Subversion Repositories ScreenTimer

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**
2
  ******************************************************************************
3
  * @file    stm32f0xx_ll_tim.h
4
  * @author  MCD Application Team
5
  * @brief   Header file of TIM LL module.
6
  ******************************************************************************
7
  * @attention
8
  *
9
  * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
10
  * All rights reserved.</center></h2>
11
  *
12
  * This software component is licensed by ST under BSD 3-Clause license,
13
  * the "License"; You may not use this file except in compliance with the
14
  * License. You may obtain a copy of the License at:
15
  *                        opensource.org/licenses/BSD-3-Clause
16
  *
17
  ******************************************************************************
18
  */
19
 
20
/* Define to prevent recursive inclusion -------------------------------------*/
21
#ifndef __STM32F0xx_LL_TIM_H
22
#define __STM32F0xx_LL_TIM_H
23
 
24
#ifdef __cplusplus
25
extern "C" {
26
#endif
27
 
28
/* Includes ------------------------------------------------------------------*/
29
#include "stm32f0xx.h"
30
 
31
/** @addtogroup STM32F0xx_LL_Driver
32
  * @{
33
  */
34
 
35
#if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM6) || defined (TIM7)
36
 
37
/** @defgroup TIM_LL TIM
38
  * @{
39
  */
40
 
41
/* Private types -------------------------------------------------------------*/
42
/* Private variables ---------------------------------------------------------*/
43
/** @defgroup TIM_LL_Private_Variables TIM Private Variables
44
  * @{
45
  */
46
static const uint8_t OFFSET_TAB_CCMRx[] =
47
{
48
  0x00U,   /* 0: TIMx_CH1  */
49
  0x00U,   /* 1: TIMx_CH1N */
50
  0x00U,   /* 2: TIMx_CH2  */
51
  0x00U,   /* 3: TIMx_CH2N */
52
  0x04U,   /* 4: TIMx_CH3  */
53
  0x04U,   /* 5: TIMx_CH3N */
54
  0x04U    /* 6: TIMx_CH4  */
55
};
56
 
57
static const uint8_t SHIFT_TAB_OCxx[] =
58
{
59
  0U,            /* 0: OC1M, OC1FE, OC1PE */
60
  0U,            /* 1: - NA */
61
  8U,            /* 2: OC2M, OC2FE, OC2PE */
62
  0U,            /* 3: - NA */
63
  0U,            /* 4: OC3M, OC3FE, OC3PE */
64
  0U,            /* 5: - NA */
65
  8U             /* 6: OC4M, OC4FE, OC4PE */
66
};
67
 
68
static const uint8_t SHIFT_TAB_ICxx[] =
69
{
70
  0U,            /* 0: CC1S, IC1PSC, IC1F */
71
  0U,            /* 1: - NA */
72
  8U,            /* 2: CC2S, IC2PSC, IC2F */
73
  0U,            /* 3: - NA */
74
  0U,            /* 4: CC3S, IC3PSC, IC3F */
75
  0U,            /* 5: - NA */
76
  8U             /* 6: CC4S, IC4PSC, IC4F */
77
};
78
 
79
static const uint8_t SHIFT_TAB_CCxP[] =
80
{
81
  0U,            /* 0: CC1P */
82
  2U,            /* 1: CC1NP */
83
  4U,            /* 2: CC2P */
84
  6U,            /* 3: CC2NP */
85
  8U,            /* 4: CC3P */
86
  10U,           /* 5: CC3NP */
87
  12U            /* 6: CC4P */
88
};
89
 
90
static const uint8_t SHIFT_TAB_OISx[] =
91
{
92
  0U,            /* 0: OIS1 */
93
  1U,            /* 1: OIS1N */
94
  2U,            /* 2: OIS2 */
95
  3U,            /* 3: OIS2N */
96
  4U,            /* 4: OIS3 */
97
  5U,            /* 5: OIS3N */
98
  6U             /* 6: OIS4 */
99
};
100
/**
101
  * @}
102
  */
103
 
104
/* Private constants ---------------------------------------------------------*/
105
/** @defgroup TIM_LL_Private_Constants TIM Private Constants
106
  * @{
107
  */
108
 
109
 
110
#define TIMx_OR_RMP_SHIFT  16U
111
#define TIMx_OR_RMP_MASK   0x0000FFFFU
112
#define TIM14_OR_RMP_MASK  (TIM14_OR_TI1_RMP << TIMx_OR_RMP_SHIFT)
113
 
114
/* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
115
#define DT_DELAY_1 ((uint8_t)0x7F)
116
#define DT_DELAY_2 ((uint8_t)0x3F)
117
#define DT_DELAY_3 ((uint8_t)0x1F)
118
#define DT_DELAY_4 ((uint8_t)0x1F)
119
 
120
/* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
121
#define DT_RANGE_1 ((uint8_t)0x00)
122
#define DT_RANGE_2 ((uint8_t)0x80)
123
#define DT_RANGE_3 ((uint8_t)0xC0)
124
#define DT_RANGE_4 ((uint8_t)0xE0)
125
 
126
 
127
/**
128
  * @}
129
  */
130
 
131
/* Private macros ------------------------------------------------------------*/
132
/** @defgroup TIM_LL_Private_Macros TIM Private Macros
133
  * @{
134
  */
135
/** @brief  Convert channel id into channel index.
136
  * @param  __CHANNEL__ This parameter can be one of the following values:
137
  *         @arg @ref LL_TIM_CHANNEL_CH1
138
  *         @arg @ref LL_TIM_CHANNEL_CH1N
139
  *         @arg @ref LL_TIM_CHANNEL_CH2
140
  *         @arg @ref LL_TIM_CHANNEL_CH2N
141
  *         @arg @ref LL_TIM_CHANNEL_CH3
142
  *         @arg @ref LL_TIM_CHANNEL_CH3N
143
  *         @arg @ref LL_TIM_CHANNEL_CH4
144
  * @retval none
145
  */
146
#define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
147
  (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
148
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
149
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
150
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
151
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
152
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U : 6U)
153
 
154
/** @brief  Calculate the deadtime sampling period(in ps).
155
  * @param  __TIMCLK__ timer input clock frequency (in Hz).
156
  * @param  __CKD__ This parameter can be one of the following values:
157
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
158
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
159
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
160
  * @retval none
161
  */
162
#define TIM_CALC_DTS(__TIMCLK__, __CKD__)                                                        \
163
  (((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__))         : \
164
   ((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
165
   ((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
166
/**
167
  * @}
168
  */
169
 
170
 
171
/* Exported types ------------------------------------------------------------*/
172
#if defined(USE_FULL_LL_DRIVER)
173
/** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
174
  * @{
175
  */
176
 
177
/**
178
  * @brief  TIM Time Base configuration structure definition.
179
  */
180
typedef struct
181
{
182
  uint16_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
183
                                   This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
184
 
185
                                   This feature can be modified afterwards using unitary function
186
                                   @ref LL_TIM_SetPrescaler().*/
187
 
188
  uint32_t CounterMode;       /*!< Specifies the counter mode.
189
                                   This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
190
 
191
                                   This feature can be modified afterwards using unitary function
192
                                   @ref LL_TIM_SetCounterMode().*/
193
 
194
  uint32_t Autoreload;        /*!< Specifies the auto reload value to be loaded into the active
195
                                   Auto-Reload Register at the next update event.
196
                                   This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
197
                                   Some timer instances may support 32 bits counters. In that case this parameter must
198
                                   be a number between 0x0000 and 0xFFFFFFFF.
199
 
200
                                   This feature can be modified afterwards using unitary function
201
                                   @ref LL_TIM_SetAutoReload().*/
202
 
203
  uint32_t ClockDivision;     /*!< Specifies the clock division.
204
                                   This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
205
 
206
                                   This feature can be modified afterwards using unitary function
207
                                   @ref LL_TIM_SetClockDivision().*/
208
 
209
  uint32_t RepetitionCounter;  /*!< Specifies the repetition counter value. Each time the RCR downcounter
210
                                   reaches zero, an update event is generated and counting restarts
211
                                   from the RCR value (N).
212
                                   This means in PWM mode that (N+1) corresponds to:
213
                                      - the number of PWM periods in edge-aligned mode
214
                                      - the number of half PWM period in center-aligned mode
215
                                   GP timers: this parameter must be a number between Min_Data = 0x00 and
216
                                   Max_Data = 0xFF.
217
                                   Advanced timers: this parameter must be a number between Min_Data = 0x0000 and
218
                                   Max_Data = 0xFFFF.
219
 
220
                                   This feature can be modified afterwards using unitary function
221
                                   @ref LL_TIM_SetRepetitionCounter().*/
222
} LL_TIM_InitTypeDef;
223
 
224
/**
225
  * @brief  TIM Output Compare configuration structure definition.
226
  */
227
typedef struct
228
{
229
  uint32_t OCMode;        /*!< Specifies the output mode.
230
                               This parameter can be a value of @ref TIM_LL_EC_OCMODE.
231
 
232
                               This feature can be modified afterwards using unitary function
233
                               @ref LL_TIM_OC_SetMode().*/
234
 
235
  uint32_t OCState;       /*!< Specifies the TIM Output Compare state.
236
                               This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
237
 
238
                               This feature can be modified afterwards using unitary functions
239
                               @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
240
 
241
  uint32_t OCNState;      /*!< Specifies the TIM complementary Output Compare state.
242
                               This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
243
 
244
                               This feature can be modified afterwards using unitary functions
245
                               @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
246
 
247
  uint32_t CompareValue;  /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
248
                               This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
249
 
250
                               This feature can be modified afterwards using unitary function
251
                               LL_TIM_OC_SetCompareCHx (x=1..6).*/
252
 
253
  uint32_t OCPolarity;    /*!< Specifies the output polarity.
254
                               This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
255
 
256
                               This feature can be modified afterwards using unitary function
257
                               @ref LL_TIM_OC_SetPolarity().*/
258
 
259
  uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
260
                               This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
261
 
262
                               This feature can be modified afterwards using unitary function
263
                               @ref LL_TIM_OC_SetPolarity().*/
264
 
265
 
266
  uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
267
                               This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
268
 
269
                               This feature can be modified afterwards using unitary function
270
                               @ref LL_TIM_OC_SetIdleState().*/
271
 
272
  uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
273
                               This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
274
 
275
                               This feature can be modified afterwards using unitary function
276
                               @ref LL_TIM_OC_SetIdleState().*/
277
} LL_TIM_OC_InitTypeDef;
278
 
279
/**
280
  * @brief  TIM Input Capture configuration structure definition.
281
  */
282
 
283
typedef struct
284
{
285
 
286
  uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
287
                               This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
288
 
289
                               This feature can be modified afterwards using unitary function
290
                               @ref LL_TIM_IC_SetPolarity().*/
291
 
292
  uint32_t ICActiveInput; /*!< Specifies the input.
293
                               This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
294
 
295
                               This feature can be modified afterwards using unitary function
296
                               @ref LL_TIM_IC_SetActiveInput().*/
297
 
298
  uint32_t ICPrescaler;   /*!< Specifies the Input Capture Prescaler.
299
                               This parameter can be a value of @ref TIM_LL_EC_ICPSC.
300
 
301
                               This feature can be modified afterwards using unitary function
302
                               @ref LL_TIM_IC_SetPrescaler().*/
303
 
304
  uint32_t ICFilter;      /*!< Specifies the input capture filter.
305
                               This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
306
 
307
                               This feature can be modified afterwards using unitary function
308
                               @ref LL_TIM_IC_SetFilter().*/
309
} LL_TIM_IC_InitTypeDef;
310
 
311
 
312
/**
313
  * @brief  TIM Encoder interface configuration structure definition.
314
  */
315
typedef struct
316
{
317
  uint32_t EncoderMode;     /*!< Specifies the encoder resolution (x2 or x4).
318
                                 This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
319
 
320
                                 This feature can be modified afterwards using unitary function
321
                                 @ref LL_TIM_SetEncoderMode().*/
322
 
323
  uint32_t IC1Polarity;     /*!< Specifies the active edge of TI1 input.
324
                                 This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
325
 
326
                                 This feature can be modified afterwards using unitary function
327
                                 @ref LL_TIM_IC_SetPolarity().*/
328
 
329
  uint32_t IC1ActiveInput;  /*!< Specifies the TI1 input source
330
                                 This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
331
 
332
                                 This feature can be modified afterwards using unitary function
333
                                 @ref LL_TIM_IC_SetActiveInput().*/
334
 
335
  uint32_t IC1Prescaler;    /*!< Specifies the TI1 input prescaler value.
336
                                 This parameter can be a value of @ref TIM_LL_EC_ICPSC.
337
 
338
                                 This feature can be modified afterwards using unitary function
339
                                 @ref LL_TIM_IC_SetPrescaler().*/
340
 
341
  uint32_t IC1Filter;       /*!< Specifies the TI1 input filter.
342
                                 This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
343
 
344
                                 This feature can be modified afterwards using unitary function
345
                                 @ref LL_TIM_IC_SetFilter().*/
346
 
347
  uint32_t IC2Polarity;      /*!< Specifies the active edge of TI2 input.
348
                                 This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
349
 
350
                                 This feature can be modified afterwards using unitary function
351
                                 @ref LL_TIM_IC_SetPolarity().*/
352
 
353
  uint32_t IC2ActiveInput;  /*!< Specifies the TI2 input source
354
                                 This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
355
 
356
                                 This feature can be modified afterwards using unitary function
357
                                 @ref LL_TIM_IC_SetActiveInput().*/
358
 
359
  uint32_t IC2Prescaler;    /*!< Specifies the TI2 input prescaler value.
360
                                 This parameter can be a value of @ref TIM_LL_EC_ICPSC.
361
 
362
                                 This feature can be modified afterwards using unitary function
363
                                 @ref LL_TIM_IC_SetPrescaler().*/
364
 
365
  uint32_t IC2Filter;       /*!< Specifies the TI2 input filter.
366
                                 This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
367
 
368
                                 This feature can be modified afterwards using unitary function
369
                                 @ref LL_TIM_IC_SetFilter().*/
370
 
371
} LL_TIM_ENCODER_InitTypeDef;
372
 
373
/**
374
  * @brief  TIM Hall sensor interface configuration structure definition.
375
  */
376
typedef struct
377
{
378
 
379
  uint32_t IC1Polarity;        /*!< Specifies the active edge of TI1 input.
380
                                    This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
381
 
382
                                    This feature can be modified afterwards using unitary function
383
                                    @ref LL_TIM_IC_SetPolarity().*/
384
 
385
  uint32_t IC1Prescaler;       /*!< Specifies the TI1 input prescaler value.
386
                                    Prescaler must be set to get a maximum counter period longer than the
387
                                    time interval between 2 consecutive changes on the Hall inputs.
388
                                    This parameter can be a value of @ref TIM_LL_EC_ICPSC.
389
 
390
                                    This feature can be modified afterwards using unitary function
391
                                    @ref LL_TIM_IC_SetPrescaler().*/
392
 
393
  uint32_t IC1Filter;          /*!< Specifies the TI1 input filter.
394
                                    This parameter can be a value of
395
                                    @ref TIM_LL_EC_IC_FILTER.
396
 
397
                                    This feature can be modified afterwards using unitary function
398
                                    @ref LL_TIM_IC_SetFilter().*/
399
 
400
  uint32_t CommutationDelay;   /*!< Specifies the compare value to be loaded into the Capture Compare Register.
401
                                    A positive pulse (TRGO event) is generated with a programmable delay every time
402
                                    a change occurs on the Hall inputs.
403
                                    This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
404
 
405
                                    This feature can be modified afterwards using unitary function
406
                                    @ref LL_TIM_OC_SetCompareCH2().*/
407
} LL_TIM_HALLSENSOR_InitTypeDef;
408
 
409
/**
410
  * @brief  BDTR (Break and Dead Time) structure definition
411
  */
412
typedef struct
413
{
414
  uint32_t OSSRState;            /*!< Specifies the Off-State selection used in Run mode.
415
                                      This parameter can be a value of @ref TIM_LL_EC_OSSR
416
 
417
                                      This feature can be modified afterwards using unitary function
418
                                      @ref LL_TIM_SetOffStates()
419
 
420
                                      @note This bit-field cannot be modified as long as LOCK level 2 has been
421
                                       programmed. */
422
 
423
  uint32_t OSSIState;            /*!< Specifies the Off-State used in Idle state.
424
                                      This parameter can be a value of @ref TIM_LL_EC_OSSI
425
 
426
                                      This feature can be modified afterwards using unitary function
427
                                      @ref LL_TIM_SetOffStates()
428
 
429
                                      @note This bit-field cannot be modified as long as LOCK level 2 has been
430
                                      programmed. */
431
 
432
  uint32_t LockLevel;            /*!< Specifies the LOCK level parameters.
433
                                      This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
434
 
435
                                      @note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR
436
                                      register has been written, their content is frozen until the next reset.*/
437
 
438
  uint8_t DeadTime;              /*!< Specifies the delay time between the switching-off and the
439
                                      switching-on of the outputs.
440
                                      This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
441
 
442
                                      This feature can be modified afterwards using unitary function
443
                                      @ref LL_TIM_OC_SetDeadTime()
444
 
445
                                      @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been
446
                                       programmed. */
447
 
448
  uint16_t BreakState;           /*!< Specifies whether the TIM Break input is enabled or not.
449
                                      This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
450
 
451
                                      This feature can be modified afterwards using unitary functions
452
                                      @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
453
 
454
                                      @note This bit-field can not be modified as long as LOCK level 1 has been
455
                                      programmed. */
456
 
457
  uint32_t BreakPolarity;        /*!< Specifies the TIM Break Input pin polarity.
458
                                      This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
459
 
460
                                      This feature can be modified afterwards using unitary function
461
                                      @ref LL_TIM_ConfigBRK()
462
 
463
                                      @note This bit-field can not be modified as long as LOCK level 1 has been
464
                                      programmed. */
465
 
466
  uint32_t AutomaticOutput;      /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
467
                                      This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
468
 
469
                                      This feature can be modified afterwards using unitary functions
470
                                      @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
471
 
472
                                      @note This bit-field can not be modified as long as LOCK level 1 has been
473
                                      programmed. */
474
} LL_TIM_BDTR_InitTypeDef;
475
 
476
/**
477
  * @}
478
  */
479
#endif /* USE_FULL_LL_DRIVER */
480
 
481
/* Exported constants --------------------------------------------------------*/
482
/** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
483
  * @{
484
  */
485
 
486
/** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
487
  * @brief    Flags defines which can be used with LL_TIM_ReadReg function.
488
  * @{
489
  */
490
#define LL_TIM_SR_UIF                          TIM_SR_UIF           /*!< Update interrupt flag */
491
#define LL_TIM_SR_CC1IF                        TIM_SR_CC1IF         /*!< Capture/compare 1 interrupt flag */
492
#define LL_TIM_SR_CC2IF                        TIM_SR_CC2IF         /*!< Capture/compare 2 interrupt flag */
493
#define LL_TIM_SR_CC3IF                        TIM_SR_CC3IF         /*!< Capture/compare 3 interrupt flag */
494
#define LL_TIM_SR_CC4IF                        TIM_SR_CC4IF         /*!< Capture/compare 4 interrupt flag */
495
#define LL_TIM_SR_COMIF                        TIM_SR_COMIF         /*!< COM interrupt flag */
496
#define LL_TIM_SR_TIF                          TIM_SR_TIF           /*!< Trigger interrupt flag */
497
#define LL_TIM_SR_BIF                          TIM_SR_BIF           /*!< Break interrupt flag */
498
#define LL_TIM_SR_CC1OF                        TIM_SR_CC1OF         /*!< Capture/Compare 1 overcapture flag */
499
#define LL_TIM_SR_CC2OF                        TIM_SR_CC2OF         /*!< Capture/Compare 2 overcapture flag */
500
#define LL_TIM_SR_CC3OF                        TIM_SR_CC3OF         /*!< Capture/Compare 3 overcapture flag */
501
#define LL_TIM_SR_CC4OF                        TIM_SR_CC4OF         /*!< Capture/Compare 4 overcapture flag */
502
/**
503
  * @}
504
  */
505
 
