM_OCMODE_PWM2
1651
  * @retval None
1652
  */
1653
__STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
1654
{
1655
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1656
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1657
  MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]);
1658
}
1659
 
1660
/**
1661
  * @brief  Get the output compare mode of an output channel.
1662
  * @rmtoll CCMR1        OC1M          LL_TIM_OC_GetMode\n
1663
  *         CCMR1        OC2M          LL_TIM_OC_GetMode\n
1664
  *         CCMR2        OC3M          LL_TIM_OC_GetMode\n
1665
  *         CCMR2        OC4M          LL_TIM_OC_GetMode
1666
  * @param  TIMx Timer instance
1667
  * @param  Channel This parameter can be one of the following values:
1668
  *         @arg @ref LL_TIM_CHANNEL_CH1
1669
  *         @arg @ref LL_TIM_CHANNEL_CH2
1670
  *         @arg @ref LL_TIM_CHANNEL_CH3
1671
  *         @arg @ref LL_TIM_CHANNEL_CH4
1672
  * @retval Returned value can be one of the following values:
1673
  *         @arg @ref LL_TIM_OCMODE_FROZEN
1674
  *         @arg @ref LL_TIM_OCMODE_ACTIVE
1675
  *         @arg @ref LL_TIM_OCMODE_INACTIVE
1676
  *         @arg @ref LL_TIM_OCMODE_TOGGLE
1677
  *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
1678
  *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
1679
  *         @arg @ref LL_TIM_OCMODE_PWM1
1680
  *         @arg @ref LL_TIM_OCMODE_PWM2
1681
  */
1682
__STATIC_INLINE uint32_t LL_TIM_OC_GetMode(const TIM_TypeDef *TIMx, uint32_t Channel)
1683
{
1684
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1685
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1686
  return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
1687
}
1688
 
1689
/**
1690
  * @brief  Set the polarity of an output channel.
1691
  * @rmtoll CCER         CC1P          LL_TIM_OC_SetPolarity\n
1692
  *         CCER         CC1NP         LL_TIM_OC_SetPolarity\n
1693
  *         CCER         CC2P          LL_TIM_OC_SetPolarity\n
1694
  *         CCER         CC2NP         LL_TIM_OC_SetPolarity\n
1695
  *         CCER         CC3P          LL_TIM_OC_SetPolarity\n
1696
  *         CCER         CC3NP         LL_TIM_OC_SetPolarity\n
1697
  *         CCER         CC4P          LL_TIM_OC_SetPolarity
1698
  * @param  TIMx Timer instance
1699
  * @param  Channel This parameter can be one of the following values:
1700
  *         @arg @ref LL_TIM_CHANNEL_CH1
1701
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1702
  *         @arg @ref LL_TIM_CHANNEL_CH2
1703
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1704
  *         @arg @ref LL_TIM_CHANNEL_CH3
1705
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1706
  *         @arg @ref LL_TIM_CHANNEL_CH4
1707
  * @param  Polarity This parameter can be one of the following values:
1708
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH
1709
  *         @arg @ref LL_TIM_OCPOLARITY_LOW
1710
  * @retval None
1711
  */
1712
__STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
1713
{
1714
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1715
  MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),  Polarity << SHIFT_TAB_CCxP[iChannel]);
1716
}
1717
 
1718
/**
1719
  * @brief  Get the polarity of an output channel.
1720
  * @rmtoll CCER         CC1P          LL_TIM_OC_GetPolarity\n
1721
  *         CCER         CC1NP         LL_TIM_OC_GetPolarity\n
1722
  *         CCER         CC2P          LL_TIM_OC_GetPolarity\n
1723
  *         CCER         CC2NP         LL_TIM_OC_GetPolarity\n
1724
  *         CCER         CC3P          LL_TIM_OC_GetPolarity\n
1725
  *         CCER         CC3NP         LL_TIM_OC_GetPolarity\n
1726
  *         CCER         CC4P          LL_TIM_OC_GetPolarity
1727
  * @param  TIMx Timer instance
1728
  * @param  Channel This parameter can be one of the following values:
1729
  *         @arg @ref LL_TIM_CHANNEL_CH1
1730
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1731
  *         @arg @ref LL_TIM_CHANNEL_CH2
1732
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1733
  *         @arg @ref LL_TIM_CHANNEL_CH3
1734
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1735
  *         @arg @ref LL_TIM_CHANNEL_CH4
1736
  * @retval Returned value can be one of the following values:
1737
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH
1738
  *         @arg @ref LL_TIM_OCPOLARITY_LOW
1739
  */
1740
__STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
1741
{
1742
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1743
  return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
1744
}
1745
 
1746
/**
1747
  * @brief  Set the IDLE state of an output channel
1748
  * @note This function is significant only for the timer instances
1749
  *       supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx)
1750
  *       can be used to check whether or not a timer instance provides
1751
  *       a break input.
1752
  * @rmtoll CR2         OIS1          LL_TIM_OC_SetIdleState\n
1753
  *         CR2         OIS1N         LL_TIM_OC_SetIdleState\n
1754
  *         CR2         OIS2          LL_TIM_OC_SetIdleState\n
1755
  *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
1756
  *         CR2         OIS3          LL_TIM_OC_SetIdleState\n
1757
  *         CR2         OIS3N         LL_TIM_OC_SetIdleState\n
1758
  *         CR2         OIS4          LL_TIM_OC_SetIdleState
1759
  * @param  TIMx Timer instance
1760
  * @param  Channel This parameter can be one of the following values:
1761
  *         @arg @ref LL_TIM_CHANNEL_CH1
1762
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1763
  *         @arg @ref LL_TIM_CHANNEL_CH2
1764
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1765
  *         @arg @ref LL_TIM_CHANNEL_CH3
1766
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1767
  *         @arg @ref LL_TIM_CHANNEL_CH4
1768
  * @param  IdleState This parameter can be one of the following values:
1769
  *         @arg @ref LL_TIM_OCIDLESTATE_LOW
1770
  *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
1771
  * @retval None
1772
  */
1773
__STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
1774
{
1775
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1776
  MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),  IdleState << SHIFT_TAB_OISx[iChannel]);
1777
}
1778
 
1779
/**
1780
  * @brief  Get the IDLE state of an output channel
1781
  * @rmtoll CR2         OIS1          LL_TIM_OC_GetIdleState\n
1782
  *         CR2         OIS1N         LL_TIM_OC_GetIdleState\n
1783
  *         CR2         OIS2          LL_TIM_OC_GetIdleState\n
1784
  *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
1785
  *         CR2         OIS3          LL_TIM_OC_GetIdleState\n
1786
  *         CR2         OIS3N         LL_TIM_OC_GetIdleState\n
1787
  *         CR2         OIS4          LL_TIM_OC_GetIdleState
1788
  * @param  TIMx Timer instance
1789
  * @param  Channel This parameter can be one of the following values:
1790
  *         @arg @ref LL_TIM_CHANNEL_CH1
1791
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1792
  *         @arg @ref LL_TIM_CHANNEL_CH2
1793
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1794
  *         @arg @ref LL_TIM_CHANNEL_CH3
1795
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1796
  *         @arg @ref LL_TIM_CHANNEL_CH4
1797
  * @retval Returned value can be one of the following values:
1798
  *         @arg @ref LL_TIM_OCIDLESTATE_LOW
1799
  *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
1800
  */
1801
__STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(const TIM_TypeDef *TIMx, uint32_t Channel)
1802
{
1803
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1804
  return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
1805
}
1806
 
1807
/**
1808
  * @brief  Enable fast mode for the output channel.
1809
  * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
1810
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_EnableFast\n
1811
  *         CCMR1        OC2FE          LL_TIM_OC_EnableFast\n
1812
  *         CCMR2        OC3FE          LL_TIM_OC_EnableFast\n
1813
  *         CCMR2        OC4FE          LL_TIM_OC_EnableFast
1814
  * @param  TIMx Timer instance
1815
  * @param  Channel This parameter can be one of the following values:
1816
  *         @arg @ref LL_TIM_CHANNEL_CH1
1817
  *         @arg @ref LL_TIM_CHANNEL_CH2
1818
  *         @arg @ref LL_TIM_CHANNEL_CH3
1819
  *         @arg @ref LL_TIM_CHANNEL_CH4
1820
  * @retval None
1821
  */
1822
__STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
1823
{
1824
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1825
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1826
  SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
1827
 
1828
}
1829
 
1830
/**
1831
  * @brief  Disable fast mode for the output channel.
1832
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_DisableFast\n
1833
  *         CCMR1        OC2FE          LL_TIM_OC_DisableFast\n
1834
  *         CCMR2        OC3FE          LL_TIM_OC_DisableFast\n
1835
  *         CCMR2        OC4FE          LL_TIM_OC_DisableFast
1836
  * @param  TIMx Timer instance
1837
  * @param  Channel This parameter can be one of the following values:
1838
  *         @arg @ref LL_TIM_CHANNEL_CH1
1839
  *         @arg @ref LL_TIM_CHANNEL_CH2
1840
  *         @arg @ref LL_TIM_CHANNEL_CH3
1841
  *         @arg @ref LL_TIM_CHANNEL_CH4
1842
  * @retval None
1843
  */
1844
__STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
1845
{
1846
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1847
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1848
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
1849
 
1850
}
1851
 
1852
/**
1853
  * @brief  Indicates whether fast mode is enabled for the output channel.
1854
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_IsEnabledFast\n
1855
  *         CCMR1        OC2FE          LL_TIM_OC_IsEnabledFast\n
1856
  *         CCMR2        OC3FE          LL_TIM_OC_IsEnabledFast\n
1857
  *         CCMR2        OC4FE          LL_TIM_OC_IsEnabledFast\n
1858
  * @param  TIMx Timer instance
1859
  * @param  Channel This parameter can be one of the following values:
1860
  *         @arg @ref LL_TIM_CHANNEL_CH1
1861
  *         @arg @ref LL_TIM_CHANNEL_CH2
1862
  *         @arg @ref LL_TIM_CHANNEL_CH3
1863
  *         @arg @ref LL_TIM_CHANNEL_CH4
1864
  * @retval State of bit (1 or 0).
1865
  */
1866
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(const TIM_TypeDef *TIMx, uint32_t Channel)
1867
{
1868
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1869
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1870
  uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
1871
  return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
1872
}
1873
 
