Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* |
2 | * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. |
||
3 | * |
||
4 | * SPDX-License-Identifier: Apache-2.0 |
||
5 | * |
||
6 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
7 | * not use this file except in compliance with the License. |
||
8 | * You may obtain a copy of the License at |
||
9 | * |
||
10 | * www.apache.org/licenses/LICENSE-2.0 |
||
11 | * |
||
12 | * Unless required by applicable law or agreed to in writing, software |
||
13 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
14 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
15 | * See the License for the specific language governing permissions and |
||
16 | * limitations under the License. |
||
17 | */ |
||
18 | |||
19 | /* ---------------------------------------------------------------------- |
||
20 | * Project: CMSIS NN Library |
||
21 | * Title: arm_convolve_HWC_q7_RGB.c |
||
22 | * Description: Q7 version of convolution for RGB image |
||
23 | * |
||
24 | * $Date: 17. January 2018 |
||
25 | * $Revision: V.1.0.0 |
||
26 | * |
||
27 | * Target Processor: Cortex-M cores |
||
28 | * |
||
29 | * -------------------------------------------------------------------- */ |
||
30 | #include "arm_math.h" |
||
31 | #include "arm_nnfunctions.h" |
||
32 | |||
33 | /** |
||
34 | * @ingroup groupNN |
||
35 | */ |
||
36 | |||
37 | /** |
||
38 | * @addtogroup NNConv |
||
39 | * @{ |
||
40 | */ |
||
41 | |||
42 | /** |
||
43 | * @brief Q7 convolution function for RGB image |
||
44 | * @param[in] Im_in pointer to input tensor |
||
45 | * @param[in] dim_im_in input tensor dimention |
||
46 | * @param[in] ch_im_in number of input tensor channels |
||
47 | * @param[in] wt pointer to kernel weights |
||
48 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
49 | * @param[in] dim_kernel filter kernel size |
||
50 | * @param[in] padding padding sizes |
||
51 | * @param[in] stride convolution stride |
||
52 | * @param[in] bias pointer to bias |
||
53 | * @param[in] bias_shift amount of left-shift for bias |
||
54 | * @param[in] out_shift amount of right-shift for output |
||
55 | * @param[in,out] Im_out pointer to output tensor |
||
56 | * @param[in] dim_im_out output tensor dimension |
||
57 | * @param[in,out] bufferA pointer to buffer space for input |
||
58 | * @param[in,out] bufferB pointer to buffer space for output |
||
59 | * @return The function returns either |
||
60 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
61 | * |
||
62 | * @details |
||
63 | * |
||
64 | * <b>Buffer size:</b> |
||
65 | * |
||
66 | * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel |
||
67 | * |
||
68 | * bufferB size: 0 |
||
69 | * |
||
70 | * <b>Input dimension constraints:</b> |
||
71 | * |
||
72 | * ch_im_in equals 3 |
||
73 | * |
||
74 | * This kernel is written exclusively for convolution with ch_im_in |
||
75 | * equals 3. This applies on the first layer of CNNs which has input |
||
76 | * image with RGB format. |
||
77 | */ |
||
78 | |||
79 | arm_status |
||
80 | arm_convolve_HWC_q7_RGB(const q7_t * Im_in, |
||
81 | const uint16_t dim_im_in, |
||
82 | const uint16_t ch_im_in, |
||
83 | const q7_t * wt, |
||
84 | const uint16_t ch_im_out, |
||
85 | const uint16_t dim_kernel, |
||
86 | const uint16_t padding, |
||
87 | const uint16_t stride, |
||
88 | const q7_t * bias, |
||
89 | const uint16_t bias_shift, |
||
90 | const uint16_t out_shift, |
||
91 | q7_t * Im_out, const uint16_t dim_im_out, q15_t * bufferA, q7_t * bufferB) |
||
92 | { |
||
93 | |||
94 | #if defined (ARM_MATH_DSP) |
||
95 | /* Run the following code for Cortex-M4 and Cortex-M7 */ |
||
96 | int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; |
||
97 | |||
98 | /* |
||
99 | * Here we use bufferA as q15_t internally as computation are done with q15_t level |
||
100 | * im2col are done to output in q15_t format from q7_t input |
||
101 | */ |
||
102 | q15_t *pBuffer = bufferA; |
||
103 | q7_t *pOut = Im_out; |
||
104 | |||
105 | // check if number of input channels is 3 |
||
106 | if (ch_im_in != 3) |
||
107 | { |
||
108 | return ARM_MATH_SIZE_MISMATCH; |
||
109 | } |
||
110 | // This part implements the im2col function |
||
111 | for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) |
||
112 | { |
||
113 | for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) |
||
114 | { |
||
115 | for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) |
||
116 | { |
||
117 | for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) |
||
118 | { |
||
119 | if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) |
||
120 | { |
||
121 | /* Equivalent to arm_fill_q15(0, pBuffer, ch_im_in) with assumption: ch_im_in = 3 */ |
||
122 | *__SIMD32(pBuffer) = 0x0; |
||
123 | *(pBuffer + 2) = 0; |
