Subversion Repositories FuelGauge

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**
2
  ******************************************************************************
3
  * @file    stm32f0xx_ll_tim.h
4
  * @author  MCD Application Team
5
  * @brief   Header file of TIM LL module.
6
  ******************************************************************************
7
  * @attention
8
  *
9
  * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
10
  * All rights reserved.</center></h2>
11
  *
12
  * This software component is licensed by ST under BSD 3-Clause license,
13
  * the "License"; You may not use this file except in compliance with the
14
  * License. You may obtain a copy of the License at:
15
  *                        opensource.org/licenses/BSD-3-Clause
16
  *
17
  ******************************************************************************
18
  */
19
 
20
/* Define to prevent recursive inclusion -------------------------------------*/
21
#ifndef __STM32F0xx_LL_TIM_H
22
#define __STM32F0xx_LL_TIM_H
23
 
24
#ifdef __cplusplus
25
extern "C" {
26
#endif
27
 
28
/* Includes ------------------------------------------------------------------*/
29
#include "stm32f0xx.h"
30
 
31
/** @addtogroup STM32F0xx_LL_Driver
32
  * @{
33
  */
34
 
35
#if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM6) || defined (TIM7)
36
 
37
/** @defgroup TIM_LL TIM
38
  * @{
39
  */
40
 
41
/* Private types -------------------------------------------------------------*/
42
/* Private variables ---------------------------------------------------------*/
43
/** @defgroup TIM_LL_Private_Variables TIM Private Variables
44
  * @{
45
  */
46
static const uint8_t OFFSET_TAB_CCMRx[] =
47
{
48
  0x00U,   /* 0: TIMx_CH1  */
49
  0x00U,   /* 1: TIMx_CH1N */
50
  0x00U,   /* 2: TIMx_CH2  */
51
  0x00U,   /* 3: TIMx_CH2N */
52
  0x04U,   /* 4: TIMx_CH3  */
53
  0x04U,   /* 5: TIMx_CH3N */
54
  0x04U    /* 6: TIMx_CH4  */
55
};
56
 
57
static const uint8_t SHIFT_TAB_OCxx[] =
58
{
59
  0U,            /* 0: OC1M, OC1FE, OC1PE */
60
  0U,            /* 1: - NA */
61
  8U,            /* 2: OC2M, OC2FE, OC2PE */
62
  0U,            /* 3: - NA */
63
  0U,            /* 4: OC3M, OC3FE, OC3PE */
64
  0U,            /* 5: - NA */
65
  8U             /* 6: OC4M, OC4FE, OC4PE */
66
};
67
 
68
static const uint8_t SHIFT_TAB_ICxx[] =
69
{
70
  0U,            /* 0: CC1S, IC1PSC, IC1F */
71
  0U,            /* 1: - NA */
72
  8U,            /* 2: CC2S, IC2PSC, IC2F */
73
  0U,            /* 3: - NA */
74
  0U,            /* 4: CC3S, IC3PSC, IC3F */
75
  0U,            /* 5: - NA */
76
  8U             /* 6: CC4S, IC4PSC, IC4F */
77
};
78
 
79
static const uint8_t SHIFT_TAB_CCxP[] =
80
{
81
  0U,            /* 0: CC1P */
82
  2U,            /* 1: CC1NP */
83
  4U,            /* 2: CC2P */
84
  6U,            /* 3: CC2NP */
85
  8U,            /* 4: CC3P */
86
  10U,           /* 5: CC3NP */
87
  12U            /* 6: CC4P */
88
};
89
 
90
static const uint8_t SHIFT_TAB_OISx[] =
91
{
92
  0U,            /* 0: OIS1 */
93
  1U,            /* 1: OIS1N */
94
  2U,            /* 2: OIS2 */
95
  3U,            /* 3: OIS2N */
96
  4U,            /* 4: OIS3 */
97
  5U,            /* 5: OIS3N */
98
  6U             /* 6: OIS4 */
99
};
100
/**
101
  * @}
102
  */
103
 
104
/* Private constants ---------------------------------------------------------*/
105
/** @defgroup TIM_LL_Private_Constants TIM Private Constants
106
  * @{
107
  */
108
 
109
 
110
#define TIMx_OR_RMP_SHIFT  16U
111
#define TIMx_OR_RMP_MASK   0x0000FFFFU
112
#define TIM14_OR_RMP_MASK  (TIM14_OR_TI1_RMP << TIMx_OR_RMP_SHIFT)
113
 
114
/* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
115
#define DT_DELAY_1 ((uint8_t)0x7F)
116
#define DT_DELAY_2 ((uint8_t)0x3F)
117
#define DT_DELAY_3 ((uint8_t)0x1F)
118
#define DT_DELAY_4 ((uint8_t)0x1F)
119
 
120
/* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
121
#define DT_RANGE_1 ((uint8_t)0x00)
122
#define DT_RANGE_2 ((uint8_t)0x80)
123
#define DT_RANGE_3 ((uint8_t)0xC0)
124
#define DT_RANGE_4 ((uint8_t)0xE0)
125
 
126
 
127
/**
128
  * @}
129
  */
130
 
131
/* Private macros ------------------------------------------------------------*/
132
/** @defgroup TIM_LL_Private_Macros TIM Private Macros
133
  * @{
134
  */
135
/** @brief  Convert channel id into channel index.
136
  * @param  __CHANNEL__ This parameter can be one of the following values:
137
  *         @arg @ref LL_TIM_CHANNEL_CH1
138
  *         @arg @ref LL_TIM_CHANNEL_CH1N
139
  *         @arg @ref LL_TIM_CHANNEL_CH2
140
  *         @arg @ref LL_TIM_CHANNEL_CH2N
141
  *         @arg @ref LL_TIM_CHANNEL_CH3
142
  *         @arg @ref LL_TIM_CHANNEL_CH3N
143
  *         @arg @ref LL_TIM_CHANNEL_CH4
144
  * @retval none
145
  */
146
#define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
147
  (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
148
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
149
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
150
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
151
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
152
   ((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U : 6U)
153
 
154
/** @brief  Calculate the deadtime sampling period(in ps).
155
  * @param  __TIMCLK__ timer input clock frequency (in Hz).
156
  * @param  __CKD__ This parameter can be one of the following values:
157
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
158
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
159
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
160
  * @retval none
161
  */
162
#define TIM_CALC_DTS(__TIMCLK__, __CKD__)                                                        \
163
  (((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__))         : \
164
   ((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
165
   ((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
166
/**
167
  * @}
168
  */
169
 
170
 
171
/* Exported types ------------------------------------------------------------*/
172
#if defined(USE_FULL_LL_DRIVER)
173
/** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
174
  * @{
175
  */
176
 
177
/**
178
  * @brief  TIM Time Base configuration structure definition.
179
  */
180
typedef struct
181
{
182
  uint16_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
183
                                   This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
184
 
185
                                   This feature can be modified afterwards using unitary function @ref LL_TIM_SetPrescaler().*/
186
 
187
  uint32_t CounterMode;       /*!< Specifies the counter mode.
188
                                   This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
189
 
190
                                   This feature can be modified afterwards using unitary function @ref LL_TIM_SetCounterMode().*/
191
 
192
  uint32_t Autoreload;        /*!< Specifies the auto reload value to be loaded into the active
193
                                   Auto-Reload Register at the next update event.
194
                                   This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
195
                                   Some timer instances may support 32 bits counters. In that case this parameter must be a number between 0x0000 and 0xFFFFFFFF.
196
 
197
                                   This feature can be modified afterwards using unitary function @ref LL_TIM_SetAutoReload().*/
198
 
199
  uint32_t ClockDivision;     /*!< Specifies the clock division.
200
                                   This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
201
 
202
                                   This feature can be modified afterwards using unitary function @ref LL_TIM_SetClockDivision().*/
203
 
204
  uint8_t RepetitionCounter;  /*!< Specifies the repetition counter value. Each time the RCR downcounter
205
                                   reaches zero, an update event is generated and counting restarts
206
                                   from the RCR value (N).
207
                                   This means in PWM mode that (N+1) corresponds to:
208
                                      - the number of PWM periods in edge-aligned mode
209
                                      - the number of half PWM period in center-aligned mode
210
                                   This parameter must be a number between 0x00 and 0xFF.
211
 
212
                                   This feature can be modified afterwards using unitary function @ref LL_TIM_SetRepetitionCounter().*/
213
} LL_TIM_InitTypeDef;
214
 
215
/**
216
  * @brief  TIM Output Compare configuration structure definition.
217
  */
218
typedef struct
219
{
220
  uint32_t OCMode;        /*!< Specifies the output mode.
221
                               This parameter can be a value of @ref TIM_LL_EC_OCMODE.
222
 
223
                               This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetMode().*/
224
 
225
  uint32_t OCState;       /*!< Specifies the TIM Output Compare state.
226
                               This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
227
 
228
                               This feature can be modified afterwards using unitary functions @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
229
 
230
  uint32_t OCNState;      /*!< Specifies the TIM complementary Output Compare state.
231
                               This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
232
 
233
                               This feature can be modified afterwards using unitary functions @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
234
 
235
  uint32_t CompareValue;  /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
236
                               This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
237
 
238
                               This feature can be modified afterwards using unitary function LL_TIM_OC_SetCompareCHx (x=1..6).*/
239
 
240
  uint32_t OCPolarity;    /*!< Specifies the output polarity.
241
                               This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
242
 
243
                               This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetPolarity().*/
244
 
245
  uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
246
                               This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
247
 
248
                               This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetPolarity().*/
249
 
250
 
251
  uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
252
                               This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
253
 
254
                               This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetIdleState().*/
255
 
256
  uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
257
                               This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
258
 
259
                               This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetIdleState().*/
260
} LL_TIM_OC_InitTypeDef;
261
 
262
/**
263
  * @brief  TIM Input Capture configuration structure definition.
264
  */
265
 
266
typedef struct
267
{
268
 
269
  uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
270
                               This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
271
 
272
                               This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
273
 
274
  uint32_t ICActiveInput; /*!< Specifies the input.
275
                               This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
276
 
277
                               This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/
278
 
279
  uint32_t ICPrescaler;   /*!< Specifies the Input Capture Prescaler.
280
                               This parameter can be a value of @ref TIM_LL_EC_ICPSC.
281
 
282
                               This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
283
 
284
  uint32_t ICFilter;      /*!< Specifies the input capture filter.
285
                               This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
286
 
287
                               This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
288
} LL_TIM_IC_InitTypeDef;
289
 
290
 
291
/**
292
  * @brief  TIM Encoder interface configuration structure definition.
293
  */
294
typedef struct
295
{
296
  uint32_t EncoderMode;     /*!< Specifies the encoder resolution (x2 or x4).
297
                                 This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
298
 
299
                                 This feature can be modified afterwards using unitary function @ref LL_TIM_SetEncoderMode().*/
300
 
301
  uint32_t IC1Polarity;     /*!< Specifies the active edge of TI1 input.
302
                                 This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
303
 
304
                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
305
 
306
  uint32_t IC1ActiveInput;  /*!< Specifies the TI1 input source
307
                                 This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
308
 
309
                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/
310
 
311
  uint32_t IC1Prescaler;    /*!< Specifies the TI1 input prescaler value.
312
                                 This parameter can be a value of @ref TIM_LL_EC_ICPSC.
313
 
314
                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
315
 
316
  uint32_t IC1Filter;       /*!< Specifies the TI1 input filter.
317
                                 This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
318
 
319
                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
320
 
321
  uint32_t IC2Polarity;      /*!< Specifies the active edge of TI2 input.
322
                                 This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
323
 
324
                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
325
 
326
  uint32_t IC2ActiveInput;  /*!< Specifies the TI2 input source
327
                                 This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
328
 
329
                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/
330
 
331
  uint32_t IC2Prescaler;    /*!< Specifies the TI2 input prescaler value.
332
                                 This parameter can be a value of @ref TIM_LL_EC_ICPSC.
333
 
334
                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
335
 
336
  uint32_t IC2Filter;       /*!< Specifies the TI2 input filter.
337
                                 This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
338
 
339
                                 This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
340
 
341
} LL_TIM_ENCODER_InitTypeDef;
342
 
343
/**
344
  * @brief  TIM Hall sensor interface configuration structure definition.
345
  */
346
typedef struct
347
{
348
 
349
  uint32_t IC1Polarity;        /*!< Specifies the active edge of TI1 input.
350
                                    This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
351
 
352
                                    This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/
353
 
354
  uint32_t IC1Prescaler;       /*!< Specifies the TI1 input prescaler value.
355
                                    Prescaler must be set to get a maximum counter period longer than the
356
                                    time interval between 2 consecutive changes on the Hall inputs.
357
                                    This parameter can be a value of @ref TIM_LL_EC_ICPSC.
358
 
359
                                    This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/
360
 
361
  uint32_t IC1Filter;          /*!< Specifies the TI1 input filter.
362
                                    This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
363
 
364
                                    This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/
365
 
366
  uint32_t CommutationDelay;   /*!< Specifies the compare value to be loaded into the Capture Compare Register.
367
                                    A positive pulse (TRGO event) is generated with a programmable delay every time
368
                                    a change occurs on the Hall inputs.
369
                                    This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
370
 
371
                                    This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetCompareCH2().*/
372
} LL_TIM_HALLSENSOR_InitTypeDef;
373
 
374
/**
375
  * @brief  BDTR (Break and Dead Time) structure definition
376
  */
377
typedef struct
378
{
379
  uint32_t OSSRState;            /*!< Specifies the Off-State selection used in Run mode.
380
                                      This parameter can be a value of @ref TIM_LL_EC_OSSR
381
 
382
                                      This feature can be modified afterwards using unitary function @ref LL_TIM_SetOffStates()
383
 
384
                                      @note This bit-field cannot be modified as long as LOCK level 2 has been programmed. */
385
 
386
  uint32_t OSSIState;            /*!< Specifies the Off-State used in Idle state.
387
                                      This parameter can be a value of @ref TIM_LL_EC_OSSI
388
 
389
                                      This feature can be modified afterwards using unitary function @ref LL_TIM_SetOffStates()
390
 
391
                                      @note This bit-field cannot be modified as long as LOCK level 2 has been programmed. */
392
 
393
  uint32_t LockLevel;            /*!< Specifies the LOCK level parameters.
394
                                      This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
395
 
396
                                      @note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register
397
                                            has been written, their content is frozen until the next reset.*/
398
 
399
  uint8_t DeadTime;              /*!< Specifies the delay time between the switching-off and the
400
                                      switching-on of the outputs.
401
                                      This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
402
 
403
                                      This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetDeadTime()
404
 
405
                                      @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed. */
406
 
407
  uint16_t BreakState;           /*!< Specifies whether the TIM Break input is enabled or not.
408
                                      This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
409
 
410
                                      This feature can be modified afterwards using unitary functions @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
411
 
412
                                      @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
413
 
414
  uint32_t BreakPolarity;        /*!< Specifies the TIM Break Input pin polarity.
415
                                      This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
416
 
417
                                      This feature can be modified afterwards using unitary function @ref LL_TIM_ConfigBRK()
418
 
419
                                      @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
420
 
421
  uint32_t AutomaticOutput;      /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
422
                                      This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
423
 
424
                                      This feature can be modified afterwards using unitary functions @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
425
 
426
                                      @note This bit-field can not be modified as long as LOCK level 1 has been programmed. */
427
} LL_TIM_BDTR_InitTypeDef;
428
 
429
/**
430
  * @}
431
  */
432
#endif /* USE_FULL_LL_DRIVER */
433
 
434
/* Exported constants --------------------------------------------------------*/
435
/** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
436
  * @{
437
  */
438
 
439
/** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
440
  * @brief    Flags defines which can be used with LL_TIM_ReadReg function.
441
  * @{
442
  */
443
#define LL_TIM_SR_UIF                          TIM_SR_UIF           /*!< Update interrupt flag */
444
#define LL_TIM_SR_CC1IF                        TIM_SR_CC1IF         /*!< Capture/compare 1 interrupt flag */
445
#define LL_TIM_SR_CC2IF                        TIM_SR_CC2IF         /*!< Capture/compare 2 interrupt flag */
446
#define LL_TIM_SR_CC3IF                        TIM_SR_CC3IF         /*!< Capture/compare 3 interrupt flag */
447
#define LL_TIM_SR_CC4IF                        TIM_SR_CC4IF         /*!< Capture/compare 4 interrupt flag */
448
#define LL_TIM_SR_COMIF                        TIM_SR_COMIF         /*!< COM interrupt flag */
449
#define LL_TIM_SR_TIF                          TIM_SR_TIF           /*!< Trigger interrupt flag */
450
#define LL_TIM_SR_BIF                          TIM_SR_BIF           /*!< Break interrupt flag */
451
#define LL_TIM_SR_CC1OF                        TIM_SR_CC1OF         /*!< Capture/Compare 1 overcapture flag */
452
#define LL_TIM_SR_CC2OF                        TIM_SR_CC2OF         /*!< Capture/Compare 2 overcapture flag */
453
#define LL_TIM_SR_CC3OF                        TIM_SR_CC3OF         /*!< Capture/Compare 3 overcapture flag */
454
#define LL_TIM_SR_CC4OF                        TIM_SR_CC4OF         /*!< Capture/Compare 4 overcapture flag */
455
/**
456
  * @}
457
  */
458
 
459
#if defined(USE_FULL_LL_DRIVER)
460
/** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
461
  * @{
462
  */
463
#define LL_TIM_BREAK_DISABLE            0x00000000U             /*!< Break function disabled */
464
#define LL_TIM_BREAK_ENABLE             TIM_BDTR_BKE            /*!< Break function enabled */
465
/**
466
  * @}
467
  */
468
 
469
/** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
470
  * @{
471
  */
472
#define LL_TIM_AUTOMATICOUTPUT_DISABLE         0x00000000U             /*!< MOE can be set only by software */
473
#define LL_TIM_AUTOMATICOUTPUT_ENABLE          TIM_BDTR_AOE            /*!< MOE can be set by software or automatically at the next update event */
474
/**
475
  * @}
476
  */
477
#endif /* USE_FULL_LL_DRIVER */
478
 
479
/** @defgroup TIM_LL_EC_IT IT Defines
480
  * @brief    IT defines which can be used with LL_TIM_ReadReg and  LL_TIM_WriteReg functions.
481
  * @{
482
  */
483
#define LL_TIM_DIER_UIE                        TIM_DIER_UIE         /*!< Update interrupt enable */
484
#define LL_TIM_DIER_CC1IE                      TIM_DIER_CC1IE       /*!< Capture/compare 1 interrupt enable */
485
#define LL_TIM_DIER_CC2IE                      TIM_DIER_CC2IE       /*!< Capture/compare 2 interrupt enable */
486
#define LL_TIM_DIER_CC3IE                      TIM_DIER_CC3IE       /*!< Capture/compare 3 interrupt enable */
487
#define LL_TIM_DIER_CC4IE                      TIM_DIER_CC4IE       /*!< Capture/compare 4 interrupt enable */
488
#define LL_TIM_DIER_COMIE                      TIM_DIER_COMIE       /*!< COM interrupt enable */
489
#define LL_TIM_DIER_TIE                        TIM_DIER_TIE         /*!< Trigger interrupt enable */
490
#define LL_TIM_DIER_BIE                        TIM_DIER_BIE         /*!< Break interrupt enable */
491
/**
492
  * @}
493
  */
494
 