1874
/**
1875
  * @brief  Enable compare register (TIMx_CCRx) preload for the output channel.
1876
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_EnablePreload\n
1877
  *         CCMR1        OC2PE          LL_TIM_OC_EnablePreload\n
1878
  *         CCMR2        OC3PE          LL_TIM_OC_EnablePreload\n
1879
  *         CCMR2        OC4PE          LL_TIM_OC_EnablePreload
1880
  * @param  TIMx Timer instance
1881
  * @param  Channel This parameter can be one of the following values:
1882
  *         @arg @ref LL_TIM_CHANNEL_CH1
1883
  *         @arg @ref LL_TIM_CHANNEL_CH2
1884
  *         @arg @ref LL_TIM_CHANNEL_CH3
1885
  *         @arg @ref LL_TIM_CHANNEL_CH4
1886
  * @retval None
1887
  */
1888
__STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
1889
{
1890
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1891
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1892
  SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
1893
}
1894
 
1895
/**
1896
  * @brief  Disable compare register (TIMx_CCRx) preload for the output channel.
1897
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_DisablePreload\n
1898
  *         CCMR1        OC2PE          LL_TIM_OC_DisablePreload\n
1899
  *         CCMR2        OC3PE          LL_TIM_OC_DisablePreload\n
1900
  *         CCMR2        OC4PE          LL_TIM_OC_DisablePreload
1901
  * @param  TIMx Timer instance
1902
  * @param  Channel This parameter can be one of the following values:
1903
  *         @arg @ref LL_TIM_CHANNEL_CH1
1904
  *         @arg @ref LL_TIM_CHANNEL_CH2
1905
  *         @arg @ref LL_TIM_CHANNEL_CH3
1906
  *         @arg @ref LL_TIM_CHANNEL_CH4
1907
  * @retval None
1908
  */
1909
__STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
1910
{
1911
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1912
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1913
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
1914
}
1915
 
1916
/**
1917
  * @brief  Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
1918
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_IsEnabledPreload\n
1919
  *         CCMR1        OC2PE          LL_TIM_OC_IsEnabledPreload\n
1920
  *         CCMR2        OC3PE          LL_TIM_OC_IsEnabledPreload\n
1921
  *         CCMR2        OC4PE          LL_TIM_OC_IsEnabledPreload\n
1922
  * @param  TIMx Timer instance
1923
  * @param  Channel This parameter can be one of the following values:
1924
  *         @arg @ref LL_TIM_CHANNEL_CH1
1925
  *         @arg @ref LL_TIM_CHANNEL_CH2
1926
  *         @arg @ref LL_TIM_CHANNEL_CH3
1927
  *         @arg @ref LL_TIM_CHANNEL_CH4
1928
  * @retval State of bit (1 or 0).
1929
  */
1930
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef *TIMx, uint32_t Channel)
1931
{
1932
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1933
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1934
  uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
1935
  return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
1936
}
1937
 
1938
/**
1939
  * @brief  Enable clearing the output channel on an external event.
1940
  * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
1941
  * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
1942
  *       or not a timer instance can clear the OCxREF signal on an external event.
1943
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_EnableClear\n
1944
  *         CCMR1        OC2CE          LL_TIM_OC_EnableClear\n
1945
  *         CCMR2        OC3CE          LL_TIM_OC_EnableClear\n
1946
  *         CCMR2        OC4CE          LL_TIM_OC_EnableClear
1947
  * @param  TIMx Timer instance
1948
  * @param  Channel This parameter can be one of the following values:
1949
  *         @arg @ref LL_TIM_CHANNEL_CH1
1950
  *         @arg @ref LL_TIM_CHANNEL_CH2
1951
  *         @arg @ref LL_TIM_CHANNEL_CH3
1952
  *         @arg @ref LL_TIM_CHANNEL_CH4
1953
  * @retval None
1954
  */
1955
__STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
1956
{
1957
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1958
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1959
  SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
1960
}
1961
 
1962
/**
1963
  * @brief  Disable clearing the output channel on an external event.
1964
  * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
1965
  *       or not a timer instance can clear the OCxREF signal on an external event.
1966
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_DisableClear\n
1967
  *         CCMR1        OC2CE          LL_TIM_OC_DisableClear\n
1968
  *         CCMR2        OC3CE          LL_TIM_OC_DisableClear\n
1969
  *         CCMR2        OC4CE          LL_TIM_OC_DisableClear
1970
  * @param  TIMx Timer instance
1971
  * @param  Channel This parameter can be one of the following values:
1972
  *         @arg @ref LL_TIM_CHANNEL_CH1
1973
  *         @arg @ref LL_TIM_CHANNEL_CH2
1974
  *         @arg @ref LL_TIM_CHANNEL_CH3
1975
  *         @arg @ref LL_TIM_CHANNEL_CH4
1976
  * @retval None
1977
  */
1978
__STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
1979
{
1980
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1981
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1982
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
1983
}
1984
 
1985
/**
1986
  * @brief  Indicates clearing the output channel on an external event is enabled for the output channel.
1987
  * @note This function enables clearing the output channel on an external event.
1988
  * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
1989
  * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
1990
  *       or not a timer instance can clear the OCxREF signal on an external event.
1991
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_IsEnabledClear\n
1992
  *         CCMR1        OC2CE          LL_TIM_OC_IsEnabledClear\n
1993
  *         CCMR2        OC3CE          LL_TIM_OC_IsEnabledClear\n
1994
  *         CCMR2        OC4CE          LL_TIM_OC_IsEnabledClear\n
1995
  * @param  TIMx Timer instance
1996
  * @param  Channel This parameter can be one of the following values:
1997
  *         @arg @ref LL_TIM_CHANNEL_CH1
1998
  *         @arg @ref LL_TIM_CHANNEL_CH2
1999
  *         @arg @ref LL_TIM_CHANNEL_CH3
2000
  *         @arg @ref LL_TIM_CHANNEL_CH4
2001
  * @retval State of bit (1 or 0).
2002
  */
2003
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(const TIM_TypeDef *TIMx, uint32_t Channel)
2004
{
2005
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2006
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2007
  uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
2008
  return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2009
}
2010
 
2011
/**
2012
  * @brief  Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of
2013
  *         the Ocx and OCxN signals).
2014
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2015
  *       dead-time insertion feature is supported by a timer instance.
2016
  * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
2017
  * @rmtoll BDTR         DTG           LL_TIM_OC_SetDeadTime
2018
  * @param  TIMx Timer instance
2019
  * @param  DeadTime between Min_Data=0 and Max_Data=255
2020
  * @retval None
2021
  */
2022
__STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
2023
{
2024
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
2025
}
2026
 
2027
/**
2028
  * @brief  Set compare value for output channel 1 (TIMx_CCR1).
2029
  * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2030
  *       output channel 1 is supported by a timer instance.
2031
  * @rmtoll CCR1         CCR1          LL_TIM_OC_SetCompareCH1
2032
  * @param  TIMx Timer instance
2033
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2034
  * @retval None
2035
  */
2036
__STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
2037
{
2038
  WRITE_REG(TIMx->CCR1, CompareValue);
2039
}
2040
 
2041
/**
2042
  * @brief  Set compare value for output channel 2 (TIMx_CCR2).
2043
  * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2044
  *       output channel 2 is supported by a timer instance.
2045
  * @rmtoll CCR2         CCR2          LL_TIM_OC_SetCompareCH2
2046
  * @param  TIMx Timer instance
2047
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2048
  * @retval None
2049
  */
2050
__STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
2051
{
2052
  WRITE_REG(TIMx->CCR2, CompareValue);
2053
}
2054
 
2055
/**
2056
  * @brief  Set compare value for output channel 3 (TIMx_CCR3).
2057
  * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2058
  *       output channel is supported by a timer instance.
2059
  * @rmtoll CCR3         CCR3          LL_TIM_OC_SetCompareCH3
2060
  * @param  TIMx Timer instance
2061
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2062
  * @retval None
2063
  */
2064
__STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
2065
{
2066
  WRITE_REG(TIMx->CCR3, CompareValue);
2067
}
2068
 
2069
/**
2070
  * @brief  Set compare value for output channel 4 (TIMx_CCR4).
2071
  * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2072
  *       output channel 4 is supported by a timer instance.
2073
  * @rmtoll CCR4         CCR4          LL_TIM_OC_SetCompareCH4
2074
  * @param  TIMx Timer instance
2075
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2076
  * @retval None
2077
  */
2078
__STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
2079
{
2080
  WRITE_REG(TIMx->CCR4, CompareValue);
2081
}
2082
 
2083
/**
2084
  * @brief  Get compare value (TIMx_CCR1) set for  output channel 1.
2085
  * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2086
  *       output channel 1 is supported by a timer instance.
2087
  * @rmtoll CCR1         CCR1          LL_TIM_OC_GetCompareCH1
2088
  * @param  TIMx Timer instance
2089
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2090
  */
2091
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(const TIM_TypeDef *TIMx)
2092
{
2093
  return (uint32_t)(READ_REG(TIMx->CCR1));
2094
}
2095
 
2096
/**
2097
  * @brief  Get compare value (TIMx_CCR2) set for  output channel 2.
2098
  * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2099
  *       output channel 2 is supported by a timer instance.
2100
  * @rmtoll CCR2         CCR2          LL_TIM_OC_GetCompareCH2
2101
  * @param  TIMx Timer instance
2102
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2103
  */
2104
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(const TIM_TypeDef *TIMx)
2105
{
2106
  return (uint32_t)(READ_REG(TIMx->CCR2));
2107
}
2108
 
