Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | /* |
| 2 | * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. |
||
| 3 | * |
||
| 4 | * SPDX-License-Identifier: Apache-2.0 |
||
| 5 | * |
||
| 6 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
| 7 | * not use this file except in compliance with the License. |
||
| 8 | * You may obtain a copy of the License at |
||
| 9 | * |
||
| 10 | * www.apache.org/licenses/LICENSE-2.0 |
||
| 11 | * |
||
| 12 | * Unless required by applicable law or agreed to in writing, software |
||
| 13 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
| 14 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
| 15 | * See the License for the specific language governing permissions and |
||
| 16 | * limitations under the License. |
||
| 17 | */ |
||
| 18 | |||
| 19 | /* ---------------------------------------------------------------------- |
||
| 20 | * Project: CMSIS NN Library |
||
| 21 | * Title: arm_convolve_HWC_q7_fast_nonsquare.c |
||
| 22 | * Description: Fast Q7 version of convolution (non-sqaure shape) |
||
| 23 | * |
||
| 24 | * $Date: 17. January 2018 |
||
| 25 | * $Revision: V.1.0.0 |
||
| 26 | * |
||
| 27 | * Target Processor: Cortex-M cores |
||
| 28 | * |
||
| 29 | * -------------------------------------------------------------------- */ |
||
| 30 | |||
| 31 | #include "arm_math.h" |
||
| 32 | #include "arm_nnfunctions.h" |
||
| 33 | |||
| 34 | /** |
||
| 35 | * @ingroup groupNN |
||
| 36 | */ |
||
| 37 | |||
| 38 | /** |
||
| 39 | * @addtogroup NNConv |
||
| 40 | * @{ |
||
| 41 | */ |
||
| 42 | |||
| 43 | /** |
||
| 44 | * @brief Fast Q7 convolution function (non-sqaure shape) |
||
| 45 | * @param[in] Im_in pointer to input tensor |
||
| 46 | * @param[in] dim_im_in_x input tensor dimention x |
||
| 47 | * @param[in] dim_im_in_y input tensor dimention y |
||
| 48 | * @param[in] ch_im_in number of input tensor channels |
||
| 49 | * @param[in] wt pointer to kernel weights |
||
| 50 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
| 51 | * @param[in] dim_kernel_x filter kernel size x |
||
| 52 | * @param[in] dim_kernel_y filter kernel size y |
||
| 53 | * @param[in] padding_x padding size x |
||
| 54 | * @param[in] padding_y padding size y |
||
| 55 | * @param[in] stride_x convolution stride x |
||
| 56 | * @param[in] stride_y convolution stride y |
||
| 57 | * @param[in] bias pointer to bias |
||
| 58 | * @param[in] bias_shift amount of left-shift for bias |
||
| 59 | * @param[in] out_shift amount of right-shift for output |
||
| 60 | * @param[in,out] Im_out pointer to output tensor |
||
| 61 | * @param[in] dim_im_out_x output tensor dimension x |
||
| 62 | * @param[in] dim_im_out_y output tensor dimension y |
||
| 63 | * @param[in,out] bufferA pointer to buffer space for input |
||
| 64 | * @param[in,out] bufferB pointer to buffer space for output |
||
| 65 | * @return The function returns either |
||
| 66 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
| 67 | * |
||
| 68 | * This function is the version with full list of optimization tricks, but with |
||
| 69 | * some contraints: |
||
| 70 | * ch_im_in is multiple of 4 |
||
| 71 | * ch_im_out is multiple of 2 |
||
| 72 | */ |
||
| 73 | |||
| 74 | arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in, |
||
| 75 | const uint16_t dim_im_in_x, |
||
| 76 | const uint16_t dim_im_in_y, |
||
| 77 | const uint16_t ch_im_in, |
||
| 78 | const q7_t * wt, |
||
| 79 | const uint16_t ch_im_out, |