495
/** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
496
  * @{
497
  */
498
#define LL_TIM_UPDATESOURCE_REGULAR            0x00000000U          /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
499
#define LL_TIM_UPDATESOURCE_COUNTER            TIM_CR1_URS          /*!< Only counter overflow/underflow generates an update request */
500
/**
501
  * @}
502
  */
503
 
504
/** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
505
  * @{
506
  */
507
#define LL_TIM_ONEPULSEMODE_SINGLE             TIM_CR1_OPM          /*!< Counter is not stopped at update event */
508
#define LL_TIM_ONEPULSEMODE_REPETITIVE         0x00000000U          /*!< Counter stops counting at the next update event */
509
/**
510
  * @}
511
  */
512
 
513
/** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
514
  * @{
515
  */
516
#define LL_TIM_COUNTERMODE_UP                  0x00000000U          /*!<Counter used as upcounter */
517
#define LL_TIM_COUNTERMODE_DOWN                TIM_CR1_DIR          /*!< Counter used as downcounter */
518
#define LL_TIM_COUNTERMODE_CENTER_UP           TIM_CR1_CMS_0        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting down. */
519
#define LL_TIM_COUNTERMODE_CENTER_DOWN         TIM_CR1_CMS_1        /*!<The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up */
520
#define LL_TIM_COUNTERMODE_CENTER_UP_DOWN      TIM_CR1_CMS          /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up or down. */
521
/**
522
  * @}
523
  */
524
 
525
/** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
526
  * @{
527
  */
528
#define LL_TIM_CLOCKDIVISION_DIV1              0x00000000U          /*!< tDTS=tCK_INT */
529
#define LL_TIM_CLOCKDIVISION_DIV2              TIM_CR1_CKD_0        /*!< tDTS=2*tCK_INT */
530
#define LL_TIM_CLOCKDIVISION_DIV4              TIM_CR1_CKD_1        /*!< tDTS=4*tCK_INT */
531
/**
532
  * @}
533
  */
534
 
535
/** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
536
  * @{
537
  */
538
#define LL_TIM_COUNTERDIRECTION_UP             0x00000000U          /*!< Timer counter counts up */
539
#define LL_TIM_COUNTERDIRECTION_DOWN           TIM_CR1_DIR          /*!< Timer counter counts down */
540
/**
541
  * @}
542
  */
543
 
544
/** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare  Update Source
545
  * @{
546
  */
547
#define LL_TIM_CCUPDATESOURCE_COMG_ONLY        0x00000000U          /*!< Capture/compare control bits are updated by setting the COMG bit only */
548
#define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI    TIM_CR2_CCUS         /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
549
/**
550
  * @}
551
  */
552
 
553
/** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
554
  * @{
555
  */
556
#define LL_TIM_CCDMAREQUEST_CC                 0x00000000U          /*!< CCx DMA request sent when CCx event occurs */
557
#define LL_TIM_CCDMAREQUEST_UPDATE             TIM_CR2_CCDS         /*!< CCx DMA requests sent when update event occurs */
558
/**
559
  * @}
560
  */
561
 
562
/** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
563
  * @{
564
  */
565
#define LL_TIM_LOCKLEVEL_OFF                   0x00000000U          /*!< LOCK OFF - No bit is write protected */
566
#define LL_TIM_LOCKLEVEL_1                     TIM_BDTR_LOCK_0      /*!< LOCK Level 1 */
567
#define LL_TIM_LOCKLEVEL_2                     TIM_BDTR_LOCK_1      /*!< LOCK Level 2 */
568
#define LL_TIM_LOCKLEVEL_3                     TIM_BDTR_LOCK        /*!< LOCK Level 3 */
569
/**
570
  * @}
571
  */
572
 
573
/** @defgroup TIM_LL_EC_CHANNEL Channel
574
  * @{
575
  */
576
#define LL_TIM_CHANNEL_CH1                     TIM_CCER_CC1E     /*!< Timer input/output channel 1 */
577
#define LL_TIM_CHANNEL_CH1N                    TIM_CCER_CC1NE    /*!< Timer complementary output channel 1 */
578
#define LL_TIM_CHANNEL_CH2                     TIM_CCER_CC2E     /*!< Timer input/output channel 2 */
579
#define LL_TIM_CHANNEL_CH2N                    TIM_CCER_CC2NE    /*!< Timer complementary output channel 2 */
580
#define LL_TIM_CHANNEL_CH3                     TIM_CCER_CC3E     /*!< Timer input/output channel 3 */
581
#define LL_TIM_CHANNEL_CH3N                    TIM_CCER_CC3NE    /*!< Timer complementary output channel 3 */
582
#define LL_TIM_CHANNEL_CH4                     TIM_CCER_CC4E     /*!< Timer input/output channel 4 */
583
/**
584
  * @}
585
  */
586
 
587
#if defined(USE_FULL_LL_DRIVER)
588
/** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
589
  * @{
590
  */
591
#define LL_TIM_OCSTATE_DISABLE                 0x00000000U             /*!< OCx is not active */
592
#define LL_TIM_OCSTATE_ENABLE                  TIM_CCER_CC1E           /*!< OCx signal is output on the corresponding output pin */
593
/**
594
  * @}
595
  */
596
#endif /* USE_FULL_LL_DRIVER */
597
 
598
/** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
599
  * @{
600
  */
601
#define LL_TIM_OCMODE_FROZEN                   0x00000000U                                              /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
602
#define LL_TIM_OCMODE_ACTIVE                   TIM_CCMR1_OC1M_0                                         /*!<OCyREF is forced high on compare match*/
603
#define LL_TIM_OCMODE_INACTIVE                 TIM_CCMR1_OC1M_1                                         /*!<OCyREF is forced low on compare match*/
604
#define LL_TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF toggles on compare match*/
605
#define LL_TIM_OCMODE_FORCED_INACTIVE          TIM_CCMR1_OC1M_2                                         /*!<OCyREF is forced low*/
606
#define LL_TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF is forced high*/
607
#define LL_TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1)                    /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive.  In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
608
#define LL_TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active.  In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
609
/**
610
  * @}
611
  */
612
 
613
/** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
614
  * @{
615
  */
616
#define LL_TIM_OCPOLARITY_HIGH                 0x00000000U                 /*!< OCxactive high*/
617
#define LL_TIM_OCPOLARITY_LOW                  TIM_CCER_CC1P               /*!< OCxactive low*/
618
/**
619
  * @}
620
  */
621
 
622
/** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
623
  * @{
624
  */
625
#define LL_TIM_OCIDLESTATE_LOW                 0x00000000U             /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
626
#define LL_TIM_OCIDLESTATE_HIGH                TIM_CR2_OIS1            /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
627
/**
628
  * @}
629
  */
630
 
631
 
632
/** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
633
  * @{
634
  */
635
#define LL_TIM_ACTIVEINPUT_DIRECTTI            (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
636
#define LL_TIM_ACTIVEINPUT_INDIRECTTI          (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
637
#define LL_TIM_ACTIVEINPUT_TRC                 (TIM_CCMR1_CC1S << 16U)   /*!< ICx is mapped on TRC */
638
/**
639
  * @}
640
  */
641
 
642
/** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
643
  * @{
644
  */
645
#define LL_TIM_ICPSC_DIV1                      0x00000000U                    /*!< No prescaler, capture is done each time an edge is detected on the capture input */
646
#define LL_TIM_ICPSC_DIV2                      (TIM_CCMR1_IC1PSC_0 << 16U)    /*!< Capture is done once every 2 events */
647
#define LL_TIM_ICPSC_DIV4                      (TIM_CCMR1_IC1PSC_1 << 16U)    /*!< Capture is done once every 4 events */
648
#define LL_TIM_ICPSC_DIV8                      (TIM_CCMR1_IC1PSC << 16U)      /*!< Capture is done once every 8 events */
649
/**
650
  * @}
651
  */
652
 
653
/** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
654
  * @{
655
  */
656
#define LL_TIM_IC_FILTER_FDIV1                 0x00000000U                                                        /*!< No filter, sampling is done at fDTS */
657
#define LL_TIM_IC_FILTER_FDIV1_N2              (TIM_CCMR1_IC1F_0 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=2 */
658
#define LL_TIM_IC_FILTER_FDIV1_N4              (TIM_CCMR1_IC1F_1 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=4 */
659
#define LL_TIM_IC_FILTER_FDIV1_N8              ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fCK_INT, N=8 */
660
#define LL_TIM_IC_FILTER_FDIV2_N6              (TIM_CCMR1_IC1F_2 << 16U)                                          /*!< fSAMPLING=fDTS/2, N=6 */
661
#define LL_TIM_IC_FILTER_FDIV2_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/2, N=8 */
662
#define LL_TIM_IC_FILTER_FDIV4_N6              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/4, N=6 */
663
#define LL_TIM_IC_FILTER_FDIV4_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/4, N=8 */
664
#define LL_TIM_IC_FILTER_FDIV8_N6              (TIM_CCMR1_IC1F_3 << 16U)                                          /*!< fSAMPLING=fDTS/8, N=6 */
665
#define LL_TIM_IC_FILTER_FDIV8_N8              ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/8, N=8 */
666
#define LL_TIM_IC_FILTER_FDIV16_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/16, N=5 */
667
#define LL_TIM_IC_FILTER_FDIV16_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/16, N=6 */
668
#define LL_TIM_IC_FILTER_FDIV16_N8             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U)                     /*!< fSAMPLING=fDTS/16, N=8 */
669
#define LL_TIM_IC_FILTER_FDIV32_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/32, N=5 */
670
#define LL_TIM_IC_FILTER_FDIV32_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)  /*!< fSAMPLING=fDTS/32, N=6 */
671
#define LL_TIM_IC_FILTER_FDIV32_N8             (TIM_CCMR1_IC1F << 16U)                                            /*!< fSAMPLING=fDTS/32, N=8 */
672
/**
673
  * @}
674
  */
675
 
676
/** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
677
  * @{
678
  */
679
#define LL_TIM_IC_POLARITY_RISING              0x00000000U                      /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
680
#define LL_TIM_IC_POLARITY_FALLING             TIM_CCER_CC1P                    /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
681
#define LL_TIM_IC_POLARITY_BOTHEDGE            (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
682
/**
683
  * @}
684
  */
685
 
686
/** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
687
  * @{
688
  */
689
#define LL_TIM_CLOCKSOURCE_INTERNAL            0x00000000U                                          /*!< The timer is clocked by the internal clock provided from the RCC */
690
#define LL_TIM_CLOCKSOURCE_EXT_MODE1           (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)   /*!< Counter counts at each rising or falling edge on a selected input*/
691
#define LL_TIM_CLOCKSOURCE_EXT_MODE2           TIM_SMCR_ECE                                         /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
692
/**
693
  * @}
694
  */
695
 
696
/** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
697
  * @{
698
  */
699
#define LL_TIM_ENCODERMODE_X2_TI1                     TIM_SMCR_SMS_0                                                     /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
700
#define LL_TIM_ENCODERMODE_X2_TI2                     TIM_SMCR_SMS_1                                                     /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
701
#define LL_TIM_ENCODERMODE_X4_TI12                   (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)                                   /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
702
/**
703
  * @}
704
  */
705
 
706
/** @defgroup TIM_LL_EC_TRGO Trigger Output
707
  * @{
708
  */
709
#define LL_TIM_TRGO_RESET                      0x00000000U                                     /*!< UG bit from the TIMx_EGR register is used as trigger output */
710
#define LL_TIM_TRGO_ENABLE                     TIM_CR2_MMS_0                                   /*!< Counter Enable signal (CNT_EN) is used as trigger output */
711
#define LL_TIM_TRGO_UPDATE                     TIM_CR2_MMS_1                                   /*!< Update event is used as trigger output */
712
#define LL_TIM_TRGO_CC1IF                      (TIM_CR2_MMS_1 | TIM_CR2_MMS_0)                 /*!< CC1 capture or a compare match is used as trigger output */
713
#define LL_TIM_TRGO_OC1REF                     TIM_CR2_MMS_2                                   /*!< OC1REF signal is used as trigger output */
714
#define LL_TIM_TRGO_OC2REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_0)                 /*!< OC2REF signal is used as trigger output */
715
#define LL_TIM_TRGO_OC3REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1)                 /*!< OC3REF signal is used as trigger output */
716
#define LL_TIM_TRGO_OC4REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
717
/**
718
  * @}
719
  */
720
 
721
 
722
/** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
723
  * @{
724
  */
725
#define LL_TIM_SLAVEMODE_DISABLED              0x00000000U                         /*!< Slave mode disabled */
726
#define LL_TIM_SLAVEMODE_RESET                 TIM_SMCR_SMS_2                      /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
727
#define LL_TIM_SLAVEMODE_GATED                 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)   /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
728
#define LL_TIM_SLAVEMODE_TRIGGER               (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)   /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
729
/**
730
  * @}
731
  */
732
 
733
/** @defgroup TIM_LL_EC_TS Trigger Selection
734
  * @{
735
  */
736
#define LL_TIM_TS_ITR0                         0x00000000U                                                     /*!< Internal Trigger 0 (ITR0) is used as trigger input */
737
#define LL_TIM_TS_ITR1                         TIM_SMCR_TS_0                                                   /*!< Internal Trigger 1 (ITR1) is used as trigger input */
738
#define LL_TIM_TS_ITR2                         TIM_SMCR_TS_1                                                   /*!< Internal Trigger 2 (ITR2) is used as trigger input */
739
#define LL_TIM_TS_ITR3                         (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)                                 /*!< Internal Trigger 3 (ITR3) is used as trigger input */
740
#define LL_TIM_TS_TI1F_ED                      TIM_SMCR_TS_2                                                   /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
741
#define LL_TIM_TS_TI1FP1                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_0)                                 /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
742
#define LL_TIM_TS_TI2FP2                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_1)                                 /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
743
#define LL_TIM_TS_ETRF                         (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Filtered external Trigger (ETRF) is used as trigger input */
744
/**
745
  * @}
746
  */
747
 
748
/** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
749
  * @{
750
  */
751
#define LL_TIM_ETR_POLARITY_NONINVERTED        0x00000000U             /*!< ETR is non-inverted, active at high level or rising edge */
752
#define LL_TIM_ETR_POLARITY_INVERTED           TIM_SMCR_ETP            /*!< ETR is inverted, active at low level or falling edge */
753
/**
754
  * @}
755
  */
756
 
757
/** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
758
  * @{
759
  */
760
#define LL_TIM_ETR_PRESCALER_DIV1              0x00000000U             /*!< ETR prescaler OFF */
761
#define LL_TIM_ETR_PRESCALER_DIV2              TIM_SMCR_ETPS_0         /*!< ETR frequency is divided by 2 */
762
#define LL_TIM_ETR_PRESCALER_DIV4              TIM_SMCR_ETPS_1         /*!< ETR frequency is divided by 4 */
763
#define LL_TIM_ETR_PRESCALER_DIV8              TIM_SMCR_ETPS           /*!< ETR frequency is divided by 8 */
764
/**
765
  * @}
766
  */
767
 
768
/** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
769
  * @{
770
  */
771
#define LL_TIM_ETR_FILTER_FDIV1                0x00000000U                                          /*!< No filter, sampling is done at fDTS */
772
#define LL_TIM_ETR_FILTER_FDIV1_N2             TIM_SMCR_ETF_0                                       /*!< fSAMPLING=fCK_INT, N=2 */
773
#define LL_TIM_ETR_FILTER_FDIV1_N4             TIM_SMCR_ETF_1                                       /*!< fSAMPLING=fCK_INT, N=4 */
774
#define LL_TIM_ETR_FILTER_FDIV1_N8             (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fCK_INT, N=8 */
775
#define LL_TIM_ETR_FILTER_FDIV2_N6             TIM_SMCR_ETF_2                                       /*!< fSAMPLING=fDTS/2, N=6 */
776
#define LL_TIM_ETR_FILTER_FDIV2_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/2, N=8 */
777
#define LL_TIM_ETR_FILTER_FDIV4_N6             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/4, N=6 */
778
#define LL_TIM_ETR_FILTER_FDIV4_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/4, N=8 */
779
#define LL_TIM_ETR_FILTER_FDIV8_N6             TIM_SMCR_ETF_3                                       /*!< fSAMPLING=fDTS/8, N=8 */
780
#define LL_TIM_ETR_FILTER_FDIV8_N8             (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/16, N=5 */
781
#define LL_TIM_ETR_FILTER_FDIV16_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/16, N=6 */
782
#define LL_TIM_ETR_FILTER_FDIV16_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/16, N=8 */
783
#define LL_TIM_ETR_FILTER_FDIV16_N8            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2)                    /*!< fSAMPLING=fDTS/16, N=5 */
784
#define LL_TIM_ETR_FILTER_FDIV32_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/32, N=5 */
785
#define LL_TIM_ETR_FILTER_FDIV32_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)   /*!< fSAMPLING=fDTS/32, N=6 */
786
#define LL_TIM_ETR_FILTER_FDIV32_N8            TIM_SMCR_ETF                                         /*!< fSAMPLING=fDTS/32, N=8 */
787
/**
788
  * @}
789
  */
790
 
791
 
792
/** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
793
  * @{
794
  */
795
#define LL_TIM_BREAK_POLARITY_LOW              0x00000000U               /*!< Break input BRK is active low */
796
#define LL_TIM_BREAK_POLARITY_HIGH             TIM_BDTR_BKP              /*!< Break input BRK is active high */
797
/**
798
  * @}
799
  */
800
 
801
 
802
 
803
 
804
/** @defgroup TIM_LL_EC_OSSI OSSI
805
  * @{
806
  */
807
#define LL_TIM_OSSI_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
808
#define LL_TIM_OSSI_ENABLE                     TIM_BDTR_OSSI           /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
809
/**
810
  * @}
811
  */
812
 
813
/** @defgroup TIM_LL_EC_OSSR OSSR
814
  * @{
815
  */
816
#define LL_TIM_OSSR_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
817
#define LL_TIM_OSSR_ENABLE                     TIM_BDTR_OSSR           /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
818
/**
819
  * @}
820
  */
821
 