2109
/**
2110
  * @brief  Get compare value (TIMx_CCR3) set for  output channel 3.
2111
  * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2112
  *       output channel 3 is supported by a timer instance.
2113
  * @rmtoll CCR3         CCR3          LL_TIM_OC_GetCompareCH3
2114
  * @param  TIMx Timer instance
2115
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2116
  */
2117
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(const TIM_TypeDef *TIMx)
2118
{
2119
  return (uint32_t)(READ_REG(TIMx->CCR3));
2120
}
2121
 
2122
/**
2123
  * @brief  Get compare value (TIMx_CCR4) set for  output channel 4.
2124
  * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2125
  *       output channel 4 is supported by a timer instance.
2126
  * @rmtoll CCR4         CCR4          LL_TIM_OC_GetCompareCH4
2127
  * @param  TIMx Timer instance
2128
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2129
  */
2130
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(const TIM_TypeDef *TIMx)
2131
{
2132
  return (uint32_t)(READ_REG(TIMx->CCR4));
2133
}
2134
 
2135
/**
2136
  * @}
2137
  */
2138
 
2139
/** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
2140
  * @{
2141
  */
2142
/**
2143
  * @brief  Configure input channel.
2144
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_Config\n
2145
  *         CCMR1        IC1PSC        LL_TIM_IC_Config\n
2146
  *         CCMR1        IC1F          LL_TIM_IC_Config\n
2147
  *         CCMR1        CC2S          LL_TIM_IC_Config\n
2148
  *         CCMR1        IC2PSC        LL_TIM_IC_Config\n
2149
  *         CCMR1        IC2F          LL_TIM_IC_Config\n
2150
  *         CCMR2        CC3S          LL_TIM_IC_Config\n
2151
  *         CCMR2        IC3PSC        LL_TIM_IC_Config\n
2152
  *         CCMR2        IC3F          LL_TIM_IC_Config\n
2153
  *         CCMR2        CC4S          LL_TIM_IC_Config\n
2154
  *         CCMR2        IC4PSC        LL_TIM_IC_Config\n
2155
  *         CCMR2        IC4F          LL_TIM_IC_Config\n
2156
  *         CCER         CC1P          LL_TIM_IC_Config\n
2157
  *         CCER         CC1NP         LL_TIM_IC_Config\n
2158
  *         CCER         CC2P          LL_TIM_IC_Config\n
2159
  *         CCER         CC2NP         LL_TIM_IC_Config\n
2160
  *         CCER         CC3P          LL_TIM_IC_Config\n
2161
  *         CCER         CC3NP         LL_TIM_IC_Config\n
2162
  *         CCER         CC4P          LL_TIM_IC_Config\n
2163
  * @param  TIMx Timer instance
2164
  * @param  Channel This parameter can be one of the following values:
2165
  *         @arg @ref LL_TIM_CHANNEL_CH1
2166
  *         @arg @ref LL_TIM_CHANNEL_CH2
2167
  *         @arg @ref LL_TIM_CHANNEL_CH3
2168
  *         @arg @ref LL_TIM_CHANNEL_CH4
2169
  * @param  Configuration This parameter must be a combination of all the following values:
2170
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
2171
  *         @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
2172
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
2173
  *         @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING
2174
  * @retval None
2175
  */
2176
__STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2177
{
2178
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2179
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2180
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
2181
             ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S))                \
2182
             << SHIFT_TAB_ICxx[iChannel]);
2183
  MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2184
             (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
2185
}
2186
 
2187
/**
2188
  * @brief  Set the active input.
2189
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_SetActiveInput\n
2190
  *         CCMR1        CC2S          LL_TIM_IC_SetActiveInput\n
2191
  *         CCMR2        CC3S          LL_TIM_IC_SetActiveInput\n
2192
  *         CCMR2        CC4S          LL_TIM_IC_SetActiveInput
2193
  * @param  TIMx Timer instance
2194
  * @param  Channel This parameter can be one of the following values:
2195
  *         @arg @ref LL_TIM_CHANNEL_CH1
2196
  *         @arg @ref LL_TIM_CHANNEL_CH2
2197
  *         @arg @ref LL_TIM_CHANNEL_CH3
2198
  *         @arg @ref LL_TIM_CHANNEL_CH4
2199
  * @param  ICActiveInput This parameter can be one of the following values:
2200
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2201
  *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2202
  *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2203
  * @retval None
2204
  */
2205
__STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
2206
{
2207
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2208
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2209
  MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2210
}
2211
 
2212
/**
2213
  * @brief  Get the current active input.
2214
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_GetActiveInput\n
2215
  *         CCMR1        CC2S          LL_TIM_IC_GetActiveInput\n
2216
  *         CCMR2        CC3S          LL_TIM_IC_GetActiveInput\n
2217
  *         CCMR2        CC4S          LL_TIM_IC_GetActiveInput
2218
  * @param  TIMx Timer instance
2219
  * @param  Channel This parameter can be one of the following values:
2220
  *         @arg @ref LL_TIM_CHANNEL_CH1
2221
  *         @arg @ref LL_TIM_CHANNEL_CH2
2222
  *         @arg @ref LL_TIM_CHANNEL_CH3
2223
  *         @arg @ref LL_TIM_CHANNEL_CH4
2224
  * @retval Returned value can be one of the following values:
2225
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2226
  *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2227
  *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2228
  */
2229
__STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(const TIM_TypeDef *TIMx, uint32_t Channel)
2230
{
2231
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2232
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2233
  return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2234
}
2235
 
2236
/**
2237
  * @brief  Set the prescaler of input channel.
2238
  * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_SetPrescaler\n
2239
  *         CCMR1        IC2PSC        LL_TIM_IC_SetPrescaler\n
2240
  *         CCMR2        IC3PSC        LL_TIM_IC_SetPrescaler\n
2241
  *         CCMR2        IC4PSC        LL_TIM_IC_SetPrescaler
2242
  * @param  TIMx Timer instance
2243
  * @param  Channel This parameter can be one of the following values:
2244
  *         @arg @ref LL_TIM_CHANNEL_CH1
2245
  *         @arg @ref LL_TIM_CHANNEL_CH2
2246
  *         @arg @ref LL_TIM_CHANNEL_CH3
2247
  *         @arg @ref LL_TIM_CHANNEL_CH4
2248
  * @param  ICPrescaler This parameter can be one of the following values:
2249
  *         @arg @ref LL_TIM_ICPSC_DIV1
2250
  *         @arg @ref LL_TIM_ICPSC_DIV2
2251
  *         @arg @ref LL_TIM_ICPSC_DIV4
2252
  *         @arg @ref LL_TIM_ICPSC_DIV8
2253
  * @retval None
2254
  */
2255
__STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
2256
{
2257
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2258
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2259
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2260
}
2261
 
2262
/**
2263
  * @brief  Get the current prescaler value acting on an  input channel.
2264
  * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_GetPrescaler\n
2265
  *         CCMR1        IC2PSC        LL_TIM_IC_GetPrescaler\n
2266
  *         CCMR2        IC3PSC        LL_TIM_IC_GetPrescaler\n
2267
  *         CCMR2        IC4PSC        LL_TIM_IC_GetPrescaler
2268
  * @param  TIMx Timer instance
2269
  * @param  Channel This parameter can be one of the following values:
2270
  *         @arg @ref LL_TIM_CHANNEL_CH1
2271
  *         @arg @ref LL_TIM_CHANNEL_CH2
2272
  *         @arg @ref LL_TIM_CHANNEL_CH3
2273
  *         @arg @ref LL_TIM_CHANNEL_CH4
2274
  * @retval Returned value can be one of the following values:
2275
  *         @arg @ref LL_TIM_ICPSC_DIV1
2276
  *         @arg @ref LL_TIM_ICPSC_DIV2
2277
  *         @arg @ref LL_TIM_ICPSC_DIV4
2278
  *         @arg @ref LL_TIM_ICPSC_DIV8
2279
  */
2280
__STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(const TIM_TypeDef *TIMx, uint32_t Channel)
2281
{
2282
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2283
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2284
  return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2285
}
2286
 
2287
/**
2288
  * @brief  Set the input filter duration.
2289
  * @rmtoll CCMR1        IC1F          LL_TIM_IC_SetFilter\n
2290
  *         CCMR1        IC2F          LL_TIM_IC_SetFilter\n
2291
  *         CCMR2        IC3F          LL_TIM_IC_SetFilter\n
2292
  *         CCMR2        IC4F          LL_TIM_IC_SetFilter
2293
  * @param  TIMx Timer instance
2294
  * @param  Channel This parameter can be one of the following values:
2295
  *         @arg @ref LL_TIM_CHANNEL_CH1
2296
  *         @arg @ref LL_TIM_CHANNEL_CH2
2297
  *         @arg @ref LL_TIM_CHANNEL_CH3
2298
  *         @arg @ref LL_TIM_CHANNEL_CH4
2299
  * @param  ICFilter This parameter can be one of the following values:
2300
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2301
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2302
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2303
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2304
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2305
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2306
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2307
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2308
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2309
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2310
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2311
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2312
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2313
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2314
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2315
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2316
  * @retval None
2317
  */
2318
__STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
2319
{
2320
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2321
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2322
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2323
}
2324
 
2325
/**
2326
  * @brief  Get the input filter duration.
2327
  * @rmtoll CCMR1        IC1F          LL_TIM_IC_GetFilter\n
2328
  *         CCMR1        IC2F          LL_TIM_IC_GetFilter\n
2329
  *         CCMR2        IC3F          LL_TIM_IC_GetFilter\n
2330
  *         CCMR2        IC4F          LL_TIM_IC_GetFilter
2331
  * @param  TIMx Timer instance
2332
  * @param  Channel This parameter can be one of the following values:
2333
  *         @arg @ref LL_TIM_CHANNEL_CH1
2334
  *         @arg @ref LL_TIM_CHANNEL_CH2
2335
  *         @arg @ref LL_TIM_CHANNEL_CH3
2336
  *         @arg @ref LL_TIM_CHANNEL_CH4
2337
  * @retval Returned value can be one of the following values:
2338
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2339
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2340
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2341
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2342
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2343
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2344
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2345
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2346
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2347
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2348
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2349
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2350
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2351
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2352
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2353
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2354
  */
2355
__STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(const TIM_TypeDef *TIMx, uint32_t Channel)
2356
{
2357
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2358
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2359
  return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2360
}
2361
 