506
#if defined(USE_FULL_LL_DRIVER)
507
/** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
508
  * @{
509
  */
510
#define LL_TIM_BREAK_DISABLE            0x00000000U             /*!< Break function disabled */
511
#define LL_TIM_BREAK_ENABLE             TIM_BDTR_BKE            /*!< Break function enabled */
512
/**
513
  * @}
514
  */
515
 
516
/** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
517
  * @{
518
  */
519
#define LL_TIM_AUTOMATICOUTPUT_DISABLE         0x00000000U             /*!< MOE can be set only by software */
520
#define LL_TIM_AUTOMATICOUTPUT_ENABLE          TIM_BDTR_AOE            /*!< MOE can be set by software or automatically at the next update event */
521
/**
522
  * @}
523
  */
524
#endif /* USE_FULL_LL_DRIVER */
525
 
526
/** @defgroup TIM_LL_EC_IT IT Defines
527
  * @brief    IT defines which can be used with LL_TIM_ReadReg and  LL_TIM_WriteReg functions.
528
  * @{
529
  */
530
#define LL_TIM_DIER_UIE                        TIM_DIER_UIE         /*!< Update interrupt enable */
531
#define LL_TIM_DIER_CC1IE                      TIM_DIER_CC1IE       /*!< Capture/compare 1 interrupt enable */
532
#define LL_TIM_DIER_CC2IE                      TIM_DIER_CC2IE       /*!< Capture/compare 2 interrupt enable */
533
#define LL_TIM_DIER_CC3IE                      TIM_DIER_CC3IE       /*!< Capture/compare 3 interrupt enable */
534
#define LL_TIM_DIER_CC4IE                      TIM_DIER_CC4IE       /*!< Capture/compare 4 interrupt enable */
535
#define LL_TIM_DIER_COMIE                      TIM_DIER_COMIE       /*!< COM interrupt enable */
536
#define LL_TIM_DIER_TIE                        TIM_DIER_TIE         /*!< Trigger interrupt enable */
537
#define LL_TIM_DIER_BIE                        TIM_DIER_BIE         /*!< Break interrupt enable */
538
/**
539
  * @}
540
  */
541
 
542
/** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
543
  * @{
544
  */
545
#define LL_TIM_UPDATESOURCE_REGULAR            0x00000000U          /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
546
#define LL_TIM_UPDATESOURCE_COUNTER            TIM_CR1_URS          /*!< Only counter overflow/underflow generates an update request */
547
/**
548
  * @}
549
  */
550
 
551
/** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
552
  * @{
553
  */
554
#define LL_TIM_ONEPULSEMODE_SINGLE             TIM_CR1_OPM          /*!< Counter stops counting at the next update event */
555
#define LL_TIM_ONEPULSEMODE_REPETITIVE         0x00000000U          /*!< Counter is not stopped at update event */
556
/**
557
  * @}
558
  */
559
 
560
/** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
561
  * @{
562
  */
563
#define LL_TIM_COUNTERMODE_UP                  0x00000000U          /*!<Counter used as upcounter */
564
#define LL_TIM_COUNTERMODE_DOWN                TIM_CR1_DIR          /*!< Counter used as downcounter */
565
#define LL_TIM_COUNTERMODE_CENTER_DOWN         TIM_CR1_CMS_0        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting down. */
566
#define LL_TIM_COUNTERMODE_CENTER_UP           TIM_CR1_CMS_1        /*!<The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up */
567
#define LL_TIM_COUNTERMODE_CENTER_UP_DOWN      TIM_CR1_CMS          /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up or down. */
568
/**
569
  * @}
570
  */
571
 
572
/** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
573
  * @{
574
  */
575
#define LL_TIM_CLOCKDIVISION_DIV1              0x00000000U          /*!< tDTS=tCK_INT */
576
#define LL_TIM_CLOCKDIVISION_DIV2              TIM_CR1_CKD_0        /*!< tDTS=2*tCK_INT */
577
#define LL_TIM_CLOCKDIVISION_DIV4              TIM_CR1_CKD_1        /*!< tDTS=4*tCK_INT */
578
/**
579
  * @}
580
  */
581
 
582
/** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
583
  * @{
584
  */
585
#define LL_TIM_COUNTERDIRECTION_UP             0x00000000U          /*!< Timer counter counts up */
586
#define LL_TIM_COUNTERDIRECTION_DOWN           TIM_CR1_DIR          /*!< Timer counter counts down */
587
/**
588
  * @}
589
  */
590
 
591
/** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare  Update Source
592
  * @{
593
  */
594
#define LL_TIM_CCUPDATESOURCE_COMG_ONLY        0x00000000U          /*!< Capture/compare control bits are updated by setting the COMG bit only */
595
#define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI    TIM_CR2_CCUS         /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
596
/**
597
  * @}
598
  */
599
 
600
/** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
601
  * @{
602
  */
603
#define LL_TIM_CCDMAREQUEST_CC                 0x00000000U          /*!< CCx DMA request sent when CCx event occurs */
604
#define LL_TIM_CCDMAREQUEST_UPDATE             TIM_CR2_CCDS         /*!< CCx DMA requests sent when update event occurs */
605
/**
606
  * @}
607
  */
608
 
609
/** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
610
  * @{
611
  */
612
#define LL_TIM_LOCKLEVEL_OFF                   0x00000000U          /*!< LOCK OFF - No bit is write protected */
613
#define LL_TIM_LOCKLEVEL_1                     TIM_BDTR_LOCK_0      /*!< LOCK Level 1 */
614
#define LL_TIM_LOCKLEVEL_2                     TIM_BDTR_LOCK_1      /*!< LOCK Level 2 */
615
#define LL_TIM_LOCKLEVEL_3                     TIM_BDTR_LOCK        /*!< LOCK Level 3 */
616
/**
617
  * @}
618
  */
619
 
620
/** @defgroup TIM_LL_EC_CHANNEL Channel
621
  * @{
622
  */
623
#define LL_TIM_CHANNEL_CH1                     TIM_CCER_CC1E     /*!< Timer input/output channel 1 */
624
#define LL_TIM_CHANNEL_CH1N                    TIM_CCER_CC1NE    /*!< Timer complementary output channel 1 */
625
#define LL_TIM_CHANNEL_CH2                     TIM_CCER_CC2E     /*!< Timer input/output channel 2 */
626
#define LL_TIM_CHANNEL_CH2N                    TIM_CCER_CC2NE    /*!< Timer complementary output channel 2 */
627
#define LL_TIM_CHANNEL_CH3                     TIM_CCER_CC3E     /*!< Timer input/output channel 3 */
628
#define LL_TIM_CHANNEL_CH3N                    TIM_CCER_CC3NE    /*!< Timer complementary output channel 3 */
629
#define LL_TIM_CHANNEL_CH4                     TIM_CCER_CC4E     /*!< Timer input/output channel 4 */
630
/**
631
  * @}
632
  */
633
 
634
#if defined(USE_FULL_LL_DRIVER)
635
/** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
636
  * @{
637
  */
638
#define LL_TIM_OCSTATE_DISABLE                 0x00000000U             /*!< OCx is not active */
639
#define LL_TIM_OCSTATE_ENABLE                  TIM_CCER_CC1E           /*!< OCx signal is output on the corresponding output pin */
640
/**
641
  * @}
642
  */
643
#endif /* USE_FULL_LL_DRIVER */
644
 
645
/** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
646
  * @{
647
  */
648
#define LL_TIM_OCMODE_FROZEN                   0x00000000U                                              /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
649
#define LL_TIM_OCMODE_ACTIVE                   TIM_CCMR1_OC1M_0                                         /*!<OCyREF is forced high on compare match*/
650
#define LL_TIM_OCMODE_INACTIVE                 TIM_CCMR1_OC1M_1                                         /*!<OCyREF is forced low on compare match*/
651
#define LL_TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF toggles on compare match*/
652
#define LL_TIM_OCMODE_FORCED_INACTIVE          TIM_CCMR1_OC1M_2                                         /*!<OCyREF is forced low*/
653
#define LL_TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF is forced high*/
654
#define LL_TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1)                    /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive.  In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
655
#define LL_TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active.  In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
656
/**
657
  * @}
658
  */
659
 
660
/** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
661
  * @{
662
  */
663
#define LL_TIM_OCPOLARITY_HIGH                 0x00000000U                 /*!< OCxactive high*/
664
#define LL_TIM_OCPOLARITY_LOW                  TIM_CCER_CC1P               /*!< OCxactive low*/
665
/**
666
  * @}
667
  */
668
 
669
/** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
670
  * @{
671
  */
672
#define LL_TIM_OCIDLESTATE_LOW                 0x00000000U             /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
673
#define LL_TIM_OCIDLESTATE_HIGH                TIM_CR2_OIS1            /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
674
/**
675
  * @}
676
  */
677
 
678
 
679
/** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
680
  * @{
681
  */
682
#define LL_TIM_ACTIVEINPUT_DIRECTTI            (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
683
#define LL_TIM_ACTIVEINPUT_INDIRECTTI          (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
684
#define LL_TIM_ACTIVEINPUT_TRC                 (TIM_CCMR1_CC1S << 16U)   /*!< ICx is mapped on TRC */
685
/**
686
  * @}
687
  */
688
 
689
/** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
690
  * @{
691
  */
692
#define LL_TIM_ICPSC_DIV1                      0x00000000U                    /*!< No prescaler, capture is done each time an edge is detected on the capture input */
693
#define LL_TIM_ICPSC_DIV2                      (TIM_CCMR1_IC1PSC_0 << 16U)    /*!< Capture is done once every 2 events */
694
#define LL_TIM_ICPSC_DIV4                      (TIM_CCMR1_IC1PSC_1 << 16U)    /*!< Capture is done once every 4 events */
695
#define LL_TIM_ICPSC_DIV8                      (TIM_CCMR1_IC1PSC << 16U)      /*!< Capture is done once every 8 events */
696
/**
697
  * @}
698
  */
699
 
700
/** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
701
  * @{
702
  */
703
#define LL_TIM_IC_FILTER_FDIV1                 0x00000000U                                                        /*!< No filter, sampling is done at fDTS */
704
#define LL_TIM_IC_FILTER_FDIV1_N2              (TIM_CCMR1_IC1F_0 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=2 */
705
#define LL_TIM_IC_FILTER_FDIV1_N4              (TIM_CCMR1_IC1F_1 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=4 */
706
#define LL_TIM_IC_FILTER_FDIV1_N8              ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fCK_INT, N=8 */
707
#define LL_TIM_IC_FILTER_FDIV2_N6              (TIM_CCMR1_IC1F_2 << 16U)                                          /*!< fSAMPLING=fDTS/2, N=6 */
708
#define LL_TIM_IC_FILTER_FDIV2_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/2, N=8 */
709
#define LL_TIM_IC_FILTER_FDIV4_N6              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/4, N=6 */
710
#define LL_TIM_IC_FILTER_FDIV4_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/4, N=8 */
711
#define LL_TIM_IC_FILTER_FDIV8_N6              (TIM_CCMR1_IC1F_3 << 16U)                                          /*!< fSAMPLING=fDTS/8, N=6 */
712
#define LL_TIM_IC_FILTER_FDIV8_N8              ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/8, N=8 */
713
#define LL_TIM_IC_FILTER_FDIV16_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/16, N=5 */
714
#define LL_TIM_IC_FILTER_FDIV16_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/16, N=6 */
715
#define LL_TIM_IC_FILTER_FDIV16_N8             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U)                     /*!< fSAMPLING=fDTS/16, N=8 */
716
#define LL_TIM_IC_FILTER_FDIV32_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/32, N=5 */
717
#define LL_TIM_IC_FILTER_FDIV32_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)  /*!< fSAMPLING=fDTS/32, N=6 */
718
#define LL_TIM_IC_FILTER_FDIV32_N8             (TIM_CCMR1_IC1F << 16U)                                            /*!< fSAMPLING=fDTS/32, N=8 */
719
/**
720
  * @}
721
  */
722
 
723
/** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
724
  * @{
725
  */
726
#define LL_TIM_IC_POLARITY_RISING              0x00000000U                      /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
727
#define LL_TIM_IC_POLARITY_FALLING             TIM_CCER_CC1P                    /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
728
#define LL_TIM_IC_POLARITY_BOTHEDGE            (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
729
/**
730
  * @}
731
  */
732
 
733
/** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
734
  * @{
735
  */
736
#define LL_TIM_CLOCKSOURCE_INTERNAL            0x00000000U                                          /*!< The timer is clocked by the internal clock provided from the RCC */
737
#define LL_TIM_CLOCKSOURCE_EXT_MODE1           (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)   /*!< Counter counts at each rising or falling edge on a selected input*/
738
#define LL_TIM_CLOCKSOURCE_EXT_MODE2           TIM_SMCR_ECE                                         /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
739
/**
740
  * @}
741
  */
742
 
743
/** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
744
  * @{
745
  */
746
#define LL_TIM_ENCODERMODE_X2_TI1                     TIM_SMCR_SMS_0                                                     /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
747
#define LL_TIM_ENCODERMODE_X2_TI2                     TIM_SMCR_SMS_1                                                     /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
748
#define LL_TIM_ENCODERMODE_X4_TI12                   (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)                                   /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
749
/**
750
  * @}
751
  */
752
 
753
/** @defgroup TIM_LL_EC_TRGO Trigger Output
754
  * @{
755
  */
756
#define LL_TIM_TRGO_RESET                      0x00000000U                                     /*!< UG bit from the TIMx_EGR register is used as trigger output */
757
#define LL_TIM_TRGO_ENABLE                     TIM_CR2_MMS_0                                   /*!< Counter Enable signal (CNT_EN) is used as trigger output */
758
#define LL_TIM_TRGO_UPDATE                     TIM_CR2_MMS_1                                   /*!< Update event is used as trigger output */
759
#define LL_TIM_TRGO_CC1IF                      (TIM_CR2_MMS_1 | TIM_CR2_MMS_0)                 /*!< CC1 capture or a compare match is used as trigger output */
760
#define LL_TIM_TRGO_OC1REF                     TIM_CR2_MMS_2                                   /*!< OC1REF signal is used as trigger output */
761
#define LL_TIM_TRGO_OC2REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_0)                 /*!< OC2REF signal is used as trigger output */
762
#define LL_TIM_TRGO_OC3REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1)                 /*!< OC3REF signal is used as trigger output */
763
#define LL_TIM_TRGO_OC4REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
764
/**
765
  * @}
766
  */
767
 
768
 
769
/** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
770
  * @{
771
  */
772
#define LL_TIM_SLAVEMODE_DISABLED              0x00000000U                         /*!< Slave mode disabled */
773
#define LL_TIM_SLAVEMODE_RESET                 TIM_SMCR_SMS_2                      /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
774
#define LL_TIM_SLAVEMODE_GATED                 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)   /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
775
#define LL_TIM_SLAVEMODE_TRIGGER               (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)   /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
776
/**
777
  * @}
778
  */
779
 
780
/** @defgroup TIM_LL_EC_TS Trigger Selection
781
  * @{
782
  */
783
#define LL_TIM_TS_ITR0                         0x00000000U                                                     /*!< Internal Trigger 0 (ITR0) is used as trigger input */
784
#define LL_TIM_TS_ITR1                         TIM_SMCR_TS_0                                                   /*!< Internal Trigger 1 (ITR1) is used as trigger input */
785
#define LL_TIM_TS_ITR2                         TIM_SMCR_TS_1                                                   /*!< Internal Trigger 2 (ITR2) is used as trigger input */
786
#define LL_TIM_TS_ITR3                         (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)                                 /*!< Internal Trigger 3 (ITR3) is used as trigger input */
787
#define LL_TIM_TS_TI1F_ED                      TIM_SMCR_TS_2                                                   /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
788
#define LL_TIM_TS_TI1FP1                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_0)                                 /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
789
#define LL_TIM_TS_TI2FP2                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_1)                                 /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
790
#define LL_TIM_TS_ETRF                         (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Filtered external Trigger (ETRF) is used as trigger input */
791
/**
792
  * @}
793
  */
794
 
795
/** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
796
  * @{
797
  */
798
#define LL_TIM_ETR_POLARITY_NONINVERTED        0x00000000U             /*!< ETR is non-inverted, active at high level or rising edge */
799
#define LL_TIM_ETR_POLARITY_INVERTED           TIM_SMCR_ETP            /*!< ETR is inverted, active at low level or falling edge */
800
/**
801
  * @}
802
  */
803
 
804
/** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
805
  * @{
806
  */
807
#define LL_TIM_ETR_PRESCALER_DIV1              0x00000000U             /*!< ETR prescaler OFF */
808
#define LL_TIM_ETR_PRESCALER_DIV2              TIM_SMCR_ETPS_0         /*!< ETR frequency is divided by 2 */
809
#define LL_TIM_ETR_PRESCALER_DIV4              TIM_SMCR_ETPS_1         /*!< ETR frequency is divided by 4 */
810
#define LL_TIM_ETR_PRESCALER_DIV8              TIM_SMCR_ETPS           /*!< ETR frequency is divided by 8 */
811
/**
812
  * @}
813
  */
814
 
815
/** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
816
  * @{
817
  */
818
#define LL_TIM_ETR_FILTER_FDIV1                0x00000000U                                          /*!< No filter, sampling is done at fDTS */
819
#define LL_TIM_ETR_FILTER_FDIV1_N2             TIM_SMCR_ETF_0                                       /*!< fSAMPLING=fCK_INT, N=2 */
820
#define LL_TIM_ETR_FILTER_FDIV1_N4             TIM_SMCR_ETF_1                                       /*!< fSAMPLING=fCK_INT, N=4 */
821
#define LL_TIM_ETR_FILTER_FDIV1_N8             (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fCK_INT, N=8 */
822
#define LL_TIM_ETR_FILTER_FDIV2_N6             TIM_SMCR_ETF_2                                       /*!< fSAMPLING=fDTS/2, N=6 */
823
#define LL_TIM_ETR_FILTER_FDIV2_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/2, N=8 */
824
#define LL_TIM_ETR_FILTER_FDIV4_N6             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/4, N=6 */
825
#define LL_TIM_ETR_FILTER_FDIV4_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/4, N=8 */
826
#define LL_TIM_ETR_FILTER_FDIV8_N6             TIM_SMCR_ETF_3                                       /*!< fSAMPLING=fDTS/8, N=8 */
827
#define LL_TIM_ETR_FILTER_FDIV8_N8             (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/16, N=5 */
828
#define LL_TIM_ETR_FILTER_FDIV16_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/16, N=6 */
829
#define LL_TIM_ETR_FILTER_FDIV16_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/16, N=8 */
830
#define LL_TIM_ETR_FILTER_FDIV16_N8            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2)                    /*!< fSAMPLING=fDTS/16, N=5 */
831
#define LL_TIM_ETR_FILTER_FDIV32_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/32, N=5 */
832
#define LL_TIM_ETR_FILTER_FDIV32_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)   /*!< fSAMPLING=fDTS/32, N=6 */
833
#define LL_TIM_ETR_FILTER_FDIV32_N8            TIM_SMCR_ETF                                         /*!< fSAMPLING=fDTS/32, N=8 */
834
/**
835
  * @}
836
  */
837
 