822
 
823
/** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
824
  * @{
825
  */
826
#define LL_TIM_DMABURST_BASEADDR_CR1           0x00000000U                                                      /*!< TIMx_CR1 register is the DMA base address for DMA burst */
827
#define LL_TIM_DMABURST_BASEADDR_CR2           TIM_DCR_DBA_0                                                    /*!< TIMx_CR2 register is the DMA base address for DMA burst */
828
#define LL_TIM_DMABURST_BASEADDR_SMCR          TIM_DCR_DBA_1                                                    /*!< TIMx_SMCR register is the DMA base address for DMA burst */
829
#define LL_TIM_DMABURST_BASEADDR_DIER          (TIM_DCR_DBA_1 |  TIM_DCR_DBA_0)                                 /*!< TIMx_DIER register is the DMA base address for DMA burst */
830
#define LL_TIM_DMABURST_BASEADDR_SR            TIM_DCR_DBA_2                                                    /*!< TIMx_SR register is the DMA base address for DMA burst */
831
#define LL_TIM_DMABURST_BASEADDR_EGR           (TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                                  /*!< TIMx_EGR register is the DMA base address for DMA burst */
832
#define LL_TIM_DMABURST_BASEADDR_CCMR1         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
833
#define LL_TIM_DMABURST_BASEADDR_CCMR2         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
834
#define LL_TIM_DMABURST_BASEADDR_CCER          TIM_DCR_DBA_3                                                    /*!< TIMx_CCER register is the DMA base address for DMA burst */
835
#define LL_TIM_DMABURST_BASEADDR_CNT           (TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                                  /*!< TIMx_CNT register is the DMA base address for DMA burst */
836
#define LL_TIM_DMABURST_BASEADDR_PSC           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                                  /*!< TIMx_PSC register is the DMA base address for DMA burst */
837
#define LL_TIM_DMABURST_BASEADDR_ARR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_ARR register is the DMA base address for DMA burst */
838
#define LL_TIM_DMABURST_BASEADDR_RCR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_2)                                  /*!< TIMx_RCR register is the DMA base address for DMA burst */
839
#define LL_TIM_DMABURST_BASEADDR_CCR1          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
840
#define LL_TIM_DMABURST_BASEADDR_CCR2          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
841
#define LL_TIM_DMABURST_BASEADDR_CCR3          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
842
#define LL_TIM_DMABURST_BASEADDR_CCR4          TIM_DCR_DBA_4                                                    /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
843
#define LL_TIM_DMABURST_BASEADDR_BDTR          (TIM_DCR_DBA_4 | TIM_DCR_DBA_0)                                  /*!< TIMx_BDTR register is the DMA base address for DMA burst */
844
/**
845
  * @}
846
  */
847
 
848
/** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
849
  * @{
850
  */
851
#define LL_TIM_DMABURST_LENGTH_1TRANSFER       0x00000000U                                                     /*!< Transfer is done to 1 register starting from the DMA burst base address */
852
#define LL_TIM_DMABURST_LENGTH_2TRANSFERS      TIM_DCR_DBL_0                                                   /*!< Transfer is done to 2 registers starting from the DMA burst base address */
853
#define LL_TIM_DMABURST_LENGTH_3TRANSFERS      TIM_DCR_DBL_1                                                   /*!< Transfer is done to 3 registers starting from the DMA burst base address */
854
#define LL_TIM_DMABURST_LENGTH_4TRANSFERS      (TIM_DCR_DBL_1 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 4 registers starting from the DMA burst base address */
855
#define LL_TIM_DMABURST_LENGTH_5TRANSFERS      TIM_DCR_DBL_2                                                   /*!< Transfer is done to 5 registers starting from the DMA burst base address */
856
#define LL_TIM_DMABURST_LENGTH_6TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 6 registers starting from the DMA burst base address */
857
#define LL_TIM_DMABURST_LENGTH_7TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 7 registers starting from the DMA burst base address */
858
#define LL_TIM_DMABURST_LENGTH_8TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 1 registers starting from the DMA burst base address */
859
#define LL_TIM_DMABURST_LENGTH_9TRANSFERS      TIM_DCR_DBL_3                                                   /*!< Transfer is done to 9 registers starting from the DMA burst base address */
860
#define LL_TIM_DMABURST_LENGTH_10TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 10 registers starting from the DMA burst base address */
861
#define LL_TIM_DMABURST_LENGTH_11TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 11 registers starting from the DMA burst base address */
862
#define LL_TIM_DMABURST_LENGTH_12TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 12 registers starting from the DMA burst base address */
863
#define LL_TIM_DMABURST_LENGTH_13TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 13 registers starting from the DMA burst base address */
864
#define LL_TIM_DMABURST_LENGTH_14TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 14 registers starting from the DMA burst base address */
865
#define LL_TIM_DMABURST_LENGTH_15TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 15 registers starting from the DMA burst base address */
866
#define LL_TIM_DMABURST_LENGTH_16TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
867
#define LL_TIM_DMABURST_LENGTH_17TRANSFERS     TIM_DCR_DBL_4                                                   /*!< Transfer is done to 17 registers starting from the DMA burst base address */
868
#define LL_TIM_DMABURST_LENGTH_18TRANSFERS     (TIM_DCR_DBL_4 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 18 registers starting from the DMA burst base address */
869
/**
870
  * @}
871
  */
872
 
873
 
874
#define LL_TIM_TIM14_TI1_RMP_GPIO     TIM14_OR_RMP_MASK                                                        /*!< TIM14_TI1 is connected to Ored GPIO */
875
#define LL_TIM_TIM14_TI1_RMP_RTC_CLK  (TIM14_OR_TI1_RMP_0  | TIM14_OR_RMP_MASK)                                /*!< TIM14_TI1 is connected to RTC clock */
876
#define LL_TIM_TIM14_TI1_RMP_HSE      (TIM14_OR_TI1_RMP_1  | TIM14_OR_RMP_MASK)                                /*!< TIM14_TI1 is connected to HSE/32 clock */
877
#define LL_TIM_TIM14_TI1_RMP_MCO      (TIM14_OR_TI1_RMP_0  | TIM14_OR_TI1_RMP_1  | TIM14_OR_RMP_MASK)          /*!< TIM14_TI1 is connected to MCO */
878
 
879
 
880
/** @defgroup TIM_LL_EC_OCREF_CLR_INT OCREF clear input selection
881
  * @{
882
  */
883
#define LL_TIM_OCREF_CLR_INT_OCREF_CLR     0x00000000U         /*!< OCREF_CLR_INT is connected to the OCREF_CLR input */
884
#define LL_TIM_OCREF_CLR_INT_ETR           TIM_SMCR_OCCS       /*!< OCREF_CLR_INT is connected to ETRF */
885
/**
886
  * @}
887
  */
888
 
889
/**
890
  * @}
891
  */
892
 
893
/* Exported macro ------------------------------------------------------------*/
894
/** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
895
  * @{
896
  */
897
 
898
/** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
899
  * @{
900
  */
901
/**
902
  * @brief  Write a value in TIM register.
903
  * @param  __INSTANCE__ TIM Instance
904
  * @param  __REG__ Register to be written
905
  * @param  __VALUE__ Value to be written in the register
906
  * @retval None
907
  */
908
#define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
909
 
910
/**
911
  * @brief  Read a value in TIM register.
912
  * @param  __INSTANCE__ TIM Instance
913
  * @param  __REG__ Register to be read
914
  * @retval Register value
915
  */
916
#define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
917
/**
918
  * @}
919
  */
920
 
921
/** @defgroup TIM_LL_EM_Exported_Macros Exported_Macros
922
  * @{
923
  */
924
 
925
/**
926
  * @brief  HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
927
  * @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
928
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
929
  * @param  __CKD__ This parameter can be one of the following values:
930
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
931
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
932
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
933
  * @param  __DT__ deadtime duration (in ns)
934
  * @retval DTG[0:7]
935
  */
936
#define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__)  \
937
  ( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))    ? (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__)))  & DT_DELAY_1) :                                               \
938
    (((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ? (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
939
    (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ? (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
940
    (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ? (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__), (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
941
    0U)
942
 
943
/**
944
  * @brief  HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
945
  * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
946
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
947
  * @param  __CNTCLK__ counter clock frequency (in Hz)
948
  * @retval Prescaler value  (between Min_Data=0 and Max_Data=65535)
949
  */
950
#define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__)   \
951
  (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)(((__TIMCLK__)/(__CNTCLK__)) - 1U) : 0U)
952
 
953
/**
954
  * @brief  HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
955
  * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
956
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
957
  * @param  __PSC__ prescaler
958
  * @param  __FREQ__ output signal frequency (in Hz)
959
  * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
960
  */
961
#define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
962
  ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
963
 
964
/**
965
  * @brief  HELPER macro calculating the compare value required to achieve the required timer output compare active/inactive delay.
966
  * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
967
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
968
  * @param  __PSC__ prescaler
969
  * @param  __DELAY__ timer output compare active/inactive delay (in us)
970
  * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
971
  */
972
#define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__)  \
973
  ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
974
              / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
975
 
976
/**
977
  * @brief  HELPER macro calculating the auto-reload value to achieve the required pulse duration (when the timer operates in one pulse mode).
978
  * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
979
  * @param  __TIMCLK__ timer input clock frequency (in Hz)
980
  * @param  __PSC__ prescaler
981
  * @param  __DELAY__ timer output compare active/inactive delay (in us)
982
  * @param  __PULSE__ pulse duration (in us)
983
  * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
984
  */
985
#define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
986
  ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
987
              + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
988
 
989
/**
990
  * @brief  HELPER macro retrieving the ratio of the input capture prescaler
991
  * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
992
  * @param  __ICPSC__ This parameter can be one of the following values:
993
  *         @arg @ref LL_TIM_ICPSC_DIV1
994
  *         @arg @ref LL_TIM_ICPSC_DIV2
995
  *         @arg @ref LL_TIM_ICPSC_DIV4
996
  *         @arg @ref LL_TIM_ICPSC_DIV8
997
  * @retval Input capture prescaler ratio (1, 2, 4 or 8)
998
  */
999
#define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__)  \
1000
  ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
1001
 
1002
 
1003
/**
1004
  * @}
1005
  */
1006
 
1007
 
1008
/**
1009
  * @}
1010
  */
1011
 
1012
/* Exported functions --------------------------------------------------------*/
1013
/** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
1014
  * @{
1015
  */
1016
 
1017
/** @defgroup TIM_LL_EF_Time_Base Time Base configuration
1018
  * @{
1019
  */
1020
/**
1021
  * @brief  Enable timer counter.
1022
  * @rmtoll CR1          CEN           LL_TIM_EnableCounter
1023
  * @param  TIMx Timer instance
1024
  * @retval None
1025
  */
1026
__STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
1027
{
1028
  SET_BIT(TIMx->CR1, TIM_CR1_CEN);
1029
}
1030
 
1031
/**
1032
  * @brief  Disable timer counter.
1033
  * @rmtoll CR1          CEN           LL_TIM_DisableCounter
1034
  * @param  TIMx Timer instance
1035
  * @retval None
1036
  */
1037
__STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
1038
{
1039
  CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
1040
}
1041
 
1042
/**
1043
  * @brief  Indicates whether the timer counter is enabled.
1044
  * @rmtoll CR1          CEN           LL_TIM_IsEnabledCounter
1045
  * @param  TIMx Timer instance
1046
  * @retval State of bit (1 or 0).
1047
  */
1048
__STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(TIM_TypeDef *TIMx)
1049
{
1050
  return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
1051
}
1052
 
1053
/**
1054
  * @brief  Enable update event generation.
1055
  * @rmtoll CR1          UDIS          LL_TIM_EnableUpdateEvent
1056
  * @param  TIMx Timer instance
1057
  * @retval None
1058
  */
1059
__STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
1060
{
1061
  CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
1062
}
1063
 
1064
/**
1065
  * @brief  Disable update event generation.
1066
  * @rmtoll CR1          UDIS          LL_TIM_DisableUpdateEvent
1067
  * @param  TIMx Timer instance
1068
  * @retval None
1069
  */
1070
__STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
1071
{
1072
  SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
1073
}
1074
 
1075
/**
1076
  * @brief  Indicates whether update event generation is enabled.
1077
  * @rmtoll CR1          UDIS          LL_TIM_IsEnabledUpdateEvent
1078
  * @param  TIMx Timer instance
1079
  * @retval Inverted state of bit (0 or 1).
1080
  */
1081
__STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(TIM_TypeDef *TIMx)
1082
{
1083
  return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
1084
}
1085
 
1086
/**
1087
  * @brief  Set update event source
1088
  * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
1089
  *       generate an update interrupt or DMA request if enabled:
1090
  *        - Counter overflow/underflow
1091
  *        - Setting the UG bit
1092
  *        - Update generation through the slave mode controller
1093
  * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
1094
  *       overflow/underflow generates an update interrupt or DMA request if enabled.
1095
  * @rmtoll CR1          URS           LL_TIM_SetUpdateSource
1096
  * @param  TIMx Timer instance
1097
  * @param  UpdateSource This parameter can be one of the following values:
1098
  *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1099
  *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1100
  * @retval None
1101
  */
1102
__STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
1103
{
1104
  MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
1105
}
1106
 
1107
/**
1108
  * @brief  Get actual event update source
1109
  * @rmtoll CR1          URS           LL_TIM_GetUpdateSource
1110
  * @param  TIMx Timer instance
1111
  * @retval Returned value can be one of the following values:
1112
  *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1113
  *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1114
  */
1115
__STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(TIM_TypeDef *TIMx)
1116
{
1117
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
1118
}
1119
 
1120
/**
1121
  * @brief  Set one pulse mode (one shot v.s. repetitive).
1122
  * @rmtoll CR1          OPM           LL_TIM_SetOnePulseMode
1123
  * @param  TIMx Timer instance
1124
  * @param  OnePulseMode This parameter can be one of the following values:
1125
  *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1126
  *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1127
  * @retval None
1128
  */
1129
__STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
1130
{
1131
  MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
1132
}
1133
 
1134
/**
1135
  * @brief  Get actual one pulse mode.
1136
  * @rmtoll CR1          OPM           LL_TIM_GetOnePulseMode
1137
  * @param  TIMx Timer instance
1138
  * @retval Returned value can be one of the following values:
1139
  *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1140
  *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1141
  */
1142
__STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(TIM_TypeDef *TIMx)
1143
{
1144
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
1145
}
1146
 
1147
/**
1148
  * @brief  Set the timer counter counting mode.
1149
  * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1150
  *       check whether or not the counter mode selection feature is supported
1151
  *       by a timer instance.
1152
  * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1153
  *       requires a timer reset to avoid unexpected direction
1154
  *       due to DIR bit readonly in center aligned mode.
1155
  * @rmtoll CR1          DIR           LL_TIM_SetCounterMode\n
1156
  *         CR1          CMS           LL_TIM_SetCounterMode
1157
  * @param  TIMx Timer instance
1158
  * @param  CounterMode This parameter can be one of the following values:
1159
  *         @arg @ref LL_TIM_COUNTERMODE_UP
1160
  *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1161
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1162
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1163
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1164
  * @retval None
1165
  */
1166
__STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
1167
{
1168
  MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
1169
}
1170
 
1171
/**
1172
  * @brief  Get actual counter mode.
1173
  * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1174
  *       check whether or not the counter mode selection feature is supported
1175
  *       by a timer instance.
1176
  * @rmtoll CR1          DIR           LL_TIM_GetCounterMode\n
1177
  *         CR1          CMS           LL_TIM_GetCounterMode
1178
  * @param  TIMx Timer instance
1179
  * @retval Returned value can be one of the following values:
1180
  *         @arg @ref LL_TIM_COUNTERMODE_UP
1181
  *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1182
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1183
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1184
  *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1185
  */
1186
__STATIC_INLINE uint32_t LL_TIM_GetCounterMode(TIM_TypeDef *TIMx)
1187
{
1188
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR | TIM_CR1_CMS));
1189
}
1190
 
1191
/**
1192
  * @brief  Enable auto-reload (ARR) preload.
1193
  * @rmtoll CR1          ARPE          LL_TIM_EnableARRPreload
1194
  * @param  TIMx Timer instance
1195
  * @retval None
1196
  */
1197
__STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
1198
{
1199
  SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
1200
}
1201
 
1202
/**
1203
  * @brief  Disable auto-reload (ARR) preload.
1204
  * @rmtoll CR1          ARPE          LL_TIM_DisableARRPreload
1205
  * @param  TIMx Timer instance
1206
  * @retval None
1207
  */
1208
__STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
1209
{
1210
  CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
1211
}
1212
 
1213
/**
1214
  * @brief  Indicates whether auto-reload (ARR) preload is enabled.
1215
  * @rmtoll CR1          ARPE          LL_TIM_IsEnabledARRPreload
1216
  * @param  TIMx Timer instance
1217
  * @retval State of bit (1 or 0).
1218
  */
1219
__STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(TIM_TypeDef *TIMx)
1220
{
1221
  return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
1222
}
1223
 
1224
/**
1225
  * @brief  Set the division ratio between the timer clock  and the sampling clock used by the dead-time generators (when supported) and the digital filters.
1226
  * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1227
  *       whether or not the clock division feature is supported by the timer
1228
  *       instance.
1229
  * @rmtoll CR1          CKD           LL_TIM_SetClockDivision
1230
  * @param  TIMx Timer instance
1231
  * @param  ClockDivision This parameter can be one of the following values:
1232
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1233
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1234
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1235
  * @retval None
1236
  */
1237
__STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
1238
{
1239
  MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
1240
}
1241
 
1242
/**
1243
  * @brief  Get the actual division ratio between the timer clock  and the sampling clock used by the dead-time generators (when supported) and the digital filters.
1244
  * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1245
  *       whether or not the clock division feature is supported by the timer
1246
  *       instance.
1247
  * @rmtoll CR1          CKD           LL_TIM_GetClockDivision
1248
  * @param  TIMx Timer instance
1249
  * @retval Returned value can be one of the following values:
1250
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1251
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1252
  *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1253
  */
1254
__STATIC_INLINE uint32_t LL_TIM_GetClockDivision(TIM_TypeDef *TIMx)
1255
{
1256
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
1257
}
1258
 
1259
/**
1260
  * @brief  Set the counter value.
1261
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1262
  *       whether or not a timer instance supports a 32 bits counter.
1263
  * @rmtoll CNT          CNT           LL_TIM_SetCounter
1264
  * @param  TIMx Timer instance
1265
  * @param  Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1266
  * @retval None
1267
  */
1268
__STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
1269
{
1270
  WRITE_REG(TIMx->CNT, Counter);
1271
}
1272
 
1273
/**
1274
  * @brief  Get the counter value.
1275
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1276
  *       whether or not a timer instance supports a 32 bits counter.
1277
  * @rmtoll CNT          CNT           LL_TIM_GetCounter
1278
  * @param  TIMx Timer instance
1279
  * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1280
  */
1281
__STATIC_INLINE uint32_t LL_TIM_GetCounter(TIM_TypeDef *TIMx)
1282
{
1283
  return (uint32_t)(READ_REG(TIMx->CNT));
1284
}
1285
 
1286
/**
1287
  * @brief  Get the current direction of the counter
1288
  * @rmtoll CR1          DIR           LL_TIM_GetDirection
1289
  * @param  TIMx Timer instance
1290
  * @retval Returned value can be one of the following values:
1291
  *         @arg @ref LL_TIM_COUNTERDIRECTION_UP
1292
  *         @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
1293
  */
1294
__STATIC_INLINE uint32_t LL_TIM_GetDirection(TIM_TypeDef *TIMx)
1295
{
1296
  return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1297
}
1298
 
1299
/**
1300
  * @brief  Set the prescaler value.
1301
  * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
1302
  * @note The prescaler can be changed on the fly as this control register is buffered. The new
1303
  *       prescaler ratio is taken into account at the next update event.
1304
  * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
1305
  * @rmtoll PSC          PSC           LL_TIM_SetPrescaler
1306
  * @param  TIMx Timer instance
1307
  * @param  Prescaler between Min_Data=0 and Max_Data=65535
1308
  * @retval None
1309
  */
1310
__STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
1311
{
1312
  WRITE_REG(TIMx->PSC, Prescaler);
1313
}
1314
 
1315
/**
1316
  * @brief  Get the prescaler value.
1317
  * @rmtoll PSC          PSC           LL_TIM_GetPrescaler
1318
  * @param  TIMx Timer instance
1319
  * @retval  Prescaler value between Min_Data=0 and Max_Data=65535
1320
  */
1321
__STATIC_INLINE uint32_t LL_TIM_GetPrescaler(TIM_TypeDef *TIMx)
1322
{
1323
  return (uint32_t)(READ_REG(TIMx->PSC));
1324
}
1325
 
