Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | /* |
| 2 | * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. |
||
| 3 | * |
||
| 4 | * SPDX-License-Identifier: Apache-2.0 |
||
| 5 | * |
||
| 6 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
| 7 | * not use this file except in compliance with the License. |
||
| 8 | * You may obtain a copy of the License at |
||
| 9 | * |
||
| 10 | * www.apache.org/licenses/LICENSE-2.0 |
||
| 11 | * |
||
| 12 | * Unless required by applicable law or agreed to in writing, software |
||
| 13 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
| 14 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
| 15 | * See the License for the specific language governing permissions and |
||
| 16 | * limitations under the License. |
||
| 17 | */ |
||
| 18 | |||
| 19 | /* ---------------------------------------------------------------------- |
||
| 20 | * Project: CMSIS NN Library |
||
| 21 | * Title: arm_depthwise_separable_conv_HWC_q7.c |
||
| 22 | * Description: Q7 depthwise separable convolution function |
||
| 23 | * |
||
| 24 | * $Date: 17. January 2018 |
||
| 25 | * $Revision: V.1.0.0 |
||
| 26 | * |
||
| 27 | * Target Processor: Cortex-M cores |
||
| 28 | * |
||
| 29 | * -------------------------------------------------------------------- */ |
||
| 30 | |||
| 31 | #include "arm_math.h" |
||
| 32 | #include "arm_nnfunctions.h" |
||
| 33 | |||
| 34 | /** |
||
| 35 | * @ingroup groupNN |
||
| 36 | */ |
||
| 37 | |||
| 38 | /** |
||
| 39 | * @addtogroup NNConv |
||
| 40 | * @{ |
||
| 41 | */ |
||
| 42 | |||
| 43 | /** |
||
| 44 | * @brief Q7 depthwise separable convolution function |
||
| 45 | * @param[in] Im_in pointer to input tensor |
||
| 46 | * @param[in] dim_im_in input tensor dimention |
||
| 47 | * @param[in] ch_im_in number of input tensor channels |
||
| 48 | * @param[in] wt pointer to kernel weights |
||
| 49 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
| 50 | * @param[in] dim_kernel filter kernel size |
||
| 51 | * @param[in] padding padding sizes |
||
| 52 | * @param[in] stride convolution stride |
||
| 53 | * @param[in] bias pointer to bias |
||
| 54 | * @param[in] bias_shift amount of left-shift for bias |
||
| 55 | * @param[in] out_shift amount of right-shift for output |
||
| 56 | * @param[in,out] Im_out pointer to output tensor |
||
| 57 | * @param[in] dim_im_out output tensor dimension |
||
| 58 | * @param[in,out] bufferA pointer to buffer space for input |
||
| 59 | * @param[in,out] bufferB pointer to buffer space for output |
||
| 60 | * @return The function returns either |
||
| 61 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 62 | * |
||
| 63 | * @details |
||
| 64 | * |
||
| 65 | * <b>Buffer size:</b> |
||
| 66 | * |
||
| 67 | * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel |
||
| 68 | * |
||
| 69 | * bufferB size: 0 |
||
| 70 | * |
||
| 71 | * <b>Input dimension constraints:</b> |
||
| 72 | * |
||
| 73 | * ch_im_in equals ch_im_out |
||
| 74 | * |
||
| 75 | * Implementation: |
||
| 76 | * There are 3 nested loop here: |