||
| 80 | const uint16_t dim_kernel_x, |
||
| 81 | const uint16_t dim_kernel_y, |
||
| 82 | const uint16_t padding_x, |
||
| 83 | const uint16_t padding_y, |
||
| 84 | const uint16_t stride_x, |
||
| 85 | const uint16_t stride_y, |
||
| 86 | const q7_t * bias, |
||
| 87 | const uint16_t bias_shift, |
||
| 88 | const uint16_t out_shift, |
||
| 89 | q7_t * Im_out, |
||
| 90 | const uint16_t dim_im_out_x, |
||
| 91 | const uint16_t dim_im_out_y, |
||
| 92 | q15_t * bufferA, |
||
| 93 | q7_t * bufferB) |
||
| 94 | { |
||
| 95 | |||
| 96 | #if defined (ARM_MATH_DSP) |
||
| 97 | /* Run the following code for Cortex-M4 and Cortex-M7 */ |
||
| 98 | |||
| 99 | int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; |
||
| 100 | |||
| 101 | /* ----------------------- |
||
| 102 | * Here we use bufferA as q15_t internally as computation are done with q15_t level |
||
| 103 | * im2col are done to output in q15_t format from q7_t input |
||
| 104 | */ |
||
| 105 | |||
| 106 | q15_t *pBuffer = bufferA; |
||
| 107 | q7_t *pOut = Im_out; |
||
| 108 | |||
| 109 | if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) |
||
| 110 | { |
||
| 111 | /* check if the input dimension meets the constraints */ |
||
| 112 | return ARM_MATH_SIZE_MISMATCH; |
||
| 113 | } |
||
| 114 | |||
| 115 | /* |
||
| 116 | * Here we split the entire matrix into three regions depending on the padding situation |
||
| 117 | * Top: i_out_y from 0 to padding - 1 |
||
| 118 | * Middle: i_out_y from padding to dim_im_out-padding-1 |
||
| 119 | * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1 |
||
| 120 | */ |
||
| 121 | |||
| 122 | /* top part */ |
||
| 123 | for (i_out_y = 0; i_out_y < padding_y; i_out_y++) |
||
| 124 | { |
||
| 125 | for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) |
||
| 126 | { |
||
| 127 | /* This part implements the im2col function */ |
||
| 128 | for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; |
||
| 129 | i_ker_y++) |
||
| 130 | { |
||
| 131 | for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; |
||
| 132 | i_ker_x++) |
||
| 133 | { |
||
| 134 | if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) |
||
| 135 | { |
||
| 136 | /* arm_fill_q15(0, pBuffer, ch_im_in); */ |
||
| 137 | memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); |
||
| 138 | } else |
||
| 139 | { |
||
| 140 | arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, |
||
| 141 | pBuffer, ch_im_in); |
||
| 142 | } |
||
| 143 | pBuffer += ch_im_in; |
||
| 144 | } |
||
| 145 | } |
||
| 146 | |||
| 147 | if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) |
||
| 148 | { |
||
| 149 | pOut = |
||
| 150 | arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, |
||
| 151 | bias_shift, out_shift, bias, pOut); |
||
| 152 | /* counter reset */ |
||
| 153 | pBuffer = bufferA; |
||
| 154 | } |
||
| 155 | } |
||
| 156 | } |
||
| 157 | |||
| 158 | /* middle part, here we also divide the x into left, mid and right */ |
||
| 159 | for (; i_out_y < dim_im_out_y - padding_y; i_out_y++) |
||
| 160 | { |
||
| 161 | |||
| 162 | /* left part */ |
||
| 163 | for (i_out_x = 0; i_out_x < padding_x; i_out_x++) |
||
| 164 | { |
||
| 165 | /* This part implements the im2col function */ |
||
| 166 | for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; |
||
| 167 | i_ker_y++) |
||
| 168 | { |
||
| 169 | for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; |
||
| 170 | i_ker_x++) |
||
| 171 | { |
||
| 172 | if (i_ker_x < 0 || i_ker_x >= dim_im_in_x) |