1326
/**
1327
  * @brief  Set the auto-reload value.
1328
  * @note The counter is blocked while the auto-reload value is null.
1329
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1330
  *       whether or not a timer instance supports a 32 bits counter.
1331
  * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
1332
  * @rmtoll ARR          ARR           LL_TIM_SetAutoReload
1333
  * @param  TIMx Timer instance
1334
  * @param  AutoReload between Min_Data=0 and Max_Data=65535
1335
  * @retval None
1336
  */
1337
__STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
1338
{
1339
  WRITE_REG(TIMx->ARR, AutoReload);
1340
}
1341
 
1342
/**
1343
  * @brief  Get the auto-reload value.
1344
  * @rmtoll ARR          ARR           LL_TIM_GetAutoReload
1345
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1346
  *       whether or not a timer instance supports a 32 bits counter.
1347
  * @param  TIMx Timer instance
1348
  * @retval Auto-reload value
1349
  */
1350
__STATIC_INLINE uint32_t LL_TIM_GetAutoReload(TIM_TypeDef *TIMx)
1351
{
1352
  return (uint32_t)(READ_REG(TIMx->ARR));
1353
}
1354
 
1355
/**
1356
  * @brief  Set the repetition counter value.
1357
  * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1358
  *       whether or not a timer instance supports a repetition counter.
1359
  * @rmtoll RCR          REP           LL_TIM_SetRepetitionCounter
1360
  * @param  TIMx Timer instance
1361
  * @param  RepetitionCounter between Min_Data=0 and Max_Data=255
1362
  * @retval None
1363
  */
1364
__STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
1365
{
1366
  WRITE_REG(TIMx->RCR, RepetitionCounter);
1367
}
1368
 
1369
/**
1370
  * @brief  Get the repetition counter value.
1371
  * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1372
  *       whether or not a timer instance supports a repetition counter.
1373
  * @rmtoll RCR          REP           LL_TIM_GetRepetitionCounter
1374
  * @param  TIMx Timer instance
1375
  * @retval Repetition counter value
1376
  */
1377
__STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(TIM_TypeDef *TIMx)
1378
{
1379
  return (uint32_t)(READ_REG(TIMx->RCR));
1380
}
1381
 
1382
/**
1383
  * @}
1384
  */
1385
 
1386
/** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
1387
  * @{
1388
  */
1389
/**
1390
  * @brief  Enable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1391
  * @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
1392
  *       they are updated only when a commutation event (COM) occurs.
1393
  * @note Only on channels that have a complementary output.
1394
  * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1395
  *       whether or not a timer instance is able to generate a commutation event.
1396
  * @rmtoll CR2          CCPC          LL_TIM_CC_EnablePreload
1397
  * @param  TIMx Timer instance
1398
  * @retval None
1399
  */
1400
__STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
1401
{
1402
  SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
1403
}
1404
 
1405
/**
1406
  * @brief  Disable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1407
  * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1408
  *       whether or not a timer instance is able to generate a commutation event.
1409
  * @rmtoll CR2          CCPC          LL_TIM_CC_DisablePreload
1410
  * @param  TIMx Timer instance
1411
  * @retval None
1412
  */
1413
__STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
1414
{
1415
  CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
1416
}
1417
 
1418
/**
1419
  * @brief  Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
1420
  * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1421
  *       whether or not a timer instance is able to generate a commutation event.
1422
  * @rmtoll CR2          CCUS          LL_TIM_CC_SetUpdate
1423
  * @param  TIMx Timer instance
1424
  * @param  CCUpdateSource This parameter can be one of the following values:
1425
  *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
1426
  *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
1427
  * @retval None
1428
  */
1429
__STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
1430
{
1431
  MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
1432
}
1433
 
1434
/**
1435
  * @brief  Set the trigger of the capture/compare DMA request.
1436
  * @rmtoll CR2          CCDS          LL_TIM_CC_SetDMAReqTrigger
1437
  * @param  TIMx Timer instance
1438
  * @param  DMAReqTrigger This parameter can be one of the following values:
1439
  *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1440
  *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1441
  * @retval None
1442
  */
1443
__STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
1444
{
1445
  MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
1446
}
1447
 
1448
/**
1449
  * @brief  Get actual trigger of the capture/compare DMA request.
1450
  * @rmtoll CR2          CCDS          LL_TIM_CC_GetDMAReqTrigger
1451
  * @param  TIMx Timer instance
1452
  * @retval Returned value can be one of the following values:
1453
  *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1454
  *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1455
  */
1456
__STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(TIM_TypeDef *TIMx)
1457
{
1458
  return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
1459
}
1460
 
1461
/**
1462
  * @brief  Set the lock level to freeze the
1463
  *         configuration of several capture/compare parameters.
1464
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
1465
  *       the lock mechanism is supported by a timer instance.
1466
  * @rmtoll BDTR         LOCK          LL_TIM_CC_SetLockLevel
1467
  * @param  TIMx Timer instance
1468
  * @param  LockLevel This parameter can be one of the following values:
1469
  *         @arg @ref LL_TIM_LOCKLEVEL_OFF
1470
  *         @arg @ref LL_TIM_LOCKLEVEL_1
1471
  *         @arg @ref LL_TIM_LOCKLEVEL_2
1472
  *         @arg @ref LL_TIM_LOCKLEVEL_3
1473
  * @retval None
1474
  */
1475
__STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
1476
{
1477
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
1478
}
1479
 
1480
/**
1481
  * @brief  Enable capture/compare channels.
1482
  * @rmtoll CCER         CC1E          LL_TIM_CC_EnableChannel\n
1483
  *         CCER         CC1NE         LL_TIM_CC_EnableChannel\n
1484
  *         CCER         CC2E          LL_TIM_CC_EnableChannel\n
1485
  *         CCER         CC2NE         LL_TIM_CC_EnableChannel\n
1486
  *         CCER         CC3E          LL_TIM_CC_EnableChannel\n
1487
  *         CCER         CC3NE         LL_TIM_CC_EnableChannel\n
1488
  *         CCER         CC4E          LL_TIM_CC_EnableChannel
1489
  * @param  TIMx Timer instance
1490
  * @param  Channels This parameter can be a combination of the following values:
1491
  *         @arg @ref LL_TIM_CHANNEL_CH1
1492
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1493
  *         @arg @ref LL_TIM_CHANNEL_CH2
1494
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1495
  *         @arg @ref LL_TIM_CHANNEL_CH3
1496
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1497
  *         @arg @ref LL_TIM_CHANNEL_CH4
1498
  * @retval None
1499
  */
1500
__STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1501
{
1502
  SET_BIT(TIMx->CCER, Channels);
1503
}
1504
 
1505
/**
1506
  * @brief  Disable capture/compare channels.
1507
  * @rmtoll CCER         CC1E          LL_TIM_CC_DisableChannel\n
1508
  *         CCER         CC1NE         LL_TIM_CC_DisableChannel\n
1509
  *         CCER         CC2E          LL_TIM_CC_DisableChannel\n
1510
  *         CCER         CC2NE         LL_TIM_CC_DisableChannel\n
1511
  *         CCER         CC3E          LL_TIM_CC_DisableChannel\n
1512
  *         CCER         CC3NE         LL_TIM_CC_DisableChannel\n
1513
  *         CCER         CC4E          LL_TIM_CC_DisableChannel
1514
  * @param  TIMx Timer instance
1515
  * @param  Channels This parameter can be a combination of the following values:
1516
  *         @arg @ref LL_TIM_CHANNEL_CH1
1517
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1518
  *         @arg @ref LL_TIM_CHANNEL_CH2
1519
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1520
  *         @arg @ref LL_TIM_CHANNEL_CH3
1521
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1522
  *         @arg @ref LL_TIM_CHANNEL_CH4
1523
  * @retval None
1524
  */
1525
__STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1526
{
1527
  CLEAR_BIT(TIMx->CCER, Channels);
1528
}
1529
 
1530
/**
1531
  * @brief  Indicate whether channel(s) is(are) enabled.
1532
  * @rmtoll CCER         CC1E          LL_TIM_CC_IsEnabledChannel\n
1533
  *         CCER         CC1NE         LL_TIM_CC_IsEnabledChannel\n
1534
  *         CCER         CC2E          LL_TIM_CC_IsEnabledChannel\n
1535
  *         CCER         CC2NE         LL_TIM_CC_IsEnabledChannel\n
1536
  *         CCER         CC3E          LL_TIM_CC_IsEnabledChannel\n
1537
  *         CCER         CC3NE         LL_TIM_CC_IsEnabledChannel\n
1538
  *         CCER         CC4E          LL_TIM_CC_IsEnabledChannel
1539
  * @param  TIMx Timer instance
1540
  * @param  Channels This parameter can be a combination of the following values:
1541
  *         @arg @ref LL_TIM_CHANNEL_CH1
1542
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1543
  *         @arg @ref LL_TIM_CHANNEL_CH2
1544
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1545
  *         @arg @ref LL_TIM_CHANNEL_CH3
1546
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1547
  *         @arg @ref LL_TIM_CHANNEL_CH4
1548
  * @retval State of bit (1 or 0).
1549
  */
1550
__STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(TIM_TypeDef *TIMx, uint32_t Channels)
1551
{
1552
  return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
1553
}
1554
 
1555
/**
1556
  * @}
1557
  */
1558
 
1559
/** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
1560
  * @{
1561
  */
1562
/**
1563
  * @brief  Configure an output channel.
1564
  * @rmtoll CCMR1        CC1S          LL_TIM_OC_ConfigOutput\n
1565
  *         CCMR1        CC2S          LL_TIM_OC_ConfigOutput\n
1566
  *         CCMR2        CC3S          LL_TIM_OC_ConfigOutput\n
1567
  *         CCMR2        CC4S          LL_TIM_OC_ConfigOutput\n
1568
  *         CCER         CC1P          LL_TIM_OC_ConfigOutput\n
1569
  *         CCER         CC2P          LL_TIM_OC_ConfigOutput\n
1570
  *         CCER         CC3P          LL_TIM_OC_ConfigOutput\n
1571
  *         CCER         CC4P          LL_TIM_OC_ConfigOutput\n
1572
  *         CR2          OIS1          LL_TIM_OC_ConfigOutput\n
1573
  *         CR2          OIS2          LL_TIM_OC_ConfigOutput\n
1574
  *         CR2          OIS3          LL_TIM_OC_ConfigOutput\n
1575
  *         CR2          OIS4          LL_TIM_OC_ConfigOutput
1576
  * @param  TIMx Timer instance
1577
  * @param  Channel This parameter can be one of the following values:
1578
  *         @arg @ref LL_TIM_CHANNEL_CH1
1579
  *         @arg @ref LL_TIM_CHANNEL_CH2
1580
  *         @arg @ref LL_TIM_CHANNEL_CH3
1581
  *         @arg @ref LL_TIM_CHANNEL_CH4
1582
  * @param  Configuration This parameter must be a combination of all the following values:
1583
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
1584
  *         @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
1585
  * @retval None
1586
  */
1587
__STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
1588
{
1589
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1590
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1591
  CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
1592
  MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
1593
             (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
1594
  MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
1595
             (Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
1596
}
1597
 
1598
/**
1599
  * @brief  Define the behavior of the output reference signal OCxREF from which
1600
  *         OCx and OCxN (when relevant) are derived.
1601
  * @rmtoll CCMR1        OC1M          LL_TIM_OC_SetMode\n
1602
  *         CCMR1        OC2M          LL_TIM_OC_SetMode\n
1603
  *         CCMR2        OC3M          LL_TIM_OC_SetMode\n
1604
  *         CCMR2        OC4M          LL_TIM_OC_SetMode
1605
  * @param  TIMx Timer instance
1606
  * @param  Channel This parameter can be one of the following values:
1607
  *         @arg @ref LL_TIM_CHANNEL_CH1
1608
  *         @arg @ref LL_TIM_CHANNEL_CH2
1609
  *         @arg @ref LL_TIM_CHANNEL_CH3
1610
  *         @arg @ref LL_TIM_CHANNEL_CH4
1611
  * @param  Mode This parameter can be one of the following values:
1612
  *         @arg @ref LL_TIM_OCMODE_FROZEN
1613
  *         @arg @ref LL_TIM_OCMODE_ACTIVE
1614
  *         @arg @ref LL_TIM_OCMODE_INACTIVE
1615
  *         @arg @ref LL_TIM_OCMODE_TOGGLE
1616
  *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
1617
  *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
1618
  *         @arg @ref LL_TIM_OCMODE_PWM1
1619
  *         @arg @ref LL_TIM_OCMODE_PWM2
1620
  * @retval None
1621
  */
1622
__STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
1623
{
1624
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1625
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1626
  MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]),  Mode << SHIFT_TAB_OCxx[iChannel]);
1627
}
1628
 
1629
/**
1630
  * @brief  Get the output compare mode of an output channel.
1631
  * @rmtoll CCMR1        OC1M          LL_TIM_OC_GetMode\n
1632
  *         CCMR1        OC2M          LL_TIM_OC_GetMode\n
1633
  *         CCMR2        OC3M          LL_TIM_OC_GetMode\n
1634
  *         CCMR2        OC4M          LL_TIM_OC_GetMode
1635
  * @param  TIMx Timer instance
1636
  * @param  Channel This parameter can be one of the following values:
1637
  *         @arg @ref LL_TIM_CHANNEL_CH1
1638
  *         @arg @ref LL_TIM_CHANNEL_CH2
1639
  *         @arg @ref LL_TIM_CHANNEL_CH3
1640
  *         @arg @ref LL_TIM_CHANNEL_CH4
1641
  * @retval Returned value can be one of the following values:
1642
  *         @arg @ref LL_TIM_OCMODE_FROZEN
1643
  *         @arg @ref LL_TIM_OCMODE_ACTIVE
1644
  *         @arg @ref LL_TIM_OCMODE_INACTIVE
1645
  *         @arg @ref LL_TIM_OCMODE_TOGGLE
1646
  *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
1647
  *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
1648
  *         @arg @ref LL_TIM_OCMODE_PWM1
1649
  *         @arg @ref LL_TIM_OCMODE_PWM2
1650
  */
1651
__STATIC_INLINE uint32_t LL_TIM_OC_GetMode(TIM_TypeDef *TIMx, uint32_t Channel)
1652
{
1653
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1654
  register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1655
  return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
1656
}
1657
 
1658
/**
1659
  * @brief  Set the polarity of an output channel.
1660
  * @rmtoll CCER         CC1P          LL_TIM_OC_SetPolarity\n
1661
  *         CCER         CC1NP         LL_TIM_OC_SetPolarity\n
1662
  *         CCER         CC2P          LL_TIM_OC_SetPolarity\n
1663
  *         CCER         CC2NP         LL_TIM_OC_SetPolarity\n
1664
  *         CCER         CC3P          LL_TIM_OC_SetPolarity\n
1665
  *         CCER         CC3NP         LL_TIM_OC_SetPolarity\n
1666
  *         CCER         CC4P          LL_TIM_OC_SetPolarity
1667
  * @param  TIMx Timer instance
1668
  * @param  Channel This parameter can be one of the following values:
1669
  *         @arg @ref LL_TIM_CHANNEL_CH1
1670
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1671
  *         @arg @ref LL_TIM_CHANNEL_CH2
1672
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1673
  *         @arg @ref LL_TIM_CHANNEL_CH3
1674
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1675
  *         @arg @ref LL_TIM_CHANNEL_CH4
1676
  * @param  Polarity This parameter can be one of the following values:
1677
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH
1678
  *         @arg @ref LL_TIM_OCPOLARITY_LOW
1679
  * @retval None
1680
  */
1681
__STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
1682
{
1683
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1684
  MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),  Polarity << SHIFT_TAB_CCxP[iChannel]);
1685
}
1686
 
1687
/**
1688
  * @brief  Get the polarity of an output channel.
1689
  * @rmtoll CCER         CC1P          LL_TIM_OC_GetPolarity\n
1690
  *         CCER         CC1NP         LL_TIM_OC_GetPolarity\n
1691
  *         CCER         CC2P          LL_TIM_OC_GetPolarity\n
1692
  *         CCER         CC2NP         LL_TIM_OC_GetPolarity\n
1693
  *         CCER         CC3P          LL_TIM_OC_GetPolarity\n
1694
  *         CCER         CC3NP         LL_TIM_OC_GetPolarity\n
1695
  *         CCER         CC4P          LL_TIM_OC_GetPolarity
1696
  * @param  TIMx Timer instance
1697
  * @param  Channel This parameter can be one of the following values:
1698
  *         @arg @ref LL_TIM_CHANNEL_CH1
1699
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1700
  *         @arg @ref LL_TIM_CHANNEL_CH2
1701
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1702
  *         @arg @ref LL_TIM_CHANNEL_CH3
1703
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1704
  *         @arg @ref LL_TIM_CHANNEL_CH4
1705
  * @retval Returned value can be one of the following values:
1706
  *         @arg @ref LL_TIM_OCPOLARITY_HIGH
1707
  *         @arg @ref LL_TIM_OCPOLARITY_LOW
1708
  */
1709
__STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel)
1710
{
1711
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1712
  return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
1713
}
1714
 
1715
/**
1716
  * @brief  Set the IDLE state of an output channel
1717
  * @note This function is significant only for the timer instances
1718
  *       supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx)
1719
  *       can be used to check whether or not a timer instance provides
1720
  *       a break input.
1721
  * @rmtoll CR2         OIS1          LL_TIM_OC_SetIdleState\n
1722
  *         CR2         OIS1N         LL_TIM_OC_SetIdleState\n
1723
  *         CR2         OIS2          LL_TIM_OC_SetIdleState\n
1724
  *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
1725
  *         CR2         OIS3          LL_TIM_OC_SetIdleState\n
1726
  *         CR2         OIS3N         LL_TIM_OC_SetIdleState\n
1727
  *         CR2         OIS4          LL_TIM_OC_SetIdleState
1728
  * @param  TIMx Timer instance
1729
  * @param  Channel This parameter can be one of the following values:
1730
  *         @arg @ref LL_TIM_CHANNEL_CH1
1731
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1732
  *         @arg @ref LL_TIM_CHANNEL_CH2
1733
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1734
  *         @arg @ref LL_TIM_CHANNEL_CH3
1735
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1736
  *         @arg @ref LL_TIM_CHANNEL_CH4
1737
  * @param  IdleState This parameter can be one of the following values:
1738
  *         @arg @ref LL_TIM_OCIDLESTATE_LOW
1739
  *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
1740
  * @retval None
1741
  */
1742
__STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
1743
{
1744
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1745
  MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),  IdleState << SHIFT_TAB_OISx[iChannel]);
1746
}
1747
 