838
 
839
/** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
840
  * @{
841
  */
842
#define LL_TIM_BREAK_POLARITY_LOW              0x00000000U               /*!< Break input BRK is active low */
843
#define LL_TIM_BREAK_POLARITY_HIGH             TIM_BDTR_BKP              /*!< Break input BRK is active high */
844
/**
845
  * @}
846
  */
847
 
848
 
849
 
850
 
851
/** @defgroup TIM_LL_EC_OSSI OSSI
852
  * @{
853
  */
854
#define LL_TIM_OSSI_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
855
#define LL_TIM_OSSI_ENABLE                     TIM_BDTR_OSSI           /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
856
/**
857
  * @}
858
  */
859
 
860
/** @defgroup TIM_LL_EC_OSSR OSSR
861
  * @{
862
  */
863
#define LL_TIM_OSSR_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
864
#define LL_TIM_OSSR_ENABLE                     TIM_BDTR_OSSR           /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
865
/**
866
  * @}
867
  */
868
 
869
 
870
/** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
871
  * @{
872
  */
873
#define LL_TIM_DMABURST_BASEADDR_CR1           0x00000000U                                                      /*!< TIMx_CR1 register is the DMA base address for DMA burst */
874
#define LL_TIM_DMABURST_BASEADDR_CR2           TIM_DCR_DBA_0                                                    /*!< TIMx_CR2 register is the DMA base address for DMA burst */
875
#define LL_TIM_DMABURST_BASEADDR_SMCR          TIM_DCR_DBA_1                                                    /*!< TIMx_SMCR register is the DMA base address for DMA burst */
876
#define LL_TIM_DMABURST_BASEADDR_DIER          (TIM_DCR_DBA_1 |  TIM_DCR_DBA_0)                                 /*!< TIMx_DIER register is the DMA base address for DMA burst */
877
#define LL_TIM_DMABURST_BASEADDR_SR            TIM_DCR_DBA_2                                                    /*!< TIMx_SR register is the DMA base address for DMA burst */
878
#define LL_TIM_DMABURST_BASEADDR_EGR           (TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                                  /*!< TIMx_EGR register is the DMA base address for DMA burst */
879
#define LL_TIM_DMABURST_BASEADDR_CCMR1         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
880
#define LL_TIM_DMABURST_BASEADDR_CCMR2         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
881
#define LL_TIM_DMABURST_BASEADDR_CCER          TIM_DCR_DBA_3                                                    /*!< TIMx_CCER register is the DMA base address for DMA burst */
882
#define LL_TIM_DMABURST_BASEADDR_CNT           (TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                                  /*!< TIMx_CNT register is the DMA base address for DMA burst */
883
#define LL_TIM_DMABURST_BASEADDR_PSC           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                                  /*!< TIMx_PSC register is the DMA base address for DMA burst */
884
#define LL_TIM_DMABURST_BASEADDR_ARR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_ARR register is the DMA base address for DMA burst */
885
#define LL_TIM_DMABURST_BASEADDR_RCR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_2)                                  /*!< TIMx_RCR register is the DMA base address for DMA burst */
886
#define LL_TIM_DMABURST_BASEADDR_CCR1          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
887
#define LL_TIM_DMABURST_BASEADDR_CCR2          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
888
#define LL_TIM_DMABURST_BASEADDR_CCR3          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
889
#define LL_TIM_DMABURST_BASEADDR_CCR4          TIM_DCR_DBA_4                                                    /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
890
#define LL_TIM_DMABURST_BASEADDR_BDTR          (TIM_DCR_DBA_4 | TIM_DCR_DBA_0)                                  /*!< TIMx_BDTR register is the DMA base address for DMA burst */
891
/**
892
  * @}
893
  */
894
 
895
/** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
896
  * @{
897
  */
898
#define LL_TIM_DMABURST_LENGTH_1TRANSFER       0x00000000U                                                     /*!< Transfer is done to 1 register starting from the DMA burst base address */
899
#define LL_TIM_DMABURST_LENGTH_2TRANSFERS      TIM_DCR_DBL_0                                                   /*!< Transfer is done to 2 registers starting from the DMA burst base address */
900
#define LL_TIM_DMABURST_LENGTH_3TRANSFERS      TIM_DCR_DBL_1                                                   /*!< Transfer is done to 3 registers starting from the DMA burst base address */
901
#define LL_TIM_DMABURST_LENGTH_4TRANSFERS      (TIM_DCR_DBL_1 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 4 registers starting from the DMA burst base address */
902
#define LL_TIM_DMABURST_LENGTH_5TRANSFERS      TIM_DCR_DBL_2                                                   /*!< Transfer is done to 5 registers starting from the DMA burst base address */
903
#define LL_TIM_DMABURST_LENGTH_6TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 6 registers starting from the DMA burst base address */
904
#define LL_TIM_DMABURST_LENGTH_7TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 7 registers starting from the DMA burst base address */
905
#define LL_TIM_DMABURST_LENGTH_8TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 1 registers starting from the DMA burst base address */
906
#define LL_TIM_DMABURST_LENGTH_9TRANSFERS      TIM_DCR_DBL_3                                                   /*!< Transfer is done to 9 registers starting from the DMA burst base address */
907
#define LL_TIM_DMABURST_LENGTH_10TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 10 registers starting from the DMA burst base address */
908
#define LL_TIM_DMABURST_LENGTH_11TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 11 registers starting from the DMA burst base address */
909
#define LL_TIM_DMABURST_LENGTH_12TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 12 registers starting from the DMA burst base address */
910
#define LL_TIM_DMABURST_LENGTH_13TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 13 registers starting from the DMA burst base address */
911
#define LL_TIM_DMABURST_LENGTH_14TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 14 registers starting from the DMA burst base address */
912
#define LL_TIM_DMABURST_LENGTH_15TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 15 registers starting from the DMA burst base address */
913
#define LL_TIM_DMABURST_LENGTH_16TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
914
#define LL_TIM_DMABURST_LENGTH_17TRANSFERS     TIM_DCR_DBL_4                                                   /*!< Transfer is done to 17 registers starting from the DMA burst base address */
915
#define LL_TIM_DMABURST_LENGTH_18TRANSFERS     (TIM_DCR_DBL_4 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 18 registers starting from the DMA burst base address */
916
/**
917
  * @}
918
  */
919
 
920
 
921
#define LL_TIM_TIM14_TI1_RMP_GPIO     TIM14_OR_RMP_MASK                                                        /*!< TIM14_TI1 is connected to Ored GPIO */
922
#define LL_TIM_TIM14_TI1_RMP_RTC_CLK  (TIM14_OR_TI1_RMP_0  | TIM14_OR_RMP_MASK)                                /*!< TIM14_TI1 is connected to RTC clock */
923
#define LL_TIM_TIM14_TI1_RMP_HSE      (TIM14_OR_TI1_RMP_1  | TIM14_OR_RMP_MASK)                                /*!< TIM14_TI1 is connected to HSE/32 clock */
924
#define LL_TIM_TIM14_TI1_RMP_MCO      (TIM14_OR_TI1_RMP_0  | TIM14_OR_TI1_RMP_1  | TIM14_OR_RMP_MASK)          /*!< TIM14_TI1 is connected to MCO */
925
 
926
 
927
/** @defgroup TIM_LL_EC_OCREF_CLR_INT OCREF clear input selection
928
  * @{
929
  */
930
#define LL_TIM_OCREF_CLR_INT_OCREF_CLR     0x00000000U         /*!< OCREF_CLR_INT is connected to the OCREF_CLR input */
931
#define LL_TIM_OCREF_CLR_INT_ETR           TIM_SMCR_OCCS       /*!< OCREF_CLR_INT is connected to ETRF */
932
/**
933
  * @}
934
  */
935
 
936
/**
937
  * @}
938
  */
939
 
940
/* Exported macro ------------------------------------------------------------*/
941
/** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
942
  * @{
943
  */
944
 
945
/** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
946
  * @{
947
  */
948
/**
949
  * @brief  Write a value in TIM register.
950
  * @param  __INSTANCE__ TIM Instance
951
  * @param  __REG__ Register to be written
952
  * @param  __VALUE__ Value to be written in the register
953
  * @retval None
954
  */
955
#define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
956
 
957
/**
958
  * @brief  Read a value in TIM register.
959
  * @param  __INSTANCE__ TIM Instance
960
  * @param  __REG__ Register to be read
961
  * @retval Register value
962
  */
963
#define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
964
/**
965
  * @}
966
  */
967
 
968
/** @defgroup TIM_LL_EM_Exported_Macros Exported_Macros
969
  * @{
970
  */
971
 
972
/**
973
  * @brief  HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
974
  * @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
975
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
976
  * @param  __CKD__ This parameter can be one of the following values:
977
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
978
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
979
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
980
  * @param  __DT__ deadtime duration (in ns)
981
  * @retval DTG[0:7]
982
  */
983
#define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__)  \
984
  ( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))    ?  \
985
    (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__)))  & DT_DELAY_1) :      \
986
    (((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
987
    (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),   \
988
                                                 (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
989
    (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
990
    (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
991
                                                 (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
992
    (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ?  \
993
    (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
994
                                                 (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
995
    0U)
996
 
997
/**
998
  * @brief  HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
999
  * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
1000
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
1001
  * @param  __CNTCLK__ counter clock frequency (in Hz)
1002
  * @retval Prescaler value  (between Min_Data=0 and Max_Data=65535)
1003
  */
1004
#define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__)   \
1005
  (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)(((__TIMCLK__)/(__CNTCLK__)) - 1U) : 0U)
1006
 
1007
/**
1008
  * @brief  HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
1009
  * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
1010
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
1011
  * @param  __PSC__ prescaler
1012
  * @param  __FREQ__ output signal frequency (in Hz)
1013
  * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1014
  */
1015
#define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
1016
  ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
1017
 
1018
/**
1019
  * @brief  HELPER macro calculating the compare value required to achieve the required timer output compare
1020
  *         active/inactive delay.
1021
  * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
1022
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
1023
  * @param  __PSC__ prescaler
1024
  * @param  __DELAY__ timer output compare active/inactive delay (in us)
1025
  * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
1026
  */
1027
#define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__)  \
1028
  ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
1029
              / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
1030
 
1031
/**
1032
  * @brief  HELPER macro calculating the auto-reload value to achieve the required pulse duration
1033
  *         (when the timer operates in one pulse mode).
1034
  * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
1035
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
1036
  * @param  __PSC__ prescaler
1037
  * @param  __DELAY__ timer output compare active/inactive delay (in us)
1038
  * @param  __PULSE__ pulse duration (in us)
1039
  * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1040
  */
1041
#define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
1042
  ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
1043
              + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
1044
 
1045
/**
1046
  * @brief  HELPER macro retrieving the ratio of the input capture prescaler
1047
  * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
1048
  * @param  __ICPSC__ This parameter can be one of the following values:
1049
  *         @arg @ref LL_TIM_ICPSC_DIV1
1050
  *         @arg @ref LL_TIM_ICPSC_DIV2
1051
  *         @arg @ref LL_TIM_ICPSC_DIV4
1052
  *         @arg @ref LL_TIM_ICPSC_DIV8
1053
  * @retval Input capture prescaler ratio (1, 2, 4 or 8)
1054
  */
1055
#define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__)  \
1056
  ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
1057
 
1058
 
1059
/**
1060
  * @}
1061
  */
1062
 
1063
 
1064
/**
1065
  * @}
1066
  */
1067
 
1068
/* Exported functions --------------------------------------------------------*/
1069
/** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
1070
  * @{
1071
  */
1072
 
1073
/** @defgroup TIM_LL_EF_Time_Base Time Base configuration
1074
  * @{
1075
  */
1076
/**
1077
  * @brief  Enable timer counter.
1078
  * @rmtoll CR1          CEN           LL_TIM_EnableCounter
1079
  * @param  TIMx Timer instance
1080
  * @retval None
1081
  */
1082
__STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
1083
{
1084
  SET_BIT(TIMx->CR1, TIM_CR1_CEN);
1085
}
1086
 
1087
/**
1088
  * @brief  Disable timer counter.
1089
  * @rmtoll CR1          CEN           LL_TIM_DisableCounter
1090
  * @param  TIMx Timer instance
1091
  * @retval None
1092
  */
1093
__STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
1094
{
1095
  CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
1096
}
1097
 
1098
/**
1099
  * @brief  Indicates whether the timer counter is enabled.
1100
  * @rmtoll CR1          CEN           LL_TIM_IsEnabledCounter
1101
  * @param  TIMx Timer instance
1102
  * @retval State of bit (1 or 0).
1103
  */
1104
__STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(TIM_TypeDef *TIMx)
1105
{
1106
  return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
1107
}
1108
 
1109
/**
1110
  * @brief  Enable update event generation.
1111
  * @rmtoll CR1          UDIS          LL_TIM_EnableUpdateEvent
1112
  * @param  TIMx Timer instance
1113
  * @retval None
1114
  */
1115
__STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
1116
{
1117
  CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
1118
}
1119
 
1120
/**
1121
  * @brief  Disable update event generation.
1122
  * @rmtoll CR1          UDIS          LL_TIM_DisableUpdateEvent
1123
  * @param  TIMx Timer instance
1124
  * @retval None
1125
  */
1126
__STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
1127
{
1128
  SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
1129
}
1130
 
1131
/**
1132
  * @brief  Indicates whether update event generation is enabled.
1133
  * @rmtoll CR1          UDIS          LL_TIM_IsEnabledUpdateEvent
1134
  * @param  TIMx Timer instance
1135
  * @retval Inverted state of bit (0 or 1).
1136
  */
1137
__STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(TIM_TypeDef *TIMx)
1138
{
1139
  return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
1140
}
1141
 
1142
/**
1143
  * @brief  Set update event source
1144
  * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
1145
  *       generate an update interrupt or DMA request if enabled:
1146
  *        - Counter overflow/underflow
1147
  *        - Setting the UG bit
1148
  *        - Update generation through the slave mode controller
1149
  * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
1150
  *       overflow/underflow generates an update interrupt or DMA request if enabled.
1151
  * @rmtoll CR1          URS           LL_TIM_SetUpdateSource
1152
  * @param  TIMx Timer instance
1153
  * @param  UpdateSource This parameter can be one of the following values:
1154
  *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1155
  *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1156
  * @retval None
1157
  */
1158
__STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
1159
{
1160
  MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
1161
}
1162
 
1163
/**
1164
  * @brief  Get actual event update source
1165
  * @rmtoll CR1          URS           LL_TIM_GetUpdateSource
1166
  * @param  TIMx Timer instance
1167
  * @retval Returned value can be one of the following values:
1168
  *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1169
  *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1170
  */
1171
__STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(TIM_TypeDef *TIMx)
1172
{
1173
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
1174
}
1175
 
1176
/**
1177
  * @brief  Set one pulse mode (one shot v.s. repetitive).
1178
  * @rmtoll CR1          OPM           LL_TIM_SetOnePulseMode
1179
  * @param  TIMx Timer instance
1180
  * @param  OnePulseMode This parameter can be one of the following values:
1181
  *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1182
  *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1183
  * @retval None
1184
  */
1185
__STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
1186
{
1187
  MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
1188
}
1189
 
1190
/**
1191
  * @brief  Get actual one pulse mode.
1192
  * @rmtoll CR1          OPM           LL_TIM_GetOnePulseMode
1193
  * @param  TIMx Timer instance
1194
  * @retval Returned value can be one of the following values:
1195
  *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1196
  *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1197
  */
1198
__STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(TIM_TypeDef *TIMx)
1199
{
1200
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
1201
}
1202
 
1203
/**
1204
  * @brief  Set the timer counter counting mode.
1205
  * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1206
  *       check whether or not the counter mode selection feature is supported
1207
  *       by a timer instance.
1208
  * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1209
  *       requires a timer reset to avoid unexpected direction
1210
  *       due to DIR bit readonly in center aligned mode.
1211
  * @rmtoll CR1          DIR           LL_TIM_SetCounterMode\n
1212
  *         CR1          CMS           LL_TIM_SetCounterMode
1213
  * @param  TIMx Timer instance
1214
  * @param  CounterMode This parameter can be one of the following values:
1215
  *         @arg @ref LL_TIM_COUNTERMODE_UP
1216
  *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1217
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1218
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1219
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1220
  * @retval None
1221
  */
1222
__STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
1223
{
1224
  MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
1225
}
1226
 
1227
/**
1228
  * @brief  Get actual counter mode.
1229
  * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1230
  *       check whether or not the counter mode selection feature is supported
1231
  *       by a timer instance.
1232
  * @rmtoll CR1          DIR           LL_TIM_GetCounterMode\n
1233
  *         CR1          CMS           LL_TIM_GetCounterMode
1234
  * @param  TIMx Timer instance
1235
  * @retval Returned value can be one of the following values:
1236
  *         @arg @ref LL_TIM_COUNTERMODE_UP
1237
  *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1238
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1239
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1240
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1241
  */
1242
__STATIC_INLINE uint32_t LL_TIM_GetCounterMode(TIM_TypeDef *TIMx)
1243
{
1244
  uint32_t counter_mode;
1245
 
1246
  counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CMS));
1247
 
1248
  if (counter_mode == 0U)
1249
  {
1250
    counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1251
  }
1252
 
1253
  return counter_mode;
1254
}
1255
 
1256
/**
1257
  * @brief  Enable auto-reload (ARR) preload.
1258
  * @rmtoll CR1          ARPE          LL_TIM_EnableARRPreload
1259
  * @param  TIMx Timer instance
1260
  * @retval None
1261
  */
1262
__STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
1263
{
1264
  SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
1265
}
1266
 
1267
/**
1268
  * @brief  Disable auto-reload (ARR) preload.
1269
  * @rmtoll CR1          ARPE          LL_TIM_DisableARRPreload
1270
  * @param  TIMx Timer instance
1271
  * @retval None
1272
  */
1273
__STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
1274
{
1275
  CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
1276
}
1277
 
1278
/**
1279
  * @brief  Indicates whether auto-reload (ARR) preload is enabled.
1280
  * @rmtoll CR1          ARPE          LL_TIM_IsEnabledARRPreload
1281
  * @param  TIMx Timer instance
1282
  * @retval State of bit (1 or 0).
1283
  */
1284
__STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(TIM_TypeDef *TIMx)
1285
{
1286
  return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
1287
}
1288
 
1289
/**
1290
  * @brief  Set the division ratio between the timer clock  and the sampling clock used by the dead-time generators
1291
  *         (when supported) and the digital filters.
1292
  * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1293
  *       whether or not the clock division feature is supported by the timer
1294
  *       instance.
1295
  * @rmtoll CR1          CKD           LL_TIM_SetClockDivision
1296
  * @param  TIMx Timer instance
1297
  * @param  ClockDivision This parameter can be one of the following values:
1298
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1299
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1300
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1301
  * @retval None
1302
  */
1303
__STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
1304
{
1305
  MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
1306
}
1307
 
1308
/**
1309
  * @brief  Get the actual division ratio between the timer clock  and the sampling clock used by the dead-time
1310
  *         generators (when supported) and the digital filters.
1311
  * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1312
  *       whether or not the clock division feature is supported by the timer
1313
  *       instance.
1314
  * @rmtoll CR1          CKD           LL_TIM_GetClockDivision
1315
  * @param  TIMx Timer instance
1316
  * @retval Returned value can be one of the following values:
1317
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1318
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1319
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1320
  */
1321
__STATIC_INLINE uint32_t LL_TIM_GetClockDivision(TIM_TypeDef *TIMx)
1322
{
1323
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
1324
}
1325
 