||
| 77 | * Inner loop: calculate each output value with MAC instruction over an accumulator |
||
| 78 | * Mid loop: loop over different output channel |
||
| 79 | * Outer loop: loop over different output (x, y) |
||
| 80 | */ |
||
| 81 | |||
| 82 | arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in, |
||
| 83 | const uint16_t dim_im_in, |
||
| 84 | const uint16_t ch_im_in, |
||
| 85 | const q7_t * wt, |
||
| 86 | const uint16_t ch_im_out, |
||
| 87 | const uint16_t dim_kernel, |
||
| 88 | const uint16_t padding, |
||
| 89 | const uint16_t stride, |
||
| 90 | const q7_t * bias, |
||
| 91 | const uint16_t bias_shift, |
||
| 92 | const uint16_t out_shift, |
||
| 93 | q7_t * Im_out, |
||
| 94 | const uint16_t dim_im_out, |
||
| 95 | q15_t * bufferA, |
||
| 96 | q7_t * bufferB) |
||
| 97 | { |
||
| 98 | |||
| 99 | #if defined (ARM_MATH_DSP) |
||
| 100 | /* Run the following code for Cortex-M4 and Cortex-M7 */ |
||
| 101 | |||
| 102 | int16_t i_out_y, i_out_x; |
||
| 103 | int16_t i_ker_y, i_ker_x; |
||
| 104 | q7_t *colBuffer = (q7_t *) bufferA; |
||
| 105 | q7_t *pBuffer = colBuffer; |
||
| 106 | const q7_t *pBias = bias; |
||
| 107 | q7_t *pOut = Im_out; |
||
| 108 | uint16_t rowCnt; |
||
| 109 | uint16_t row_shift; |
||
| 110 | |||
| 111 | /* do some checking here, basically ch_im_in == ch_im_out */ |
||
| 112 | if (ch_im_in != ch_im_out) |
||
| 113 | { |
||
| 114 | return ARM_MATH_SIZE_MISMATCH; |
||
| 115 | } |
||
| 116 | |||
| 117 | for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) |
||
| 118 | { |
||
| 119 | for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) |
||
| 120 | { |
||
| 121 | /* we first do im2col here */ |
||
| 122 | for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) |
||
| 123 | { |
||
| 124 | for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) |
||
| 125 | { |
||
| 126 | if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) |
||
| 127 | { |
||
| 128 | /* arm_fill_q7(0, pBuffer, ch_im_in); */ |
||
| 129 | memset(pBuffer, 0, ch_im_in); |
||
| 130 | } else |
||
| 131 | { |
||
| 132 | /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ |
||
| 133 | memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in); |
||
| 134 | } |
||
| 135 | pBuffer += ch_im_in; |
||
| 136 | } |
||
| 137 | } |
||
| 138 | |||
| 139 | /* we will do the computation here for each channel */ |
||
| 140 | rowCnt = ch_im_out >> 2; |
||
| 141 | row_shift = 0; |
||
| 142 | pBias = bias; |
||
| 143 | |||
| 144 | while (rowCnt) |
||
| 145 | { |
||
| 146 | q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); |
||
| 147 | q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); |
||
| 148 | q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); |
||
| 149 | q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); |
||
| 150 | |||
| 151 | uint16_t colCnt = (dim_kernel * dim_kernel) >> 1; |
||
| 152 | q7_t *pB = colBuffer + row_shift; |
||
| 153 | const q7_t *pA = wt + row_shift; |
||
| 154 | row_shift += 4; |
||
| 155 | |||
| 156 | #ifdef USE_INTRINSIC |
||
| 157 | |||