2362
/**
2363
  * @brief  Set the input channel polarity.
2364
  * @rmtoll CCER         CC1P          LL_TIM_IC_SetPolarity\n
2365
  *         CCER         CC1NP         LL_TIM_IC_SetPolarity\n
2366
  *         CCER         CC2P          LL_TIM_IC_SetPolarity\n
2367
  *         CCER         CC2NP         LL_TIM_IC_SetPolarity\n
2368
  *         CCER         CC3P          LL_TIM_IC_SetPolarity\n
2369
  *         CCER         CC3NP         LL_TIM_IC_SetPolarity\n
2370
  *         CCER         CC4P          LL_TIM_IC_SetPolarity\n
2371
  * @param  TIMx Timer instance
2372
  * @param  Channel This parameter can be one of the following values:
2373
  *         @arg @ref LL_TIM_CHANNEL_CH1
2374
  *         @arg @ref LL_TIM_CHANNEL_CH2
2375
  *         @arg @ref LL_TIM_CHANNEL_CH3
2376
  *         @arg @ref LL_TIM_CHANNEL_CH4
2377
  * @param  ICPolarity This parameter can be one of the following values:
2378
  *         @arg @ref LL_TIM_IC_POLARITY_RISING
2379
  *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2380
  * @retval None
2381
  */
2382
__STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
2383
{
2384
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2385
  MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2386
             ICPolarity << SHIFT_TAB_CCxP[iChannel]);
2387
}
2388
 
2389
/**
2390
  * @brief  Get the current input channel polarity.
2391
  * @rmtoll CCER         CC1P          LL_TIM_IC_GetPolarity\n
2392
  *         CCER         CC1NP         LL_TIM_IC_GetPolarity\n
2393
  *         CCER         CC2P          LL_TIM_IC_GetPolarity\n
2394
  *         CCER         CC2NP         LL_TIM_IC_GetPolarity\n
2395
  *         CCER         CC3P          LL_TIM_IC_GetPolarity\n
2396
  *         CCER         CC3NP         LL_TIM_IC_GetPolarity\n
2397
  *         CCER         CC4P          LL_TIM_IC_GetPolarity\n
2398
  * @param  TIMx Timer instance
2399
  * @param  Channel This parameter can be one of the following values:
2400
  *         @arg @ref LL_TIM_CHANNEL_CH1
2401
  *         @arg @ref LL_TIM_CHANNEL_CH2
2402
  *         @arg @ref LL_TIM_CHANNEL_CH3
2403
  *         @arg @ref LL_TIM_CHANNEL_CH4
2404
  * @retval Returned value can be one of the following values:
2405
  *         @arg @ref LL_TIM_IC_POLARITY_RISING
2406
  *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2407
  */
2408
__STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
2409
{
2410
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2411
  return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
2412
          SHIFT_TAB_CCxP[iChannel]);
2413
}
2414
 
2415
/**
2416
  * @brief  Connect the TIMx_CH1, CH2 and CH3 pins  to the TI1 input (XOR combination).
2417
  * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2418
  *       a timer instance provides an XOR input.
2419
  * @rmtoll CR2          TI1S          LL_TIM_IC_EnableXORCombination
2420
  * @param  TIMx Timer instance
2421
  * @retval None
2422
  */
2423
__STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
2424
{
2425
  SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
2426
}
2427
 
2428
/**
2429
  * @brief  Disconnect the TIMx_CH1, CH2 and CH3 pins  from the TI1 input.
2430
  * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2431
  *       a timer instance provides an XOR input.
2432
  * @rmtoll CR2          TI1S          LL_TIM_IC_DisableXORCombination
2433
  * @param  TIMx Timer instance
2434
  * @retval None
2435
  */
2436
__STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
2437
{
2438
  CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
2439
}
2440
 
2441
/**
2442
  * @brief  Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
2443
  * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2444
  * a timer instance provides an XOR input.
2445
  * @rmtoll CR2          TI1S          LL_TIM_IC_IsEnabledXORCombination
2446
  * @param  TIMx Timer instance
2447
  * @retval State of bit (1 or 0).
2448
  */
2449
__STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef *TIMx)
2450
{
2451
  return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
2452
}
2453
 
2454
/**
2455
  * @brief  Get captured value for input channel 1.
2456
  * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2457
  *       input channel 1 is supported by a timer instance.
2458
  * @rmtoll CCR1         CCR1          LL_TIM_IC_GetCaptureCH1
2459
  * @param  TIMx Timer instance
2460
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2461
  */
2462
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef *TIMx)
2463
{
2464
  return (uint32_t)(READ_REG(TIMx->CCR1));
2465
}
2466
 
2467
/**
2468
  * @brief  Get captured value for input channel 2.
2469
  * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2470
  *       input channel 2 is supported by a timer instance.
2471
  * @rmtoll CCR2         CCR2          LL_TIM_IC_GetCaptureCH2
2472
  * @param  TIMx Timer instance
2473
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2474
  */
2475
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef *TIMx)
2476
{
2477
  return (uint32_t)(READ_REG(TIMx->CCR2));
2478
}
2479
 
2480
/**
2481
  * @brief  Get captured value for input channel 3.
2482
  * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2483
  *       input channel 3 is supported by a timer instance.
2484
  * @rmtoll CCR3         CCR3          LL_TIM_IC_GetCaptureCH3
2485
  * @param  TIMx Timer instance
2486
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2487
  */
2488
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef *TIMx)
2489
{
2490
  return (uint32_t)(READ_REG(TIMx->CCR3));
2491
}
2492
 
2493
/**
2494
  * @brief  Get captured value for input channel 4.
2495
  * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2496
  *       input channel 4 is supported by a timer instance.
2497
  * @rmtoll CCR4         CCR4          LL_TIM_IC_GetCaptureCH4
2498
  * @param  TIMx Timer instance
2499
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2500
  */
2501
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef *TIMx)
2502
{
2503
  return (uint32_t)(READ_REG(TIMx->CCR4));
2504
}
2505
 
2506
/**
2507
  * @}
2508
  */
2509
 
2510
/** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
2511
  * @{
2512
  */
2513
/**
2514
  * @brief  Enable external clock mode 2.
2515
  * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
2516
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2517
  *       whether or not a timer instance supports external clock mode2.
2518
  * @rmtoll SMCR         ECE           LL_TIM_EnableExternalClock
2519
  * @param  TIMx Timer instance
2520
  * @retval None
2521
  */
2522
__STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
2523
{
2524
  SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
2525
}
2526
 
2527
/**
2528
  * @brief  Disable external clock mode 2.
2529
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2530
  *       whether or not a timer instance supports external clock mode2.
2531
  * @rmtoll SMCR         ECE           LL_TIM_DisableExternalClock
2532
  * @param  TIMx Timer instance
2533
  * @retval None
2534
  */
2535
__STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
2536
{
2537
  CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
2538
}
2539
 
2540
/**
2541
  * @brief  Indicate whether external clock mode 2 is enabled.
2542
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2543
  *       whether or not a timer instance supports external clock mode2.
2544
  * @rmtoll SMCR         ECE           LL_TIM_IsEnabledExternalClock
2545
  * @param  TIMx Timer instance
2546
  * @retval State of bit (1 or 0).
2547
  */
2548
__STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(const TIM_TypeDef *TIMx)
2549
{
2550
  return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
2551
}
2552
 
2553
/**
2554
  * @brief  Set the clock source of the counter clock.
2555
  * @note when selected clock source is external clock mode 1, the timer input
2556
  *       the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
2557
  *       function. This timer input must be configured by calling
2558
  *       the @ref LL_TIM_IC_Config() function.
2559
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
2560
  *       whether or not a timer instance supports external clock mode1.
2561
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2562
  *       whether or not a timer instance supports external clock mode2.
2563
  * @rmtoll SMCR         SMS           LL_TIM_SetClockSource\n
2564
  *         SMCR         ECE           LL_TIM_SetClockSource
2565
  * @param  TIMx Timer instance
2566
  * @param  ClockSource This parameter can be one of the following values:
2567
  *         @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
2568
  *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
2569
  *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
2570
  * @retval None
2571
  */
2572
__STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
2573
{
2574
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
2575
}
2576
 
2577
/**
2578
  * @brief  Set the encoder interface mode.
2579
  * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
2580
  *       whether or not a timer instance supports the encoder mode.
2581
  * @rmtoll SMCR         SMS           LL_TIM_SetEncoderMode
2582
  * @param  TIMx Timer instance
2583
  * @param  EncoderMode This parameter can be one of the following values:
2584
  *         @arg @ref LL_TIM_ENCODERMODE_X2_TI1
2585
  *         @arg @ref LL_TIM_ENCODERMODE_X2_TI2
2586
  *         @arg @ref LL_TIM_ENCODERMODE_X4_TI12
2587
  * @retval None
2588
  */
2589
__STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
2590
{
2591
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
2592
}
2593
 
2594
/**
2595
  * @}
2596
  */
2597
 
2598
/** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
2599
  * @{
2600
  */
2601
/**
2602
  * @brief  Set the trigger output (TRGO) used for timer synchronization .
2603
  * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
2604
  *       whether or not a timer instance can operate as a master timer.
2605
  * @rmtoll CR2          MMS           LL_TIM_SetTriggerOutput
2606
  * @param  TIMx Timer instance
2607
  * @param  TimerSynchronization This parameter can be one of the following values:
2608
  *         @arg @ref LL_TIM_TRGO_RESET
2609
  *         @arg @ref LL_TIM_TRGO_ENABLE
2610
  *         @arg @ref LL_TIM_TRGO_UPDATE
2611
  *         @arg @ref LL_TIM_TRGO_CC1IF
2612
  *         @arg @ref LL_TIM_TRGO_OC1REF
2613
  *         @arg @ref LL_TIM_TRGO_OC2REF
2614
  *         @arg @ref LL_TIM_TRGO_OC3REF
2615
  *         @arg @ref LL_TIM_TRGO_OC4REF
2616
  * @retval None
2617
  */
2618
__STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
2619
{
2620
  MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
2621
}
2622
 