||
| 173 | { |
||
| 174 | /* arm_fill_q15(0, pBuffer, ch_im_in); */ |
||
| 175 | memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); |
||
| 176 | } else |
||
| 177 | { |
||
| 178 | arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, |
||
| 179 | pBuffer, ch_im_in); |
||
| 180 | } |
||
| 181 | pBuffer += ch_im_in; |
||
| 182 | } |
||
| 183 | } |
||
| 184 | |||
| 185 | if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) |
||
| 186 | { |
||
| 187 | pOut = |
||
| 188 | arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, |
||
| 189 | bias_shift, out_shift, bias, pOut); |
||
| 190 | /* counter reset */ |
||
| 191 | pBuffer = bufferA; |
||
| 192 | } |
||
| 193 | } |
||
| 194 | |||
| 195 | /* mid part */ |
||
| 196 | for (; i_out_x < dim_im_out_x - padding_x; i_out_x++) |
||
| 197 | { |
||
| 198 | /* This part implements the im2col function */ |
||
| 199 | for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; |
||
| 200 | i_ker_y++) |
||
| 201 | { |
||
| 202 | arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + |
||
| 203 | (i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in, |
||
| 204 | pBuffer, ch_im_in * dim_kernel_x); |
||
| 205 | pBuffer += ch_im_in * dim_kernel_x; |
||
| 206 | } |
||
| 207 | |||
| 208 | if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) |
||
| 209 | { |
||
| 210 | pOut = |
||
| 211 | arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, |
||
| 212 | bias_shift, out_shift, bias, pOut); |
||
| 213 | /* counter reset */ |
||
| 214 | pBuffer = bufferA; |
||
| 215 | } |
||
| 216 | } |
||
| 217 | |||
| 218 | /* right part */ |
||
| 219 | for (; i_out_x < dim_im_out_x; i_out_x++) |
||
| 220 | { |
||
| 221 | /* This part implements the im2col function */ |
||
| 222 | for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; |
||
| 223 | i_ker_y++) |
||
| 224 | { |
||
| 225 | for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; |
||
| 226 | i_ker_x++) |
||
| 227 | { |
||
| 228 | if (i_ker_x < 0 || i_ker_x >= dim_im_in_x) |
||
| 229 | { |
||
| 230 | /* arm_fill_q15(0, pBuffer, ch_im_in); */ |
||
| 231 | memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); |
||
| 232 | } else |
||
| 233 | { |
||
| 234 | arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, |
||
| 235 | pBuffer, ch_im_in); |
||
| 236 | } |
||
| 237 | pBuffer += ch_im_in; |
||
| 238 | } |
||
| 239 | } |
||
| 240 | |||
| 241 | if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) |
||
| 242 | { |
||
| 243 | pOut = |
||
| 244 | arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, |
||
| 245 | bias_shift, out_shift, bias, pOut); |
||
| 246 | /* counter reset */ |
||
| 247 | pBuffer = bufferA; |
||
| 248 | } |
||
| 249 | } |
||
| 250 | } |
||
| 251 | |||
| 252 | for (; i_out_y < dim_im_out_y; i_out_y++) |
||
| 253 | { |
||
| 254 | for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) |
||
| 255 | { |
||
| 256 | /* This part implements the im2col function */ |
||
| 257 | for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; |
||
| 258 | i_ker_y++) |
||
| 259 | { |
||
| 260 | for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; |
||
| 261 | i_ker_x++) |
||
| 262 | { |
||
| 263 | if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) |
||
| 264 | { |
||
| 265 | /* arm_fill_q15(0, pBuffer, ch_im_in); */ |
||
| 266 | memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); |
||
| 267 | } else |
||
| 268 | { |
||