| 158 | #ifndef ARM_MATH_BIG_ENDIAN |
||
| 159 | |||
| 160 | while (colCnt) |
||
| 161 | { |
||
| 162 | q31_t inA1, inA2, inB1, inB2, opA, opB; |
||
| 163 | |||
| 164 | inB1 = *__SIMD32(pB); |
||
| 165 | pB += ch_im_in; |
||
| 166 | opB = *__SIMD32(pB); |
||
| 167 | pB += ch_im_in; |
||
| 168 | inB2 = __PKHTB(opB, inB1, 16); |
||
| 169 | inB1 = __PKHBT(inB1, opB, 16); |
||
| 170 | inA1 = *__SIMD32(pA); |
||
| 171 | pA += ch_im_in; |
||
| 172 | opB = *__SIMD32(pA); |
||
| 173 | pA += ch_im_in; |
||
| 174 | inA2 = __PKHTB(opB, inA1, 16); |
||
| 175 | inA1 = __PKHBT(inA1, opB, 16); |
||
| 176 | opA = __SXTB16(inA1); |
||
| 177 | opB = __SXTB16(inB1); |
||
| 178 | sum = __SMLAD(opA, opB, sum); |
||
| 179 | opA = __SXTB16(__ROR(inA1, 8)); |
||
| 180 | opB = __SXTB16(__ROR(inB1, 8)); |
||
| 181 | sum2 = __SMLAD(opA, opB, sum2); |
||
| 182 | opA = __SXTB16(inA2); |
||
| 183 | opB = __SXTB16(inB2); |
||
| 184 | sum3 = __SMLAD(opA, opB, sum3); |
||
| 185 | opA = __SXTB16(__ROR(inA2, 8)); |
||
| 186 | opB = __SXTB16(__ROR(inB2, 8)); |
||
| 187 | sum4 = __SMLAD(opA, opB, sum4); |
||
| 188 | colCnt--; |
||
| 189 | } |
||
| 190 | #else |
||
| 191 | |||
| 192 | while (colCnt) |
||
| 193 | { |
||
| 194 | q31_t inA1, inA2, inB1, inB2, opA, opB; |
||
| 195 | |||
| 196 | inB1 = *__SIMD32(pB); |
||
| 197 | pB += ch_im_in; |
||
| 198 | opB = *__SIMD32(pB); |
||
| 199 | pB += ch_im_in; |
||
| 200 | inB2 = __PKHBT(opB, inB1, 16); |
||
| 201 | inB1 = __PKHTB(inB1, opB, 16); |
||
| 202 | inA1 = *__SIMD32(pA); |
||
| 203 | pA += ch_im_in; |
||
| 204 | opB = *__SIMD32(pA); |
||
| 205 | pA += ch_im_in; |
||
| 206 | inA2 = __PKHBT(opB, inA1, 16); |
||
| 207 | inA1 = __PKHTB(inA1, opB, 16); |
||
| 208 | opA = __SXTB16(inA1); |
||
| 209 | opB = __SXTB16(inB1); |
||
| 210 | sum2 = __SMLAD(opA, opB, sum2); |
||
| 211 | opA = __SXTB16(__ROR(inA1, 8)); |
||
| 212 | opB = __SXTB16(__ROR(inB1, 8)); |
||
| 213 | sum = __SMLAD(opA, opB, sum); |
||
| 214 | opA = __SXTB16(inA2); |
||
| 215 | opB = __SXTB16(inB2); |
||
| 216 | sum4 = __SMLAD(opA, opB, sum4); |
||
| 217 | opA = __SXTB16(__ROR(inA2, 8)); |
||
| 218 | opB = __SXTB16(__ROR(inB2, 8)); |
||
| 219 | sum3 = __SMLAD(opA, opB, sum3); |
||
| 220 | colCnt--; |
||
| 221 | } |
||
| 222 | |||
| 223 | #endif /* ARM_MATH_BIG_ENDIAN */ |
||
| 224 | |||
| 225 | #else |
||
| 226 | |||
| 227 | #ifndef ARM_MATH_BIG_ENDIAN |
||
| 228 | /* |
||
| 229 | * r0 r1 r2 r3 r4 r5 |
||
| 230 | * inA1, inA2, inB1, inB2, opA, opB |
||
| 231 | */ |
||
| 232 | |||
| 233 | asm volatile ("COL_LOOP_%=:\n" |
||
| 234 | "ldr.w r2, [%[pB], #0]\n" |
||
| 235 | "add.w %[pB], %[pB], %[ch_im_in]\n" |
||
| 236 | "ldr.w r5, [%[pB], #0]\n" |
||
| 237 | "add.w %[pB], %[pB], %[ch_im_in]\n" |
||
| 238 | "pkhtb r3, r5, r2, ASR #16\n" |
||
| 239 | "pkhbt r2, r2, r5, LSL #16\n" |
||
| 240 | "ldr.w r0, [%[pA], #0]\n" |
||
| 241 | "add.w %[pA], %[pA], %[ch_im_in]\n" |
||
| 242 | "ldr.w r5, [%[pA], #0]\n" |
||
| 243 | "add.w %[pA], %[pA], %[ch_im_in]\n" |
||
| 244 | "pkhtb r1, r5, r0, ASR #16\n" |
||
| 245 | "pkhbt r0, r0, r5, LSL #16\n" |
||
| 246 | "sxtb16 r4, r0\n" |