||
124 | pBuffer += 3; |
||
125 | } else |
||
126 | { |
||
127 | /* |
||
128 | * Equivalent to: |
||
129 | * arm_q7_to_q15_no_shift( (q7_t*)Im_in+(i_ker_y*dim_im_in+i_ker_x)*3, pBuffer, 3); |
||
130 | */ |
||
131 | |||
132 | const q7_t *pPixel = Im_in + (i_ker_y * dim_im_in + i_ker_x) * 3; |
||
133 | q31_t buf = *__SIMD32(pPixel); |
||
134 | |||
135 | union arm_nnword top; |
||
136 | union arm_nnword bottom; |
||
137 | |||
138 | top.word = __SXTB16(buf); |
||
139 | bottom.word = __SXTB16(__ROR(buf, 8)); |
||
140 | |||
141 | #ifndef ARM_MATH_BIG_ENDIAN |
||
142 | /* |
||
143 | * little-endian, | omit | 3rd | 2nd | 1st | |
||
144 | * MSB LSB |
||
145 | * top | 3rd | 1st |; bottom | omit | 2nd | |
||
146 | * |
||
147 | * version 1, need to swap 2nd and 3rd weight |
||
148 | * *__SIMD32(pBuffer) = top.word; |
||
149 | * *(pBuffer+2) = bottom.half_words[0]; |
||
150 | * |
||
151 | * version 2, no weight shuffling required |
||
152 | */ |
||
153 | *pBuffer++ = top.half_words[0]; |
||
154 | *__SIMD32(pBuffer) = __PKHBT(bottom.word, top.word, 0); |
||
155 | #else |
||
156 | /* |
||
157 | * big-endian, | 1st | 2nd | 3rd | omit | |
||
158 | * MSB LSB |
||
159 | * top | 2nd | omit |; bottom | 1st | 3rd | |
||
160 | * |
||
161 | * version 1, need to swap 2nd and 3rd weight |
||
162 | * *__SIMD32(pBuffer) = bottom.word; |
||
163 | * *(pBuffer+2) = top.half_words[1]; |
||
164 | * |
||
165 | * version 2, no weight shuffling required |
||
166 | */ |
||
167 | *pBuffer++ = bottom.half_words[0]; |
||
168 | *__SIMD32(pBuffer) = __PKHTB(top.word, bottom.word, 0); |
||
169 | #endif |
||
170 | pBuffer += 2; |
||
171 | } |
||
172 | } |
||
173 | } |
||
174 | |||
175 | if (pBuffer == bufferA + 2 * 3 * dim_kernel * dim_kernel) |
||
176 | { |
||
177 | pOut = |
||
178 | arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, |
||
179 | ch_im_out, |
||
180 | 3 * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); |
||
181 | |||
182 | /* counter reset */ |
||
183 | pBuffer = bufferA; |
||
184 | } |
||
185 | } |
||
186 | } |
||
187 | |||
188 | /* left-over because odd number of output pixels */ |
||
189 | if (pBuffer != bufferA) |
||
190 | { |
||
191 | const q7_t *pA = wt; |
||
192 | int i; |
||
193 | |||
194 | for (i = 0; i < ch_im_out; i++) |
||
195 | { |
||
196 | q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); |
||
197 | q15_t *pB = bufferA; |
||
198 | /* basically each time it process 4 entries */ |
||
199 | uint16_t colCnt = 3 * dim_kernel * dim_kernel >> 2; |
||
200 | |||
201 | while (colCnt) |
||
202 | { |
||
203 | |||
204 | q31_t inA1, inA2; |
||
205 | q31_t inB1, inB2; |
||
206 | |||
207 | pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2); |
||
208 | |||
209 | inB1 = *__SIMD32(pB)++; |
||
210 | sum = __SMLAD(inA1, inB1, sum); |
||
211 | inB2 = *__SIMD32(pB)++; |
||
212 | sum = __SMLAD(inA2, inB2, sum); |
||
213 | |||
214 | colCnt--; |
||
215 | } |
||
216 | colCnt = 3 * dim_kernel * dim_kernel & 0x3; |
||
217 | while (colCnt) |
||
218 | { |
||
219 | q7_t inA1 = *pA++; |
||
220 | q15_t inB1 = *pB++; |
||
221 | sum += inA1 * inB1; |
||
222 | colCnt--; |
||
223 | } |
||
224 | *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); |
||
225 | } |
||
226 | } |
||
227 | #else |
||
228 | /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ |
||
229 | |||
230 | uint16_t i, j, k, l, m, n; |
||
231 | int conv_out; |
||
232 | signed char in_row, in_col; |
||
233 | |||
234 | // check if number of input channels is 3 |
||
235 | if (ch_im_in != 3) |
||
236 | { |
||
237 | return ARM_MATH_SIZE_MISMATCH; |
||
238 | } |
||
239 | |||
240 | for (i = 0; i < ch_im_out; i++) |
||
241 | { |
||
242 | for (j = 0; j < dim_im_out; j++) |
||
243 | { |
||
244 | for (k = 0; k < dim_im_out; k++) |
||
245 | { |
||
246 | conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift); |
||
247 | for (m = 0; m < dim_kernel; m++) |
||
248 | { |
||
249 | for (n = 0; n < dim_kernel; n++) |
||
250 | { |
||
251 | /* if-for implementation */ |
||
252 | in_row = stride * j + m - padding; |
||
253 | in_col = stride * k + n - padding; |
||
254 | if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) |
||
255 | { |
||
256 | for (l = 0; l < ch_im_in; l++) |
||
257 | { |
||
258 | conv_out += |
||
259 | Im_in[(in_row * dim_im_in + in_col) * ch_im_in + |
||
260 | l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + |
||
261 | n) * ch_im_in + l]; |
||
262 | } |
||
263 | } |
||
264 | } |
||
265 | } |
||
266 | Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); |
||
267 | } |
||
268 | } |
||
269 | } |
||
270 | |||
271 | #endif /* ARM_MATH_DSP */ |
||
272 | |||
273 | /* Return to application */ |
||
274 | return (ARM_MATH_SUCCESS); |
||
275 | } |
||
276 | |||
277 | /** |
||
278 | * @} end of NNConv group |
||
279 | */ |