| 269 | arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, |
||
| 270 | pBuffer, ch_im_in); |
||
| 271 | } |
||
| 272 | pBuffer += ch_im_in; |
||
| 273 | } |
||
| 274 | } |
||
| 275 | |||
| 276 | if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) |
||
| 277 | { |
||
| 278 | pOut = |
||
| 279 | arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, |
||
| 280 | bias_shift, out_shift, bias, pOut); |
||
| 281 | /* counter reset */ |
||
| 282 | pBuffer = bufferA; |
||
| 283 | } |
||
| 284 | } |
||
| 285 | } |
||
| 286 | |||
| 287 | /* check if there is left-over for compute */ |
||
| 288 | if (pBuffer != bufferA) |
||
| 289 | { |
||
| 290 | const q7_t *pA = wt; |
||
| 291 | int i; |
||
| 292 | for (i = 0; i < ch_im_out; i++) |
||
| 293 | { |
||
| 294 | q31_t sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); |
||
| 295 | q15_t *pB = bufferA; |
||
| 296 | /* basically each time it process 4 entries */ |
||
| 297 | uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2; |
||
| 298 | |||
| 299 | while (colCnt) |
||
| 300 | { |
||
| 301 | |||
| 302 | q31_t inA1, inA2; |
||
| 303 | q31_t inB1, inB2; |
||
| 304 | |||
| 305 | pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2); |
||
| 306 | |||
| 307 | inB1 = *__SIMD32(pB)++; |
||
| 308 | sum = __SMLAD(inA1, inB1, sum); |
||
| 309 | inB2 = *__SIMD32(pB)++; |
||
| 310 | sum = __SMLAD(inA2, inB2, sum); |
||
| 311 | |||
| 312 | colCnt--; |
||
| 313 | } |
||
| 314 | colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3; |
||
| 315 | while (colCnt) |
||
| 316 | { |
||
| 317 | q7_t inA1 = *pA++; |
||
| 318 | q15_t inB1 = *pB++; |
||
| 319 | sum += inA1 * inB1; |
||
| 320 | colCnt--; |
||
| 321 | } |
||
| 322 | *pOut = (q7_t) __SSAT((sum >> out_shift), 8); |
||
| 323 | pOut++; |
||
| 324 | |||
| 325 | } |
||
| 326 | |||
| 327 | } |
||
| 328 | |||
| 329 | #else |
||
| 330 | /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ |
||
| 331 | int i, j, k, l, m, n; |
||
| 332 | int conv_out; |
||
| 333 | int in_row, in_col; |
||
| 334 | |||
| 335 | if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) |
||
| 336 | { |
||
| 337 | /* check if the input dimension meets the constraints */ |
||
| 338 | return ARM_MATH_SIZE_MISMATCH; |
||
| 339 | } |
||
| 340 | |||
| 341 | for (i = 0; i < ch_im_out; i++) |
||
| 342 | { |
||
| 343 | for (j = 0; j < dim_im_out_y; j++) |
||
| 344 | { |
||
| 345 | for (k = 0; k < dim_im_out_x; k++) |
||
| 346 | { |
||
| 347 | conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); |
||
| 348 | for (m = 0; m < dim_kernel_y; m++) |
||
| 349 | { |
||
| 350 | for (n = 0; n < dim_kernel_x; n++) |
||
| 351 | { |
||
| 352 | /* if-for implementation */ |
||
| 353 | in_row = stride_y * j + m - padding_y; |
||
| 354 | in_col = stride_x * k + n - padding_x; |
||
| 355 | if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) |
||
| 356 | { |
||
| 357 | for (l = 0; l < ch_im_in; l++) |
||
| 358 | { |
||
| 359 | conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * |
||
| 360 | wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in + l]; |
||
| 361 | } |
||
| 362 | } |
||
| 363 | } |
||
| 364 | } |
||
| 365 | Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); |
||
| 366 | } |
||
| 367 | } |
||
| 368 | } |
||
| 369 | |||
| 370 | |||
| 371 | #endif /* ARM_MATH_DSP */ |
||
| 372 | |||
| 373 | /* Return to application */ |
||
| 374 | return ARM_MATH_SUCCESS; |
||
| 375 | } |
||
| 376 | |||
| 377 | /** |
||
| 378 | * @} end of NNConv group |
||
| 379 | */ |