Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* |
2 | * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. |
||
3 | * |
||
4 | * SPDX-License-Identifier: Apache-2.0 |
||
5 | * |
||
6 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
7 | * not use this file except in compliance with the License. |
||
8 | * You may obtain a copy of the License at |
||
9 | * |
||
10 | * www.apache.org/licenses/LICENSE-2.0 |
||
11 | * |
||
12 | * Unless required by applicable law or agreed to in writing, software |
||
13 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
14 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
15 | * See the License for the specific language governing permissions and |
||
16 | * limitations under the License. |
||
17 | */ |
||
18 | |||
19 | /* ---------------------------------------------------------------------- |
||
20 | * Project: CMSIS NN Library |
||
21 | * Title: arm_depthwise_separable_conv_HWC_q7_nonsquare.c |
||
22 | * Description: Q7 depthwise separable convolution function (non-square shape) |
||
23 | * |
||
24 | * $Date: 17. January 2018 |
||
25 | * $Revision: V.1.0.0 |
||
26 | * |
||
27 | * Target Processor: Cortex-M cores |
||
28 | * |
||
29 | * -------------------------------------------------------------------- */ |
||
30 | |||
31 | #include "arm_math.h" |
||
32 | #include "arm_nnfunctions.h" |
||
33 | |||
34 | /** |
||
35 | * @ingroup groupNN |
||
36 | */ |
||
37 | |||
38 | /** |
||
39 | * @addtogroup NNConv |
||
40 | * @{ |
||
41 | */ |
||
42 | |||
43 | /** |
||
44 | * @brief Q7 depthwise separable convolution function (non-square shape) |
||
45 | * @param[in] Im_in pointer to input tensor |
||
46 | * @param[in] dim_im_in_x input tensor dimention x |
||
47 | * @param[in] dim_im_in_y input tensor dimention y |
||
48 | * @param[in] ch_im_in number of input tensor channels |
||
49 | * @param[in] wt pointer to kernel weights |
||
50 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
51 | * @param[in] dim_kernel_x filter kernel size x |
||
52 | * @param[in] dim_kernel_y filter kernel size y |
||
53 | * @param[in] padding_x padding sizes x |
||
54 | * @param[in] padding_y padding sizes y |
||
55 | * @param[in] stride_x convolution stride x |
||
56 | * @param[in] stride_y convolution stride y |
||
57 | * @param[in] bias pointer to bias |
||
58 | * @param[in] bias_shift amount of left-shift for bias |
||
59 | * @param[in] out_shift amount of right-shift for output |
||
60 | * @param[in,out] Im_out pointer to output tensor |
||
61 | * @param[in] dim_im_out_x output tensor dimension x |
||
62 | * @param[in] dim_im_out_y output tensor dimension y |
||
63 | * @param[in,out] bufferA pointer to buffer space for input |
||
64 | * @param[in,out] bufferB pointer to buffer space for output |
||
65 | * @return The function returns either |
||
66 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
67 | * |
||
68 | * This function is the version with full list of optimization tricks, but with |
||
69 | * some contraints: |
||
70 | * ch_im_in is multiple of 2 |
||
71 | * ch_im_out is multiple of 2 |
||
72 | */ |
||
73 | |||
74 | arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in, |
||
75 | const uint16_t dim_im_in_x, |
||
76 | const uint16_t dim_im_in_y, |
||
77 | const uint16_t ch_im_in, |
||
78 | const q7_t * wt, |
||
79 | const uint16_t ch_im_out, |
||
80 | const uint16_t dim_kernel_x, |
||
81 | const uint16_t dim_kernel_y, |
||
82 | const uint16_t padding_x, |
||
83 | const uint16_t padding_y, |
||
84 | const uint16_t stride_x, |
||
85 | const uint16_t stride_y, |
||
86 | const q7_t * bias, |
||
87 | const uint16_t bias_shift, |
||
88 | const uint16_t out_shift, |
||
89 | q7_t * Im_out, |
||