1326
/**
1327
  * @brief  Set the counter value.
1328
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1329
  *       whether or not a timer instance supports a 32 bits counter.
1330
  * @rmtoll CNT          CNT           LL_TIM_SetCounter
1331
  * @param  TIMx Timer instance
1332
  * @param  Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1333
  * @retval None
1334
  */
1335
__STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
1336
{
1337
  WRITE_REG(TIMx->CNT, Counter);
1338
}
1339
 
1340
/**
1341
  * @brief  Get the counter value.
1342
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1343
  *       whether or not a timer instance supports a 32 bits counter.
1344
  * @rmtoll CNT          CNT           LL_TIM_GetCounter
1345
  * @param  TIMx Timer instance
1346
  * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1347
  */
1348
__STATIC_INLINE uint32_t LL_TIM_GetCounter(TIM_TypeDef *TIMx)
1349
{
1350
  return (uint32_t)(READ_REG(TIMx->CNT));
1351
}
1352
 
1353
/**
1354
  * @brief  Get the current direction of the counter
1355
  * @rmtoll CR1          DIR           LL_TIM_GetDirection
1356
  * @param  TIMx Timer instance
1357
  * @retval Returned value can be one of the following values:
1358
  *         @arg @ref LL_TIM_COUNTERDIRECTION_UP
1359
  *         @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
1360
  */
1361
__STATIC_INLINE uint32_t LL_TIM_GetDirection(TIM_TypeDef *TIMx)
1362
{
1363
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1364
}
1365
 
1366
/**
1367
  * @brief  Set the prescaler value.
1368
  * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
1369
  * @note The prescaler can be changed on the fly as this control register is buffered. The new
1370
  *       prescaler ratio is taken into account at the next update event.
1371
  * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
1372
  * @rmtoll PSC          PSC           LL_TIM_SetPrescaler
1373
  * @param  TIMx Timer instance
1374
  * @param  Prescaler between Min_Data=0 and Max_Data=65535
1375
  * @retval None
1376
  */
1377
__STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
1378
{
1379
  WRITE_REG(TIMx->PSC, Prescaler);
1380
}
1381
 
1382
/**
1383
  * @brief  Get the prescaler value.
1384
  * @rmtoll PSC          PSC           LL_TIM_GetPrescaler
1385
  * @param  TIMx Timer instance
1386
  * @retval  Prescaler value between Min_Data=0 and Max_Data=65535
1387
  */
1388
__STATIC_INLINE uint32_t LL_TIM_GetPrescaler(TIM_TypeDef *TIMx)
1389
{
1390
  return (uint32_t)(READ_REG(TIMx->PSC));
1391
}
1392
 
1393
/**
1394
  * @brief  Set the auto-reload value.
1395
  * @note The counter is blocked while the auto-reload value is null.
1396
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1397
  *       whether or not a timer instance supports a 32 bits counter.
1398
  * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
1399
  * @rmtoll ARR          ARR           LL_TIM_SetAutoReload
1400
  * @param  TIMx Timer instance
1401
  * @param  AutoReload between Min_Data=0 and Max_Data=65535
1402
  * @retval None
1403
  */
1404
__STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
1405
{
1406
  WRITE_REG(TIMx->ARR, AutoReload);
1407
}
1408
 
1409
/**
1410
  * @brief  Get the auto-reload value.
1411
  * @rmtoll ARR          ARR           LL_TIM_GetAutoReload
1412
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1413
  *       whether or not a timer instance supports a 32 bits counter.
1414
  * @param  TIMx Timer instance
1415
  * @retval Auto-reload value
1416
  */
1417
__STATIC_INLINE uint32_t LL_TIM_GetAutoReload(TIM_TypeDef *TIMx)
1418
{
1419
  return (uint32_t)(READ_REG(TIMx->ARR));
1420
}
1421
 
1422
/**
1423
  * @brief  Set the repetition counter value.
1424
  * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1425
  *       whether or not a timer instance supports a repetition counter.
1426
  * @rmtoll RCR          REP           LL_TIM_SetRepetitionCounter
1427
  * @param  TIMx Timer instance
1428
  * @param  RepetitionCounter between Min_Data=0 and Max_Data=255 or 65535 for advanced timer.
1429
  * @retval None
1430
  */
1431
__STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
1432
{
1433
  WRITE_REG(TIMx->RCR, RepetitionCounter);
1434
}
1435
 
1436
/**
1437
  * @brief  Get the repetition counter value.
1438
  * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1439
  *       whether or not a timer instance supports a repetition counter.
1440
  * @rmtoll RCR          REP           LL_TIM_GetRepetitionCounter
1441
  * @param  TIMx Timer instance
1442
  * @retval Repetition counter value
1443
  */
1444
__STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(TIM_TypeDef *TIMx)
1445
{
1446
  return (uint32_t)(READ_REG(TIMx->RCR));
1447
}
1448
 
1449
/**
1450
  * @}
1451
  */
1452
 
1453
/** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
1454
  * @{
1455
  */
1456
/**
1457
  * @brief  Enable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1458
  * @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
1459
  *       they are updated only when a commutation event (COM) occurs.
1460
  * @note Only on channels that have a complementary output.
1461
  * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1462
  *       whether or not a timer instance is able to generate a commutation event.
1463
  * @rmtoll CR2          CCPC          LL_TIM_CC_EnablePreload
1464
  * @param  TIMx Timer instance
1465
  * @retval None
1466
  */
1467
__STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
1468
{
1469
  SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
1470
}
1471
 
1472
/**
1473
  * @brief  Disable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1474
  * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1475
  *       whether or not a timer instance is able to generate a commutation event.
1476
  * @rmtoll CR2          CCPC          LL_TIM_CC_DisablePreload
1477
  * @param  TIMx Timer instance
1478
  * @retval None
1479
  */
1480
__STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
1481
{
1482
  CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
1483
}
1484
 
1485
/**
1486
  * @brief  Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
1487
  * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1488
  *       whether or not a timer instance is able to generate a commutation event.
1489
  * @rmtoll CR2          CCUS          LL_TIM_CC_SetUpdate
1490
  * @param  TIMx Timer instance
1491
  * @param  CCUpdateSource This parameter can be one of the following values:
1492
  *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
1493
  *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
1494
  * @retval None
1495
  */
1496
__STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
1497
{
1498
  MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
1499
}
1500
 
1501
/**
1502
  * @brief  Set the trigger of the capture/compare DMA request.
1503
  * @rmtoll CR2          CCDS          LL_TIM_CC_SetDMAReqTrigger
1504
  * @param  TIMx Timer instance
1505
  * @param  DMAReqTrigger This parameter can be one of the following values:
1506
  *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1507
  *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1508
  * @retval None
1509
  */
1510
__STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
1511
{
1512
  MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
1513
}
1514
 
1515
/**
1516
  * @brief  Get actual trigger of the capture/compare DMA request.
1517
  * @rmtoll CR2          CCDS          LL_TIM_CC_GetDMAReqTrigger
1518
  * @param  TIMx Timer instance
1519
  * @retval Returned value can be one of the following values:
1520
  *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1521
  *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1522
  */
1523
__STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(TIM_TypeDef *TIMx)
1524
{
1525
  return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
1526
}
1527
 
1528
/**
1529
  * @brief  Set the lock level to freeze the
1530
  *         configuration of several capture/compare parameters.
1531
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
1532
  *       the lock mechanism is supported by a timer instance.
1533
  * @rmtoll BDTR         LOCK          LL_TIM_CC_SetLockLevel
1534
  * @param  TIMx Timer instance
1535
  * @param  LockLevel This parameter can be one of the following values:
1536
  *         @arg @ref LL_TIM_LOCKLEVEL_OFF
1537
  *         @arg @ref LL_TIM_LOCKLEVEL_1
1538
  *         @arg @ref LL_TIM_LOCKLEVEL_2
1539
  *         @arg @ref LL_TIM_LOCKLEVEL_3
1540
  * @retval None
1541
  */
1542
__STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
1543
{
1544
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
1545
}
1546
 
1547
/**
1548
  * @brief  Enable capture/compare channels.
1549
  * @rmtoll CCER         CC1E          LL_TIM_CC_EnableChannel\n
1550
  *         CCER         CC1NE         LL_TIM_CC_EnableChannel\n
1551
  *         CCER         CC2E          LL_TIM_CC_EnableChannel\n
1552
  *         CCER         CC2NE         LL_TIM_CC_EnableChannel\n
1553
  *         CCER         CC3E          LL_TIM_CC_EnableChannel\n
1554
  *         CCER         CC3NE         LL_TIM_CC_EnableChannel\n
1555
  *         CCER         CC4E          LL_TIM_CC_EnableChannel
1556
  * @param  TIMx Timer instance
1557
  * @param  Channels This parameter can be a combination of the following values:
1558
  *         @arg @ref LL_TIM_CHANNEL_CH1
1559
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1560
  *         @arg @ref LL_TIM_CHANNEL_CH2
1561
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1562
  *         @arg @ref LL_TIM_CHANNEL_CH3
1563
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1564
  *         @arg @ref LL_TIM_CHANNEL_CH4
1565
  * @retval None
1566
  */
1567
__STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1568
{
1569
  SET_BIT(TIMx->CCER, Channels);
1570
}
1571
 
1572
/**
1573
  * @brief  Disable capture/compare channels.
1574
  * @rmtoll CCER         CC1E          LL_TIM_CC_DisableChannel\n
1575
  *         CCER         CC1NE         LL_TIM_CC_DisableChannel\n
1576
  *         CCER         CC2E          LL_TIM_CC_DisableChannel\n
1577
  *         CCER         CC2NE         LL_TIM_CC_DisableChannel\n
1578
  *         CCER         CC3E          LL_TIM_CC_DisableChannel\n
1579
  *         CCER         CC3NE         LL_TIM_CC_DisableChannel\n
1580
  *         CCER         CC4E          LL_TIM_CC_DisableChannel
1581
  * @param  TIMx Timer instance
1582
  * @param  Channels This parameter can be a combination of the following values:
1583
  *         @arg @ref LL_TIM_CHANNEL_CH1
1584
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1585
  *         @arg @ref LL_TIM_CHANNEL_CH2
1586
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1587
  *         @arg @ref LL_TIM_CHANNEL_CH3
1588
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1589
  *         @arg @ref LL_TIM_CHANNEL_CH4
1590
  * @retval None
1591
  */
1592
__STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1593
{
1594
  CLEAR_BIT(TIMx->CCER, Channels);
1595
}
1596
 
1597
/**
1598
  * @brief  Indicate whether channel(s) is(are) enabled.
1599
  * @rmtoll CCER         CC1E          LL_TIM_CC_IsEnabledChannel\n
1600
  *         CCER         CC1NE         LL_TIM_CC_IsEnabledChannel\n
1601
  *         CCER         CC2E          LL_TIM_CC_IsEnabledChannel\n
1602
  *         CCER         CC2NE         LL_TIM_CC_IsEnabledChannel\n
1603
  *         CCER         CC3E          LL_TIM_CC_IsEnabledChannel\n
1604
  *         CCER         CC3NE         LL_TIM_CC_IsEnabledChannel\n
1605
  *         CCER         CC4E          LL_TIM_CC_IsEnabledChannel
1606
  * @param  TIMx Timer instance
1607
  * @param  Channels This parameter can be a combination of the following values:
1608
  *         @arg @ref LL_TIM_CHANNEL_CH1
1609
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1610
  *         @arg @ref LL_TIM_CHANNEL_CH2
1611
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1612
  *         @arg @ref LL_TIM_CHANNEL_CH3
1613
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1614
  *         @arg @ref LL_TIM_CHANNEL_CH4
1615
  * @retval State of bit (1 or 0).
1616
  */
1617
__STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1618
{
1619
  return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
1620
}
1621
 
1622
/**
1623
  * @}
1624
  */
1625
 
1626
/** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
1627
  * @{
1628
  */
1629
/**
1630
  * @brief  Configure an output channel.
1631
  * @rmtoll CCMR1        CC1S          LL_TIM_OC_ConfigOutput\n
1632
  *         CCMR1        CC2S          LL_TIM_OC_ConfigOutput\n
1633
  *         CCMR2        CC3S          LL_TIM_OC_ConfigOutput\n
1634
  *         CCMR2        CC4S          LL_TIM_OC_ConfigOutput\n
1635
  *         CCER         CC1P          LL_TIM_OC_ConfigOutput\n
1636
  *         CCER         CC2P          LL_TIM_OC_ConfigOutput\n
1637
  *         CCER         CC3P          LL_TIM_OC_ConfigOutput\n
1638
  *         CCER         CC4P          LL_TIM_OC_ConfigOutput\n
1639
  *         CR2          OIS1          LL_TIM_OC_ConfigOutput\n
1640
  *         CR2          OIS2          LL_TIM_OC_ConfigOutput\n
1641
  *         CR2          OIS3          LL_TIM_OC_ConfigOutput\n
1642
  *         CR2          OIS4          LL_TIM_OC_ConfigOutput
1643
  * @param  TIMx Timer instance
1644
  * @param  Channel This parameter can be one of the following values:
1645
  *         @arg @ref LL_TIM_CHANNEL_CH1
1646
  *         @arg @ref LL_TIM_CHANNEL_CH2
1647
  *         @arg @ref LL_TIM_CHANNEL_CH3
1648
  *         @arg @ref LL_TIM_CHANNEL_CH4
1649
  * @param  Configuration This parameter must be a combination of all the following values:
1650
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
1651
  *         @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
1652
  * @retval None
1653
  */
1654
__STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
1655
{
1656
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1657
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1658
  CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
1659
  MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
1660
             (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
1661
  MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
1662
             (Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
1663
}
1664
 
1665
/**
1666
  * @brief  Define the behavior of the output reference signal OCxREF from which
1667
  *         OCx and OCxN (when relevant) are derived.
1668
  * @rmtoll CCMR1        OC1M          LL_TIM_OC_SetMode\n
1669
  *         CCMR1        OC2M          LL_TIM_OC_SetMode\n
1670
  *         CCMR2        OC3M          LL_TIM_OC_SetMode\n
1671
  *         CCMR2        OC4M          LL_TIM_OC_SetMode
1672
  * @param  TIMx Timer instance
1673
  * @param  Channel This parameter can be one of the following values:
1674
  *         @arg @ref LL_TIM_CHANNEL_CH1
1675
  *         @arg @ref LL_TIM_CHANNEL_CH2
1676
  *         @arg @ref LL_TIM_CHANNEL_CH3
1677
  *         @arg @ref LL_TIM_CHANNEL_CH4
1678
  * @param  Mode This parameter can be one of the following values:
1679
  *         @arg @ref LL_TIM_OCMODE_FROZEN
1680
  *         @arg @ref LL_TIM_OCMODE_ACTIVE
1681
  *         @arg @ref LL_TIM_OCMODE_INACTIVE
1682
  *         @arg @ref LL_TIM_OCMODE_TOGGLE
1683
  *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
1684
  *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
1685
  *         @arg @ref LL_TIM_OCMODE_PWM1
1686
  *         @arg @ref LL_TIM_OCMODE_PWM2
1687
  * @retval None
1688
  */
1689
__STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
1690
{
1691
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1692
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1693
  MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]);
1694
}
1695
 
1696
/**
1697
  * @brief  Get the output compare mode of an output channel.
1698
  * @rmtoll CCMR1        OC1M          LL_TIM_OC_GetMode\n
1699
  *         CCMR1        OC2M          LL_TIM_OC_GetMode\n
1700
  *         CCMR2        OC3M          LL_TIM_OC_GetMode\n
1701
  *         CCMR2        OC4M          LL_TIM_OC_GetMode
1702
  * @param  TIMx Timer instance
1703
  * @param  Channel This parameter can be one of the following values:
1704
  *         @arg @ref LL_TIM_CHANNEL_CH1
1705
  *         @arg @ref LL_TIM_CHANNEL_CH2
1706
  *         @arg @ref LL_TIM_CHANNEL_CH3
1707
  *         @arg @ref LL_TIM_CHANNEL_CH4
1708
  * @retval Returned value can be one of the following values:
1709
  *         @arg @ref LL_TIM_OCMODE_FROZEN
1710
  *         @arg @ref LL_TIM_OCMODE_ACTIVE
1711
  *         @arg @ref LL_TIM_OCMODE_INACTIVE
1712
  *         @arg @ref LL_TIM_OCMODE_TOGGLE
1713
  *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
1714
  *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
1715
  *         @arg @ref LL_TIM_OCMODE_PWM1
1716
  *         @arg @ref LL_TIM_OCMODE_PWM2
1717
  */
1718
__STATIC_INLINE uint32_t LL_TIM_OC_GetMode(TIM_TypeDef *TIMx, uint32_t Channel)
1719
{
1720
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1721
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1722
  return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
1723
}
1724
 
1725
/**
1726
  * @brief  Set the polarity of an output channel.
1727
  * @rmtoll CCER         CC1P          LL_TIM_OC_SetPolarity\n
1728
  *         CCER         CC1NP         LL_TIM_OC_SetPolarity\n
1729
  *         CCER         CC2P          LL_TIM_OC_SetPolarity\n
1730
  *         CCER         CC2NP         LL_TIM_OC_SetPolarity\n
1731
  *         CCER         CC3P          LL_TIM_OC_SetPolarity\n
1732
  *         CCER         CC3NP         LL_TIM_OC_SetPolarity\n
1733
  *         CCER         CC4P          LL_TIM_OC_SetPolarity
1734
  * @param  TIMx Timer instance
1735
  * @param  Channel This parameter can be one of the following values:
1736
  *         @arg @ref LL_TIM_CHANNEL_CH1
1737
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1738
  *         @arg @ref LL_TIM_CHANNEL_CH2
1739
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1740
  *         @arg @ref LL_TIM_CHANNEL_CH3
1741
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1742
  *         @arg @ref LL_TIM_CHANNEL_CH4
1743
  * @param  Polarity This parameter can be one of the following values:
1744
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH
1745
  *         @arg @ref LL_TIM_OCPOLARITY_LOW
1746
  * @retval None
1747
  */
1748
__STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
1749
{
1750
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1751
  MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),  Polarity << SHIFT_TAB_CCxP[iChannel]);
1752
}
1753
 
1754
/**
1755
  * @brief  Get the polarity of an output channel.
1756
  * @rmtoll CCER         CC1P          LL_TIM_OC_GetPolarity\n
1757
  *         CCER         CC1NP         LL_TIM_OC_GetPolarity\n
1758
  *         CCER         CC2P          LL_TIM_OC_GetPolarity\n
1759
  *         CCER         CC2NP         LL_TIM_OC_GetPolarity\n
1760
  *         CCER         CC3P          LL_TIM_OC_GetPolarity\n
1761
  *         CCER         CC3NP         LL_TIM_OC_GetPolarity\n
1762
  *         CCER         CC4P          LL_TIM_OC_GetPolarity
1763
  * @param  TIMx Timer instance
1764
  * @param  Channel This parameter can be one of the following values:
1765
  *         @arg @ref LL_TIM_CHANNEL_CH1
1766
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1767
  *         @arg @ref LL_TIM_CHANNEL_CH2
1768
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1769
  *         @arg @ref LL_TIM_CHANNEL_CH3
1770
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1771
  *         @arg @ref LL_TIM_CHANNEL_CH4
1772
  * @retval Returned value can be one of the following values:
1773
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH
1774
  *         @arg @ref LL_TIM_OCPOLARITY_LOW
1775
  */
1776
__STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel)
1777
{
1778
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1779
  return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
1780
}
1781
 