2623
/**
2624
  * @brief  Set the synchronization mode of a slave timer.
2625
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2626
  *       a timer instance can operate as a slave timer.
2627
  * @rmtoll SMCR         SMS           LL_TIM_SetSlaveMode
2628
  * @param  TIMx Timer instance
2629
  * @param  SlaveMode This parameter can be one of the following values:
2630
  *         @arg @ref LL_TIM_SLAVEMODE_DISABLED
2631
  *         @arg @ref LL_TIM_SLAVEMODE_RESET
2632
  *         @arg @ref LL_TIM_SLAVEMODE_GATED
2633
  *         @arg @ref LL_TIM_SLAVEMODE_TRIGGER
2634
  * @retval None
2635
  */
2636
__STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
2637
{
2638
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
2639
}
2640
 
2641
/**
2642
  * @brief  Set the selects the trigger input to be used to synchronize the counter.
2643
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2644
  *       a timer instance can operate as a slave timer.
2645
  * @rmtoll SMCR         TS            LL_TIM_SetTriggerInput
2646
  * @param  TIMx Timer instance
2647
  * @param  TriggerInput This parameter can be one of the following values:
2648
  *         @arg @ref LL_TIM_TS_ITR0
2649
  *         @arg @ref LL_TIM_TS_ITR1
2650
  *         @arg @ref LL_TIM_TS_ITR2
2651
  *         @arg @ref LL_TIM_TS_ITR3
2652
  *         @arg @ref LL_TIM_TS_TI1F_ED
2653
  *         @arg @ref LL_TIM_TS_TI1FP1
2654
  *         @arg @ref LL_TIM_TS_TI2FP2
2655
  *         @arg @ref LL_TIM_TS_ETRF
2656
  * @retval None
2657
  */
2658
__STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
2659
{
2660
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
2661
}
2662
 
2663
/**
2664
  * @brief  Enable the Master/Slave mode.
2665
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2666
  *       a timer instance can operate as a slave timer.
2667
  * @rmtoll SMCR         MSM           LL_TIM_EnableMasterSlaveMode
2668
  * @param  TIMx Timer instance
2669
  * @retval None
2670
  */
2671
__STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
2672
{
2673
  SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
2674
}
2675
 
2676
/**
2677
  * @brief  Disable the Master/Slave mode.
2678
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2679
  *       a timer instance can operate as a slave timer.
2680
  * @rmtoll SMCR         MSM           LL_TIM_DisableMasterSlaveMode
2681
  * @param  TIMx Timer instance
2682
  * @retval None
2683
  */
2684
__STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
2685
{
2686
  CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
2687
}
2688
 
2689
/**
2690
  * @brief Indicates whether the Master/Slave mode is enabled.
2691
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2692
  * a timer instance can operate as a slave timer.
2693
  * @rmtoll SMCR         MSM           LL_TIM_IsEnabledMasterSlaveMode
2694
  * @param  TIMx Timer instance
2695
  * @retval State of bit (1 or 0).
2696
  */
2697
__STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef *TIMx)
2698
{
2699
  return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
2700
}
2701
 
2702
/**
2703
  * @brief  Configure the external trigger (ETR) input.
2704
  * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
2705
  *       a timer instance provides an external trigger input.
2706
  * @rmtoll SMCR         ETP           LL_TIM_ConfigETR\n
2707
  *         SMCR         ETPS          LL_TIM_ConfigETR\n
2708
  *         SMCR         ETF           LL_TIM_ConfigETR
2709
  * @param  TIMx Timer instance
2710
  * @param  ETRPolarity This parameter can be one of the following values:
2711
  *         @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
2712
  *         @arg @ref LL_TIM_ETR_POLARITY_INVERTED
2713
  * @param  ETRPrescaler This parameter can be one of the following values:
2714
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV1
2715
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV2
2716
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV4
2717
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV8
2718
  * @param  ETRFilter This parameter can be one of the following values:
2719
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1
2720
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
2721
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
2722
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
2723
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
2724
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
2725
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
2726
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
2727
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
2728
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
2729
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
2730
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
2731
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
2732
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
2733
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
2734
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
2735
  * @retval None
2736
  */
2737
__STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
2738
                                      uint32_t ETRFilter)
2739
{
2740
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
2741
}
2742
 
2743
/**
2744
  * @}
2745
  */
2746
 
2747
/** @defgroup TIM_LL_EF_Break_Function Break function configuration
2748
  * @{
2749
  */
2750
/**
2751
  * @brief  Enable the break function.
2752
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2753
  *       a timer instance provides a break input.
2754
  * @rmtoll BDTR         BKE           LL_TIM_EnableBRK
2755
  * @param  TIMx Timer instance
2756
  * @retval None
2757
  */
2758
__STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
2759
{
2760
  __IO uint32_t tmpreg;
2761
  SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
2762
  /* Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. */
2763
  tmpreg = READ_REG(TIMx->BDTR);
2764
  (void)(tmpreg);
2765
}
2766
 
2767
/**
2768
  * @brief  Disable the break function.
2769
  * @rmtoll BDTR         BKE           LL_TIM_DisableBRK
2770
  * @param  TIMx Timer instance
2771
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2772
  *       a timer instance provides a break input.
2773
  * @retval None
2774
  */
2775
__STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
2776
{
2777
  __IO uint32_t tmpreg;
2778
  CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
2779
  /* Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. */
2780
  tmpreg = READ_REG(TIMx->BDTR);
2781
  (void)(tmpreg);
2782
}
2783
 
2784
/**
2785
  * @brief  Configure the break input.
2786
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2787
  *       a timer instance provides a break input.
2788
  * @rmtoll BDTR         BKP           LL_TIM_ConfigBRK
2789
  * @param  TIMx Timer instance
2790
  * @param  BreakPolarity This parameter can be one of the following values:
2791
  *         @arg @ref LL_TIM_BREAK_POLARITY_LOW
2792
  *         @arg @ref LL_TIM_BREAK_POLARITY_HIGH
2793
  * @retval None
2794
  */
2795
__STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity)
2796
{
2797
  __IO uint32_t tmpreg;
2798
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP, BreakPolarity);
2799
  /* Note: Any write operation to BKP bit takes a delay of 1 APB clock cycle to become effective. */
2800
  tmpreg = READ_REG(TIMx->BDTR);
2801
  (void)(tmpreg);
2802
}
2803
 
2804
/**
2805
  * @brief  Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
2806
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2807
  *       a timer instance provides a break input.
2808
  * @rmtoll BDTR         OSSI          LL_TIM_SetOffStates\n
2809
  *         BDTR         OSSR          LL_TIM_SetOffStates
2810
  * @param  TIMx Timer instance
2811
  * @param  OffStateIdle This parameter can be one of the following values:
2812
  *         @arg @ref LL_TIM_OSSI_DISABLE
2813
  *         @arg @ref LL_TIM_OSSI_ENABLE
2814
  * @param  OffStateRun This parameter can be one of the following values:
2815
  *         @arg @ref LL_TIM_OSSR_DISABLE
2816
  *         @arg @ref LL_TIM_OSSR_ENABLE
2817
  * @retval None
2818
  */
2819
__STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
2820
{
2821
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
2822
}
2823
 
2824
/**
2825
  * @brief  Enable automatic output (MOE can be set by software or automatically when a break input is active).
2826
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2827
  *       a timer instance provides a break input.
2828
  * @rmtoll BDTR         AOE           LL_TIM_EnableAutomaticOutput
2829
  * @param  TIMx Timer instance
2830
  * @retval None
2831
  */
2832
__STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
2833
{
2834
  SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
2835
}
2836
 
2837
/**
2838
  * @brief  Disable automatic output (MOE can be set only by software).
2839
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2840
  *       a timer instance provides a break input.
2841
  * @rmtoll BDTR         AOE           LL_TIM_DisableAutomaticOutput
2842
  * @param  TIMx Timer instance
2843
  * @retval None
2844
  */
2845
__STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
2846
{
2847
  CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
2848
}
2849
 
2850
/**
2851
  * @brief  Indicate whether automatic output is enabled.
2852
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2853
  *       a timer instance provides a break input.
2854
  * @rmtoll BDTR         AOE           LL_TIM_IsEnabledAutomaticOutput
2855
  * @param  TIMx Timer instance
2856
  * @retval State of bit (1 or 0).
2857
  */
2858
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef *TIMx)
2859
{
2860
  return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
2861
}
2862
 
2863
/**
2864
  * @brief  Enable the outputs (set the MOE bit in TIMx_BDTR register).
2865
  * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
2866
  *       software and is reset in case of break or break2 event
2867
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2868
  *       a timer instance provides a break input.
2869
  * @rmtoll BDTR         MOE           LL_TIM_EnableAllOutputs
2870
  * @param  TIMx Timer instance
2871
  * @retval None
2872
  */
2873
__STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
2874
{
2875
  SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
2876
}
2877
 
2878
/**
2879
  * @brief  Disable the outputs (reset the MOE bit in TIMx_BDTR register).
2880
  * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
2881
  *       software and is reset in case of break or break2 event.
2882
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2883
  *       a timer instance provides a break input.
2884
  * @rmtoll BDTR         MOE           LL_TIM_DisableAllOutputs
2885
  * @param  TIMx Timer instance
2886
  * @retval None
2887
  */
2888
__STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
2889
{
2890
  CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
2891
}
2892
 
2893
/**
2894
  * @brief  Indicates whether outputs are enabled.
2895
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2896
  *       a timer instance provides a break input.
2897
  * @rmtoll BDTR         MOE           LL_TIM_IsEnabledAllOutputs
2898
  * @param  TIMx Timer instance
2899
  * @retval State of bit (1 or 0).
2900
  */
2901
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef *TIMx)
2902
{
2903
  return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
2904
}
2905
 