90 | const uint16_t dim_im_out_x, |
||
91 | const uint16_t dim_im_out_y, |
||
92 | q15_t * bufferA, |
||
93 | q7_t * bufferB) |
||
94 | { |
||
95 | |||
96 | #if defined (ARM_MATH_DSP) |
||
97 | /* Run the following code for Cortex-M4 and Cortex-M7 */ |
||
98 | |||
99 | /* |
||
100 | * Implementation: |
||
101 | * There are 3 nested loop here: |
||
102 | * Inner loop: calculate each output value with MAC instruction over an accumulator |
||
103 | * Mid loop: loop over different output channel |
||
104 | * Outer loop: loop over different output (x, y) |
||
105 | * |
||
106 | */ |
||
107 | |||
108 | int16_t i_out_y, i_out_x; |
||
109 | int16_t i_ker_y, i_ker_x; |
||
110 | q7_t *colBuffer = (q7_t *) bufferA; |
||
111 | q7_t *pBuffer = colBuffer; |
||
112 | const q7_t *pBias = bias; |
||
113 | q7_t *pOut = Im_out; |
||
114 | uint16_t rowCnt; |
||
115 | uint16_t row_shift; |
||
116 | |||
117 | /* do some checking here, basically ch_im_in == ch_im_out */ |
||
118 | if (ch_im_in != ch_im_out) |
||
119 | { |
||
120 | return ARM_MATH_SIZE_MISMATCH; |
||
121 | } |
||
122 | |||
123 | for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) |
||
124 | { |
||
125 | for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) |
||
126 | { |
||
127 | /* we first do im2col here */ |
||
128 | for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; |
||
129 | i_ker_y++) |
||
130 | { |
||
131 | for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; |
||
132 | i_ker_x++) |
||
133 | { |
||
134 | if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) |
||
135 | { |
||
136 | /* arm_fill_q7(0, pBuffer, ch_im_in); */ |
||
137 | memset(pBuffer, 0, ch_im_in); |
||
138 | } else |
||
139 | { |
||
140 | /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ |
||
141 | memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, ch_im_in); |
||
142 | } |
||
143 | pBuffer += ch_im_in; |
||
144 | } |
||
145 | } |
||
146 | |||
147 | /* we will do the computation here for each channel */ |
||
148 | rowCnt = ch_im_out >> 2; |
||
149 | row_shift = 0; |
||
150 | pBias = bias; |
||
151 | |||
152 | while (rowCnt) |
||
153 | { |
||
154 | q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); |
||
155 | q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); |
||
156 | q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); |
||
157 | q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); |
||
158 | |||
159 | uint16_t colCnt = (dim_kernel_x * dim_kernel_y) >> 1; |
||
160 | q7_t *pB = colBuffer + row_shift; |
||
161 | const q7_t *pA = wt + row_shift; |
||
162 | row_shift += 4; |
||
163 | |||
164 | #ifdef USE_INTRINSIC |
||
165 | |||
166 | #ifndef ARM_MATH_BIG_ENDIAN |
||
167 | |||
168 | while (colCnt) |
||
169 | { |
||
170 | q31_t inA1, inA2, inB1, inB2, opA, opB; |
||
171 | |||
172 | inB1 = *__SIMD32(pB); |
||
173 | pB += ch_im_in; |
||
174 | opB = *__SIMD32(pB); |
||
175 | pB += ch_im_in; |
||
176 | inB2 = __PKHTB(opB, inB1, 16); |
||
177 | inB1 = __PKHBT(inB1, opB, 16); |
||
178 | inA1 = *__SIMD32(pA); |
||
179 | pA += ch_im_in; |
||
180 | opB = *__SIMD32(pA); |
||
181 | pA += ch_im_in; |
||
182 | inA2 = __PKHTB(opB, inA1, 16); |
||
183 | inA1 = __PKHBT(inA1, opB, 16); |
||
184 | opA = __SXTB16(inA1); |
||
185 | opB = __SXTB16(inB1); |
||
186 | sum = __SMLAD(opA, opB, sum); |
||
187 | opA = __SXTB16(__ROR(inA1, 8)); |
||
188 | opB = __SXTB16(__ROR(inB1, 8)); |
||
189 | sum2 = __SMLAD(opA, opB, sum2); |
||
190 | opA = __SXTB16(inA2); |
||
191 | opB = __SXTB16(inB2); |
||
192 | sum3 = __SMLAD(opA, opB, sum3); |
||
193 | opA = __SXTB16(__ROR(inA2, 8)); |
||
194 | opB = __SXTB16(__ROR(inB2, 8)); |
||
195 | sum4 = __SMLAD(opA, opB, sum4); |
||
196 | colCnt--; |
||
197 | } |