1748
/**
1749
  * @brief  Get the IDLE state of an output channel
1750
  * @rmtoll CR2         OIS1          LL_TIM_OC_GetIdleState\n
1751
  *         CR2         OIS1N         LL_TIM_OC_GetIdleState\n
1752
  *         CR2         OIS2          LL_TIM_OC_GetIdleState\n
1753
  *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
1754
  *         CR2         OIS3          LL_TIM_OC_GetIdleState\n
1755
  *         CR2         OIS3N         LL_TIM_OC_GetIdleState\n
1756
  *         CR2         OIS4          LL_TIM_OC_GetIdleState
1757
  * @param  TIMx Timer instance
1758
  * @param  Channel This parameter can be one of the following values:
1759
  *         @arg @ref LL_TIM_CHANNEL_CH1
1760
  *         @arg @ref LL_TIM_CHANNEL_CH1N
1761
  *         @arg @ref LL_TIM_CHANNEL_CH2
1762
  *         @arg @ref LL_TIM_CHANNEL_CH2N
1763
  *         @arg @ref LL_TIM_CHANNEL_CH3
1764
  *         @arg @ref LL_TIM_CHANNEL_CH3N
1765
  *         @arg @ref LL_TIM_CHANNEL_CH4
1766
  * @retval Returned value can be one of the following values:
1767
  *         @arg @ref LL_TIM_OCIDLESTATE_LOW
1768
  *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
1769
  */
1770
__STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(TIM_TypeDef *TIMx, uint32_t Channel)
1771
{
1772
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1773
  return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
1774
}
1775
 
1776
/**
1777
  * @brief  Enable fast mode for the output channel.
1778
  * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
1779
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_EnableFast\n
1780
  *         CCMR1        OC2FE          LL_TIM_OC_EnableFast\n
1781
  *         CCMR2        OC3FE          LL_TIM_OC_EnableFast\n
1782
  *         CCMR2        OC4FE          LL_TIM_OC_EnableFast
1783
  * @param  TIMx Timer instance
1784
  * @param  Channel This parameter can be one of the following values:
1785
  *         @arg @ref LL_TIM_CHANNEL_CH1
1786
  *         @arg @ref LL_TIM_CHANNEL_CH2
1787
  *         @arg @ref LL_TIM_CHANNEL_CH3
1788
  *         @arg @ref LL_TIM_CHANNEL_CH4
1789
  * @retval None
1790
  */
1791
__STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
1792
{
1793
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1794
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1795
  SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
1796
 
1797
}
1798
 
1799
/**
1800
  * @brief  Disable fast mode for the output channel.
1801
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_DisableFast\n
1802
  *         CCMR1        OC2FE          LL_TIM_OC_DisableFast\n
1803
  *         CCMR2        OC3FE          LL_TIM_OC_DisableFast\n
1804
  *         CCMR2        OC4FE          LL_TIM_OC_DisableFast
1805
  * @param  TIMx Timer instance
1806
  * @param  Channel This parameter can be one of the following values:
1807
  *         @arg @ref LL_TIM_CHANNEL_CH1
1808
  *         @arg @ref LL_TIM_CHANNEL_CH2
1809
  *         @arg @ref LL_TIM_CHANNEL_CH3
1810
  *         @arg @ref LL_TIM_CHANNEL_CH4
1811
  * @retval None
1812
  */
1813
__STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
1814
{
1815
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1816
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1817
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
1818
 
1819
}
1820
 
1821
/**
1822
  * @brief  Indicates whether fast mode is enabled for the output channel.
1823
  * @rmtoll CCMR1        OC1FE          LL_TIM_OC_IsEnabledFast\n
1824
  *         CCMR1        OC2FE          LL_TIM_OC_IsEnabledFast\n
1825
  *         CCMR2        OC3FE          LL_TIM_OC_IsEnabledFast\n
1826
  *         CCMR2        OC4FE          LL_TIM_OC_IsEnabledFast\n
1827
  * @param  TIMx Timer instance
1828
  * @param  Channel This parameter can be one of the following values:
1829
  *         @arg @ref LL_TIM_CHANNEL_CH1
1830
  *         @arg @ref LL_TIM_CHANNEL_CH2
1831
  *         @arg @ref LL_TIM_CHANNEL_CH3
1832
  *         @arg @ref LL_TIM_CHANNEL_CH4
1833
  * @retval State of bit (1 or 0).
1834
  */
1835
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(TIM_TypeDef *TIMx, uint32_t Channel)
1836
{
1837
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1838
  register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1839
  register uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
1840
  return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
1841
}
1842
 
1843
/**
1844
  * @brief  Enable compare register (TIMx_CCRx) preload for the output channel.
1845
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_EnablePreload\n
1846
  *         CCMR1        OC2PE          LL_TIM_OC_EnablePreload\n
1847
  *         CCMR2        OC3PE          LL_TIM_OC_EnablePreload\n
1848
  *         CCMR2        OC4PE          LL_TIM_OC_EnablePreload
1849
  * @param  TIMx Timer instance
1850
  * @param  Channel This parameter can be one of the following values:
1851
  *         @arg @ref LL_TIM_CHANNEL_CH1
1852
  *         @arg @ref LL_TIM_CHANNEL_CH2
1853
  *         @arg @ref LL_TIM_CHANNEL_CH3
1854
  *         @arg @ref LL_TIM_CHANNEL_CH4
1855
  * @retval None
1856
  */
1857
__STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
1858
{
1859
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1860
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1861
  SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
1862
}
1863
 
1864
/**
1865
  * @brief  Disable compare register (TIMx_CCRx) preload for the output channel.
1866
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_DisablePreload\n
1867
  *         CCMR1        OC2PE          LL_TIM_OC_DisablePreload\n
1868
  *         CCMR2        OC3PE          LL_TIM_OC_DisablePreload\n
1869
  *         CCMR2        OC4PE          LL_TIM_OC_DisablePreload
1870
  * @param  TIMx Timer instance
1871
  * @param  Channel This parameter can be one of the following values:
1872
  *         @arg @ref LL_TIM_CHANNEL_CH1
1873
  *         @arg @ref LL_TIM_CHANNEL_CH2
1874
  *         @arg @ref LL_TIM_CHANNEL_CH3
1875
  *         @arg @ref LL_TIM_CHANNEL_CH4
1876
  * @retval None
1877
  */
1878
__STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
1879
{
1880
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1881
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1882
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
1883
}
1884
 
1885
/**
1886
  * @brief  Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
1887
  * @rmtoll CCMR1        OC1PE          LL_TIM_OC_IsEnabledPreload\n
1888
  *         CCMR1        OC2PE          LL_TIM_OC_IsEnabledPreload\n
1889
  *         CCMR2        OC3PE          LL_TIM_OC_IsEnabledPreload\n
1890
  *         CCMR2        OC4PE          LL_TIM_OC_IsEnabledPreload\n
1891
  * @param  TIMx Timer instance
1892
  * @param  Channel This parameter can be one of the following values:
1893
  *         @arg @ref LL_TIM_CHANNEL_CH1
1894
  *         @arg @ref LL_TIM_CHANNEL_CH2
1895
  *         @arg @ref LL_TIM_CHANNEL_CH3
1896
  *         @arg @ref LL_TIM_CHANNEL_CH4
1897
  * @retval State of bit (1 or 0).
1898
  */
1899
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(TIM_TypeDef *TIMx, uint32_t Channel)
1900
{
1901
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1902
  register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1903
  register uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
1904
  return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
1905
}
1906
 
1907
/**
1908
  * @brief  Enable clearing the output channel on an external event.
1909
  * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
1910
  * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
1911
  *       or not a timer instance can clear the OCxREF signal on an external event.
1912
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_EnableClear\n
1913
  *         CCMR1        OC2CE          LL_TIM_OC_EnableClear\n
1914
  *         CCMR2        OC3CE          LL_TIM_OC_EnableClear\n
1915
  *         CCMR2        OC4CE          LL_TIM_OC_EnableClear
1916
  * @param  TIMx Timer instance
1917
  * @param  Channel This parameter can be one of the following values:
1918
  *         @arg @ref LL_TIM_CHANNEL_CH1
1919
  *         @arg @ref LL_TIM_CHANNEL_CH2
1920
  *         @arg @ref LL_TIM_CHANNEL_CH3
1921
  *         @arg @ref LL_TIM_CHANNEL_CH4
1922
  * @retval None
1923
  */
1924
__STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
1925
{
1926
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1927
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1928
  SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
1929
}
1930
 
1931
/**
1932
  * @brief  Disable clearing the output channel on an external event.
1933
  * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
1934
  *       or not a timer instance can clear the OCxREF signal on an external event.
1935
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_DisableClear\n
1936
  *         CCMR1        OC2CE          LL_TIM_OC_DisableClear\n
1937
  *         CCMR2        OC3CE          LL_TIM_OC_DisableClear\n
1938
  *         CCMR2        OC4CE          LL_TIM_OC_DisableClear
1939
  * @param  TIMx Timer instance
1940
  * @param  Channel This parameter can be one of the following values:
1941
  *         @arg @ref LL_TIM_CHANNEL_CH1
1942
  *         @arg @ref LL_TIM_CHANNEL_CH2
1943
  *         @arg @ref LL_TIM_CHANNEL_CH3
1944
  *         @arg @ref LL_TIM_CHANNEL_CH4
1945
  * @retval None
1946
  */
1947
__STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
1948
{
1949
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1950
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1951
  CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
1952
}
1953
 
1954
/**
1955
  * @brief  Indicates clearing the output channel on an external event is enabled for the output channel.
1956
  * @note This function enables clearing the output channel on an external event.
1957
  * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
1958
  * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
1959
  *       or not a timer instance can clear the OCxREF signal on an external event.
1960
  * @rmtoll CCMR1        OC1CE          LL_TIM_OC_IsEnabledClear\n
1961
  *         CCMR1        OC2CE          LL_TIM_OC_IsEnabledClear\n
1962
  *         CCMR2        OC3CE          LL_TIM_OC_IsEnabledClear\n
1963
  *         CCMR2        OC4CE          LL_TIM_OC_IsEnabledClear\n
1964
  * @param  TIMx Timer instance
1965
  * @param  Channel This parameter can be one of the following values:
1966
  *         @arg @ref LL_TIM_CHANNEL_CH1
1967
  *         @arg @ref LL_TIM_CHANNEL_CH2
1968
  *         @arg @ref LL_TIM_CHANNEL_CH3
1969
  *         @arg @ref LL_TIM_CHANNEL_CH4
1970
  * @retval State of bit (1 or 0).
1971
  */
1972
__STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(TIM_TypeDef *TIMx, uint32_t Channel)
1973
{
1974
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
1975
  register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
1976
  register uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
1977
  return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
1978
}
1979
 
1980
/**
1981
  * @brief  Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of the Ocx and OCxN signals).
1982
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
1983
  *       dead-time insertion feature is supported by a timer instance.
1984
  * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
1985
  * @rmtoll BDTR         DTG           LL_TIM_OC_SetDeadTime
1986
  * @param  TIMx Timer instance
1987
  * @param  DeadTime between Min_Data=0 and Max_Data=255
1988
  * @retval None
1989
  */
1990
__STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
1991
{
1992
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
1993
}
1994
 
1995
/**
1996
  * @brief  Set compare value for output channel 1 (TIMx_CCR1).
1997
  * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
1998
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1999
  *       whether or not a timer instance supports a 32 bits counter.
2000
  * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2001
  *       output channel 1 is supported by a timer instance.
2002
  * @rmtoll CCR1         CCR1          LL_TIM_OC_SetCompareCH1
2003
  * @param  TIMx Timer instance
2004
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2005
  * @retval None
2006
  */
2007
__STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
2008
{
2009
  WRITE_REG(TIMx->CCR1, CompareValue);
2010
}
2011
 
2012
/**
2013
  * @brief  Set compare value for output channel 2 (TIMx_CCR2).
2014
  * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2015
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2016
  *       whether or not a timer instance supports a 32 bits counter.
2017
  * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2018
  *       output channel 2 is supported by a timer instance.
2019
  * @rmtoll CCR2         CCR2          LL_TIM_OC_SetCompareCH2
2020
  * @param  TIMx Timer instance
2021
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2022
  * @retval None
2023
  */
2024
__STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
2025
{
2026
  WRITE_REG(TIMx->CCR2, CompareValue);
2027
}
2028
 
2029
/**
2030
  * @brief  Set compare value for output channel 3 (TIMx_CCR3).
2031
  * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2032
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2033
  *       whether or not a timer instance supports a 32 bits counter.
2034
  * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2035
  *       output channel is supported by a timer instance.
2036
  * @rmtoll CCR3         CCR3          LL_TIM_OC_SetCompareCH3
2037
  * @param  TIMx Timer instance
2038
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2039
  * @retval None
2040
  */
2041
__STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
2042
{
2043
  WRITE_REG(TIMx->CCR3, CompareValue);
2044
}
2045
 
2046
/**
2047
  * @brief  Set compare value for output channel 4 (TIMx_CCR4).
2048
  * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2049
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2050
  *       whether or not a timer instance supports a 32 bits counter.
2051
  * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2052
  *       output channel 4 is supported by a timer instance.
2053
  * @rmtoll CCR4         CCR4          LL_TIM_OC_SetCompareCH4
2054
  * @param  TIMx Timer instance
2055
  * @param  CompareValue between Min_Data=0 and Max_Data=65535
2056
  * @retval None
2057
  */
2058
__STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
2059
{
2060
  WRITE_REG(TIMx->CCR4, CompareValue);
2061
}
2062
 
2063
/**
2064
  * @brief  Get compare value (TIMx_CCR1) set for  output channel 1.
2065
  * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2066
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2067
  *       whether or not a timer instance supports a 32 bits counter.
2068
  * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2069
  *       output channel 1 is supported by a timer instance.
2070
  * @rmtoll CCR1         CCR1          LL_TIM_OC_GetCompareCH1
2071
  * @param  TIMx Timer instance
2072
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2073
  */
2074
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(TIM_TypeDef *TIMx)
2075
{
2076
  return (uint32_t)(READ_REG(TIMx->CCR1));
2077
}
2078
 
2079
/**
2080
  * @brief  Get compare value (TIMx_CCR2) set for  output channel 2.
2081
  * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2082
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2083
  *       whether or not a timer instance supports a 32 bits counter.
2084
  * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2085
  *       output channel 2 is supported by a timer instance.
2086
  * @rmtoll CCR2         CCR2          LL_TIM_OC_GetCompareCH2
2087
  * @param  TIMx Timer instance
2088
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2089
  */
2090
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(TIM_TypeDef *TIMx)
2091
{
2092
  return (uint32_t)(READ_REG(TIMx->CCR2));
2093
}
2094
 
2095
/**
2096
  * @brief  Get compare value (TIMx_CCR3) set for  output channel 3.
2097
  * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2098
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2099
  *       whether or not a timer instance supports a 32 bits counter.
2100
  * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2101
  *       output channel 3 is supported by a timer instance.
2102
  * @rmtoll CCR3         CCR3          LL_TIM_OC_GetCompareCH3
2103
  * @param  TIMx Timer instance
2104
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2105
  */
2106
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(TIM_TypeDef *TIMx)
2107
{
2108
  return (uint32_t)(READ_REG(TIMx->CCR3));
2109
}
2110
 
2111
/**
2112
  * @brief  Get compare value (TIMx_CCR4) set for  output channel 4.
2113
  * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2114
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2115
  *       whether or not a timer instance supports a 32 bits counter.
2116
  * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2117
  *       output channel 4 is supported by a timer instance.
2118
  * @rmtoll CCR4         CCR4          LL_TIM_OC_GetCompareCH4
2119
  * @param  TIMx Timer instance
2120
  * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2121
  */
2122
__STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(TIM_TypeDef *TIMx)
2123
{
2124
  return (uint32_t)(READ_REG(TIMx->CCR4));
2125
}
2126
 
2127
/**
2128
  * @}
2129
  */
2130
 
2131
/** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
2132
  * @{
2133
  */
2134
/**
2135
  * @brief  Configure input channel.
2136
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_Config\n
2137
  *         CCMR1        IC1PSC        LL_TIM_IC_Config\n
2138
  *         CCMR1        IC1F          LL_TIM_IC_Config\n
2139
  *         CCMR1        CC2S          LL_TIM_IC_Config\n
2140
  *         CCMR1        IC2PSC        LL_TIM_IC_Config\n
2141
  *         CCMR1        IC2F          LL_TIM_IC_Config\n
2142
  *         CCMR2        CC3S          LL_TIM_IC_Config\n
2143
  *         CCMR2        IC3PSC        LL_TIM_IC_Config\n
2144
  *         CCMR2        IC3F          LL_TIM_IC_Config\n
2145
  *         CCMR2        CC4S          LL_TIM_IC_Config\n
2146
  *         CCMR2        IC4PSC        LL_TIM_IC_Config\n
2147
  *         CCMR2        IC4F          LL_TIM_IC_Config\n
2148
  *         CCER         CC1P          LL_TIM_IC_Config\n
2149
  *         CCER         CC1NP         LL_TIM_IC_Config\n
2150
  *         CCER         CC2P          LL_TIM_IC_Config\n
2151
  *         CCER         CC2NP         LL_TIM_IC_Config\n
2152
  *         CCER         CC3P          LL_TIM_IC_Config\n
2153
  *         CCER         CC3NP         LL_TIM_IC_Config\n
2154
  *         CCER         CC4P          LL_TIM_IC_Config\n
2155
  *         CCER         CC4NP         LL_TIM_IC_Config
2156
  * @param  TIMx Timer instance
2157
  * @param  Channel This parameter can be one of the following values:
2158
  *         @arg @ref LL_TIM_CHANNEL_CH1
2159
  *         @arg @ref LL_TIM_CHANNEL_CH2
2160
  *         @arg @ref LL_TIM_CHANNEL_CH3
2161
  *         @arg @ref LL_TIM_CHANNEL_CH4
2162
  * @param  Configuration This parameter must be a combination of all the following values:
2163
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
2164
  *         @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
2165
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
2166
  *         @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
2167
  * @retval None
2168
  */
2169
__STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2170
{
2171
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2172
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2173
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
2174
             ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S))  << SHIFT_TAB_ICxx[iChannel]);
2175
  MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2176
             (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
2177
}
2178
 
2179
/**
2180
  * @brief  Set the active input.
2181
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_SetActiveInput\n
2182
  *         CCMR1        CC2S          LL_TIM_IC_SetActiveInput\n
2183
  *         CCMR2        CC3S          LL_TIM_IC_SetActiveInput\n
2184
  *         CCMR2        CC4S          LL_TIM_IC_SetActiveInput
2185
  * @param  TIMx Timer instance
2186
  * @param  Channel This parameter can be one of the following values:
2187
  *         @arg @ref LL_TIM_CHANNEL_CH1
2188
  *         @arg @ref LL_TIM_CHANNEL_CH2
2189
  *         @arg @ref LL_TIM_CHANNEL_CH3
2190
  *         @arg @ref LL_TIM_CHANNEL_CH4
2191
  * @param  ICActiveInput This parameter can be one of the following values:
2192
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2193
  *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2194
  *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2195
  * @retval None
2196
  */
2197
__STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
2198
{
2199
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2200
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2201
  MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2202
}
2203
 
2204
/**
2205
  * @brief  Get the current active input.
2206
  * @rmtoll CCMR1        CC1S          LL_TIM_IC_GetActiveInput\n
2207
  *         CCMR1        CC2S          LL_TIM_IC_GetActiveInput\n
2208
  *         CCMR2        CC3S          LL_TIM_IC_GetActiveInput\n
2209
  *         CCMR2        CC4S          LL_TIM_IC_GetActiveInput
2210
  * @param  TIMx Timer instance
2211
  * @param  Channel This parameter can be one of the following values:
2212
  *         @arg @ref LL_TIM_CHANNEL_CH1
2213
  *         @arg @ref LL_TIM_CHANNEL_CH2
2214
  *         @arg @ref LL_TIM_CHANNEL_CH3
2215
  *         @arg @ref LL_TIM_CHANNEL_CH4
2216
  * @retval Returned value can be one of the following values:
2217
  *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2218
  *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2219
  *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2220
  */
2221
__STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel)
2222
{
2223
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2224
  register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2225
  return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2226
}
2227
 