1782
/**
1783
  * @brief  Set the IDLE state of an output channel
1784
  * @note This function is significant only for the timer instances
1785
  *       supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx)
1786
  *       can be used to check whether or not a timer instance provides
1787
  *       a break input.
1788
  * @rmtoll CR2         OIS1          LL_TIM_OC_SetIdleState\n
1789
  *         CR2         OIS1N         LL_TIM_OC_SetIdleState\n
1790
  *         CR2         OIS2          LL_TIM_OC_SetIdleState\n
1791
  *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
1792
  *         CR2         OIS3          LL_TIM_OC_SetIdleState\n
1793
  *         CR2         OIS3N         LL_TIM_OC_SetIdleState\n
1794
  *         CR2         OIS4          LL_TIM_OC_SetIdleState
1795
  * @param  TIMx Timer instance
1796
  * @param  Channel This parameter can be one of the following values:
1797
  *         @arg @ref LL_TIM_CHANNEL_CH1
1798
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1799
  *         @arg @ref LL_TIM_CHANNEL_CH2
1800
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1801
  *         @arg @ref LL_TIM_CHANNEL_CH3
1802
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1803
  *         @arg @ref LL_TIM_CHANNEL_CH4
1804
  * @param  IdleState This parameter can be one of the following values:
1805
  *         @arg @ref LL_TIM_OCIDLESTATE_LOW
1806
  *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
1807
  * @retval None
1808
  */
1809
__STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
1810
{
1811
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1812
  MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),  IdleState << SHIFT_TAB_OISx[iChannel]);
1813
}
1814
 
1815
/**
1816
  * @brief  Get the IDLE state of an output channel
1817
  * @rmtoll CR2         OIS1          LL_TIM_OC_GetIdleState\n
1818
  *         CR2         OIS1N         LL_TIM_OC_GetIdleState\n
1819
  *         CR2         OIS2          LL_TIM_OC_GetIdleState\n
1820
  *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
1821
  *         CR2         OIS3          LL_TIM_OC_GetIdleState\n
1822
  *         CR2         OIS3N         LL_TIM_OC_GetIdleState\n
1823
  *         CR2         OIS4          LL_TIM_OC_GetIdleState
1824
  * @param  TIMx Timer instance
1825
  * @param  Channel This parameter can be one of the following values:
1826
  *         @arg @ref LL_TIM_CHANNEL_CH1
1827
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1828
  *         @arg @ref LL_TIM_CHANNEL_CH2
1829
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1830
  *         @arg @ref LL_TIM_CHANNEL_CH3
1831
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1832
  *         @arg @ref LL_TIM_CHANNEL_CH4
1833
  * @retval Returned value can be one of the following values:
1834
  *         @arg @ref LL_TIM_OCIDLESTATE_LOW
1835
  *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
1836
  */
1837
__STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(TIM_TypeDef *TIMx, uint32_t Channel)
1838
{
1839
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1840
  return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
1841
}
1842
 
1843
/**
1844
  * @brief  Enable fast mode for the output channel.
1845
  * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
1846
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_EnableFast\n
1847
  *         CCMR1        OC2FE          LL_TIM_OC_EnableFast\n
1848
  *         CCMR2        OC3FE          LL_TIM_OC_EnableFast\n
1849
  *         CCMR2        OC4FE          LL_TIM_OC_EnableFast
1850
  * @param  TIMx Timer instance
1851
  * @param  Channel This parameter can be one of the following values:
1852
  *         @arg @ref LL_TIM_CHANNEL_CH1
1853
  *         @arg @ref LL_TIM_CHANNEL_CH2
1854
  *         @arg @ref LL_TIM_CHANNEL_CH3
1855
  *         @arg @ref LL_TIM_CHANNEL_CH4
1856
  * @retval None
1857
  */
1858
__STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
1859
{
1860
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1861
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1862
  SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
1863
 
1864
}
1865
 
1866
/**
1867
  * @brief  Disable fast mode for the output channel.
1868
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_DisableFast\n
1869
  *         CCMR1        OC2FE          LL_TIM_OC_DisableFast\n
1870
  *         CCMR2        OC3FE          LL_TIM_OC_DisableFast\n
1871
  *         CCMR2        OC4FE          LL_TIM_OC_DisableFast
1872
  * @param  TIMx Timer instance
1873
  * @param  Channel This parameter can be one of the following values:
1874
  *         @arg @ref LL_TIM_CHANNEL_CH1
1875
  *         @arg @ref LL_TIM_CHANNEL_CH2
1876
  *         @arg @ref LL_TIM_CHANNEL_CH3
1877
  *         @arg @ref LL_TIM_CHANNEL_CH4
1878
  * @retval None
1879
  */
1880
__STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
1881
{
1882
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1883
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1884
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
1885
 
1886
}
1887
 
1888
/**
1889
  * @brief  Indicates whether fast mode is enabled for the output channel.
1890
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_IsEnabledFast\n
1891
  *         CCMR1        OC2FE          LL_TIM_OC_IsEnabledFast\n
1892
  *         CCMR2        OC3FE          LL_TIM_OC_IsEnabledFast\n
1893
  *         CCMR2        OC4FE          LL_TIM_OC_IsEnabledFast\n
1894
  * @param  TIMx Timer instance
1895
  * @param  Channel This parameter can be one of the following values:
1896
  *         @arg @ref LL_TIM_CHANNEL_CH1
1897
  *         @arg @ref LL_TIM_CHANNEL_CH2
1898
  *         @arg @ref LL_TIM_CHANNEL_CH3
1899
  *         @arg @ref LL_TIM_CHANNEL_CH4
1900
  * @retval State of bit (1 or 0).
1901
  */
1902
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(TIM_TypeDef *TIMx, uint32_t Channel)
1903
{
1904
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1905
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1906
  uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
1907
  return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
1908
}
1909
 
1910
/**
1911
  * @brief  Enable compare register (TIMx_CCRx) preload for the output channel.
1912
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_EnablePreload\n
1913
  *         CCMR1        OC2PE          LL_TIM_OC_EnablePreload\n
1914
  *         CCMR2        OC3PE          LL_TIM_OC_EnablePreload\n
1915
  *         CCMR2        OC4PE          LL_TIM_OC_EnablePreload
1916
  * @param  TIMx Timer instance
1917
  * @param  Channel This parameter can be one of the following values:
1918
  *         @arg @ref LL_TIM_CHANNEL_CH1
1919
  *         @arg @ref LL_TIM_CHANNEL_CH2
1920
  *         @arg @ref LL_TIM_CHANNEL_CH3
1921
  *         @arg @ref LL_TIM_CHANNEL_CH4
1922
  * @retval None
1923
  */
1924
__STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
1925
{
1926
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1927
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1928
  SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
1929
}
1930
 
1931
/**
1932
  * @brief  Disable compare register (TIMx_CCRx) preload for the output channel.
1933
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_DisablePreload\n
1934
  *         CCMR1        OC2PE          LL_TIM_OC_DisablePreload\n
1935
  *         CCMR2        OC3PE          LL_TIM_OC_DisablePreload\n
1936
  *         CCMR2        OC4PE          LL_TIM_OC_DisablePreload
1937
  * @param  TIMx Timer instance
1938
  * @param  Channel This parameter can be one of the following values:
1939
  *         @arg @ref LL_TIM_CHANNEL_CH1
1940
  *         @arg @ref LL_TIM_CHANNEL_CH2
1941
  *         @arg @ref LL_TIM_CHANNEL_CH3
1942
  *         @arg @ref LL_TIM_CHANNEL_CH4
1943
  * @retval None
1944
  */
1945
__STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
1946
{
1947
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1948
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1949
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
1950
}
1951
 
1952
/**
1953
  * @brief  Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
1954
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_IsEnabledPreload\n
1955
  *         CCMR1        OC2PE          LL_TIM_OC_IsEnabledPreload\n
1956
  *         CCMR2        OC3PE          LL_TIM_OC_IsEnabledPreload\n
1957
  *         CCMR2        OC4PE          LL_TIM_OC_IsEnabledPreload\n
1958
  * @param  TIMx Timer instance
1959
  * @param  Channel This parameter can be one of the following values:
1960
  *         @arg @ref LL_TIM_CHANNEL_CH1
1961
  *         @arg @ref LL_TIM_CHANNEL_CH2
1962
  *         @arg @ref LL_TIM_CHANNEL_CH3
1963
  *         @arg @ref LL_TIM_CHANNEL_CH4
1964
  * @retval State of bit (1 or 0).
1965
  */
1966
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(TIM_TypeDef *TIMx, uint32_t Channel)
1967
{
1968
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1969
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1970
  uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
1971
  return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
1972
}
1973
 
1974
/**
1975
  * @brief  Enable clearing the output channel on an external event.
1976
  * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
1977
  * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
1978
  *       or not a timer instance can clear the OCxREF signal on an external event.
1979
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_EnableClear\n
1980
  *         CCMR1        OC2CE          LL_TIM_OC_EnableClear\n
1981
  *         CCMR2        OC3CE          LL_TIM_OC_EnableClear\n
1982
  *         CCMR2        OC4CE          LL_TIM_OC_EnableClear
1983
  * @param  TIMx Timer instance
1984
  * @param  Channel This parameter can be one of the following values:
1985
  *         @arg @ref LL_TIM_CHANNEL_CH1
1986
  *         @arg @ref LL_TIM_CHANNEL_CH2
1987
  *         @arg @ref LL_TIM_CHANNEL_CH3
1988
  *         @arg @ref LL_TIM_CHANNEL_CH4
1989
  * @retval None
1990
  */
1991
__STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
1992
{
1993
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1994
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1995
  SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
1996
}
1997
 
1998
/**
1999
  * @brief  Disable clearing the output channel on an external event.
2000
  * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2001
  *       or not a timer instance can clear the OCxREF signal on an external event.
2002
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_DisableClear\n
2003
  *         CCMR1        OC2CE          LL_TIM_OC_DisableClear\n
2004
  *         CCMR2        OC3CE          LL_TIM_OC_DisableClear\n
2005
  *         CCMR2        OC4CE          LL_TIM_OC_DisableClear
2006
  * @param  TIMx Timer instance
2007
  * @param  Channel This parameter can be one of the following values:
2008
  *         @arg @ref LL_TIM_CHANNEL_CH1
2009
  *         @arg @ref LL_TIM_CHANNEL_CH2
2010
  *         @arg @ref LL_TIM_CHANNEL_CH3
2011
  *         @arg @ref LL_TIM_CHANNEL_CH4
2012
  * @retval None
2013
  */
2014
__STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2015
{
2016
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2017
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2018
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2019
}
2020
 
2021
/**
2022
  * @brief  Indicates clearing the output channel on an external event is enabled for the output channel.
2023
  * @note This function enables clearing the output channel on an external event.
2024
  * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2025
  * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2026
  *       or not a timer instance can clear the OCxREF signal on an external event.
2027
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_IsEnabledClear\n
2028
  *         CCMR1        OC2CE          LL_TIM_OC_IsEnabledClear\n
2029
  *         CCMR2        OC3CE          LL_TIM_OC_IsEnabledClear\n
2030
  *         CCMR2        OC4CE          LL_TIM_OC_IsEnabledClear\n
2031
  * @param  TIMx Timer instance
2032
  * @param  Channel This parameter can be one of the following values:
2033
  *         @arg @ref LL_TIM_CHANNEL_CH1
2034
  *         @arg @ref LL_TIM_CHANNEL_CH2
2035
  *         @arg @ref LL_TIM_CHANNEL_CH3
2036
  *         @arg @ref LL_TIM_CHANNEL_CH4
2037
  * @retval State of bit (1 or 0).
2038
  */
2039
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(TIM_TypeDef *TIMx, uint32_t Channel)
2040
{
2041
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2042
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2043
  uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
2044
  return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2045
}
2046
 
2047
/**
2048
  * @brief  Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of
2049
  *         the Ocx and OCxN signals).
2050
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2051
  *       dead-time insertion feature is supported by a timer instance.
2052
  * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
2053
  * @rmtoll BDTR         DTG           LL_TIM_OC_SetDeadTime
2054
  * @param  TIMx Timer instance
2055
  * @param  DeadTime between Min_Data=0 and Max_Data=255
2056
  * @retval None
2057
  */
2058
__STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
2059
{
2060
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
2061
}
2062
 
2063
/**
2064
  * @brief  Set compare value for output channel 1 (TIMx_CCR1).
2065
  * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2066
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2067
  *       whether or not a timer instance supports a 32 bits counter.
2068
  * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2069
  *       output channel 1 is supported by a timer instance.
2070
  * @rmtoll CCR1         CCR1          LL_TIM_OC_SetCompareCH1
2071
  * @param  TIMx Timer instance
2072
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2073
  * @retval None
2074
  */
2075
__STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
2076
{
2077
  WRITE_REG(TIMx->CCR1, CompareValue);
2078
}
2079
 
2080
/**
2081
  * @brief  Set compare value for output channel 2 (TIMx_CCR2).
2082
  * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2083
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2084
  *       whether or not a timer instance supports a 32 bits counter.
2085
  * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2086
  *       output channel 2 is supported by a timer instance.
2087
  * @rmtoll CCR2         CCR2          LL_TIM_OC_SetCompareCH2
2088
  * @param  TIMx Timer instance
2089
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2090
  * @retval None
2091
  */
2092
__STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
2093
{
2094
  WRITE_REG(TIMx->CCR2, CompareValue);
2095
}
2096
 
2097
/**
2098
  * @brief  Set compare value for output channel 3 (TIMx_CCR3).
2099
  * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2100
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2101
  *       whether or not a timer instance supports a 32 bits counter.
2102
  * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2103
  *       output channel is supported by a timer instance.
2104
  * @rmtoll CCR3         CCR3          LL_TIM_OC_SetCompareCH3
2105
  * @param  TIMx Timer instance
2106
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2107
  * @retval None
2108
  */
2109
__STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
2110
{
2111
  WRITE_REG(TIMx->CCR3, CompareValue);
2112
}
2113
 
2114
/**
2115
  * @brief  Set compare value for output channel 4 (TIMx_CCR4).
2116
  * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2117
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2118
  *       whether or not a timer instance supports a 32 bits counter.
2119
  * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2120
  *       output channel 4 is supported by a timer instance.
2121
  * @rmtoll CCR4         CCR4          LL_TIM_OC_SetCompareCH4
2122
  * @param  TIMx Timer instance
2123
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2124
  * @retval None
2125
  */
2126
__STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
2127
{
2128
  WRITE_REG(TIMx->CCR4, CompareValue);
2129
}
2130
 
2131
/**
2132
  * @brief  Get compare value (TIMx_CCR1) set for  output channel 1.
2133
  * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2134
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2135
  *       whether or not a timer instance supports a 32 bits counter.
2136
  * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2137
  *       output channel 1 is supported by a timer instance.
2138
  * @rmtoll CCR1         CCR1          LL_TIM_OC_GetCompareCH1
2139
  * @param  TIMx Timer instance
2140
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2141
  */
2142
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(TIM_TypeDef *TIMx)
2143
{
2144
  return (uint32_t)(READ_REG(TIMx->CCR1));
2145
}
2146
 
2147
/**
2148
  * @brief  Get compare value (TIMx_CCR2) set for  output channel 2.
2149
  * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2150
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2151
  *       whether or not a timer instance supports a 32 bits counter.
2152
  * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2153
  *       output channel 2 is supported by a timer instance.
2154
  * @rmtoll CCR2         CCR2          LL_TIM_OC_GetCompareCH2
2155
  * @param  TIMx Timer instance
2156
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2157
  */
2158
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(TIM_TypeDef *TIMx)
2159
{
2160
  return (uint32_t)(READ_REG(TIMx->CCR2));
2161
}
2162
 
2163
/**
2164
  * @brief  Get compare value (TIMx_CCR3) set for  output channel 3.
2165
  * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2166
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2167
  *       whether or not a timer instance supports a 32 bits counter.
2168
  * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2169
  *       output channel 3 is supported by a timer instance.
2170
  * @rmtoll CCR3         CCR3          LL_TIM_OC_GetCompareCH3
2171
  * @param  TIMx Timer instance
2172
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2173
  */
2174
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(TIM_TypeDef *TIMx)
2175
{
2176
  return (uint32_t)(READ_REG(TIMx->CCR3));
2177
}
2178
 
2179
/**
2180
  * @brief  Get compare value (TIMx_CCR4) set for  output channel 4.
2181
  * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2182
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2183
  *       whether or not a timer instance supports a 32 bits counter.
2184
  * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2185
  *       output channel 4 is supported by a timer instance.
2186
  * @rmtoll CCR4         CCR4          LL_TIM_OC_GetCompareCH4
2187
  * @param  TIMx Timer instance
2188
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2189
  */
2190
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(TIM_TypeDef *TIMx)
2191
{
2192
  return (uint32_t)(READ_REG(TIMx->CCR4));
2193
}
2194
 
2195
/**
2196
  * @}
2197
  */
2198
 
2199
/** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
2200
  * @{
2201
  */
2202
/**
2203
  * @brief  Configure input channel.
2204
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_Config\n
2205
  *         CCMR1        IC1PSC        LL_TIM_IC_Config\n
2206
  *         CCMR1        IC1F          LL_TIM_IC_Config\n
2207
  *         CCMR1        CC2S          LL_TIM_IC_Config\n
2208
  *         CCMR1        IC2PSC        LL_TIM_IC_Config\n
2209
  *         CCMR1        IC2F          LL_TIM_IC_Config\n
2210
  *         CCMR2        CC3S          LL_TIM_IC_Config\n
2211
  *         CCMR2        IC3PSC        LL_TIM_IC_Config\n
2212
  *         CCMR2        IC3F          LL_TIM_IC_Config\n
2213
  *         CCMR2        CC4S          LL_TIM_IC_Config\n
2214
  *         CCMR2        IC4PSC        LL_TIM_IC_Config\n
2215
  *         CCMR2        IC4F          LL_TIM_IC_Config\n
2216
  *         CCER         CC1P          LL_TIM_IC_Config\n
2217
  *         CCER         CC1NP         LL_TIM_IC_Config\n
2218
  *         CCER         CC2P          LL_TIM_IC_Config\n
2219
  *         CCER         CC2NP         LL_TIM_IC_Config\n
2220
  *         CCER         CC3P          LL_TIM_IC_Config\n
2221
  *         CCER         CC3NP         LL_TIM_IC_Config\n
2222
  *         CCER         CC4P          LL_TIM_IC_Config\n
2223
  *         CCER         CC4NP         LL_TIM_IC_Config
2224
  * @param  TIMx Timer instance
2225
  * @param  Channel This parameter can be one of the following values:
2226
  *         @arg @ref LL_TIM_CHANNEL_CH1
2227
  *         @arg @ref LL_TIM_CHANNEL_CH2
2228
  *         @arg @ref LL_TIM_CHANNEL_CH3
2229
  *         @arg @ref LL_TIM_CHANNEL_CH4
2230
  * @param  Configuration This parameter must be a combination of all the following values:
2231
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
2232
  *         @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
2233
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
2234
  *         @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
2235
  * @retval None
2236
  */
2237
__STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2238
{
2239
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2240
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2241
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
2242
             ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S))                \
2243
             << SHIFT_TAB_ICxx[iChannel]);
2244
  MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2245
             (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
2246
}
2247
 