2906
/**
2907
  * @}
2908
  */
2909
 
2910
/** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
2911
  * @{
2912
  */
2913
/**
2914
  * @brief  Configures the timer DMA burst feature.
2915
  * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
2916
  *       not a timer instance supports the DMA burst mode.
2917
  * @rmtoll DCR          DBL           LL_TIM_ConfigDMABurst\n
2918
  *         DCR          DBA           LL_TIM_ConfigDMABurst
2919
  * @param  TIMx Timer instance
2920
  * @param  DMABurstBaseAddress This parameter can be one of the following values:
2921
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
2922
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
2923
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
2924
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
2925
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_SR
2926
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
2927
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
2928
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
2929
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
2930
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
2931
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
2932
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
2933
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
2934
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
2935
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
2936
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
2937
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
2938
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
2939
  * @param  DMABurstLength This parameter can be one of the following values:
2940
  *         @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
2941
  *         @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
2942
  *         @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
2943
  *         @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
2944
  *         @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
2945
  *         @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
2946
  *         @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
2947
  *         @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
2948
  *         @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
2949
  *         @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
2950
  *         @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
2951
  *         @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
2952
  *         @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
2953
  *         @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
2954
  *         @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
2955
  *         @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
2956
  *         @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
2957
  *         @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
2958
  * @retval None
2959
  */
2960
__STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
2961
{
2962
  MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
2963
}
2964
 
2965
/**
2966
  * @}
2967
  */
2968
 
2969
 
2970
/** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
2971
  * @{
2972
  */
2973
/**
2974
  * @brief  Clear the update interrupt flag (UIF).
2975
  * @rmtoll SR           UIF           LL_TIM_ClearFlag_UPDATE
2976
  * @param  TIMx Timer instance
2977
  * @retval None
2978
  */
2979
__STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
2980
{
2981
  WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
2982
}
2983
 
2984
/**
2985
  * @brief  Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
2986
  * @rmtoll SR           UIF           LL_TIM_IsActiveFlag_UPDATE
2987
  * @param  TIMx Timer instance
2988
  * @retval State of bit (1 or 0).
2989
  */
2990
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef *TIMx)
2991
{
2992
  return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
2993
}
2994
 
2995
/**
2996
  * @brief  Clear the Capture/Compare 1 interrupt flag (CC1F).
2997
  * @rmtoll SR           CC1IF         LL_TIM_ClearFlag_CC1
2998
  * @param  TIMx Timer instance
2999
  * @retval None
3000
  */
3001
__STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
3002
{
3003
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
3004
}
3005
 
3006
/**
3007
  * @brief  Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
3008
  * @rmtoll SR           CC1IF         LL_TIM_IsActiveFlag_CC1
3009
  * @param  TIMx Timer instance
3010
  * @retval State of bit (1 or 0).
3011
  */
3012
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef *TIMx)
3013
{
3014
  return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
3015
}
3016
 
3017
/**
3018
  * @brief  Clear the Capture/Compare 2 interrupt flag (CC2F).
3019
  * @rmtoll SR           CC2IF         LL_TIM_ClearFlag_CC2
3020
  * @param  TIMx Timer instance
3021
  * @retval None
3022
  */
3023
__STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
3024
{
3025
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
3026
}
3027
 
3028
/**
3029
  * @brief  Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
3030
  * @rmtoll SR           CC2IF         LL_TIM_IsActiveFlag_CC2
3031
  * @param  TIMx Timer instance
3032
  * @retval State of bit (1 or 0).
3033
  */
3034
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef *TIMx)
3035
{
3036
  return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
3037
}
3038
 
3039
/**
3040
  * @brief  Clear the Capture/Compare 3 interrupt flag (CC3F).
3041
  * @rmtoll SR           CC3IF         LL_TIM_ClearFlag_CC3
3042
  * @param  TIMx Timer instance
3043
  * @retval None
3044
  */
3045
__STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
3046
{
3047
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
3048
}
3049
 
3050
/**
3051
  * @brief  Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
3052
  * @rmtoll SR           CC3IF         LL_TIM_IsActiveFlag_CC3
3053
  * @param  TIMx Timer instance
3054
  * @retval State of bit (1 or 0).
3055
  */
3056
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef *TIMx)
3057
{
3058
  return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
3059
}
3060
 
3061
/**
3062
  * @brief  Clear the Capture/Compare 4 interrupt flag (CC4F).
3063
  * @rmtoll SR           CC4IF         LL_TIM_ClearFlag_CC4
3064
  * @param  TIMx Timer instance
3065
  * @retval None
3066
  */
3067
__STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
3068
{
3069
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
3070
}
3071
 
3072
/**
3073
  * @brief  Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
3074
  * @rmtoll SR           CC4IF         LL_TIM_IsActiveFlag_CC4
3075
  * @param  TIMx Timer instance
3076
  * @retval State of bit (1 or 0).
3077
  */
3078
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef *TIMx)
3079
{
3080
  return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
3081
}
3082
 
3083
/**
3084
  * @brief  Clear the commutation interrupt flag (COMIF).
3085
  * @rmtoll SR           COMIF         LL_TIM_ClearFlag_COM
3086
  * @param  TIMx Timer instance
3087
  * @retval None
3088
  */
3089
__STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
3090
{
3091
  WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
3092
}
3093
 
3094
/**
3095
  * @brief  Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
3096
  * @rmtoll SR           COMIF         LL_TIM_IsActiveFlag_COM
3097
  * @param  TIMx Timer instance
3098
  * @retval State of bit (1 or 0).
3099
  */
3100
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(const TIM_TypeDef *TIMx)
3101
{
3102
  return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
3103
}
3104
 
3105
/**
3106
  * @brief  Clear the trigger interrupt flag (TIF).
3107
  * @rmtoll SR           TIF           LL_TIM_ClearFlag_TRIG
3108
  * @param  TIMx Timer instance
3109
  * @retval None
3110
  */
3111
__STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
3112
{
3113
  WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
3114
}
3115
 
3116
/**
3117
  * @brief  Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
3118
  * @rmtoll SR           TIF           LL_TIM_IsActiveFlag_TRIG
3119
  * @param  TIMx Timer instance
3120
  * @retval State of bit (1 or 0).
3121
  */
3122
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef *TIMx)
3123
{
3124
  return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
3125
}
3126
 
3127
/**
3128
  * @brief  Clear the break interrupt flag (BIF).
3129
  * @rmtoll SR           BIF           LL_TIM_ClearFlag_BRK
3130
  * @param  TIMx Timer instance
3131
  * @retval None
3132
  */
3133
__STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
3134
{
3135
  WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
3136
}
3137
 
3138
/**
3139
  * @brief  Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
3140
  * @rmtoll SR           BIF           LL_TIM_IsActiveFlag_BRK
3141
  * @param  TIMx Timer instance
3142
  * @retval State of bit (1 or 0).
3143
  */
3144
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef *TIMx)
3145
{
3146
  return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
3147
}
3148
 
3149
/**
3150
  * @brief  Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
3151
  * @rmtoll SR           CC1OF         LL_TIM_ClearFlag_CC1OVR
3152
  * @param  TIMx Timer instance
3153
  * @retval None
3154
  */
3155
__STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
3156
{
3157
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
3158
}
3159
 
3160
/**
3161
  * @brief  Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set
3162
  *         (Capture/Compare 1 interrupt is pending).
3163
  * @rmtoll SR           CC1OF         LL_TIM_IsActiveFlag_CC1OVR
3164
  * @param  TIMx Timer instance
3165
  * @retval State of bit (1 or 0).
3166
  */
3167
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef *TIMx)
3168
{
3169
  return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
3170
}
3171
 
3172
/**
3173
  * @brief  Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
3174
  * @rmtoll SR           CC2OF         LL_TIM_ClearFlag_CC2OVR
3175
  * @param  TIMx Timer instance
3176
  * @retval None
3177
  */
3178
__STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
3179
{
3180
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
3181
}
3182
 
3183
/**
3184
  * @brief  Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set
3185
  *         (Capture/Compare 2 over-capture interrupt is pending).
3186
  * @rmtoll SR           CC2OF         LL_TIM_IsActiveFlag_CC2OVR
3187
  * @param  TIMx Timer instance
3188
  * @retval State of bit (1 or 0).
3189
  */
3190
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef *TIMx)
3191
{
3192
  return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
3193
}
3194
 
3195
/**
3196
  * @brief  Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
3197
  * @rmtoll SR           CC3OF         LL_TIM_ClearFlag_CC3OVR
3198
  * @param  TIMx Timer instance
3199
  * @retval None
3200
  */
3201
__STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
3202
{
3203
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
3204
}
3205
 
3206
/**
3207
  * @brief  Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set
3208
  *         (Capture/Compare 3 over-capture interrupt is pending).
3209
  * @rmtoll SR           CC3OF         LL_TIM_IsActiveFlag_CC3OVR
3210
  * @param  TIMx Timer instance
3211
  * @retval State of bit (1 or 0).
3212
  */
3213
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef *TIMx)
3214
{
3215
  return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
3216
}
3217
 
3218
/**
3219
  * @brief  Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
3220
  * @rmtoll SR           CC4OF         LL_TIM_ClearFlag_CC4OVR
3221
  * @param  TIMx Timer instance
3222
  * @retval None
3223
  */
3224
__STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
3225
{
3226
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
3227
}
3228
 
3229
/**
3230
  * @brief  Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set
3231
  *         (Capture/Compare 4 over-capture interrupt is pending).
3232
  * @rmtoll SR           CC4OF         LL_TIM_IsActiveFlag_CC4OVR
3233
  * @param  TIMx Timer instance
3234
  * @retval State of bit (1 or 0).
3235
  */
3236
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef *TIMx)
3237
{
3238
  return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
3239
}
3240
 