2228
/**
2229
  * @brief  Set the prescaler of input channel.
2230
  * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_SetPrescaler\n
2231
  *         CCMR1        IC2PSC        LL_TIM_IC_SetPrescaler\n
2232
  *         CCMR2        IC3PSC        LL_TIM_IC_SetPrescaler\n
2233
  *         CCMR2        IC4PSC        LL_TIM_IC_SetPrescaler
2234
  * @param  TIMx Timer instance
2235
  * @param  Channel This parameter can be one of the following values:
2236
  *         @arg @ref LL_TIM_CHANNEL_CH1
2237
  *         @arg @ref LL_TIM_CHANNEL_CH2
2238
  *         @arg @ref LL_TIM_CHANNEL_CH3
2239
  *         @arg @ref LL_TIM_CHANNEL_CH4
2240
  * @param  ICPrescaler This parameter can be one of the following values:
2241
  *         @arg @ref LL_TIM_ICPSC_DIV1
2242
  *         @arg @ref LL_TIM_ICPSC_DIV2
2243
  *         @arg @ref LL_TIM_ICPSC_DIV4
2244
  *         @arg @ref LL_TIM_ICPSC_DIV8
2245
  * @retval None
2246
  */
2247
__STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
2248
{
2249
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2250
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2251
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2252
}
2253
 
2254
/**
2255
  * @brief  Get the current prescaler value acting on an  input channel.
2256
  * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_GetPrescaler\n
2257
  *         CCMR1        IC2PSC        LL_TIM_IC_GetPrescaler\n
2258
  *         CCMR2        IC3PSC        LL_TIM_IC_GetPrescaler\n
2259
  *         CCMR2        IC4PSC        LL_TIM_IC_GetPrescaler
2260
  * @param  TIMx Timer instance
2261
  * @param  Channel This parameter can be one of the following values:
2262
  *         @arg @ref LL_TIM_CHANNEL_CH1
2263
  *         @arg @ref LL_TIM_CHANNEL_CH2
2264
  *         @arg @ref LL_TIM_CHANNEL_CH3
2265
  *         @arg @ref LL_TIM_CHANNEL_CH4
2266
  * @retval Returned value can be one of the following values:
2267
  *         @arg @ref LL_TIM_ICPSC_DIV1
2268
  *         @arg @ref LL_TIM_ICPSC_DIV2
2269
  *         @arg @ref LL_TIM_ICPSC_DIV4
2270
  *         @arg @ref LL_TIM_ICPSC_DIV8
2271
  */
2272
__STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel)
2273
{
2274
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2275
  register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2276
  return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2277
}
2278
 
2279
/**
2280
  * @brief  Set the input filter duration.
2281
  * @rmtoll CCMR1        IC1F          LL_TIM_IC_SetFilter\n
2282
  *         CCMR1        IC2F          LL_TIM_IC_SetFilter\n
2283
  *         CCMR2        IC3F          LL_TIM_IC_SetFilter\n
2284
  *         CCMR2        IC4F          LL_TIM_IC_SetFilter
2285
  * @param  TIMx Timer instance
2286
  * @param  Channel This parameter can be one of the following values:
2287
  *         @arg @ref LL_TIM_CHANNEL_CH1
2288
  *         @arg @ref LL_TIM_CHANNEL_CH2
2289
  *         @arg @ref LL_TIM_CHANNEL_CH3
2290
  *         @arg @ref LL_TIM_CHANNEL_CH4
2291
  * @param  ICFilter This parameter can be one of the following values:
2292
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2293
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2294
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2295
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2296
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2297
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2298
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2299
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2300
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2301
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2302
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2303
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2304
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2305
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2306
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2307
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2308
  * @retval None
2309
  */
2310
__STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
2311
{
2312
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2313
  register __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2314
  MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2315
}
2316
 
2317
/**
2318
  * @brief  Get the input filter duration.
2319
  * @rmtoll CCMR1        IC1F          LL_TIM_IC_GetFilter\n
2320
  *         CCMR1        IC2F          LL_TIM_IC_GetFilter\n
2321
  *         CCMR2        IC3F          LL_TIM_IC_GetFilter\n
2322
  *         CCMR2        IC4F          LL_TIM_IC_GetFilter
2323
  * @param  TIMx Timer instance
2324
  * @param  Channel This parameter can be one of the following values:
2325
  *         @arg @ref LL_TIM_CHANNEL_CH1
2326
  *         @arg @ref LL_TIM_CHANNEL_CH2
2327
  *         @arg @ref LL_TIM_CHANNEL_CH3
2328
  *         @arg @ref LL_TIM_CHANNEL_CH4
2329
  * @retval Returned value can be one of the following values:
2330
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2331
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2332
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2333
  *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2334
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2335
  *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2336
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2337
  *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2338
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2339
  *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2340
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2341
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2342
  *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2343
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2344
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2345
  *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2346
  */
2347
__STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(TIM_TypeDef *TIMx, uint32_t Channel)
2348
{
2349
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2350
  register const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2351
  return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2352
}
2353
 
2354
/**
2355
  * @brief  Set the input channel polarity.
2356
  * @rmtoll CCER         CC1P          LL_TIM_IC_SetPolarity\n
2357
  *         CCER         CC1NP         LL_TIM_IC_SetPolarity\n
2358
  *         CCER         CC2P          LL_TIM_IC_SetPolarity\n
2359
  *         CCER         CC2NP         LL_TIM_IC_SetPolarity\n
2360
  *         CCER         CC3P          LL_TIM_IC_SetPolarity\n
2361
  *         CCER         CC3NP         LL_TIM_IC_SetPolarity\n
2362
  *         CCER         CC4P          LL_TIM_IC_SetPolarity\n
2363
  *         CCER         CC4NP         LL_TIM_IC_SetPolarity
2364
  * @param  TIMx Timer instance
2365
  * @param  Channel This parameter can be one of the following values:
2366
  *         @arg @ref LL_TIM_CHANNEL_CH1
2367
  *         @arg @ref LL_TIM_CHANNEL_CH2
2368
  *         @arg @ref LL_TIM_CHANNEL_CH3
2369
  *         @arg @ref LL_TIM_CHANNEL_CH4
2370
  * @param  ICPolarity This parameter can be one of the following values:
2371
  *         @arg @ref LL_TIM_IC_POLARITY_RISING
2372
  *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2373
  *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2374
  * @retval None
2375
  */
2376
__STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
2377
{
2378
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2379
  MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2380
             ICPolarity << SHIFT_TAB_CCxP[iChannel]);
2381
}
2382
 
2383
/**
2384
  * @brief  Get the current input channel polarity.
2385
  * @rmtoll CCER         CC1P          LL_TIM_IC_GetPolarity\n
2386
  *         CCER         CC1NP         LL_TIM_IC_GetPolarity\n
2387
  *         CCER         CC2P          LL_TIM_IC_GetPolarity\n
2388
  *         CCER         CC2NP         LL_TIM_IC_GetPolarity\n
2389
  *         CCER         CC3P          LL_TIM_IC_GetPolarity\n
2390
  *         CCER         CC3NP         LL_TIM_IC_GetPolarity\n
2391
  *         CCER         CC4P          LL_TIM_IC_GetPolarity\n
2392
  *         CCER         CC4NP         LL_TIM_IC_GetPolarity
2393
  * @param  TIMx Timer instance
2394
  * @param  Channel This parameter can be one of the following values:
2395
  *         @arg @ref LL_TIM_CHANNEL_CH1
2396
  *         @arg @ref LL_TIM_CHANNEL_CH2
2397
  *         @arg @ref LL_TIM_CHANNEL_CH3
2398
  *         @arg @ref LL_TIM_CHANNEL_CH4
2399
  * @retval Returned value can be one of the following values:
2400
  *         @arg @ref LL_TIM_IC_POLARITY_RISING
2401
  *         @arg @ref LL_TIM_IC_POLARITY_FALLING
2402
  *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
2403
  */
2404
__STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel)
2405
{
2406
  register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2407
  return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
2408
          SHIFT_TAB_CCxP[iChannel]);
2409
}
2410
 
2411
/**
2412
  * @brief  Connect the TIMx_CH1, CH2 and CH3 pins  to the TI1 input (XOR combination).
2413
  * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2414
  *       a timer instance provides an XOR input.
2415
  * @rmtoll CR2          TI1S          LL_TIM_IC_EnableXORCombination
2416
  * @param  TIMx Timer instance
2417
  * @retval None
2418
  */
2419
__STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
2420
{
2421
  SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
2422
}
2423
 
2424
/**
2425
  * @brief  Disconnect the TIMx_CH1, CH2 and CH3 pins  from the TI1 input.
2426
  * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2427
  *       a timer instance provides an XOR input.
2428
  * @rmtoll CR2          TI1S          LL_TIM_IC_DisableXORCombination
2429
  * @param  TIMx Timer instance
2430
  * @retval None
2431
  */
2432
__STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
2433
{
2434
  CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
2435
}
2436
 
2437
/**
2438
  * @brief  Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
2439
  * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
2440
  * a timer instance provides an XOR input.
2441
  * @rmtoll CR2          TI1S          LL_TIM_IC_IsEnabledXORCombination
2442
  * @param  TIMx Timer instance
2443
  * @retval State of bit (1 or 0).
2444
  */
2445
__STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef *TIMx)
2446
{
2447
  return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
2448
}
2449
 
2450
/**
2451
  * @brief  Get captured value for input channel 1.
2452
  * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2453
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2454
  *       whether or not a timer instance supports a 32 bits counter.
2455
  * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2456
  *       input channel 1 is supported by a timer instance.
2457
  * @rmtoll CCR1         CCR1          LL_TIM_IC_GetCaptureCH1
2458
  * @param  TIMx Timer instance
2459
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2460
  */
2461
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(TIM_TypeDef *TIMx)
2462
{
2463
  return (uint32_t)(READ_REG(TIMx->CCR1));
2464
}
2465
 
2466
/**
2467
  * @brief  Get captured value for input channel 2.
2468
  * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2469
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2470
  *       whether or not a timer instance supports a 32 bits counter.
2471
  * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2472
  *       input channel 2 is supported by a timer instance.
2473
  * @rmtoll CCR2         CCR2          LL_TIM_IC_GetCaptureCH2
2474
  * @param  TIMx Timer instance
2475
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2476
  */
2477
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(TIM_TypeDef *TIMx)
2478
{
2479
  return (uint32_t)(READ_REG(TIMx->CCR2));
2480
}
2481
 
2482
/**
2483
  * @brief  Get captured value for input channel 3.
2484
  * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2485
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2486
  *       whether or not a timer instance supports a 32 bits counter.
2487
  * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2488
  *       input channel 3 is supported by a timer instance.
2489
  * @rmtoll CCR3         CCR3          LL_TIM_IC_GetCaptureCH3
2490
  * @param  TIMx Timer instance
2491
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2492
  */
2493
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(TIM_TypeDef *TIMx)
2494
{
2495
  return (uint32_t)(READ_REG(TIMx->CCR3));
2496
}
2497
 
2498
/**
2499
  * @brief  Get captured value for input channel 4.
2500
  * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
2501
  * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2502
  *       whether or not a timer instance supports a 32 bits counter.
2503
  * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2504
  *       input channel 4 is supported by a timer instance.
2505
  * @rmtoll CCR4         CCR4          LL_TIM_IC_GetCaptureCH4
2506
  * @param  TIMx Timer instance
2507
  * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
2508
  */
2509
__STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(TIM_TypeDef *TIMx)
2510
{
2511
  return (uint32_t)(READ_REG(TIMx->CCR4));
2512
}
2513
 
2514
/**
2515
  * @}
2516
  */
2517
 
2518
/** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
2519
  * @{
2520
  */
2521
/**
2522
  * @brief  Enable external clock mode 2.
2523
  * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
2524
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2525
  *       whether or not a timer instance supports external clock mode2.
2526
  * @rmtoll SMCR         ECE           LL_TIM_EnableExternalClock
2527
  * @param  TIMx Timer instance
2528
  * @retval None
2529
  */
2530
__STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
2531
{
2532
  SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
2533
}
2534
 
2535
/**
2536
  * @brief  Disable external clock mode 2.
2537
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2538
  *       whether or not a timer instance supports external clock mode2.
2539
  * @rmtoll SMCR         ECE           LL_TIM_DisableExternalClock
2540
  * @param  TIMx Timer instance
2541
  * @retval None
2542
  */
2543
__STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
2544
{
2545
  CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
2546
}
2547
 
2548
/**
2549
  * @brief  Indicate whether external clock mode 2 is enabled.
2550
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2551
  *       whether or not a timer instance supports external clock mode2.
2552
  * @rmtoll SMCR         ECE           LL_TIM_IsEnabledExternalClock
2553
  * @param  TIMx Timer instance
2554
  * @retval State of bit (1 or 0).
2555
  */
2556
__STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(TIM_TypeDef *TIMx)
2557
{
2558
  return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
2559
}
2560
 
2561
/**
2562
  * @brief  Set the clock source of the counter clock.
2563
  * @note when selected clock source is external clock mode 1, the timer input
2564
  *       the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
2565
  *       function. This timer input must be configured by calling
2566
  *       the @ref LL_TIM_IC_Config() function.
2567
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
2568
  *       whether or not a timer instance supports external clock mode1.
2569
  * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
2570
  *       whether or not a timer instance supports external clock mode2.
2571
  * @rmtoll SMCR         SMS           LL_TIM_SetClockSource\n
2572
  *         SMCR         ECE           LL_TIM_SetClockSource
2573
  * @param  TIMx Timer instance
2574
  * @param  ClockSource This parameter can be one of the following values:
2575
  *         @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
2576
  *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
2577
  *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
2578
  * @retval None
2579
  */
2580
__STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
2581
{
2582
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
2583
}
2584
 
2585
/**
2586
  * @brief  Set the encoder interface mode.
2587
  * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
2588
  *       whether or not a timer instance supports the encoder mode.
2589
  * @rmtoll SMCR         SMS           LL_TIM_SetEncoderMode
2590
  * @param  TIMx Timer instance
2591
  * @param  EncoderMode This parameter can be one of the following values:
2592
  *         @arg @ref LL_TIM_ENCODERMODE_X2_TI1
2593
  *         @arg @ref LL_TIM_ENCODERMODE_X2_TI2
2594
  *         @arg @ref LL_TIM_ENCODERMODE_X4_TI12
2595
  * @retval None
2596
  */
2597
__STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
2598
{
2599
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
2600
}
2601
 
2602
/**
2603
  * @}
2604
  */
2605
 
2606
/** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
2607
  * @{
2608
  */
2609
/**
2610
  * @brief  Set the trigger output (TRGO) used for timer synchronization .
2611
  * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
2612
  *       whether or not a timer instance can operate as a master timer.
2613
  * @rmtoll CR2          MMS           LL_TIM_SetTriggerOutput
2614
  * @param  TIMx Timer instance
2615
  * @param  TimerSynchronization This parameter can be one of the following values:
2616
  *         @arg @ref LL_TIM_TRGO_RESET
2617
  *         @arg @ref LL_TIM_TRGO_ENABLE
2618
  *         @arg @ref LL_TIM_TRGO_UPDATE
2619
  *         @arg @ref LL_TIM_TRGO_CC1IF
2620
  *         @arg @ref LL_TIM_TRGO_OC1REF
2621
  *         @arg @ref LL_TIM_TRGO_OC2REF
2622
  *         @arg @ref LL_TIM_TRGO_OC3REF
2623
  *         @arg @ref LL_TIM_TRGO_OC4REF
2624
  * @retval None
2625
  */
2626
__STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
2627
{
2628
  MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
2629
}
2630
 
2631
/**
2632
  * @brief  Set the synchronization mode of a slave timer.
2633
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2634
  *       a timer instance can operate as a slave timer.
2635
  * @rmtoll SMCR         SMS           LL_TIM_SetSlaveMode
2636
  * @param  TIMx Timer instance
2637
  * @param  SlaveMode This parameter can be one of the following values:
2638
  *         @arg @ref LL_TIM_SLAVEMODE_DISABLED
2639
  *         @arg @ref LL_TIM_SLAVEMODE_RESET
2640
  *         @arg @ref LL_TIM_SLAVEMODE_GATED
2641
  *         @arg @ref LL_TIM_SLAVEMODE_TRIGGER
2642
  * @retval None
2643
  */
2644
__STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
2645
{
2646
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
2647
}
2648
 
2649
/**
2650
  * @brief  Set the selects the trigger input to be used to synchronize the counter.
2651
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2652
  *       a timer instance can operate as a slave timer.
2653
  * @rmtoll SMCR         TS            LL_TIM_SetTriggerInput
2654
  * @param  TIMx Timer instance
2655
  * @param  TriggerInput This parameter can be one of the following values:
2656
  *         @arg @ref LL_TIM_TS_ITR0
2657
  *         @arg @ref LL_TIM_TS_ITR1
2658
  *         @arg @ref LL_TIM_TS_ITR2
2659
  *         @arg @ref LL_TIM_TS_ITR3
2660
  *         @arg @ref LL_TIM_TS_TI1F_ED
2661
  *         @arg @ref LL_TIM_TS_TI1FP1
2662
  *         @arg @ref LL_TIM_TS_TI2FP2
2663
  *         @arg @ref LL_TIM_TS_ETRF
2664
  * @retval None
2665
  */
2666
__STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
2667
{
2668
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
2669
}
2670
 
2671
/**
2672
  * @brief  Enable the Master/Slave mode.
2673
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2674
  *       a timer instance can operate as a slave timer.
2675
  * @rmtoll SMCR         MSM           LL_TIM_EnableMasterSlaveMode
2676
  * @param  TIMx Timer instance
2677
  * @retval None
2678
  */
2679
__STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
2680
{
2681
  SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
2682
}
2683
 
2684
/**
2685
  * @brief  Disable the Master/Slave mode.
2686
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2687
  *       a timer instance can operate as a slave timer.
2688
  * @rmtoll SMCR         MSM           LL_TIM_DisableMasterSlaveMode
2689
  * @param  TIMx Timer instance
2690
  * @retval None
2691
  */
2692
__STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
2693
{
2694
  CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
2695
}
2696
 
2697
/**
2698
  * @brief Indicates whether the Master/Slave mode is enabled.
2699
  * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
2700
  * a timer instance can operate as a slave timer.
2701
  * @rmtoll SMCR         MSM           LL_TIM_IsEnabledMasterSlaveMode
2702
  * @param  TIMx Timer instance
2703
  * @retval State of bit (1 or 0).
2704
  */
2705
__STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(TIM_TypeDef *TIMx)
2706
{
2707
  return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
2708
}
2709
 