2248
/**
2249
  * @brief  Set the active input.
2250
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_SetActiveInput\n
2251
  *         CCMR1        CC2S          LL_TIM_IC_SetActiveInput\n
2252
  *         CCMR2        CC3S          LL_TIM_IC_SetActiveInput\n
2253
  *         CCMR2        CC4S          LL_TIM_IC_SetActiveInput
2254
  * @param  TIMx Timer instance
2255
  * @param  Channel This parameter can be one of the following values:
2256
  *         @arg @ref LL_TIM_CHANNEL_CH1
2257
  *         @arg @ref LL_TIM_CHANNEL_CH2
2258
  *         @arg @ref LL_TIM_CHANNEL_CH3
2259
  *         @arg @ref LL_TIM_CHANNEL_CH4
2260
  * @param  ICActiveInput This parameter can be one of the following values:
2261
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2262
  *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2263
  *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2264
  * @retval None
2265
  */
2266
__STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
2267
{
2268
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2269
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2270
  MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2271
}
2272
 
2273
/**
2274
  * @brief  Get the current active input.
2275
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_GetActiveInput\n
2276
  *         CCMR1        CC2S          LL_TIM_IC_GetActiveInput\n
2277
  *         CCMR2        CC3S          LL_TIM_IC_GetActiveInput\n
2278
  *         CCMR2        CC4S          LL_TIM_IC_GetActiveInput
2279
  * @param  TIMx Timer instance
2280
  * @param  Channel This parameter can be one of the following values:
2281
  *         @arg @ref LL_TIM_CHANNEL_CH1
2282
  *         @arg @ref LL_TIM_CHANNEL_CH2
2283
  *         @arg @ref LL_TIM_CHANNEL_CH3
2284
  *         @arg @ref LL_TIM_CHANNEL_CH4
2285
  * @retval Returned value can be one of the following values:
2286
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2287
  *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2288
  *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2289
  */
2290
__STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel)
2291
{
2292
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2293
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2294
  return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2295
}
2296
 
2297
/**
2298
  * @brief  Set the prescaler of input channel.
2299
  * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_SetPrescaler\n
2300
  *         CCMR1        IC2PSC        LL_TIM_IC_SetPrescaler\n
2301
  *         CCMR2        IC3PSC        LL_TIM_IC_SetPrescaler\n
2302
  *         CCMR2        IC4PSC        LL_TIM_IC_SetPrescaler
2303
  * @param  TIMx Timer instance
2304
  * @param  Channel This parameter can be one of the following values:
2305
  *         @arg @ref LL_TIM_CHANNEL_CH1
2306
  *         @arg @ref LL_TIM_CHANNEL_CH2
2307
  *         @arg @ref LL_TIM_CHANNEL_CH3
2308
  *         @arg @ref LL_TIM_CHANNEL_CH4
2309
  * @param  ICPrescaler This parameter can be one of the following values:
2310
  *         @arg @ref LL_TIM_ICPSC_DIV1
2311
  *         @arg @ref LL_TIM_ICPSC_DIV2
2312
  *         @arg @ref LL_TIM_ICPSC_DIV4
2313
  *         @arg @ref LL_TIM_ICPSC_DIV8
2314
  * @retval None
2315
  */
2316
__STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
2317
{
2318
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2319
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2320
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2321
}
2322
 
2323
/**
2324
  * @brief  Get the current prescaler value acting on an  input channel.
2325
  * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_GetPrescaler\n
2326
  *         CCMR1        IC2PSC        LL_TIM_IC_GetPrescaler\n
2327
  *         CCMR2        IC3PSC        LL_TIM_IC_GetPrescaler\n
2328
  *         CCMR2        IC4PSC        LL_TIM_IC_GetPrescaler
2329
  * @param  TIMx Timer instance
2330
  * @param  Channel This parameter can be one of the following values:
2331
  *         @arg @ref LL_TIM_CHANNEL_CH1
2332
  *         @arg @ref LL_TIM_CHANNEL_CH2
2333
  *         @arg @ref LL_TIM_CHANNEL_CH3
2334
  *         @arg @ref LL_TIM_CHANNEL_CH4
2335
  * @retval Returned value can be one of the following values:
2336
  *         @arg @ref LL_TIM_ICPSC_DIV1
2337
  *         @arg @ref LL_TIM_ICPSC_DIV2
2338
  *         @arg @ref LL_TIM_ICPSC_DIV4
2339
  *         @arg @ref LL_TIM_ICPSC_DIV8
2340
  */
2341
__STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel)
2342
{
2343
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2344
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2345
  return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2346
}
2347
 
2348
/**
2349
  * @brief  Set the input filter duration.
2350
  * @rmtoll CCMR1        IC1F          LL_TIM_IC_SetFilter\n
2351
  *         CCMR1        IC2F          LL_TIM_IC_SetFilter\n
2352
  *         CCMR2        IC3F          LL_TIM_IC_SetFilter\n
2353
  *         CCMR2        IC4F          LL_TIM_IC_SetFilter
2354
  * @param  TIMx Timer instance
2355
  * @param  Channel This parameter can be one of the following values:
2356
  *         @arg @ref LL_TIM_CHANNEL_CH1
2357
  *         @arg @ref LL_TIM_CHANNEL_CH2
2358
  *         @arg @ref LL_TIM_CHANNEL_CH3
2359
  *         @arg @ref LL_TIM_CHANNEL_CH4
2360
  * @param  ICFilter This parameter can be one of the following values:
2361
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2362
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2363
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2364
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2365
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2366
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2367
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2368
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2369
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2370
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2371
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2372
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2373
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2374
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2375
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2376
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2377
  * @retval None
2378
  */
2379
__STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
2380
{
2381
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2382
  __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2383
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2384
}
2385
 
2386
/**
2387
  * @brief  Get the input filter duration.
2388
  * @rmtoll CCMR1        IC1F          LL_TIM_IC_GetFilter\n
2389
  *         CCMR1        IC2F          LL_TIM_IC_GetFilter\n
2390
  *         CCMR2        IC3F          LL_TIM_IC_GetFilter\n
2391
  *         CCMR2        IC4F          LL_TIM_IC_GetFilter
2392
  * @param  TIMx Timer instance
2393
  * @param  Channel This parameter can be one of the following values:
2394
  *         @arg @ref LL_TIM_CHANNEL_CH1
2395
  *         @arg @ref LL_TIM_CHANNEL_CH2
2396
  *         @arg @ref LL_TIM_CHANNEL_CH3
2397
  *         @arg @ref LL_TIM_CHANNEL_CH4
2398
  * @retval Returned value can be one of the following values:
2399
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2400
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2401
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2402
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2403
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2404
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2405
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2406
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2407
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2408
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2409
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2410
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2411
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2412
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2413
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2414
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2415
  */
2416
__STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(TIM_TypeDef *TIMx, uint32_t Channel)
2417
{
2418
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2419
  const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2420
  return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2421
}
2422
 
2423
/**
2424
  * @brief  Set the input channel polarity.
2425
  * @rmtoll CCER         CC1P          LL_TIM_IC_SetPolarity\n
2426
  *         CCER         CC1NP         LL_TIM_IC_SetPolarity\n
2427
  *         CCER         CC2P          LL_TIM_IC_SetPolarity\n
2428
  *         CCER         CC2NP         LL_TIM_IC_SetPolarity\n
2429
  *         CCER         CC3P          LL_TIM_IC_SetPolarity\n
2430
  *         CCER         CC3NP         LL_TIM_IC_SetPolarity\n
2431
  *         CCER         CC4P          LL_TIM_IC_SetPolarity\n
2432
  *         CCER         CC4NP         LL_TIM_IC_SetPolarity
2433
  * @param  TIMx Timer instance
2434
  * @param  Channel This parameter can be one of the following values:
2435
  *         @arg @ref LL_TIM_CHANNEL_CH1
2436
  *         @arg @ref LL_TIM_CHANNEL_CH2
2437
  *         @arg @ref LL_TIM_CHANNEL_CH3
2438
  *         @arg @ref LL_TIM_CHANNEL_CH4
2439
  * @param  ICPolarity This parameter can be one of the following values:
2440
  *         @arg @ref LL_TIM_IC_POLARITY_RISING
2441
  *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2442
  *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2443
  * @retval None
2444
  */
2445
__STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
2446
{
2447
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2448
  MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2449
             ICPolarity << SHIFT_TAB_CCxP[iChannel]);
2450
}
2451
 
2452
/**
2453
  * @brief  Get the current input channel polarity.
2454
  * @rmtoll CCER         CC1P          LL_TIM_IC_GetPolarity\n
2455
  *         CCER         CC1NP         LL_TIM_IC_GetPolarity\n
2456
  *         CCER         CC2P          LL_TIM_IC_GetPolarity\n
2457
  *         CCER         CC2NP         LL_TIM_IC_GetPolarity\n
2458
  *         CCER         CC3P          LL_TIM_IC_GetPolarity\n
2459
  *         CCER         CC3NP         LL_TIM_IC_GetPolarity\n
2460
  *         CCER         CC4P          LL_TIM_IC_GetPolarity\n
2461
  *         CCER         CC4NP         LL_TIM_IC_GetPolarity
2462
  * @param  TIMx Timer instance
2463
  * @param  Channel This parameter can be one of the following values:
2464
  *         @arg @ref LL_TIM_CHANNEL_CH1
2465
  *         @arg @ref LL_TIM_CHANNEL_CH2
2466
  *         @arg @ref LL_TIM_CHANNEL_CH3
2467
  *         @arg @ref LL_TIM_CHANNEL_CH4
2468
  * @retval Returned value can be one of the following values:
2469
  *         @arg @ref LL_TIM_IC_POLARITY_RISING
2470
  *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2471
  *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2472
  */
2473
__STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel)
2474
{
2475
  uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2476
  return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
2477
          SHIFT_TAB_CCxP[iChannel]);
2478
}
2479
 
2480
/**
2481
  * @brief  Connect the TIMx_CH1, CH2 and CH3 pins  to the TI1 input (XOR combination).
2482
  * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2483
  *       a timer instance provides an XOR input.
2484
  * @rmtoll CR2          TI1S          LL_TIM_IC_EnableXORCombination
2485
  * @param  TIMx Timer instance
2486
  * @retval None
2487
  */
2488
__STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
2489
{
2490
  SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
2491
}
2492
 
2493
/**
2494
  * @brief  Disconnect the TIMx_CH1, CH2 and CH3 pins  from the TI1 input.
2495
  * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2496
  *       a timer instance provides an XOR input.
2497
  * @rmtoll CR2          TI1S          LL_TIM_IC_DisableXORCombination
2498
  * @param  TIMx Timer instance
2499
  * @retval None
2500
  */
2501
__STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
2502
{
2503
  CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
2504
}
2505
 
2506
/**
2507
  * @brief  Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
2508
  * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2509
  * a timer instance provides an XOR input.
2510
  * @rmtoll CR2          TI1S          LL_TIM_IC_IsEnabledXORCombination
2511
  * @param  TIMx Timer instance
2512
  * @retval State of bit (1 or 0).
2513
  */
2514
__STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef *TIMx)
2515
{
2516
  return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
2517
}
2518
 
2519
/**
2520
  * @brief  Get captured value for input channel 1.
2521
  * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2522
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2523
  *       whether or not a timer instance supports a 32 bits counter.
2524
  * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2525
  *       input channel 1 is supported by a timer instance.
2526
  * @rmtoll CCR1         CCR1          LL_TIM_IC_GetCaptureCH1
2527
  * @param  TIMx Timer instance
2528
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2529
  */
2530
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(TIM_TypeDef *TIMx)
2531
{
2532
  return (uint32_t)(READ_REG(TIMx->CCR1));
2533
}
2534
 
2535
/**
2536
  * @brief  Get captured value for input channel 2.
2537
  * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2538
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2539
  *       whether or not a timer instance supports a 32 bits counter.
2540
  * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2541
  *       input channel 2 is supported by a timer instance.
2542
  * @rmtoll CCR2         CCR2          LL_TIM_IC_GetCaptureCH2
2543
  * @param  TIMx Timer instance
2544
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2545
  */
2546
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(TIM_TypeDef *TIMx)
2547
{
2548
  return (uint32_t)(READ_REG(TIMx->CCR2));
2549
}
2550
 
2551
/**
2552
  * @brief  Get captured value for input channel 3.
2553
  * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2554
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2555
  *       whether or not a timer instance supports a 32 bits counter.
2556
  * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2557
  *       input channel 3 is supported by a timer instance.
2558
  * @rmtoll CCR3         CCR3          LL_TIM_IC_GetCaptureCH3
2559
  * @param  TIMx Timer instance
2560
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2561
  */
2562
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(TIM_TypeDef *TIMx)
2563
{
2564
  return (uint32_t)(READ_REG(TIMx->CCR3));
2565
}
2566
 
2567
/**
2568
  * @brief  Get captured value for input channel 4.
2569
  * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2570
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2571
  *       whether or not a timer instance supports a 32 bits counter.
2572
  * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2573
  *       input channel 4 is supported by a timer instance.
2574
  * @rmtoll CCR4         CCR4          LL_TIM_IC_GetCaptureCH4
2575
  * @param  TIMx Timer instance
2576
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2577
  */
2578
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(TIM_TypeDef *TIMx)
2579
{
2580
  return (uint32_t)(READ_REG(TIMx->CCR4));
2581
}
2582
 
2583
/**
2584
  * @}
2585
  */
2586
 
2587
/** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
2588
  * @{
2589
  */
2590
/**
2591
  * @brief  Enable external clock mode 2.
2592
  * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
2593
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2594
  *       whether or not a timer instance supports external clock mode2.
2595
  * @rmtoll SMCR         ECE           LL_TIM_EnableExternalClock
2596
  * @param  TIMx Timer instance
2597
  * @retval None
2598
  */
2599
__STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
2600
{
2601
  SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
2602
}
2603
 
2604
/**
2605
  * @brief  Disable external clock mode 2.
2606
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2607
  *       whether or not a timer instance supports external clock mode2.
2608
  * @rmtoll SMCR         ECE           LL_TIM_DisableExternalClock
2609
  * @param  TIMx Timer instance
2610
  * @retval None
2611
  */
2612
__STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
2613
{
2614
  CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
2615
}
2616
 
2617
/**
2618
  * @brief  Indicate whether external clock mode 2 is enabled.
2619
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2620
  *       whether or not a timer instance supports external clock mode2.
2621
  * @rmtoll SMCR         ECE           LL_TIM_IsEnabledExternalClock
2622
  * @param  TIMx Timer instance
2623
  * @retval State of bit (1 or 0).
2624
  */
2625
__STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(TIM_TypeDef *TIMx)
2626
{
2627
  return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
2628
}
2629
 
2630
/**
2631
  * @brief  Set the clock source of the counter clock.
2632
  * @note when selected clock source is external clock mode 1, the timer input
2633
  *       the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
2634
  *       function. This timer input must be configured by calling
2635
  *       the @ref LL_TIM_IC_Config() function.
2636
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
2637
  *       whether or not a timer instance supports external clock mode1.
2638
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2639
  *       whether or not a timer instance supports external clock mode2.
2640
  * @rmtoll SMCR         SMS           LL_TIM_SetClockSource\n
2641
  *         SMCR         ECE           LL_TIM_SetClockSource
2642
  * @param  TIMx Timer instance
2643
  * @param  ClockSource This parameter can be one of the following values:
2644
  *         @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
2645
  *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
2646
  *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
2647
  * @retval None
2648
  */
2649
__STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
2650
{
2651
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
2652
}
2653
 
2654
/**
2655
  * @brief  Set the encoder interface mode.
2656
  * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
2657
  *       whether or not a timer instance supports the encoder mode.
2658
  * @rmtoll SMCR         SMS           LL_TIM_SetEncoderMode
2659
  * @param  TIMx Timer instance
2660
  * @param  EncoderMode This parameter can be one of the following values:
2661
  *         @arg @ref LL_TIM_ENCODERMODE_X2_TI1
2662
  *         @arg @ref LL_TIM_ENCODERMODE_X2_TI2
2663
  *         @arg @ref LL_TIM_ENCODERMODE_X4_TI12
2664
  * @retval None
2665
  */
2666
__STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
2667
{
2668
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
2669
}
2670
 
2671
/**
2672
  * @}
2673
  */
2674
 
2675
/** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
2676
  * @{
2677
  */
2678
/**
2679
  * @brief  Set the trigger output (TRGO) used for timer synchronization .
2680
  * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
2681
  *       whether or not a timer instance can operate as a master timer.
2682
  * @rmtoll CR2          MMS           LL_TIM_SetTriggerOutput
2683
  * @param  TIMx Timer instance
2684
  * @param  TimerSynchronization This parameter can be one of the following values:
2685
  *         @arg @ref LL_TIM_TRGO_RESET
2686
  *         @arg @ref LL_TIM_TRGO_ENABLE
2687
  *         @arg @ref LL_TIM_TRGO_UPDATE
2688
  *         @arg @ref LL_TIM_TRGO_CC1IF
2689
  *         @arg @ref LL_TIM_TRGO_OC1REF
2690
  *         @arg @ref LL_TIM_TRGO_OC2REF
2691
  *         @arg @ref LL_TIM_TRGO_OC3REF
2692
  *         @arg @ref LL_TIM_TRGO_OC4REF
2693
  * @retval None
2694
  */
2695
__STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
2696
{
2697
  MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
2698
}
2699
 
2700
/**
2701
  * @brief  Set the synchronization mode of a slave timer.
2702
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2703
  *       a timer instance can operate as a slave timer.
2704
  * @rmtoll SMCR         SMS           LL_TIM_SetSlaveMode
2705
  * @param  TIMx Timer instance
2706
  * @param  SlaveMode This parameter can be one of the following values:
2707
  *         @arg @ref LL_TIM_SLAVEMODE_DISABLED
2708
  *         @arg @ref LL_TIM_SLAVEMODE_RESET
2709
  *         @arg @ref LL_TIM_SLAVEMODE_GATED
2710
  *         @arg @ref LL_TIM_SLAVEMODE_TRIGGER
2711
  * @retval None
2712
  */
2713
__STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
2714
{
2715
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
2716
}
2717
 
2718
/**
2719
  * @brief  Set the selects the trigger input to be used to synchronize the counter.
2720
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2721
  *       a timer instance can operate as a slave timer.
2722
  * @rmtoll SMCR         TS            LL_TIM_SetTriggerInput
2723
  * @param  TIMx Timer instance
2724
  * @param  TriggerInput This parameter can be one of the following values:
2725
  *         @arg @ref LL_TIM_TS_ITR0
2726
  *         @arg @ref LL_TIM_TS_ITR1
2727
  *         @arg @ref LL_TIM_TS_ITR2
2728
  *         @arg @ref LL_TIM_TS_ITR3
2729
  *         @arg @ref LL_TIM_TS_TI1F_ED
2730
  *         @arg @ref LL_TIM_TS_TI1FP1
2731
  *         @arg @ref LL_TIM_TS_TI2FP2
2732
  *         @arg @ref LL_TIM_TS_ETRF
2733
  * @retval None
2734
  */
2735
__STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
2736
{
2737
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
2738
}
2739
 
2740
/**
2741
  * @brief  Enable the Master/Slave mode.
2742
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2743
  *       a timer instance can operate as a slave timer.
2744
  * @rmtoll SMCR         MSM           LL_TIM_EnableMasterSlaveMode
2745
  * @param  TIMx Timer instance
2746
  * @retval None
2747
  */
2748
__STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
2749
{
2750
  SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
2751
}
2752
 
2753
/**
2754
  * @brief  Disable the Master/Slave mode.
2755
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2756
  *       a timer instance can operate as a slave timer.
2757
  * @rmtoll SMCR         MSM           LL_TIM_DisableMasterSlaveMode
2758
  * @param  TIMx Timer instance
2759
  * @retval None
2760
  */
2761
__STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
2762
{
2763
  CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
2764
}
2765
 