||
198 | #else |
||
199 | |||
200 | while (colCnt) |
||
201 | { |
||
202 | q31_t inA1, inA2, inB1, inB2, opA, opB; |
||
203 | |||
204 | inB1 = *__SIMD32(pB); |
||
205 | pB += ch_im_in; |
||
206 | opB = *__SIMD32(pB); |
||
207 | pB += ch_im_in; |
||
208 | inB2 = __PKHBT(opB, inB1, 16); |
||
209 | inB1 = __PKHTB(inB1, opB, 16); |
||
210 | inA1 = *__SIMD32(pA); |
||
211 | pA += ch_im_in; |
||
212 | opB = *__SIMD32(pA); |
||
213 | pA += ch_im_in; |
||
214 | inA2 = __PKHBT(opB, inA1, 16); |
||
215 | inA1 = __PKHTB(inA1, opB, 16); |
||
216 | opA = __SXTB16(inA1); |
||
217 | opB = __SXTB16(inB1); |
||
218 | sum2 = __SMLAD(opA, opB, sum2); |
||
219 | opA = __SXTB16(__ROR(inA1, 8)); |
||
220 | opB = __SXTB16(__ROR(inB1, 8)); |
||
221 | sum = __SMLAD(opA, opB, sum); |
||
222 | opA = __SXTB16(inA2); |
||
223 | opB = __SXTB16(inB2); |
||
224 | sum4 = __SMLAD(opA, opB, sum4); |
||
225 | opA = __SXTB16(__ROR(inA2, 8)); |
||
226 | opB = __SXTB16(__ROR(inB2, 8)); |
||
227 | sum3 = __SMLAD(opA, opB, sum3); |
||
228 | colCnt--; |
||
229 | } |
||
230 | |||
231 | #endif /* ARM_MATH_BIG_ENDIAN */ |
||
232 | |||
233 | #else |
||
234 | |||
235 | #ifndef ARM_MATH_BIG_ENDIAN |
||
236 | // r0 r1 r2 r3 r4 r5 |
||
237 | // inA1, inA2, inB1, inB2, opA, opB |
||
238 | asm volatile ("COL_LOOP:\n" |
||
239 | "ldr.w r2, [%[pB], #0]\n" |
||
240 | "add.w %[pB], %[pB], %[ch_im_in]\n" |
||
241 | "ldr.w r5, [%[pB], #0]\n" |
||
242 | "add.w %[pB], %[pB], %[ch_im_in]\n" |
||
243 | "pkhtb r3, r5, r2, ASR #16\n" |
||
244 | "pkhbt r2, r2, r5, LSL #16\n" |
||
245 | "ldr.w r0, [%[pA], #0]\n" |
||
246 | "add.w %[pA], %[pA], %[ch_im_in]\n" |
||
247 | "ldr.w r5, [%[pA], #0]\n" |
||
248 | "add.w %[pA], %[pA], %[ch_im_in]\n" |
||
249 | "pkhtb r1, r5, r0, ASR #16\n" |
||
250 | "pkhbt r0, r0, r5, LSL #16\n" |
||
251 | "sxtb16 r4, r0\n" |
||
252 | "sxtb16 r5, r2\n" |
||
253 | "smlad %[sum], r4, r5, %[sum]\n" |
||
254 | "mov.w r4, r0, ror #8\n" |
||
255 | "mov.w r5, r2, ror #8\n" |
||
256 | "sxtb16 r4, r4\n" |
||
257 | "sxtb16 r5, r5\n" |
||
258 | "smlad %[sum2], r4, r5, %[sum2]\n" |
||
259 | "sxtb16 r4, r1\n" |
||
260 | "sxtb16 r5, r3\n" |
||
261 | "smlad %[sum3], r4, r5, %[sum3]\n" |
||
262 | "mov.w r4, r1, ror #8\n" |
||
263 | "mov.w r5, r3, ror #8\n" |
||
264 | "sxtb16 r4, r4\n" |
||
265 | "sxtb16 r5, r5\n" |
||
266 | "smlad %[sum4], r4, r5, %[sum4]\n" |
||
267 | "subs %[colCnt], #1\n" |
||
268 | "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3), |
||
269 | [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt), |
||
270 | [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); |
||
271 | #else |
||
272 | // r0 r1 r2 r3 r4 r5 |
||
273 | // inA1, inA2, inB1, inB2, opA, opB |
||
274 | asm volatile ("COL_LOOP:\n" |
||
275 | "ldr.w r2, [%[pB], #0]\n" |
||
276 | "add.w %[pB], %[pB], %[ch_im_in]\n" |
||
277 | "ldr.w r5, [%[pB], #0]\n" |
||
278 | "add.w %[pB], %[pB], %[ch_im_in]\n" |
||
279 | "pkhbt r3, r5, r2, LSL #16\n" |
||
280 | "pkhtb r2, r2, r5, ASR #16\n" |
||
281 | "ldr.w r0, [%[pA], #0]\n" |
||
282 | "add.w %[pA], %[pA], %[ch_im_in]\n" |
||
283 | "ldr.w r5, [%[pA], #0]\n" |
||
284 | "add.w %[pA], %[pA], %[ch_im_in]\n" |
||
285 | "pkhbt r1, r5, r0, LSL #16\n" |
||
286 | "pkhtb r0, r0, r5, ASR #16\n" |
||
287 | "sxtb16 r4, r0\n" |
||
288 | "sxtb16 r5, r2\n" |
||
289 | "smlad %[sum2], r4, r5, %[sum2]\n" |
||
290 | "mov.w r4, r0, ror #8\n" |
||
291 | "mov.w r5, r2, ror #8\n" |
||
292 | "sxtb16 r4, r4\n" |
||
293 | "sxtb16 r5, r5\n" |
||
294 | "smlad %[sum], r4, r5, %[sum]\n" |
||
295 | "sxtb16 r4, r1\n" |
||
296 | "sxtb16 r5, r3\n" |
||
297 | "smlad %[sum4], r4, r5, %[sum4]\n" |
||
298 | "mov.w r4, r1, ror #8\n" |
||
299 | "mov.w r5, r3, ror #8\n" |
||
300 | "sxtb16 r4, r4\n" |