2710
/**
2711
  * @brief  Configure the external trigger (ETR) input.
2712
  * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
2713
  *       a timer instance provides an external trigger input.
2714
  * @rmtoll SMCR         ETP           LL_TIM_ConfigETR\n
2715
  *         SMCR         ETPS          LL_TIM_ConfigETR\n
2716
  *         SMCR         ETF           LL_TIM_ConfigETR
2717
  * @param  TIMx Timer instance
2718
  * @param  ETRPolarity This parameter can be one of the following values:
2719
  *         @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
2720
  *         @arg @ref LL_TIM_ETR_POLARITY_INVERTED
2721
  * @param  ETRPrescaler This parameter can be one of the following values:
2722
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV1
2723
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV2
2724
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV4
2725
  *         @arg @ref LL_TIM_ETR_PRESCALER_DIV8
2726
  * @param  ETRFilter This parameter can be one of the following values:
2727
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1
2728
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
2729
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
2730
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
2731
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
2732
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
2733
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
2734
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
2735
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
2736
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
2737
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
2738
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
2739
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
2740
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
2741
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
2742
  *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
2743
  * @retval None
2744
  */
2745
__STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
2746
                                      uint32_t ETRFilter)
2747
{
2748
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
2749
}
2750
 
2751
/**
2752
  * @}
2753
  */
2754
 
2755
/** @defgroup TIM_LL_EF_Break_Function Break function configuration
2756
  * @{
2757
  */
2758
/**
2759
  * @brief  Enable the break function.
2760
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2761
  *       a timer instance provides a break input.
2762
  * @rmtoll BDTR         BKE           LL_TIM_EnableBRK
2763
  * @param  TIMx Timer instance
2764
  * @retval None
2765
  */
2766
__STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
2767
{
2768
  __IO uint32_t tmpreg;
2769
  SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
2770
  /* Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. */
2771
  tmpreg = READ_REG(TIMx->BDTR);
2772
  (void)(tmpreg);
2773
}
2774
 
2775
/**
2776
  * @brief  Disable the break function.
2777
  * @rmtoll BDTR         BKE           LL_TIM_DisableBRK
2778
  * @param  TIMx Timer instance
2779
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2780
  *       a timer instance provides a break input.
2781
  * @retval None
2782
  */
2783
__STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
2784
{
2785
  __IO uint32_t tmpreg;
2786
  CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
2787
  /* Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. */
2788
  tmpreg = READ_REG(TIMx->BDTR);
2789
  (void)(tmpreg);
2790
}
2791
 
2792
/**
2793
  * @brief  Configure the break input.
2794
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2795
  *       a timer instance provides a break input.
2796
  * @rmtoll BDTR         BKP           LL_TIM_ConfigBRK
2797
  * @param  TIMx Timer instance
2798
  * @param  BreakPolarity This parameter can be one of the following values:
2799
  *         @arg @ref LL_TIM_BREAK_POLARITY_LOW
2800
  *         @arg @ref LL_TIM_BREAK_POLARITY_HIGH
2801
  * @retval None
2802
  */
2803
__STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity)
2804
{
2805
  __IO uint32_t tmpreg;
2806
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP, BreakPolarity);
2807
  /* Note: Any write operation to BKP bit takes a delay of 1 APB clock cycle to become effective. */
2808
  tmpreg = READ_REG(TIMx->BDTR);
2809
  (void)(tmpreg);
2810
}
2811
 
2812
/**
2813
  * @brief  Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
2814
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2815
  *       a timer instance provides a break input.
2816
  * @rmtoll BDTR         OSSI          LL_TIM_SetOffStates\n
2817
  *         BDTR         OSSR          LL_TIM_SetOffStates
2818
  * @param  TIMx Timer instance
2819
  * @param  OffStateIdle This parameter can be one of the following values:
2820
  *         @arg @ref LL_TIM_OSSI_DISABLE
2821
  *         @arg @ref LL_TIM_OSSI_ENABLE
2822
  * @param  OffStateRun This parameter can be one of the following values:
2823
  *         @arg @ref LL_TIM_OSSR_DISABLE
2824
  *         @arg @ref LL_TIM_OSSR_ENABLE
2825
  * @retval None
2826
  */
2827
__STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
2828
{
2829
  MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
2830
}
2831
 
2832
/**
2833
  * @brief  Enable automatic output (MOE can be set by software or automatically when a break input is active).
2834
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2835
  *       a timer instance provides a break input.
2836
  * @rmtoll BDTR         AOE           LL_TIM_EnableAutomaticOutput
2837
  * @param  TIMx Timer instance
2838
  * @retval None
2839
  */
2840
__STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
2841
{
2842
  SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
2843
}
2844
 
2845
/**
2846
  * @brief  Disable automatic output (MOE can be set only by software).
2847
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2848
  *       a timer instance provides a break input.
2849
  * @rmtoll BDTR         AOE           LL_TIM_DisableAutomaticOutput
2850
  * @param  TIMx Timer instance
2851
  * @retval None
2852
  */
2853
__STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
2854
{
2855
  CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
2856
}
2857
 
2858
/**
2859
  * @brief  Indicate whether automatic output is enabled.
2860
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2861
  *       a timer instance provides a break input.
2862
  * @rmtoll BDTR         AOE           LL_TIM_IsEnabledAutomaticOutput
2863
  * @param  TIMx Timer instance
2864
  * @retval State of bit (1 or 0).
2865
  */
2866
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(TIM_TypeDef *TIMx)
2867
{
2868
  return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
2869
}
2870
 
2871
/**
2872
  * @brief  Enable the outputs (set the MOE bit in TIMx_BDTR register).
2873
  * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
2874
  *       software and is reset in case of break or break2 event
2875
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2876
  *       a timer instance provides a break input.
2877
  * @rmtoll BDTR         MOE           LL_TIM_EnableAllOutputs
2878
  * @param  TIMx Timer instance
2879
  * @retval None
2880
  */
2881
__STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
2882
{
2883
  SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
2884
}
2885
 
2886
/**
2887
  * @brief  Disable the outputs (reset the MOE bit in TIMx_BDTR register).
2888
  * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
2889
  *       software and is reset in case of break or break2 event.
2890
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2891
  *       a timer instance provides a break input.
2892
  * @rmtoll BDTR         MOE           LL_TIM_DisableAllOutputs
2893
  * @param  TIMx Timer instance
2894
  * @retval None
2895
  */
2896
__STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
2897
{
2898
  CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
2899
}
2900
 
2901
/**
2902
  * @brief  Indicates whether outputs are enabled.
2903
  * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2904
  *       a timer instance provides a break input.
2905
  * @rmtoll BDTR         MOE           LL_TIM_IsEnabledAllOutputs
2906
  * @param  TIMx Timer instance
2907
  * @retval State of bit (1 or 0).
2908
  */
2909
__STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(TIM_TypeDef *TIMx)
2910
{
2911
  return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
2912
}
2913
 
2914
/**
2915
  * @}
2916
  */
2917
 
2918
/** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
2919
  * @{
2920
  */
2921
/**
2922
  * @brief  Configures the timer DMA burst feature.
2923
  * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
2924
  *       not a timer instance supports the DMA burst mode.
2925
  * @rmtoll DCR          DBL           LL_TIM_ConfigDMABurst\n
2926
  *         DCR          DBA           LL_TIM_ConfigDMABurst
2927
  * @param  TIMx Timer instance
2928
  * @param  DMABurstBaseAddress This parameter can be one of the following values:
2929
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
2930
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
2931
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
2932
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
2933
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_SR
2934
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
2935
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
2936
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
2937
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
2938
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
2939
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
2940
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
2941
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
2942
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
2943
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
2944
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
2945
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
2946
  *         @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
2947
  * @param  DMABurstLength This parameter can be one of the following values:
2948
  *         @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
2949
  *         @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
2950
  *         @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
2951
  *         @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
2952
  *         @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
2953
  *         @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
2954
  *         @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
2955
  *         @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
2956
  *         @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
2957
  *         @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
2958
  *         @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
2959
  *         @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
2960
  *         @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
2961
  *         @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
2962
  *         @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
2963
  *         @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
2964
  *         @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
2965
  *         @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
2966
  * @retval None
2967
  */
2968
__STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
2969
{
2970
  MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
2971
}
2972
 
2973
/**
2974
  * @}
2975
  */
2976
 
2977
/** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
2978
  * @{
2979
  */
2980
/**
2981
  * @brief  Remap TIM inputs (input channel, internal/external triggers).
2982
  * @note Macro IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
2983
  *       a some timer inputs can be remapped.
2984
  * @rmtoll TIM14_OR    TI1_RMP           LL_TIM_SetRemap
2985
  * @param  TIMx Timer instance
2986
  * @param  Remap This parameter can be one of the following values:
2987
  *            @arg @ref LL_TIM_TIM14_TI1_RMP_GPIO
2988
  *            @arg @ref LL_TIM_TIM14_TI1_RMP_RTC_CLK
2989
  *            @arg @ref LL_TIM_TIM14_TI1_RMP_HSE
2990
  *            @arg @ref LL_TIM_TIM14_TI1_RMP_MCO
2991
  *
2992
  * @retval None
2993
  */
2994
__STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
2995
{
2996
  MODIFY_REG(TIMx->OR, (Remap >> TIMx_OR_RMP_SHIFT), (Remap & TIMx_OR_RMP_MASK));
2997
}
2998
 
2999
/**
3000
  * @}
3001
  */
3002
 
3003
/** @defgroup TIM_LL_EF_OCREF_Clear OCREF_Clear_Management
3004
  * @{
3005
  */
3006
/**
3007
  * @brief  Set the OCREF clear input source
3008
  * @note The OCxREF signal of a given channel can be cleared when a high level is applied on the OCREF_CLR_INPUT
3009
  * @note This function can only be used in Output compare and PWM modes.
3010
  * @rmtoll SMCR          OCCS                LL_TIM_SetOCRefClearInputSource
3011
  * @param  TIMx Timer instance
3012
  * @param  OCRefClearInputSource This parameter can be one of the following values:
3013
  *         @arg @ref LL_TIM_OCREF_CLR_INT_OCREF_CLR
3014
  *         @arg @ref LL_TIM_OCREF_CLR_INT_ETR
3015
  * @retval None
3016
  */
3017
__STATIC_INLINE void LL_TIM_SetOCRefClearInputSource(TIM_TypeDef *TIMx, uint32_t OCRefClearInputSource)
3018
{
3019
  MODIFY_REG(TIMx->SMCR, TIM_SMCR_OCCS, OCRefClearInputSource);
3020
}
3021
/**
3022
  * @}
3023
  */
3024
 
3025
/** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
3026
  * @{
3027
  */
3028
/**
3029
  * @brief  Clear the update interrupt flag (UIF).
3030
  * @rmtoll SR           UIF           LL_TIM_ClearFlag_UPDATE
3031
  * @param  TIMx Timer instance
3032
  * @retval None
3033
  */
3034
__STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
3035
{
3036
  WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
3037
}
3038
 
3039
/**
3040
  * @brief  Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
3041
  * @rmtoll SR           UIF           LL_TIM_IsActiveFlag_UPDATE
3042
  * @param  TIMx Timer instance
3043
  * @retval State of bit (1 or 0).
3044
  */
3045
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(TIM_TypeDef *TIMx)
3046
{
3047
  return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
3048
}
3049
 
3050
/**
3051
  * @brief  Clear the Capture/Compare 1 interrupt flag (CC1F).
3052
  * @rmtoll SR           CC1IF         LL_TIM_ClearFlag_CC1
3053
  * @param  TIMx Timer instance
3054
  * @retval None
3055
  */
3056
__STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
3057
{
3058
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
3059
}
3060
 
3061
/**
3062
  * @brief  Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
3063
  * @rmtoll SR           CC1IF         LL_TIM_IsActiveFlag_CC1
3064
  * @param  TIMx Timer instance
3065
  * @retval State of bit (1 or 0).
3066
  */
3067
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(TIM_TypeDef *TIMx)
3068
{
3069
  return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
3070
}
3071
 
3072
/**
3073
  * @brief  Clear the Capture/Compare 2 interrupt flag (CC2F).
3074
  * @rmtoll SR           CC2IF         LL_TIM_ClearFlag_CC2
3075
  * @param  TIMx Timer instance
3076
  * @retval None
3077
  */
3078
__STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
3079
{
3080
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
3081
}
3082
 
3083
/**
3084
  * @brief  Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
3085
  * @rmtoll SR           CC2IF         LL_TIM_IsActiveFlag_CC2
3086
  * @param  TIMx Timer instance
3087
  * @retval State of bit (1 or 0).
3088
  */
3089
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(TIM_TypeDef *TIMx)
3090
{
3091
  return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
3092
}
3093
 
3094
/**
3095
  * @brief  Clear the Capture/Compare 3 interrupt flag (CC3F).
3096
  * @rmtoll SR           CC3IF         LL_TIM_ClearFlag_CC3
3097
  * @param  TIMx Timer instance
3098
  * @retval None
3099
  */
3100
__STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
3101
{
3102
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
3103
}
3104
 
3105
/**
3106
  * @brief  Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
3107
  * @rmtoll SR           CC3IF         LL_TIM_IsActiveFlag_CC3
3108
  * @param  TIMx Timer instance
3109
  * @retval State of bit (1 or 0).
3110
  */
3111
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(TIM_TypeDef *TIMx)
3112
{
3113
  return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
3114
}
3115
 
3116
/**
3117
  * @brief  Clear the Capture/Compare 4 interrupt flag (CC4F).
3118
  * @rmtoll SR           CC4IF         LL_TIM_ClearFlag_CC4
3119
  * @param  TIMx Timer instance
3120
  * @retval None
3121
  */
3122
__STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
3123
{
3124
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
3125
}
3126
 
3127
/**
3128
  * @brief  Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
3129
  * @rmtoll SR           CC4IF         LL_TIM_IsActiveFlag_CC4
3130
  * @param  TIMx Timer instance
3131
  * @retval State of bit (1 or 0).
3132
  */
3133
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(TIM_TypeDef *TIMx)
3134
{
3135
  return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
3136
}
3137
 
3138
/**
3139
  * @brief  Clear the commutation interrupt flag (COMIF).
3140
  * @rmtoll SR           COMIF         LL_TIM_ClearFlag_COM
3141
  * @param  TIMx Timer instance
3142
  * @retval None
3143
  */
3144
__STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
3145
{
3146
  WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
3147
}
3148
 
3149
/**
3150
  * @brief  Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
3151
  * @rmtoll SR           COMIF         LL_TIM_IsActiveFlag_COM
3152
  * @param  TIMx Timer instance
3153
  * @retval State of bit (1 or 0).
3154
  */
3155
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(TIM_TypeDef *TIMx)
3156
{
3157
  return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
3158
}
3159
 
3160
/**
3161
  * @brief  Clear the trigger interrupt flag (TIF).
3162
  * @rmtoll SR           TIF           LL_TIM_ClearFlag_TRIG
3163
  * @param  TIMx Timer instance
3164
  * @retval None
3165
  */
3166
__STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
3167
{
3168
  WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
3169
}
3170
 
3171
/**
3172
  * @brief  Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
3173
  * @rmtoll SR           TIF           LL_TIM_IsActiveFlag_TRIG
3174
  * @param  TIMx Timer instance
3175
  * @retval State of bit (1 or 0).
3176
  */
3177
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(TIM_TypeDef *TIMx)
3178
{
3179
  return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
3180
}
3181
 
3182
/**
3183
  * @brief  Clear the break interrupt flag (BIF).
3184
  * @rmtoll SR           BIF           LL_TIM_ClearFlag_BRK
3185
  * @param  TIMx Timer instance
3186
  * @retval None
3187
  */
3188
__STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
3189
{
3190
  WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
3191
}
3192
 
3193
/**
3194
  * @brief  Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
3195
  * @rmtoll SR           BIF           LL_TIM_IsActiveFlag_BRK
3196
  * @param  TIMx Timer instance
3197
  * @retval State of bit (1 or 0).
3198
  */
3199
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(TIM_TypeDef *TIMx)
3200
{
3201
  return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
3202
}
3203
 
3204
/**
3205
  * @brief  Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
3206
  * @rmtoll SR           CC1OF         LL_TIM_ClearFlag_CC1OVR
3207
  * @param  TIMx Timer instance
3208
  * @retval None
3209
  */
3210
__STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
3211
{
3212
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
3213
}
3214
 
3215
/**
3216
  * @brief  Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set (Capture/Compare 1 interrupt is pending).
3217
  * @rmtoll SR           CC1OF         LL_TIM_IsActiveFlag_CC1OVR
3218
  * @param  TIMx Timer instance
3219
  * @retval State of bit (1 or 0).
3220
  */
3221
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(TIM_TypeDef *TIMx)
3222
{
3223
  return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
3224
}
3225
 
3226
/**
3227
  * @brief  Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
3228
  * @rmtoll SR           CC2OF         LL_TIM_ClearFlag_CC2OVR
3229
  * @param  TIMx Timer instance
3230
  * @retval None
3231
  */
3232
__STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
3233
{
3234
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
3235
}
3236
 
3237
/**
3238
  * @brief  Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set (Capture/Compare 2 over-capture interrupt is pending).
3239
  * @rmtoll SR           CC2OF         LL_TIM_IsActiveFlag_CC2OVR
3240
  * @param  TIMx Timer instance
3241
  * @retval State of bit (1 or 0).
3242
  */
3243
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(TIM_TypeDef *TIMx)
3244
{
3245
  return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
3246
}
3247
 
3248
/**
3249
  * @brief  Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
3250
  * @rmtoll SR           CC3OF         LL_TIM_ClearFlag_CC3OVR
3251
  * @param  TIMx Timer instance
3252
  * @retval None
3253
  */
3254
__STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
3255
{
3256
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
3257
}
3258
 
3259
/**
3260
  * @brief  Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set (Capture/Compare 3 over-capture interrupt is pending).
3261
  * @rmtoll SR           CC3OF         LL_TIM_IsActiveFlag_CC3OVR
3262
  * @param  TIMx Timer instance
3263
  * @retval State of bit (1 or 0).
3264
  */
3265
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(TIM_TypeDef *TIMx)
3266
{
3267
  return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
3268
}
3269
 
3270
/**
3271
  * @brief  Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
3272
  * @rmtoll SR           CC4OF         LL_TIM_ClearFlag_CC4OVR
3273
  * @param  TIMx Timer instance
3274
  * @retval None
3275
  */
3276
__STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
3277
{
3278
  WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
3279
}
3280
 
3281
/**
3282
  * @brief  Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set (Capture/Compare 4 over-capture interrupt is pending).
3283
  * @rmtoll SR           CC4OF         LL_TIM_IsActiveFlag_CC4OVR
3284
  * @param  TIMx Timer instance
3285
  * @retval State of bit (1 or 0).
3286
  */
3287
__STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(TIM_TypeDef *TIMx)
3288
{
3289
  return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
3290
}
3291
 
3292
/**
3293
  * @}
3294
  */
3295
 
3296
/** @defgroup TIM_LL_EF_IT_Management IT-Management
3297
  * @{
3298
  */
3299
/**
3300
  * @brief  Enable update interrupt (UIE).
3301
  * @rmtoll DIER         UIE           LL_TIM_EnableIT_UPDATE
3302
  * @param  TIMx Timer instance
3303
  * @retval None
3304
  */
3305
__STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
3306
{
3307
  SET_BIT(TIMx->DIER, TIM_DIER_UIE);
3308
}
3309
 
3310
/**
3311
  * @brief  Disable update interrupt (UIE).
3312
  * @rmtoll DIER         UIE           LL_TIM_DisableIT_UPDATE
3313
  * @param  TIMx Timer instance
3314
  * @retval None
3315
  */
3316
__STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
3317
{
3318
  CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
3319
}
3320
 