||
| 247 | "sxtb16 r5, r2\n" |
||
| 248 | "smlad %[sum], r4, r5, %[sum]\n" |
||
| 249 | "mov.w r4, r0, ror #8\n" |
||
| 250 | "mov.w r5, r2, ror #8\n" |
||
| 251 | "sxtb16 r4, r4\n" |
||
| 252 | "sxtb16 r5, r5\n" |
||
| 253 | "smlad %[sum2], r4, r5, %[sum2]\n" |
||
| 254 | "sxtb16 r4, r1\n" |
||
| 255 | "sxtb16 r5, r3\n" |
||
| 256 | "smlad %[sum3], r4, r5, %[sum3]\n" |
||
| 257 | "mov.w r4, r1, ror #8\n" |
||
| 258 | "mov.w r5, r3, ror #8\n" |
||
| 259 | "sxtb16 r4, r4\n" |
||
| 260 | "sxtb16 r5, r5\n" |
||
| 261 | "smlad %[sum4], r4, r5, %[sum4]\n" |
||
| 262 | "subs %[colCnt], #1\n" |
||
| 263 | "bne COL_LOOP_%=\n":[sum] |
||
| 264 | "+r"(sum),[sum2] "+r"(sum2), |
||
| 265 | [sum3] "+r"(sum3), |
||
| 266 | [sum4] "+r"(sum4),[pB] "+r"(pB), |
||
| 267 | [pA] "+r"(pA):[colCnt] |
||
| 268 | "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); |
||
| 269 | #else |
||
| 270 | /* |
||
| 271 | * r0 r1 r2 r3 r4 r5 |
||
| 272 | * inA1, inA2, inB1, inB2, opA, opB |
||
| 273 | */ |
||
| 274 | asm volatile ("COL_LOOP_%=:\n" |
||
| 275 | "ldr.w r2, [%[pB], #0]\n" |
||
| 276 | "add.w %[pB], %[pB], %[ch_im_in]\n" |
||
| 277 | "ldr.w r5, [%[pB], #0]\n" |
||
| 278 | "add.w %[pB], %[pB], %[ch_im_in]\n" |
||
| 279 | "pkhbt r3, r5, r2, LSL #16\n" |
||
| 280 | "pkhtb r2, r2, r5, ASR #16\n" |
||
| 281 | "ldr.w r0, [%[pA], #0]\n" |
||
| 282 | "add.w %[pA], %[pA], %[ch_im_in]\n" |
||
| 283 | "ldr.w r5, [%[pA], #0]\n" |
||
| 284 | "add.w %[pA], %[pA], %[ch_im_in]\n" |
||
| 285 | "pkhbt r1, r5, r0, LSL #16\n" |
||
| 286 | "pkhtb r0, r0, r5, ASR #16\n" |
||
| 287 | "sxtb16 r4, r0\n" |
||
| 288 | "sxtb16 r5, r2\n" |
||
| 289 | "smlad %[sum2], r4, r5, %[sum2]\n" |
||
| 290 | "mov.w r4, r0, ror #8\n" |
||
| 291 | "mov.w r5, r2, ror #8\n" |
||
| 292 | "sxtb16 r4, r4\n" |
||
| 293 | "sxtb16 r5, r5\n" |
||
| 294 | "smlad %[sum], r4, r5, %[sum]\n" |
||
| 295 | "sxtb16 r4, r1\n" |
||
| 296 | "sxtb16 r5, r3\n" |
||
| 297 | "smlad %[sum4], r4, r5, %[sum4]\n" |
||
| 298 | "mov.w r4, r1, ror #8\n" |
||
| 299 | "mov.w r5, r3, ror #8\n" |
||
| 300 | "sxtb16 r4, r4\n" |
||
| 301 | "sxtb16 r5, r5\n" |
||
| 302 | "smlad %[sum3], r4, r5, %[sum3]\n" |
||
| 303 | "subs %[colCnt], #1\n" |
||
| 304 | "bne COL_LOOP_%=\n":[sum] |
||
| 305 | "+r"(sum),[sum2] "+r"(sum2), |
||
| 306 | [sum3] "+r"(sum3), |
||
| 307 | [sum4] "+r"(sum4),[pB] "+r"(pB), |
||
| 308 | [pA] "+r"(pA):[colCnt] |
||
| 309 | "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); |
||
| 310 | |||
| 311 | #endif /* ARM_MATH_BIG_ENDIAN */ |
||
| 312 | |||
| 313 | #endif /* USE_INTRINSIC */ |
||
| 314 | |||
| 315 | colCnt = (dim_kernel * dim_kernel) & 0x1; |
||
| 316 | while (colCnt) |
||
| 317 | { |
||
| 318 | union arm_nnword inA, inB; |
||
| 319 | inA.word = *__SIMD32(pA); |
||
| 320 | pA += ch_im_in; |
||
| 321 | inB.word = *__SIMD32(pB); |
||
| 322 | pB += ch_im_in; |
||
| 323 | sum += inA.bytes[0] * inB.bytes[0]; |
||
| 324 | sum2 += inA.bytes[1] * inB.bytes[1]; |
||
| 325 | sum3 += inA.bytes[2] * inB.bytes[2]; |
||
| 326 | sum4 += inA.bytes[3] * inB.bytes[3]; |
||