||
301 | "sxtb16 r5, r5\n" |
||
302 | "smlad %[sum3], r4, r5, %[sum3]\n" |
||
303 | "subs %[colCnt], #1\n" |
||
304 | "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3), |
||
305 | [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt), |
||
306 | [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); |
||
307 | #endif /*ARM_MATH_BIG_ENDIAN */ |
||
308 | |||
309 | #endif /* USE_INTRINSIC */ |
||
310 | |||
311 | colCnt = (dim_kernel_x * dim_kernel_y) & 0x1; |
||
312 | while (colCnt) |
||
313 | { |
||
314 | union arm_nnword inA, inB; |
||
315 | inA.word = *__SIMD32(pA); |
||
316 | pA += ch_im_in; |
||
317 | inB.word = *__SIMD32(pB); |
||
318 | pB += ch_im_in; |
||
319 | sum += inA.bytes[0] * inB.bytes[0]; |
||
320 | sum2 += inA.bytes[1] * inB.bytes[1]; |
||
321 | sum3 += inA.bytes[2] * inB.bytes[2]; |
||
322 | sum4 += inA.bytes[3] * inB.bytes[3]; |
||
323 | colCnt--; |
||
324 | } |
||
325 | |||
326 | *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); |
||
327 | *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8); |
||
328 | *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); |
||
329 | *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8); |
||
330 | |||
331 | rowCnt--; |
||
332 | } |
||
333 | |||
334 | rowCnt = ch_im_out & 0x3; |
||
335 | while (rowCnt) |
||
336 | { |
||
337 | q7_t *pB = colBuffer + row_shift; |
||
338 | const q7_t *pA = wt + row_shift; |
||
339 | q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); |
||
340 | uint16_t colCnt = (dim_kernel_x * dim_kernel_y); |
||
341 | |||
342 | row_shift += 1; |
||
343 | |||
344 | while (colCnt) |
||
345 | { |
||
346 | q7_t A1 = *pA; |
||
347 | q7_t B1 = *pB; |
||
348 | pA += ch_im_in; |
||
349 | pB += ch_im_in; |
||
350 | sum += A1 * B1; |
||
351 | |||
352 | colCnt--; |
||
353 | } |
||
354 | *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); |
||
355 | rowCnt--; |
||
356 | } |
||
357 | |||
358 | // clear counter and pointers |
||
359 | pBuffer = colBuffer; |
||
360 | } |
||
361 | } |
||
362 | |||
363 | #else |
||
364 | /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ |
||
365 | int i_out_y, i_out_x, i_ch_out; |
||
366 | int i_ker_y, i_ker_x; |
||
367 | |||
368 | /* do some checking here, basically ch_im_in == ch_im_out */ |
||
369 | if (ch_im_in != ch_im_out) |
||
370 | { |
||
371 | return ARM_MATH_SIZE_MISMATCH; |
||
372 | } |
||
373 | |||
374 | for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) |
||
375 | { |
||
376 | for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) |
||
377 | { |
||
378 | for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) |
||
379 | { |
||
380 | // for each output |
||
381 | int conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); |
||
382 | for (i_ker_y = 0; i_ker_y < dim_kernel_y; i_ker_y++) |
||
383 | { |
||
384 | for (i_ker_x = 0; i_ker_x < dim_kernel_x; i_ker_x++) |
||
385 | { |
||
386 | int in_row = stride_y * i_out_y + i_ker_y - padding_y; |
||
387 | int in_col = stride_x * i_out_x + i_ker_x - padding_x; |
||
388 | if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) |
||
389 | { |
||
390 | conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + i_ch_out] * |
||
391 | wt[(i_ker_y * dim_kernel_x + i_ker_x) * ch_im_out + i_ch_out]; |
||
392 | } |
||
393 | } |
||
394 | } |
||
395 | Im_out[(i_out_y * dim_im_out_x + i_out_x) * ch_im_out + i_ch_out] = |
||
396 | (q7_t) __SSAT((conv_out >> out_shift), 8); |
||
397 | } |
||
398 | } |
||
399 | } |
||
400 | |||
401 | #endif /* ARM_MATH_DSP */ |
||
402 | |||
403 | |||
404 | /* Return to application */ |
||
405 | return ARM_MATH_SUCCESS; |
||
406 | |||
407 | } |
||
408 | |||
409 | /** |
||
410 | * @} end of NNConv group |
||
411 | */ |