3241
/**
3242
  * @}
3243
  */
3244
 
3245
/** @defgroup TIM_LL_EF_IT_Management IT-Management
3246
  * @{
3247
  */
3248
/**
3249
  * @brief  Enable update interrupt (UIE).
3250
  * @rmtoll DIER         UIE           LL_TIM_EnableIT_UPDATE
3251
  * @param  TIMx Timer instance
3252
  * @retval None
3253
  */
3254
__STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
3255
{
3256
  SET_BIT(TIMx->DIER, TIM_DIER_UIE);
3257
}
3258
 
3259
/**
3260
  * @brief  Disable update interrupt (UIE).
3261
  * @rmtoll DIER         UIE           LL_TIM_DisableIT_UPDATE
3262
  * @param  TIMx Timer instance
3263
  * @retval None
3264
  */
3265
__STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
3266
{
3267
  CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
3268
}
3269
 
3270
/**
3271
  * @brief  Indicates whether the update interrupt (UIE) is enabled.
3272
  * @rmtoll DIER         UIE           LL_TIM_IsEnabledIT_UPDATE
3273
  * @param  TIMx Timer instance
3274
  * @retval State of bit (1 or 0).
3275
  */
3276
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef *TIMx)
3277
{
3278
  return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
3279
}
3280
 
3281
/**
3282
  * @brief  Enable capture/compare 1 interrupt (CC1IE).
3283
  * @rmtoll DIER         CC1IE         LL_TIM_EnableIT_CC1
3284
  * @param  TIMx Timer instance
3285
  * @retval None
3286
  */
3287
__STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
3288
{
3289
  SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
3290
}
3291
 
3292
/**
3293
  * @brief  Disable capture/compare 1  interrupt (CC1IE).
3294
  * @rmtoll DIER         CC1IE         LL_TIM_DisableIT_CC1
3295
  * @param  TIMx Timer instance
3296
  * @retval None
3297
  */
3298
__STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
3299
{
3300
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
3301
}
3302
 
3303
/**
3304
  * @brief  Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
3305
  * @rmtoll DIER         CC1IE         LL_TIM_IsEnabledIT_CC1
3306
  * @param  TIMx Timer instance
3307
  * @retval State of bit (1 or 0).
3308
  */
3309
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef *TIMx)
3310
{
3311
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
3312
}
3313
 
3314
/**
3315
  * @brief  Enable capture/compare 2 interrupt (CC2IE).
3316
  * @rmtoll DIER         CC2IE         LL_TIM_EnableIT_CC2
3317
  * @param  TIMx Timer instance
3318
  * @retval None
3319
  */
3320
__STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
3321
{
3322
  SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
3323
}
3324
 
3325
/**
3326
  * @brief  Disable capture/compare 2  interrupt (CC2IE).
3327
  * @rmtoll DIER         CC2IE         LL_TIM_DisableIT_CC2
3328
  * @param  TIMx Timer instance
3329
  * @retval None
3330
  */
3331
__STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
3332
{
3333
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
3334
}
3335
 
3336
/**
3337
  * @brief  Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
3338
  * @rmtoll DIER         CC2IE         LL_TIM_IsEnabledIT_CC2
3339
  * @param  TIMx Timer instance
3340
  * @retval State of bit (1 or 0).
3341
  */
3342
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef *TIMx)
3343
{
3344
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
3345
}
3346
 
3347
/**
3348
  * @brief  Enable capture/compare 3 interrupt (CC3IE).
3349
  * @rmtoll DIER         CC3IE         LL_TIM_EnableIT_CC3
3350
  * @param  TIMx Timer instance
3351
  * @retval None
3352
  */
3353
__STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
3354
{
3355
  SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
3356
}
3357
 
3358
/**
3359
  * @brief  Disable capture/compare 3  interrupt (CC3IE).
3360
  * @rmtoll DIER         CC3IE         LL_TIM_DisableIT_CC3
3361
  * @param  TIMx Timer instance
3362
  * @retval None
3363
  */
3364
__STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
3365
{
3366
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
3367
}
3368
 
3369
/**
3370
  * @brief  Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
3371
  * @rmtoll DIER         CC3IE         LL_TIM_IsEnabledIT_CC3
3372
  * @param  TIMx Timer instance
3373
  * @retval State of bit (1 or 0).
3374
  */
3375
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef *TIMx)
3376
{
3377
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
3378
}
3379
 
3380
/**
3381
  * @brief  Enable capture/compare 4 interrupt (CC4IE).
3382
  * @rmtoll DIER         CC4IE         LL_TIM_EnableIT_CC4
3383
  * @param  TIMx Timer instance
3384
  * @retval None
3385
  */
3386
__STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
3387
{
3388
  SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
3389
}
3390
 
3391
/**
3392
  * @brief  Disable capture/compare 4  interrupt (CC4IE).
3393
  * @rmtoll DIER         CC4IE         LL_TIM_DisableIT_CC4
3394
  * @param  TIMx Timer instance
3395
  * @retval None
3396
  */
3397
__STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
3398
{
3399
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
3400
}
3401
 
3402
/**
3403
  * @brief  Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
3404
  * @rmtoll DIER         CC4IE         LL_TIM_IsEnabledIT_CC4
3405
  * @param  TIMx Timer instance
3406
  * @retval State of bit (1 or 0).
3407
  */
3408
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef *TIMx)
3409
{
3410
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
3411
}
3412
 
3413
/**
3414
  * @brief  Enable commutation interrupt (COMIE).
3415
  * @rmtoll DIER         COMIE         LL_TIM_EnableIT_COM
3416
  * @param  TIMx Timer instance
3417
  * @retval None
3418
  */
3419
__STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
3420
{
3421
  SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
3422
}
3423
 
3424
/**
3425
  * @brief  Disable commutation interrupt (COMIE).
3426
  * @rmtoll DIER         COMIE         LL_TIM_DisableIT_COM
3427
  * @param  TIMx Timer instance
3428
  * @retval None
3429
  */
3430
__STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
3431
{
3432
  CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
3433
}
3434
 
3435
/**
3436
  * @brief  Indicates whether the commutation interrupt (COMIE) is enabled.
3437
  * @rmtoll DIER         COMIE         LL_TIM_IsEnabledIT_COM
3438
  * @param  TIMx Timer instance
3439
  * @retval State of bit (1 or 0).
3440
  */
3441
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(const TIM_TypeDef *TIMx)
3442
{
3443
  return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
3444
}
3445
 
3446
/**
3447
  * @brief  Enable trigger interrupt (TIE).
3448
  * @rmtoll DIER         TIE           LL_TIM_EnableIT_TRIG
3449
  * @param  TIMx Timer instance
3450
  * @retval None
3451
  */
3452
__STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
3453
{
3454
  SET_BIT(TIMx->DIER, TIM_DIER_TIE);
3455
}
3456
 
3457
/**
3458
  * @brief  Disable trigger interrupt (TIE).
3459
  * @rmtoll DIER         TIE           LL_TIM_DisableIT_TRIG
3460
  * @param  TIMx Timer instance
3461
  * @retval None
3462
  */
3463
__STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
3464
{
3465
  CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
3466
}
3467
 
3468
/**
3469
  * @brief  Indicates whether the trigger interrupt (TIE) is enabled.
3470
  * @rmtoll DIER         TIE           LL_TIM_IsEnabledIT_TRIG
3471
  * @param  TIMx Timer instance
3472
  * @retval State of bit (1 or 0).
3473
  */
3474
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef *TIMx)
3475
{
3476
  return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
3477
}
3478
 
3479
/**
3480
  * @brief  Enable break interrupt (BIE).
3481
  * @rmtoll DIER         BIE           LL_TIM_EnableIT_BRK
3482
  * @param  TIMx Timer instance
3483
  * @retval None
3484
  */
3485
__STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
3486
{
3487
  SET_BIT(TIMx->DIER, TIM_DIER_BIE);
3488
}
3489
 
3490
/**
3491
  * @brief  Disable break interrupt (BIE).
3492
  * @rmtoll DIER         BIE           LL_TIM_DisableIT_BRK
3493
  * @param  TIMx Timer instance
3494
  * @retval None
3495
  */
3496
__STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
3497
{
3498
  CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
3499
}
3500
 
3501
/**
3502
  * @brief  Indicates whether the break interrupt (BIE) is enabled.
3503
  * @rmtoll DIER         BIE           LL_TIM_IsEnabledIT_BRK
3504
  * @param  TIMx Timer instance
3505
  * @retval State of bit (1 or 0).
3506
  */
3507
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef *TIMx)
3508
{
3509
  return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
3510
}
3511
 
3512
/**
3513
  * @}
3514
  */
3515
 
3516
/** @defgroup TIM_LL_EF_DMA_Management DMA Management
3517
  * @{
3518
  */
3519
/**
3520
  * @brief  Enable update DMA request (UDE).
3521
  * @rmtoll DIER         UDE           LL_TIM_EnableDMAReq_UPDATE
3522
  * @param  TIMx Timer instance
3523
  * @retval None
3524
  */
3525
__STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
3526
{
3527
  SET_BIT(TIMx->DIER, TIM_DIER_UDE);
3528
}
3529
 
3530
/**
3531
  * @brief  Disable update DMA request (UDE).
3532
  * @rmtoll DIER         UDE           LL_TIM_DisableDMAReq_UPDATE
3533
  * @param  TIMx Timer instance
3534
  * @retval None
3535
  */
3536
__STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
3537
{
3538
  CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
3539
}
3540
 
3541
/**
3542
  * @brief  Indicates whether the update DMA request  (UDE) is enabled.
3543
  * @rmtoll DIER         UDE           LL_TIM_IsEnabledDMAReq_UPDATE
3544
  * @param  TIMx Timer instance
3545
  * @retval State of bit (1 or 0).
3546
  */
3547
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef *TIMx)
3548
{
3549
  return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
3550
}
3551
 