3321
/**
3322
  * @brief  Indicates whether the update interrupt (UIE) is enabled.
3323
  * @rmtoll DIER         UIE           LL_TIM_IsEnabledIT_UPDATE
3324
  * @param  TIMx Timer instance
3325
  * @retval State of bit (1 or 0).
3326
  */
3327
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(TIM_TypeDef *TIMx)
3328
{
3329
  return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
3330
}
3331
 
3332
/**
3333
  * @brief  Enable capture/compare 1 interrupt (CC1IE).
3334
  * @rmtoll DIER         CC1IE         LL_TIM_EnableIT_CC1
3335
  * @param  TIMx Timer instance
3336
  * @retval None
3337
  */
3338
__STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
3339
{
3340
  SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
3341
}
3342
 
3343
/**
3344
  * @brief  Disable capture/compare 1  interrupt (CC1IE).
3345
  * @rmtoll DIER         CC1IE         LL_TIM_DisableIT_CC1
3346
  * @param  TIMx Timer instance
3347
  * @retval None
3348
  */
3349
__STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
3350
{
3351
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
3352
}
3353
 
3354
/**
3355
  * @brief  Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
3356
  * @rmtoll DIER         CC1IE         LL_TIM_IsEnabledIT_CC1
3357
  * @param  TIMx Timer instance
3358
  * @retval State of bit (1 or 0).
3359
  */
3360
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(TIM_TypeDef *TIMx)
3361
{
3362
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
3363
}
3364
 
3365
/**
3366
  * @brief  Enable capture/compare 2 interrupt (CC2IE).
3367
  * @rmtoll DIER         CC2IE         LL_TIM_EnableIT_CC2
3368
  * @param  TIMx Timer instance
3369
  * @retval None
3370
  */
3371
__STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
3372
{
3373
  SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
3374
}
3375
 
3376
/**
3377
  * @brief  Disable capture/compare 2  interrupt (CC2IE).
3378
  * @rmtoll DIER         CC2IE         LL_TIM_DisableIT_CC2
3379
  * @param  TIMx Timer instance
3380
  * @retval None
3381
  */
3382
__STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
3383
{
3384
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
3385
}
3386
 
3387
/**
3388
  * @brief  Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
3389
  * @rmtoll DIER         CC2IE         LL_TIM_IsEnabledIT_CC2
3390
  * @param  TIMx Timer instance
3391
  * @retval State of bit (1 or 0).
3392
  */
3393
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(TIM_TypeDef *TIMx)
3394
{
3395
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
3396
}
3397
 
3398
/**
3399
  * @brief  Enable capture/compare 3 interrupt (CC3IE).
3400
  * @rmtoll DIER         CC3IE         LL_TIM_EnableIT_CC3
3401
  * @param  TIMx Timer instance
3402
  * @retval None
3403
  */
3404
__STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
3405
{
3406
  SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
3407
}
3408
 
3409
/**
3410
  * @brief  Disable capture/compare 3  interrupt (CC3IE).
3411
  * @rmtoll DIER         CC3IE         LL_TIM_DisableIT_CC3
3412
  * @param  TIMx Timer instance
3413
  * @retval None
3414
  */
3415
__STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
3416
{
3417
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
3418
}
3419
 
3420
/**
3421
  * @brief  Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
3422
  * @rmtoll DIER         CC3IE         LL_TIM_IsEnabledIT_CC3
3423
  * @param  TIMx Timer instance
3424
  * @retval State of bit (1 or 0).
3425
  */
3426
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(TIM_TypeDef *TIMx)
3427
{
3428
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
3429
}
3430
 
3431
/**
3432
  * @brief  Enable capture/compare 4 interrupt (CC4IE).
3433
  * @rmtoll DIER         CC4IE         LL_TIM_EnableIT_CC4
3434
  * @param  TIMx Timer instance
3435
  * @retval None
3436
  */
3437
__STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
3438
{
3439
  SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
3440
}
3441
 
3442
/**
3443
  * @brief  Disable capture/compare 4  interrupt (CC4IE).
3444
  * @rmtoll DIER         CC4IE         LL_TIM_DisableIT_CC4
3445
  * @param  TIMx Timer instance
3446
  * @retval None
3447
  */
3448
__STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
3449
{
3450
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
3451
}
3452
 
3453
/**
3454
  * @brief  Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
3455
  * @rmtoll DIER         CC4IE         LL_TIM_IsEnabledIT_CC4
3456
  * @param  TIMx Timer instance
3457
  * @retval State of bit (1 or 0).
3458
  */
3459
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(TIM_TypeDef *TIMx)
3460
{
3461
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
3462
}
3463
 
3464
/**
3465
  * @brief  Enable commutation interrupt (COMIE).
3466
  * @rmtoll DIER         COMIE         LL_TIM_EnableIT_COM
3467
  * @param  TIMx Timer instance
3468
  * @retval None
3469
  */
3470
__STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
3471
{
3472
  SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
3473
}
3474
 
3475
/**
3476
  * @brief  Disable commutation interrupt (COMIE).
3477
  * @rmtoll DIER         COMIE         LL_TIM_DisableIT_COM
3478
  * @param  TIMx Timer instance
3479
  * @retval None
3480
  */
3481
__STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
3482
{
3483
  CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
3484
}
3485
 
3486
/**
3487
  * @brief  Indicates whether the commutation interrupt (COMIE) is enabled.
3488
  * @rmtoll DIER         COMIE         LL_TIM_IsEnabledIT_COM
3489
  * @param  TIMx Timer instance
3490
  * @retval State of bit (1 or 0).
3491
  */
3492
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(TIM_TypeDef *TIMx)
3493
{
3494
  return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
3495
}
3496
 
3497
/**
3498
  * @brief  Enable trigger interrupt (TIE).
3499
  * @rmtoll DIER         TIE           LL_TIM_EnableIT_TRIG
3500
  * @param  TIMx Timer instance
3501
  * @retval None
3502
  */
3503
__STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
3504
{
3505
  SET_BIT(TIMx->DIER, TIM_DIER_TIE);
3506
}
3507
 
3508
/**
3509
  * @brief  Disable trigger interrupt (TIE).
3510
  * @rmtoll DIER         TIE           LL_TIM_DisableIT_TRIG
3511
  * @param  TIMx Timer instance
3512
  * @retval None
3513
  */
3514
__STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
3515
{
3516
  CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
3517
}
3518
 
3519
/**
3520
  * @brief  Indicates whether the trigger interrupt (TIE) is enabled.
3521
  * @rmtoll DIER         TIE           LL_TIM_IsEnabledIT_TRIG
3522
  * @param  TIMx Timer instance
3523
  * @retval State of bit (1 or 0).
3524
  */
3525
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(TIM_TypeDef *TIMx)
3526
{
3527
  return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
3528
}
3529
 
3530
/**
3531
  * @brief  Enable break interrupt (BIE).
3532
  * @rmtoll DIER         BIE           LL_TIM_EnableIT_BRK
3533
  * @param  TIMx Timer instance
3534
  * @retval None
3535
  */
3536
__STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
3537
{
3538
  SET_BIT(TIMx->DIER, TIM_DIER_BIE);
3539
}
3540
 
3541
/**
3542
  * @brief  Disable break interrupt (BIE).
3543
  * @rmtoll DIER         BIE           LL_TIM_DisableIT_BRK
3544
  * @param  TIMx Timer instance
3545
  * @retval None
3546
  */
3547
__STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
3548
{
3549
  CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
3550
}
3551
 
3552
/**
3553
  * @brief  Indicates whether the break interrupt (BIE) is enabled.
3554
  * @rmtoll DIER         BIE           LL_TIM_IsEnabledIT_BRK
3555
  * @param  TIMx Timer instance
3556
  * @retval State of bit (1 or 0).
3557
  */
3558
__STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(TIM_TypeDef *TIMx)
3559
{
3560
  return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
3561
}
3562
 
3563
/**
3564
  * @}
3565
  */
3566
 
3567
/** @defgroup TIM_LL_EF_DMA_Management DMA-Management
3568
  * @{
3569
  */
3570
/**
3571
  * @brief  Enable update DMA request (UDE).
3572
  * @rmtoll DIER         UDE           LL_TIM_EnableDMAReq_UPDATE
3573
  * @param  TIMx Timer instance
3574
  * @retval None
3575
  */
3576
__STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
3577
{
3578
  SET_BIT(TIMx->DIER, TIM_DIER_UDE);
3579
}
3580
 
3581
/**
3582
  * @brief  Disable update DMA request (UDE).
3583
  * @rmtoll DIER         UDE           LL_TIM_DisableDMAReq_UPDATE
3584
  * @param  TIMx Timer instance
3585
  * @retval None
3586
  */
3587
__STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
3588
{
3589
  CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
3590
}
3591
 
3592
/**
3593
  * @brief  Indicates whether the update DMA request  (UDE) is enabled.
3594
  * @rmtoll DIER         UDE           LL_TIM_IsEnabledDMAReq_UPDATE
3595
  * @param  TIMx Timer instance
3596
  * @retval State of bit (1 or 0).
3597
  */
3598
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(TIM_TypeDef *TIMx)
3599
{
3600
  return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
3601
}
3602
 
3603
/**
3604
  * @brief  Enable capture/compare 1 DMA request (CC1DE).
3605
  * @rmtoll DIER         CC1DE         LL_TIM_EnableDMAReq_CC1
3606
  * @param  TIMx Timer instance
3607
  * @retval None
3608
  */
3609
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
3610
{
3611
  SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
3612
}
3613
 
3614
/**
3615
  * @brief  Disable capture/compare 1  DMA request (CC1DE).
3616
  * @rmtoll DIER         CC1DE         LL_TIM_DisableDMAReq_CC1
3617
  * @param  TIMx Timer instance
3618
  * @retval None
3619
  */
3620
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
3621
{
3622
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
3623
}
3624
 
3625
/**
3626
  * @brief  Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
3627
  * @rmtoll DIER         CC1DE         LL_TIM_IsEnabledDMAReq_CC1
3628
  * @param  TIMx Timer instance
3629
  * @retval State of bit (1 or 0).
3630
  */
3631
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(TIM_TypeDef *TIMx)
3632
{
3633
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
3634
}
3635
 
3636
/**
3637
  * @brief  Enable capture/compare 2 DMA request (CC2DE).
3638
  * @rmtoll DIER         CC2DE         LL_TIM_EnableDMAReq_CC2
3639
  * @param  TIMx Timer instance
3640
  * @retval None
3641
  */
3642
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
3643
{
3644
  SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
3645
}
3646
 
3647
/**
3648
  * @brief  Disable capture/compare 2  DMA request (CC2DE).
3649
  * @rmtoll DIER         CC2DE         LL_TIM_DisableDMAReq_CC2
3650
  * @param  TIMx Timer instance
3651
  * @retval None
3652
  */
3653
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
3654
{
3655
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
3656
}
3657
 
3658
/**
3659
  * @brief  Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
3660
  * @rmtoll DIER         CC2DE         LL_TIM_IsEnabledDMAReq_CC2
3661
  * @param  TIMx Timer instance
3662
  * @retval State of bit (1 or 0).
3663
  */
3664
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(TIM_TypeDef *TIMx)
3665
{
3666
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
3667
}
3668
 
3669
/**
3670
  * @brief  Enable capture/compare 3 DMA request (CC3DE).
3671
  * @rmtoll DIER         CC3DE         LL_TIM_EnableDMAReq_CC3
3672
  * @param  TIMx Timer instance
3673
  * @retval None
3674
  */
3675
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
3676
{
3677
  SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
3678
}
3679
 
3680
/**
3681
  * @brief  Disable capture/compare 3  DMA request (CC3DE).
3682
  * @rmtoll DIER         CC3DE         LL_TIM_DisableDMAReq_CC3
3683
  * @param  TIMx Timer instance
3684
  * @retval None
3685
  */
3686
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
3687
{
3688
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
3689
}
3690
 
3691
/**
3692
  * @brief  Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
3693
  * @rmtoll DIER         CC3DE         LL_TIM_IsEnabledDMAReq_CC3
3694
  * @param  TIMx Timer instance
3695
  * @retval State of bit (1 or 0).
3696
  */
3697
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(TIM_TypeDef *TIMx)
3698
{
3699
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
3700
}
3701
 
3702
/**
3703
  * @brief  Enable capture/compare 4 DMA request (CC4DE).
3704
  * @rmtoll DIER         CC4DE         LL_TIM_EnableDMAReq_CC4
3705
  * @param  TIMx Timer instance
3706
  * @retval None
3707
  */
3708
__STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
3709
{
3710
  SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
3711
}
3712
 
3713
/**
3714
  * @brief  Disable capture/compare 4  DMA request (CC4DE).
3715
  * @rmtoll DIER         CC4DE         LL_TIM_DisableDMAReq_CC4
3716
  * @param  TIMx Timer instance
3717
  * @retval None
3718
  */
3719
__STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
3720
{
3721
  CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
3722
}
3723
 
3724
/**
3725
  * @brief  Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
3726
  * @rmtoll DIER         CC4DE         LL_TIM_IsEnabledDMAReq_CC4
3727
  * @param  TIMx Timer instance
3728
  * @retval State of bit (1 or 0).
3729
  */
3730
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(TIM_TypeDef *TIMx)
3731
{
3732
  return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
3733
}
3734
 
3735
/**
3736
  * @brief  Enable commutation DMA request (COMDE).
3737
  * @rmtoll DIER         COMDE         LL_TIM_EnableDMAReq_COM
3738
  * @param  TIMx Timer instance
3739
  * @retval None
3740
  */
3741
__STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
3742
{
3743
  SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
3744
}
3745
 
3746
/**
3747
  * @brief  Disable commutation DMA request (COMDE).
3748
  * @rmtoll DIER         COMDE         LL_TIM_DisableDMAReq_COM
3749
  * @param  TIMx Timer instance
3750
  * @retval None
3751
  */
3752
__STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
3753
{
3754
  CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
3755
}
3756
 
3757
/**
3758
  * @brief  Indicates whether the commutation DMA request (COMDE) is enabled.
3759
  * @rmtoll DIER         COMDE         LL_TIM_IsEnabledDMAReq_COM
3760
  * @param  TIMx Timer instance
3761
  * @retval State of bit (1 or 0).
3762
  */
3763
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(TIM_TypeDef *TIMx)
3764
{
3765
  return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
3766
}
3767
 
3768
/**
3769
  * @brief  Enable trigger interrupt (TDE).
3770
  * @rmtoll DIER         TDE           LL_TIM_EnableDMAReq_TRIG
3771
  * @param  TIMx Timer instance
3772
  * @retval None
3773
  */
3774
__STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
3775
{
3776
  SET_BIT(TIMx->DIER, TIM_DIER_TDE);
3777
}
3778
 
3779
/**
3780
  * @brief  Disable trigger interrupt (TDE).
3781
  * @rmtoll DIER         TDE           LL_TIM_DisableDMAReq_TRIG
3782
  * @param  TIMx Timer instance
3783
  * @retval None
3784
  */
3785
__STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
3786
{
3787
  CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
3788
}
3789
 
3790
/**
3791
  * @brief  Indicates whether the trigger interrupt (TDE) is enabled.
3792
  * @rmtoll DIER         TDE           LL_TIM_IsEnabledDMAReq_TRIG
3793
  * @param  TIMx Timer instance
3794
  * @retval State of bit (1 or 0).
3795
  */
3796
__STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(TIM_TypeDef *TIMx)
3797
{
3798
  return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
3799
}
3800
 
3801
/**
3802
  * @}
3803
  */
3804
 
3805
/** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
3806
  * @{
3807
  */
3808
/**
3809
  * @brief  Generate an update event.
3810
  * @rmtoll EGR          UG            LL_TIM_GenerateEvent_UPDATE
3811
  * @param  TIMx Timer instance
3812
  * @retval None
3813
  */
3814
__STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
3815
{
3816
  SET_BIT(TIMx->EGR, TIM_EGR_UG);
3817
}
3818
 
3819
/**
3820
  * @brief  Generate Capture/Compare 1 event.
3821
  * @rmtoll EGR          CC1G          LL_TIM_GenerateEvent_CC1
3822
  * @param  TIMx Timer instance
3823
  * @retval None
3824
  */
3825
__STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
3826
{
3827
  SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
3828
}
3829
 
3830
/**
3831
  * @brief  Generate Capture/Compare 2 event.
3832
  * @rmtoll EGR          CC2G          LL_TIM_GenerateEvent_CC2
3833
  * @param  TIMx Timer instance
3834
  * @retval None
3835
  */
3836
__STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
3837
{
3838
  SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
3839
}
3840
 
3841
/**
3842
  * @brief  Generate Capture/Compare 3 event.
3843
  * @rmtoll EGR          CC3G          LL_TIM_GenerateEvent_CC3
3844
  * @param  TIMx Timer instance
3845
  * @retval None
3846
  */
3847
__STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
3848
{
3849
  SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
3850
}
3851
 
3852
/**
3853
  * @brief  Generate Capture/Compare 4 event.
3854
  * @rmtoll EGR          CC4G          LL_TIM_GenerateEvent_CC4
3855
  * @param  TIMx Timer instance
3856
  * @retval None
3857
  */
3858
__STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
3859
{
3860
  SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
3861
}
3862
 
3863
/**
3864
  * @brief  Generate commutation event.
3865
  * @rmtoll EGR          COMG          LL_TIM_GenerateEvent_COM
3866
  * @param  TIMx Timer instance
3867
  * @retval None
3868
  */
3869
__STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
3870
{
3871
  SET_BIT(TIMx->EGR, TIM_EGR_COMG);
3872
}
3873
 
3874
/**
3875
  * @brief  Generate trigger event.
3876
  * @rmtoll EGR          TG            LL_TIM_GenerateEvent_TRIG
3877
  * @param  TIMx Timer instance
3878
  * @retval None
3879
  */
3880
__STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
3881
{
3882
  SET_BIT(TIMx->EGR, TIM_EGR_TG);
3883
}
3884
 
3885
/**
3886
  * @brief  Generate break event.
3887
  * @rmtoll EGR          BG            LL_TIM_GenerateEvent_BRK
3888
  * @param  TIMx Timer instance
3889
  * @retval None
3890
  */
3891
__STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
3892
{
3893
  SET_BIT(TIMx->EGR, TIM_EGR_BG);
3894
}
3895
 
3896
/**
3897
  * @}
3898
  */
3899
 
3900
#if defined(USE_FULL_LL_DRIVER)
3901
/** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
3902
  * @{
3903
  */
3904
 
3905
ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx);
3906
void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
3907
ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct);
3908
void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
3909
ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
3910
void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
3911
ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
3912
void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
3913
ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
3914
void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
3915
ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
3916
void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
3917
ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
3918
/**
3919
  * @}
3920
  */
3921
#endif /* USE_FULL_LL_DRIVER */
3922
 
3923
/**
3924
  * @}
3925
  */
3926
 
3927
/**
3928
  * @}
3929
  */
3930
 
3931
#endif /* TIM1 || TIM2 || TIM3  || TIM14 || TIM15 || TIM16 || TIM17 || TIM6 || TIM7 */
3932
 
3933
/**
3934
  * @}
3935
  */
3936
 
3937
#ifdef __cplusplus
3938
}
3939
#endif
3940
 
3941
#endif /* __STM32F0xx_LL_TIM_H */
3942
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/