2766
/**
2767
  * @brief Indicates whether the Master/Slave mode is enabled.
2768
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2769
  * a timer instance can operate as a slave timer.
2770
  * @rmtoll SMCR         MSM           LL_TIM_IsEnabledMasterSlaveMode
2771
  * @param  TIMx Timer instance
2772
  * @retval State of bit (1 or 0).
2773
  */
2774
__STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(TIM_TypeDef *TIMx)
2775
{
2776
  return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
2777
}
2778
 
2779
/**
2780
  * @brief  Configure the external trigger (ETR) input.
2781
  * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
2782
  *       a timer instance provides an external trigger input.
2783
  * @rmtoll SMCR         ETP           LL_TIM_ConfigETR\n
2784
  *         SMCR         ETPS          LL_TIM_ConfigETR\n
2785
  *         SMCR         ETF           LL_TIM_ConfigETR
2786
  * @param  TIMx Timer instance
2787
  * @param  ETRPolarity This parameter can be one of the following values:
2788
  *         @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
2789
  *         @arg @ref LL_TIM_ETR_POLARITY_INVERTED
2790
  * @param  ETRPrescaler This parameter can be one of the following values:
2791
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV1
2792
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV2
2793
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV4
2794
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV8
2795
  * @param  ETRFilter This parameter can be one of the following values:
2796
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1
2797
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
2798
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
2799
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
2800
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
2801
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
2802
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
2803
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
2804
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
2805
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
2806
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
2807
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
2808
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
2809
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
2810
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
2811
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
2812
  * @retval None
2813
  */
2814
__STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
2815
                                      uint32_t ETRFilter)
2816
{
2817
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
2818
}
2819
 
2820
/**
2821
  * @}
2822
  */
2823
 
2824
/** @defgroup TIM_LL_EF_Break_Function Break function configuration
2825
  * @{
2826
  */
2827
/**
2828
  * @brief  Enable the break function.
2829
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2830
  *       a timer instance provides a break input.
2831
  * @rmtoll BDTR         BKE           LL_TIM_EnableBRK
2832
  * @param  TIMx Timer instance
2833
  * @retval None
2834
  */
2835
__STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
2836
{
2837
  __IO uint32_t tmpreg;
2838
  SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
2839
  /* Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. */
2840
  tmpreg = READ_REG(TIMx->BDTR);
2841
  (void)(tmpreg);
2842
}
2843
 
2844
/**
2845
  * @brief  Disable the break function.
2846
  * @rmtoll BDTR         BKE           LL_TIM_DisableBRK
2847
  * @param  TIMx Timer instance
2848
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2849
  *       a timer instance provides a break input.
2850
  * @retval None
2851
  */
2852
__STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
2853
{
2854
  __IO uint32_t tmpreg;
2855
  CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
2856
  /* Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. */
2857
  tmpreg = READ_REG(TIMx->BDTR);
2858
  (void)(tmpreg);
2859
}
2860
 
2861
/**
2862
  * @brief  Configure the break input.
2863
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2864
  *       a timer instance provides a break input.
2865
  * @rmtoll BDTR         BKP           LL_TIM_ConfigBRK
2866
  * @param  TIMx Timer instance
2867
  * @param  BreakPolarity This parameter can be one of the following values:
2868
  *         @arg @ref LL_TIM_BREAK_POLARITY_LOW
2869
  *         @arg @ref LL_TIM_BREAK_POLARITY_HIGH
2870
  * @retval None
2871
  */
2872
__STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity)
2873
{
2874
  __IO uint32_t tmpreg;
2875
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP, BreakPolarity);
2876
  /* Note: Any write operation to BKP bit takes a delay of 1 APB clock cycle to become effective. */
2877
  tmpreg = READ_REG(TIMx->BDTR);
2878
  (void)(tmpreg);
2879
}
2880
 
2881
/**
2882
  * @brief  Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
2883
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2884
  *       a timer instance provides a break input.
2885
  * @rmtoll BDTR         OSSI          LL_TIM_SetOffStates\n
2886
  *         BDTR         OSSR          LL_TIM_SetOffStates
2887
  * @param  TIMx Timer instance
2888
  * @param  OffStateIdle This parameter can be one of the following values:
2889
  *         @arg @ref LL_TIM_OSSI_DISABLE
2890
  *         @arg @ref LL_TIM_OSSI_ENABLE
2891
  * @param  OffStateRun This parameter can be one of the following values:
2892
  *         @arg @ref LL_TIM_OSSR_DISABLE
2893
  *         @arg @ref LL_TIM_OSSR_ENABLE
2894
  * @retval None
2895
  */
2896
__STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
2897
{
2898
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
2899
}
2900
 
2901
/**
2902
  * @brief  Enable automatic output (MOE can be set by software or automatically when a break input is active).
2903
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2904
  *       a timer instance provides a break input.
2905
  * @rmtoll BDTR         AOE           LL_TIM_EnableAutomaticOutput
2906
  * @param  TIMx Timer instance
2907
  * @retval None
2908
  */
2909
__STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
2910
{
2911
  SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
2912
}
2913
 
2914
/**
2915
  * @brief  Disable automatic output (MOE can be set only by software).
2916
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2917
  *       a timer instance provides a break input.
2918
  * @rmtoll BDTR         AOE           LL_TIM_DisableAutomaticOutput
2919
  * @param  TIMx Timer instance
2920
  * @retval None
2921
  */
2922
__STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
2923
{
2924
  CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
2925
}
2926
 
2927
/**
2928
  * @brief  Indicate whether automatic output is enabled.
2929
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2930
  *       a timer instance provides a break input.
2931
  * @rmtoll BDTR         AOE           LL_TIM_IsEnabledAutomaticOutput
2932
  * @param  TIMx Timer instance
2933
  * @retval State of bit (1 or 0).
2934
  */
2935
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(TIM_TypeDef *TIMx)
2936
{
2937
  return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
2938
}
2939
 
2940
/**
2941
  * @brief  Enable the outputs (set the MOE bit in TIMx_BDTR register).
2942
  * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
2943
  *       software and is reset in case of break or break2 event
2944
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2945
  *       a timer instance provides a break input.
2946
  * @rmtoll BDTR         MOE           LL_TIM_EnableAllOutputs
2947
  * @param  TIMx Timer instance
2948
  * @retval None
2949
  */
2950
__STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
2951
{
2952
  SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
2953
}
2954
 
2955
/**
2956
  * @brief  Disable the outputs (reset the MOE bit in TIMx_BDTR register).
2957
  * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
2958
  *       software and is reset in case of break or break2 event.
2959
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2960
  *       a timer instance provides a break input.
2961
  * @rmtoll BDTR         MOE           LL_TIM_DisableAllOutputs
2962
  * @param  TIMx Timer instance
2963
  * @retval None
2964
  */
2965
__STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
2966
{
2967
  CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
2968
}
2969
 
2970
/**
2971
  * @brief  Indicates whether outputs are enabled.
2972
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2973
  *       a timer instance provides a break input.
2974
  * @rmtoll BDTR         MOE           LL_TIM_IsEnabledAllOutputs
2975
  * @param  TIMx Timer instance
2976
  * @retval State of bit (1 or 0).
2977
  */
2978
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(TIM_TypeDef *TIMx)
2979
{
2980
  return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
2981
}
2982
 
2983
/**
2984
  * @}
2985
  */
2986
 
2987
/** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
2988
  * @{
2989
  */
2990
/**
2991
  * @brief  Configures the timer DMA burst feature.
2992
  * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
2993
  *       not a timer instance supports the DMA burst mode.
2994
  * @rmtoll DCR          DBL           LL_TIM_ConfigDMABurst\n
2995
  *         DCR          DBA           LL_TIM_ConfigDMABurst
2996
  * @param  TIMx Timer instance
2997
  * @param  DMABurstBaseAddress This parameter can be one of the following values:
2998
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
2999
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
3000
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
3001
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
3002
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_SR
3003
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
3004
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
3005
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
3006
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
3007
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
3008
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
3009
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
3010
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
3011
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
3012
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
3013
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
3014
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
3015
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
3016
  * @param  DMABurstLength This parameter can be one of the following values:
3017
  *         @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
3018
  *         @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
3019
  *         @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
3020
  *         @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
3021
  *         @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
3022
  *         @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
3023
  *         @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
3024
  *         @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
3025
  *         @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
3026
  *         @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
3027
  *         @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
3028
  *         @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
3029
  *         @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
3030
  *         @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
3031
  *         @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
3032
  *         @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
3033
  *         @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
3034
  *         @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
3035
  * @retval None
3036
  */
3037
__STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
3038
{
3039
  MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
3040
}
3041
 
3042
/**
3043
  * @}
3044
  */
3045
 
3046
/** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
3047
  * @{
3048
  */
3049
/**
3050
  * @brief  Remap TIM inputs (input channel, internal/external triggers).
3051
  * @note Macro IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
3052
  *       a some timer inputs can be remapped.
3053
  * @rmtoll TIM14_OR    TI1_RMP           LL_TIM_SetRemap
3054
  * @param  TIMx Timer instance
3055
  * @param  Remap This parameter can be one of the following values:
3056
  *            @arg @ref LL_TIM_TIM14_TI1_RMP_GPIO
3057
  *            @arg @ref LL_TIM_TIM14_TI1_RMP_RTC_CLK
3058
  *            @arg @ref LL_TIM_TIM14_TI1_RMP_HSE
3059
  *            @arg @ref LL_TIM_TIM14_TI1_RMP_MCO
3060
  *
3061
  * @retval None
3062
  */
3063
__STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
3064
{
3065
  MODIFY_REG(TIMx->OR, (Remap >> TIMx_OR_RMP_SHIFT), (Remap & TIMx_OR_RMP_MASK));
3066
}
3067
 
3068
/**
3069
  * @}
3070
  */
3071
 
3072
/** @defgroup TIM_LL_EF_OCREF_Clear OCREF_Clear_Management
3073
  * @{
3074
  */
3075
/**
3076
  * @brief  Set the OCREF clear input source
3077
  * @note The OCxREF signal of a given channel can be cleared when a high level is applied on the OCREF_CLR_INPUT
3078
  * @note This function can only be used in Output compare and PWM modes.
3079
  * @rmtoll SMCR          OCCS                LL_TIM_SetOCRefClearInputSource
3080
  * @param  TIMx Timer instance
3081
  * @param  OCRefClearInputSource This parameter can be one of the following values:
3082
  *         @arg @ref LL_TIM_OCREF_CLR_INT_OCREF_CLR
3083
  *         @arg @ref LL_TIM_OCREF_CLR_INT_ETR
3084
  * @retval None
3085
  */
3086
__STATIC_INLINE void LL_TIM_SetOCRefClearInputSource(TIM_TypeDef *TIMx, uint32_t OCRefClearInputSource)
3087
{
3088
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_OCCS, OCRefClearInputSource);
3089
}
3090
/**
3091
  * @}
3092
  */
3093
 
3094
/** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
3095
  * @{
3096
  */
3097
/**
3098
  * @brief  Clear the update interrupt flag (UIF).
3099
  * @rmtoll SR           UIF           LL_TIM_ClearFlag_UPDATE
3100
  * @param  TIMx Timer instance
3101
  * @retval None
3102
  */
3103
__STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
3104
{
3105
  WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
3106
}
3107
 
3108
/**
3109
  * @brief  Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
3110
  * @rmtoll SR           UIF           LL_TIM_IsActiveFlag_UPDATE
3111
  * @param  TIMx Timer instance
3112
  * @retval State of bit (1 or 0).
3113
  */
3114
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(TIM_TypeDef *TIMx)
3115
{
3116
  return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
3117
}
3118
 
3119
/**
3120
  * @brief  Clear the Capture/Compare 1 interrupt flag (CC1F).
3121
  * @rmtoll SR           CC1IF         LL_TIM_ClearFlag_CC1
3122
  * @param  TIMx Timer instance
3123
  * @retval None
3124
  */
3125
__STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
3126
{
3127
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
3128
}
3129
 
3130
/**
3131
  * @brief  Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
3132
  * @rmtoll SR           CC1IF         LL_TIM_IsActiveFlag_CC1
3133
  * @param  TIMx Timer instance
3134
  * @retval State of bit (1 or 0).
3135
  */
3136
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(TIM_TypeDef *TIMx)
3137
{
3138
  return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
3139
}
3140
 
3141
/**
3142
  * @brief  Clear the Capture/Compare 2 interrupt flag (CC2F).
3143
  * @rmtoll SR           CC2IF         LL_TIM_ClearFlag_CC2
3144
  * @param  TIMx Timer instance
3145
  * @retval None
3146
  */
3147
__STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
3148
{
3149
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
3150
}
3151
 
3152
/**
3153
  * @brief  Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
3154
  * @rmtoll SR           CC2IF         LL_TIM_IsActiveFlag_CC2
3155
  * @param  TIMx Timer instance
3156
  * @retval State of bit (1 or 0).
3157
  */
3158
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(TIM_TypeDef *TIMx)
3159
{
3160
  return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
3161
}
3162
 
3163
/**
3164
  * @brief  Clear the Capture/Compare 3 interrupt flag (CC3F).
3165
  * @rmtoll SR           CC3IF         LL_TIM_ClearFlag_CC3
3166
  * @param  TIMx Timer instance
3167
  * @retval None
3168
  */
3169
__STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
3170
{
3171
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
3172
}
3173
 
3174
/**
3175
  * @brief  Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
3176
  * @rmtoll SR           CC3IF         LL_TIM_IsActiveFlag_CC3
3177
  * @param  TIMx Timer instance
3178
  * @retval State of bit (1 or 0).
3179
  */
3180
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(TIM_TypeDef *TIMx)
3181
{
3182
  return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
3183
}
3184
 
3185
/**
3186
  * @brief  Clear the Capture/Compare 4 interrupt flag (CC4F).
3187
  * @rmtoll SR           CC4IF         LL_TIM_ClearFlag_CC4
3188
  * @param  TIMx Timer instance
3189
  * @retval None
3190
  */
3191
__STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
3192
{
3193
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
3194
}
3195
 
3196
/**
3197
  * @brief  Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
3198
  * @rmtoll SR           CC4IF         LL_TIM_IsActiveFlag_CC4
3199
  * @param  TIMx Timer instance
3200
  * @retval State of bit (1 or 0).
3201
  */
3202
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(TIM_TypeDef *TIMx)
3203
{
3204
  return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
3205
}
3206
 
3207
/**
3208
  * @brief  Clear the commutation interrupt flag (COMIF).
3209
  * @rmtoll SR           COMIF         LL_TIM_ClearFlag_COM
3210
  * @param  TIMx Timer instance
3211
  * @retval None
3212
  */
3213
__STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
3214
{
3215
  WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
3216
}
3217
 
3218
/**
3219
  * @brief  Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
3220
  * @rmtoll SR           COMIF         LL_TIM_IsActiveFlag_COM
3221
  * @param  TIMx Timer instance
3222
  * @retval State of bit (1 or 0).
3223
  */
3224
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(TIM_TypeDef *TIMx)
3225
{
3226
  return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
3227
}
3228
 
3229
/**
3230
  * @brief  Clear the trigger interrupt flag (TIF).
3231
  * @rmtoll SR           TIF           LL_TIM_ClearFlag_TRIG
3232
  * @param  TIMx Timer instance
3233
  * @retval None
3234
  */
3235
__STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
3236
{
3237
  WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
3238
}
3239
 
3240
/**
3241
  * @brief  Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
3242
  * @rmtoll SR           TIF           LL_TIM_IsActiveFlag_TRIG
3243
  * @param  TIMx Timer instance
3244
  * @retval State of bit (1 or 0).
3245
  */
3246
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(TIM_TypeDef *TIMx)
3247
{
3248
  return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
3249
}
3250
 
3251
/**
3252
  * @brief  Clear the break interrupt flag (BIF).
3253
  * @rmtoll SR           BIF           LL_TIM_ClearFlag_BRK
3254
  * @param  TIMx Timer instance
3255
  * @retval None
3256
  */
3257
__STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
3258
{
3259
  WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
3260
}
3261
 
3262
/**
3263
  * @brief  Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
3264
  * @rmtoll SR           BIF           LL_TIM_IsActiveFlag_BRK
3265
  * @param  TIMx Timer instance
3266
  * @retval State of bit (1 or 0).
3267
  */
3268
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(TIM_TypeDef *TIMx)
3269
{
3270
  return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
3271
}
3272
 
3273
/**
3274
  * @brief  Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
3275
  * @rmtoll SR           CC1OF         LL_TIM_ClearFlag_CC1OVR
3276
  * @param  TIMx Timer instance
3277
  * @retval None
3278
  */
3279
__STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
3280
{
3281
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
3282
}
3283
 
3284
/**
3285
  * @brief  Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set
3286
  *         (Capture/Compare 1 interrupt is pending).
3287
  * @rmtoll SR           CC1OF         LL_TIM_IsActiveFlag_CC1OVR
3288
  * @param  TIMx Timer instance
3289
  * @retval State of bit (1 or 0).
3290
  */
3291
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(TIM_TypeDef *TIMx)
3292
{
3293
  return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
3294
}
3295
 
3296
/**
3297
  * @brief  Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
3298
  * @rmtoll SR           CC2OF         LL_TIM_ClearFlag_CC2OVR
3299
  * @param  TIMx Timer instance
3300
  * @retval None
3301
  */
3302
__STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
3303
{
3304
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
3305
}
3306
 
3307
/**
3308
  * @brief  Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set
3309
  *         (Capture/Compare 2 over-capture interrupt is pending).
3310
  * @rmtoll SR           CC2OF         LL_TIM_IsActiveFlag_CC2OVR
3311
  * @param  TIMx Timer instance
3312
  * @retval State of bit (1 or 0).
3313
  */
3314
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(TIM_TypeDef *TIMx)
3315
{
3316
  return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
3317
}
3318
 
3319
/**
3320
  * @brief  Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
3321
  * @rmtoll SR           CC3OF         LL_TIM_ClearFlag_CC3OVR
3322
  * @param  TIMx Timer instance
3323
  * @retval None
3324
  */
3325
__STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
3326
{
3327
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
3328
}
3329
 
3330
/**
3331
  * @brief  Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set
3332
  *         (Capture/Compare 3 over-capture interrupt is pending).
3333
  * @rmtoll SR           CC3OF         LL_TIM_IsActiveFlag_CC3OVR
3334
  * @param  TIMx Timer instance
3335
  * @retval State of bit (1 or 0).
3336
  */
3337
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(TIM_TypeDef *TIMx)
3338
{
3339
  return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
3340
}
3341
 
3342
/**
3343
  * @brief  Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
3344
  * @rmtoll SR           CC4OF         LL_TIM_ClearFlag_CC4OVR
3345
  * @param  TIMx Timer instance
3346
  * @retval None
3347
  */
3348
__STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
3349
{
3350
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
3351
}
3352
 
3353
/**
3354
  * @brief  Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set
3355
  *         (Capture/Compare 4 over-capture interrupt is pending).
3356
  * @rmtoll SR           CC4OF         LL_TIM_IsActiveFlag_CC4OVR
3357
  * @param  TIMx Timer instance
3358
  * @retval State of bit (1 or 0).
3359
  */
3360
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(TIM_TypeDef *TIMx)
3361
{
3362
  return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
3363
}
3364
 
3365
/**
3366
  * @}
3367
  */
3368
 
3369
/** @defgroup TIM_LL_EF_IT_Management IT-Management
3370
  * @{
3371
  */
3372
/**
3373
  * @brief  Enable update interrupt (UIE).
3374
  * @rmtoll DIER         UIE           LL_TIM_EnableIT_UPDATE
3375
  * @param  TIMx Timer instance
3376
  * @retval None
3377
  */
3378
__STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
3379
{
3380
  SET_BIT(TIMx->DIER, TIM_DIER_UIE);
3381
}
3382
 