3552
/**
3553
  * @brief  Enable capture/compare 1 DMA request (CC1DE).
3554
  * @rmtoll DIER         CC1DE         LL_TIM_EnableDMAReq_CC1
3555
  * @param  TIMx Timer instance
3556
  * @retval None
3557
  */
3558
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
3559
{
3560
  SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
3561
}
3562
 
3563
/**
3564
  * @brief  Disable capture/compare 1  DMA request (CC1DE).
3565
  * @rmtoll DIER         CC1DE         LL_TIM_DisableDMAReq_CC1
3566
  * @param  TIMx Timer instance
3567
  * @retval None
3568
  */
3569
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
3570
{
3571
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
3572
}
3573
 
3574
/**
3575
  * @brief  Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
3576
  * @rmtoll DIER         CC1DE         LL_TIM_IsEnabledDMAReq_CC1
3577
  * @param  TIMx Timer instance
3578
  * @retval State of bit (1 or 0).
3579
  */
3580
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef *TIMx)
3581
{
3582
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
3583
}
3584
 
3585
/**
3586
  * @brief  Enable capture/compare 2 DMA request (CC2DE).
3587
  * @rmtoll DIER         CC2DE         LL_TIM_EnableDMAReq_CC2
3588
  * @param  TIMx Timer instance
3589
  * @retval None
3590
  */
3591
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
3592
{
3593
  SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
3594
}
3595
 
3596
/**
3597
  * @brief  Disable capture/compare 2  DMA request (CC2DE).
3598
  * @rmtoll DIER         CC2DE         LL_TIM_DisableDMAReq_CC2
3599
  * @param  TIMx Timer instance
3600
  * @retval None
3601
  */
3602
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
3603
{
3604
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
3605
}
3606
 
3607
/**
3608
  * @brief  Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
3609
  * @rmtoll DIER         CC2DE         LL_TIM_IsEnabledDMAReq_CC2
3610
  * @param  TIMx Timer instance
3611
  * @retval State of bit (1 or 0).
3612
  */
3613
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef *TIMx)
3614
{
3615
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
3616
}
3617
 
3618
/**
3619
  * @brief  Enable capture/compare 3 DMA request (CC3DE).
3620
  * @rmtoll DIER         CC3DE         LL_TIM_EnableDMAReq_CC3
3621
  * @param  TIMx Timer instance
3622
  * @retval None
3623
  */
3624
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
3625
{
3626
  SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
3627
}
3628
 
3629
/**
3630
  * @brief  Disable capture/compare 3  DMA request (CC3DE).
3631
  * @rmtoll DIER         CC3DE         LL_TIM_DisableDMAReq_CC3
3632
  * @param  TIMx Timer instance
3633
  * @retval None
3634
  */
3635
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
3636
{
3637
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
3638
}
3639
 
3640
/**
3641
  * @brief  Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
3642
  * @rmtoll DIER         CC3DE         LL_TIM_IsEnabledDMAReq_CC3
3643
  * @param  TIMx Timer instance
3644
  * @retval State of bit (1 or 0).
3645
  */
3646
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef *TIMx)
3647
{
3648
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
3649
}
3650
 
3651
/**
3652
  * @brief  Enable capture/compare 4 DMA request (CC4DE).
3653
  * @rmtoll DIER         CC4DE         LL_TIM_EnableDMAReq_CC4
3654
  * @param  TIMx Timer instance
3655
  * @retval None
3656
  */
3657
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
3658
{
3659
  SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
3660
}
3661
 
3662
/**
3663
  * @brief  Disable capture/compare 4  DMA request (CC4DE).
3664
  * @rmtoll DIER         CC4DE         LL_TIM_DisableDMAReq_CC4
3665
  * @param  TIMx Timer instance
3666
  * @retval None
3667
  */
3668
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
3669
{
3670
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
3671
}
3672
 
3673
/**
3674
  * @brief  Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
3675
  * @rmtoll DIER         CC4DE         LL_TIM_IsEnabledDMAReq_CC4
3676
  * @param  TIMx Timer instance
3677
  * @retval State of bit (1 or 0).
3678
  */
3679
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef *TIMx)
3680
{
3681
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
3682
}
3683
 
3684
/**
3685
  * @brief  Enable commutation DMA request (COMDE).
3686
  * @rmtoll DIER         COMDE         LL_TIM_EnableDMAReq_COM
3687
  * @param  TIMx Timer instance
3688
  * @retval None
3689
  */
3690
__STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
3691
{
3692
  SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
3693
}
3694
 
3695
/**
3696
  * @brief  Disable commutation DMA request (COMDE).
3697
  * @rmtoll DIER         COMDE         LL_TIM_DisableDMAReq_COM
3698
  * @param  TIMx Timer instance
3699
  * @retval None
3700
  */
3701
__STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
3702
{
3703
  CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
3704
}
3705
 
3706
/**
3707
  * @brief  Indicates whether the commutation DMA request (COMDE) is enabled.
3708
  * @rmtoll DIER         COMDE         LL_TIM_IsEnabledDMAReq_COM
3709
  * @param  TIMx Timer instance
3710
  * @retval State of bit (1 or 0).
3711
  */
3712
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef *TIMx)
3713
{
3714
  return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
3715
}
3716
 
3717
/**
3718
  * @brief  Enable trigger interrupt (TDE).
3719
  * @rmtoll DIER         TDE           LL_TIM_EnableDMAReq_TRIG
3720
  * @param  TIMx Timer instance
3721
  * @retval None
3722
  */
3723
__STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
3724
{
3725
  SET_BIT(TIMx->DIER, TIM_DIER_TDE);
3726
}
3727
 
3728
/**
3729
  * @brief  Disable trigger interrupt (TDE).
3730
  * @rmtoll DIER         TDE           LL_TIM_DisableDMAReq_TRIG
3731
  * @param  TIMx Timer instance
3732
  * @retval None
3733
  */
3734
__STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
3735
{
3736
  CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
3737
}
3738
 
3739
/**
3740
  * @brief  Indicates whether the trigger interrupt (TDE) is enabled.
3741
  * @rmtoll DIER         TDE           LL_TIM_IsEnabledDMAReq_TRIG
3742
  * @param  TIMx Timer instance
3743
  * @retval State of bit (1 or 0).
3744
  */
3745
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef *TIMx)
3746
{
3747
  return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
3748
}
3749
 
3750
/**
3751
  * @}
3752
  */
3753
 
3754
/** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
3755
  * @{
3756
  */
3757
/**
3758
  * @brief  Generate an update event.
3759
  * @rmtoll EGR          UG            LL_TIM_GenerateEvent_UPDATE
3760
  * @param  TIMx Timer instance
3761
  * @retval None
3762
  */
3763
__STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
3764
{
3765
  SET_BIT(TIMx->EGR, TIM_EGR_UG);
3766
}
3767
 
3768
/**
3769
  * @brief  Generate Capture/Compare 1 event.
3770
  * @rmtoll EGR          CC1G          LL_TIM_GenerateEvent_CC1
3771
  * @param  TIMx Timer instance
3772
  * @retval None
3773
  */
3774
__STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
3775
{
3776
  SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
3777
}
3778
 
3779
/**
3780
  * @brief  Generate Capture/Compare 2 event.
3781
  * @rmtoll EGR          CC2G          LL_TIM_GenerateEvent_CC2
3782
  * @param  TIMx Timer instance
3783
  * @retval None
3784
  */
3785
__STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
3786
{
3787
  SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
3788
}
3789
 
3790
/**
3791
  * @brief  Generate Capture/Compare 3 event.
3792
  * @rmtoll EGR          CC3G          LL_TIM_GenerateEvent_CC3
3793
  * @param  TIMx Timer instance
3794
  * @retval None
3795
  */
3796
__STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
3797
{
3798
  SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
3799
}
3800
 
3801
/**
3802
  * @brief  Generate Capture/Compare 4 event.
3803
  * @rmtoll EGR          CC4G          LL_TIM_GenerateEvent_CC4
3804
  * @param  TIMx Timer instance
3805
  * @retval None
3806
  */
3807
__STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
3808
{
3809
  SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
3810
}
3811
 
3812
/**
3813
  * @brief  Generate commutation event.
3814
  * @rmtoll EGR          COMG          LL_TIM_GenerateEvent_COM
3815
  * @param  TIMx Timer instance
3816
  * @retval None
3817
  */
3818
__STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
3819
{
3820
  SET_BIT(TIMx->EGR, TIM_EGR_COMG);
3821
}
3822
 
3823
/**
3824
  * @brief  Generate trigger event.
3825
  * @rmtoll EGR          TG            LL_TIM_GenerateEvent_TRIG
3826
  * @param  TIMx Timer instance
3827
  * @retval None
3828
  */
3829
__STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
3830
{
3831
  SET_BIT(TIMx->EGR, TIM_EGR_TG);
3832
}
3833
 
3834
/**
3835
  * @brief  Generate break event.
3836
  * @rmtoll EGR          BG            LL_TIM_GenerateEvent_BRK
3837
  * @param  TIMx Timer instance
3838
  * @retval None
3839
  */
3840
__STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
3841
{
3842
  SET_BIT(TIMx->EGR, TIM_EGR_BG);
3843
}
3844
 
3845
/**
3846
  * @}
3847
  */
3848
 
3849
#if defined(USE_FULL_LL_DRIVER)
3850
/** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
3851
  * @{
3852
  */
3853
 
3854
ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx);
3855
void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
3856
ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct);
3857
void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
3858
ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
3859
void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
3860
ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
3861
void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
3862
ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
3863
void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
3864
ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
3865
void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
3866
ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
3867
/**
3868
  * @}
3869
  */
3870
#endif /* USE_FULL_LL_DRIVER */
3871
 
3872
/**
3873
  * @}
3874
  */
3875
 
3876
/**
3877
  * @}
3878
  */
3879
 
3880
#endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14  || TIM15 || TIM16 || TIM17 */
3881
 
3882
/**
3883
  * @}
3884
  */
3885
 
3886
#ifdef __cplusplus
3887
}
3888
#endif
3889
 
3890
#endif /* __STM32F1xx_LL_TIM_H */