| 327 | colCnt--; |
||
| 328 | } |
||
| 329 | |||
| 330 | *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); |
||
| 331 | *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8); |
||
| 332 | *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); |
||
| 333 | *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8); |
||
| 334 | |||
| 335 | rowCnt--; |
||
| 336 | } |
||
| 337 | |||
| 338 | rowCnt = ch_im_out & 0x3; |
||
| 339 | while (rowCnt) |
||
| 340 | { |
||
| 341 | q7_t *pB = colBuffer + row_shift; |
||
| 342 | const q7_t *pA = wt + row_shift; |
||
| 343 | q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); |
||
| 344 | uint16_t colCnt = (dim_kernel * dim_kernel); |
||
| 345 | |||
| 346 | row_shift += 1; |
||
| 347 | |||
| 348 | while (colCnt) |
||
| 349 | { |
||
| 350 | q7_t A1 = *pA; |
||
| 351 | q7_t B1 = *pB; |
||
| 352 | pA += ch_im_in; |
||
| 353 | pB += ch_im_in; |
||
| 354 | sum += A1 * B1; |
||
| 355 | |||
| 356 | colCnt--; |
||
| 357 | } |
||
| 358 | *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); |
||
| 359 | rowCnt--; |
||
| 360 | } |
||
| 361 | |||
| 362 | /* clear counter and pointers */ |
||
| 363 | pBuffer = colBuffer; |
||
| 364 | } |
||
| 365 | } |
||
| 366 | |||
| 367 | #else |
||
| 368 | /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ |
||
| 369 | int i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y; |
||
| 370 | int conv_out; |
||
| 371 | |||
| 372 | /* do some checking here, basically ch_im_in == ch_im_out */ |
||
| 373 | if (ch_im_in != ch_im_out) |
||
| 374 | { |
||
| 375 | return ARM_MATH_SIZE_MISMATCH; |
||
| 376 | } |
||
| 377 | |||
| 378 | for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) |
||
| 379 | { |
||
| 380 | for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) |
||
| 381 | { |
||
| 382 | for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) |
||
| 383 | { |
||
| 384 | // for each output |
||
| 385 | conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); |
||
| 386 | for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++) |
||
| 387 | { |
||
| 388 | for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++) |
||
| 389 | { |
||
| 390 | int in_row = stride * i_out_y + i_ker_y - padding; |
||
| 391 | int in_col = stride * i_out_x + i_ker_x - padding; |
||
| 392 | if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) |
||
| 393 | { |
||
| 394 | conv_out += |
||
| 395 | Im_in[(in_row * |
||
| 396 | dim_im_in + |
||
| 397 | in_col) * |
||
| 398 | ch_im_in + |
||
| 399 | i_ch_out] * wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out]; |
||
| 400 | } |
||
| 401 | } |
||
| 402 | } |
||
| 403 | Im_out[(i_out_y * dim_im_out + |
||
| 404 | i_out_x) * ch_im_out + i_ch_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); |
||
| 405 | } |
||
| 406 | } |
||
| 407 | } |
||
| 408 | |||
| 409 | #endif /* ARM_MATH_DSP */ |
||
| 410 | |||
| 411 | /* Return to application */ |
||
| 412 | return ARM_MATH_SUCCESS; |
||
| 413 | |||
| 414 | } |
||
| 415 | |||
| 416 | /** |
||
| 417 | * @} end of NNConv group |
||
| 418 | */ |