3383
/**
3384
  * @brief  Disable update interrupt (UIE).
3385
  * @rmtoll DIER         UIE           LL_TIM_DisableIT_UPDATE
3386
  * @param  TIMx Timer instance
3387
  * @retval None
3388
  */
3389
__STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
3390
{
3391
  CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
3392
}
3393
 
3394
/**
3395
  * @brief  Indicates whether the update interrupt (UIE) is enabled.
3396
  * @rmtoll DIER         UIE           LL_TIM_IsEnabledIT_UPDATE
3397
  * @param  TIMx Timer instance
3398
  * @retval State of bit (1 or 0).
3399
  */
3400
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(TIM_TypeDef *TIMx)
3401
{
3402
  return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
3403
}
3404
 
3405
/**
3406
  * @brief  Enable capture/compare 1 interrupt (CC1IE).
3407
  * @rmtoll DIER         CC1IE         LL_TIM_EnableIT_CC1
3408
  * @param  TIMx Timer instance
3409
  * @retval None
3410
  */
3411
__STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
3412
{
3413
  SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
3414
}
3415
 
3416
/**
3417
  * @brief  Disable capture/compare 1  interrupt (CC1IE).
3418
  * @rmtoll DIER         CC1IE         LL_TIM_DisableIT_CC1
3419
  * @param  TIMx Timer instance
3420
  * @retval None
3421
  */
3422
__STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
3423
{
3424
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
3425
}
3426
 
3427
/**
3428
  * @brief  Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
3429
  * @rmtoll DIER         CC1IE         LL_TIM_IsEnabledIT_CC1
3430
  * @param  TIMx Timer instance
3431
  * @retval State of bit (1 or 0).
3432
  */
3433
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(TIM_TypeDef *TIMx)
3434
{
3435
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
3436
}
3437
 
3438
/**
3439
  * @brief  Enable capture/compare 2 interrupt (CC2IE).
3440
  * @rmtoll DIER         CC2IE         LL_TIM_EnableIT_CC2
3441
  * @param  TIMx Timer instance
3442
  * @retval None
3443
  */
3444
__STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
3445
{
3446
  SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
3447
}
3448
 
3449
/**
3450
  * @brief  Disable capture/compare 2  interrupt (CC2IE).
3451
  * @rmtoll DIER         CC2IE         LL_TIM_DisableIT_CC2
3452
  * @param  TIMx Timer instance
3453
  * @retval None
3454
  */
3455
__STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
3456
{
3457
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
3458
}
3459
 
3460
/**
3461
  * @brief  Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
3462
  * @rmtoll DIER         CC2IE         LL_TIM_IsEnabledIT_CC2
3463
  * @param  TIMx Timer instance
3464
  * @retval State of bit (1 or 0).
3465
  */
3466
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(TIM_TypeDef *TIMx)
3467
{
3468
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
3469
}
3470
 
3471
/**
3472
  * @brief  Enable capture/compare 3 interrupt (CC3IE).
3473
  * @rmtoll DIER         CC3IE         LL_TIM_EnableIT_CC3
3474
  * @param  TIMx Timer instance
3475
  * @retval None
3476
  */
3477
__STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
3478
{
3479
  SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
3480
}
3481
 
3482
/**
3483
  * @brief  Disable capture/compare 3  interrupt (CC3IE).
3484
  * @rmtoll DIER         CC3IE         LL_TIM_DisableIT_CC3
3485
  * @param  TIMx Timer instance
3486
  * @retval None
3487
  */
3488
__STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
3489
{
3490
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
3491
}
3492
 
3493
/**
3494
  * @brief  Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
3495
  * @rmtoll DIER         CC3IE         LL_TIM_IsEnabledIT_CC3
3496
  * @param  TIMx Timer instance
3497
  * @retval State of bit (1 or 0).
3498
  */
3499
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(TIM_TypeDef *TIMx)
3500
{
3501
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
3502
}
3503
 
3504
/**
3505
  * @brief  Enable capture/compare 4 interrupt (CC4IE).
3506
  * @rmtoll DIER         CC4IE         LL_TIM_EnableIT_CC4
3507
  * @param  TIMx Timer instance
3508
  * @retval None
3509
  */
3510
__STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
3511
{
3512
  SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
3513
}
3514
 
3515
/**
3516
  * @brief  Disable capture/compare 4  interrupt (CC4IE).
3517
  * @rmtoll DIER         CC4IE         LL_TIM_DisableIT_CC4
3518
  * @param  TIMx Timer instance
3519
  * @retval None
3520
  */
3521
__STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
3522
{
3523
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
3524
}
3525
 
3526
/**
3527
  * @brief  Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
3528
  * @rmtoll DIER         CC4IE         LL_TIM_IsEnabledIT_CC4
3529
  * @param  TIMx Timer instance
3530
  * @retval State of bit (1 or 0).
3531
  */
3532
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(TIM_TypeDef *TIMx)
3533
{
3534
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
3535
}
3536
 
3537
/**
3538
  * @brief  Enable commutation interrupt (COMIE).
3539
  * @rmtoll DIER         COMIE         LL_TIM_EnableIT_COM
3540
  * @param  TIMx Timer instance
3541
  * @retval None
3542
  */
3543
__STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
3544
{
3545
  SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
3546
}
3547
 
3548
/**
3549
  * @brief  Disable commutation interrupt (COMIE).
3550
  * @rmtoll DIER         COMIE         LL_TIM_DisableIT_COM
3551
  * @param  TIMx Timer instance
3552
  * @retval None
3553
  */
3554
__STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
3555
{
3556
  CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
3557
}
3558
 
3559
/**
3560
  * @brief  Indicates whether the commutation interrupt (COMIE) is enabled.
3561
  * @rmtoll DIER         COMIE         LL_TIM_IsEnabledIT_COM
3562
  * @param  TIMx Timer instance
3563
  * @retval State of bit (1 or 0).
3564
  */
3565
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(TIM_TypeDef *TIMx)
3566
{
3567
  return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
3568
}
3569
 
3570
/**
3571
  * @brief  Enable trigger interrupt (TIE).
3572
  * @rmtoll DIER         TIE           LL_TIM_EnableIT_TRIG
3573
  * @param  TIMx Timer instance
3574
  * @retval None
3575
  */
3576
__STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
3577
{
3578
  SET_BIT(TIMx->DIER, TIM_DIER_TIE);
3579
}
3580
 
3581
/**
3582
  * @brief  Disable trigger interrupt (TIE).
3583
  * @rmtoll DIER         TIE           LL_TIM_DisableIT_TRIG
3584
  * @param  TIMx Timer instance
3585
  * @retval None
3586
  */
3587
__STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
3588
{
3589
  CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
3590
}
3591
 
3592
/**
3593
  * @brief  Indicates whether the trigger interrupt (TIE) is enabled.
3594
  * @rmtoll DIER         TIE           LL_TIM_IsEnabledIT_TRIG
3595
  * @param  TIMx Timer instance
3596
  * @retval State of bit (1 or 0).
3597
  */
3598
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(TIM_TypeDef *TIMx)
3599
{
3600
  return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
3601
}
3602
 
3603
/**
3604
  * @brief  Enable break interrupt (BIE).
3605
  * @rmtoll DIER         BIE           LL_TIM_EnableIT_BRK
3606
  * @param  TIMx Timer instance
3607
  * @retval None
3608
  */
3609
__STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
3610
{
3611
  SET_BIT(TIMx->DIER, TIM_DIER_BIE);
3612
}
3613
 
3614
/**
3615
  * @brief  Disable break interrupt (BIE).
3616
  * @rmtoll DIER         BIE           LL_TIM_DisableIT_BRK
3617
  * @param  TIMx Timer instance
3618
  * @retval None
3619
  */
3620
__STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
3621
{
3622
  CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
3623
}
3624
 
3625
/**
3626
  * @brief  Indicates whether the break interrupt (BIE) is enabled.
3627
  * @rmtoll DIER         BIE           LL_TIM_IsEnabledIT_BRK
3628
  * @param  TIMx Timer instance
3629
  * @retval State of bit (1 or 0).
3630
  */
3631
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(TIM_TypeDef *TIMx)
3632
{
3633
  return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
3634
}
3635
 
3636
/**
3637
  * @}
3638
  */
3639
 
3640
/** @defgroup TIM_LL_EF_DMA_Management DMA Management
3641
  * @{
3642
  */
3643
/**
3644
  * @brief  Enable update DMA request (UDE).
3645
  * @rmtoll DIER         UDE           LL_TIM_EnableDMAReq_UPDATE
3646
  * @param  TIMx Timer instance
3647
  * @retval None
3648
  */
3649
__STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
3650
{
3651
  SET_BIT(TIMx->DIER, TIM_DIER_UDE);
3652
}
3653
 
3654
/**
3655
  * @brief  Disable update DMA request (UDE).
3656
  * @rmtoll DIER         UDE           LL_TIM_DisableDMAReq_UPDATE
3657
  * @param  TIMx Timer instance
3658
  * @retval None
3659
  */
3660
__STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
3661
{
3662
  CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
3663
}
3664
 
3665
/**
3666
  * @brief  Indicates whether the update DMA request  (UDE) is enabled.
3667
  * @rmtoll DIER         UDE           LL_TIM_IsEnabledDMAReq_UPDATE
3668
  * @param  TIMx Timer instance
3669
  * @retval State of bit (1 or 0).
3670
  */
3671
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(TIM_TypeDef *TIMx)
3672
{
3673
  return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
3674
}
3675
 
3676
/**
3677
  * @brief  Enable capture/compare 1 DMA request (CC1DE).
3678
  * @rmtoll DIER         CC1DE         LL_TIM_EnableDMAReq_CC1
3679
  * @param  TIMx Timer instance
3680
  * @retval None
3681
  */
3682
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
3683
{
3684
  SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
3685
}
3686
 
3687
/**
3688
  * @brief  Disable capture/compare 1  DMA request (CC1DE).
3689
  * @rmtoll DIER         CC1DE         LL_TIM_DisableDMAReq_CC1
3690
  * @param  TIMx Timer instance
3691
  * @retval None
3692
  */
3693
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
3694
{
3695
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
3696
}
3697
 
3698
/**
3699
  * @brief  Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
3700
  * @rmtoll DIER         CC1DE         LL_TIM_IsEnabledDMAReq_CC1
3701
  * @param  TIMx Timer instance
3702
  * @retval State of bit (1 or 0).
3703
  */
3704
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(TIM_TypeDef *TIMx)
3705
{
3706
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
3707
}
3708
 
3709
/**
3710
  * @brief  Enable capture/compare 2 DMA request (CC2DE).
3711
  * @rmtoll DIER         CC2DE         LL_TIM_EnableDMAReq_CC2
3712
  * @param  TIMx Timer instance
3713
  * @retval None
3714
  */
3715
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
3716
{
3717
  SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
3718
}
3719
 
3720
/**
3721
  * @brief  Disable capture/compare 2  DMA request (CC2DE).
3722
  * @rmtoll DIER         CC2DE         LL_TIM_DisableDMAReq_CC2
3723
  * @param  TIMx Timer instance
3724
  * @retval None
3725
  */
3726
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
3727
{
3728
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
3729
}
3730
 
3731
/**
3732
  * @brief  Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
3733
  * @rmtoll DIER         CC2DE         LL_TIM_IsEnabledDMAReq_CC2
3734
  * @param  TIMx Timer instance
3735
  * @retval State of bit (1 or 0).
3736
  */
3737
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(TIM_TypeDef *TIMx)
3738
{
3739
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
3740
}
3741
 
3742
/**
3743
  * @brief  Enable capture/compare 3 DMA request (CC3DE).
3744
  * @rmtoll DIER         CC3DE         LL_TIM_EnableDMAReq_CC3
3745
  * @param  TIMx Timer instance
3746
  * @retval None
3747
  */
3748
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
3749
{
3750
  SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
3751
}
3752
 
3753
/**
3754
  * @brief  Disable capture/compare 3  DMA request (CC3DE).
3755
  * @rmtoll DIER         CC3DE         LL_TIM_DisableDMAReq_CC3
3756
  * @param  TIMx Timer instance
3757
  * @retval None
3758
  */
3759
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
3760
{
3761
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
3762
}
3763
 
3764
/**
3765
  * @brief  Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
3766
  * @rmtoll DIER         CC3DE         LL_TIM_IsEnabledDMAReq_CC3
3767
  * @param  TIMx Timer instance
3768
  * @retval State of bit (1 or 0).
3769
  */
3770
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(TIM_TypeDef *TIMx)
3771
{
3772
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
3773
}
3774
 
3775
/**
3776
  * @brief  Enable capture/compare 4 DMA request (CC4DE).
3777
  * @rmtoll DIER         CC4DE         LL_TIM_EnableDMAReq_CC4
3778
  * @param  TIMx Timer instance
3779
  * @retval None
3780
  */
3781
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
3782
{
3783
  SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
3784
}
3785
 
3786
/**
3787
  * @brief  Disable capture/compare 4  DMA request (CC4DE).
3788
  * @rmtoll DIER         CC4DE         LL_TIM_DisableDMAReq_CC4
3789
  * @param  TIMx Timer instance
3790
  * @retval None
3791
  */
3792
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
3793
{
3794
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
3795
}
3796
 
3797
/**
3798
  * @brief  Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
3799
  * @rmtoll DIER         CC4DE         LL_TIM_IsEnabledDMAReq_CC4
3800
  * @param  TIMx Timer instance
3801
  * @retval State of bit (1 or 0).
3802
  */
3803
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(TIM_TypeDef *TIMx)
3804
{
3805
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
3806
}
3807
 
3808
/**
3809
  * @brief  Enable commutation DMA request (COMDE).
3810
  * @rmtoll DIER         COMDE         LL_TIM_EnableDMAReq_COM
3811
  * @param  TIMx Timer instance
3812
  * @retval None
3813
  */
3814
__STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
3815
{
3816
  SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
3817
}
3818
 
3819
/**
3820
  * @brief  Disable commutation DMA request (COMDE).
3821
  * @rmtoll DIER         COMDE         LL_TIM_DisableDMAReq_COM
3822
  * @param  TIMx Timer instance
3823
  * @retval None
3824
  */
3825
__STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
3826
{
3827
  CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
3828
}
3829
 
3830
/**
3831
  * @brief  Indicates whether the commutation DMA request (COMDE) is enabled.
3832
  * @rmtoll DIER         COMDE         LL_TIM_IsEnabledDMAReq_COM
3833
  * @param  TIMx Timer instance
3834
  * @retval State of bit (1 or 0).
3835
  */
3836
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(TIM_TypeDef *TIMx)
3837
{
3838
  return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
3839
}
3840
 
3841
/**
3842
  * @brief  Enable trigger interrupt (TDE).
3843
  * @rmtoll DIER         TDE           LL_TIM_EnableDMAReq_TRIG
3844
  * @param  TIMx Timer instance
3845
  * @retval None
3846
  */
3847
__STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
3848
{
3849
  SET_BIT(TIMx->DIER, TIM_DIER_TDE);
3850
}
3851
 
3852
/**
3853
  * @brief  Disable trigger interrupt (TDE).
3854
  * @rmtoll DIER         TDE           LL_TIM_DisableDMAReq_TRIG
3855
  * @param  TIMx Timer instance
3856
  * @retval None
3857
  */
3858
__STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
3859
{
3860
  CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
3861
}
3862
 
3863
/**
3864
  * @brief  Indicates whether the trigger interrupt (TDE) is enabled.
3865
  * @rmtoll DIER         TDE           LL_TIM_IsEnabledDMAReq_TRIG
3866
  * @param  TIMx Timer instance
3867
  * @retval State of bit (1 or 0).
3868
  */
3869
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(TIM_TypeDef *TIMx)
3870
{
3871
  return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
3872
}
3873
 
3874
/**
3875
  * @}
3876
  */
3877
 
3878
/** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
3879
  * @{
3880
  */
3881
/**
3882
  * @brief  Generate an update event.
3883
  * @rmtoll EGR          UG            LL_TIM_GenerateEvent_UPDATE
3884
  * @param  TIMx Timer instance
3885
  * @retval None
3886
  */
3887
__STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
3888
{
3889
  SET_BIT(TIMx->EGR, TIM_EGR_UG);
3890
}
3891
 
3892
/**
3893
  * @brief  Generate Capture/Compare 1 event.
3894
  * @rmtoll EGR          CC1G          LL_TIM_GenerateEvent_CC1
3895
  * @param  TIMx Timer instance
3896
  * @retval None
3897
  */
3898
__STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
3899
{
3900
  SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
3901
}
3902
 
3903
/**
3904
  * @brief  Generate Capture/Compare 2 event.
3905
  * @rmtoll EGR          CC2G          LL_TIM_GenerateEvent_CC2
3906
  * @param  TIMx Timer instance
3907
  * @retval None
3908
  */
3909
__STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
3910
{
3911
  SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
3912
}
3913
 
3914
/**
3915
  * @brief  Generate Capture/Compare 3 event.
3916
  * @rmtoll EGR          CC3G          LL_TIM_GenerateEvent_CC3
3917
  * @param  TIMx Timer instance
3918
  * @retval None
3919
  */
3920
__STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
3921
{
3922
  SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
3923
}
3924
 
3925
/**
3926
  * @brief  Generate Capture/Compare 4 event.
3927
  * @rmtoll EGR          CC4G          LL_TIM_GenerateEvent_CC4
3928
  * @param  TIMx Timer instance
3929
  * @retval None
3930
  */
3931
__STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
3932
{
3933
  SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
3934
}
3935
 
3936
/**
3937
  * @brief  Generate commutation event.
3938
  * @rmtoll EGR          COMG          LL_TIM_GenerateEvent_COM
3939
  * @param  TIMx Timer instance
3940
  * @retval None
3941
  */
3942
__STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
3943
{
3944
  SET_BIT(TIMx->EGR, TIM_EGR_COMG);
3945
}
3946
 
3947
/**
3948
  * @brief  Generate trigger event.
3949
  * @rmtoll EGR          TG            LL_TIM_GenerateEvent_TRIG
3950
  * @param  TIMx Timer instance
3951
  * @retval None
3952
  */
3953
__STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
3954
{
3955
  SET_BIT(TIMx->EGR, TIM_EGR_TG);
3956
}
3957
 
3958
/**
3959
  * @brief  Generate break event.
3960
  * @rmtoll EGR          BG            LL_TIM_GenerateEvent_BRK
3961
  * @param  TIMx Timer instance
3962
  * @retval None
3963
  */
3964
__STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
3965
{
3966
  SET_BIT(TIMx->EGR, TIM_EGR_BG);
3967
}
3968
 
3969
/**
3970
  * @}
3971
  */
3972
 
3973
#if defined(USE_FULL_LL_DRIVER)
3974
/** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
3975
  * @{
3976
  */
3977
 
3978
ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx);
3979
void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
3980
ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct);
3981
void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
3982
ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
3983
void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
3984
ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
3985
void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
3986
ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
3987
void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
3988
ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
3989
void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
3990
ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
3991
/**
3992
  * @}
3993
  */
3994
#endif /* USE_FULL_LL_DRIVER */
3995
 
3996
/**
3997
  * @}
3998
  */
3999
 
4000
/**
4001
  * @}
4002
  */
4003
 
4004
#endif /* TIM1 || TIM2 || TIM3  || TIM14 || TIM15 || TIM16 || TIM17 || TIM6 || TIM7 */
4005
 
4006
/**
4007
  * @}
4008
  */
4009
 
4010
#ifdef __cplusplus
4011
}
4012
#endif
4013
 
4014
#endif /* __STM32F0xx_LL_TIM_H */
4015
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/