Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* |
2 | * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. |
||
3 | * |
||
4 | * SPDX-License-Identifier: Apache-2.0 |
||
5 | * |
||
6 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
7 | * not use this file except in compliance with the License. |
||
8 | * You may obtain a copy of the License at |
||
9 | * |
||
10 | * www.apache.org/licenses/LICENSE-2.0 |
||
11 | * |
||
12 | * Unless required by applicable law or agreed to in writing, software |
||
13 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
14 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
15 | * See the License for the specific language governing permissions and |
||
16 | * limitations under the License. |
||
17 | */ |
||
18 | |||
19 | /* ---------------------------------------------------------------------- |
||
20 | * Project: CMSIS NN Library |
||
21 | * Title: arm_convolve_HWC_q15_fast.c |
||
22 | * Description: Fast Q15 version of convolution |
||
23 | * |
||
24 | * $Date: 24. May 2018 |
||
25 | * $Revision: V.1.0.0 |
||
26 | * |
||
27 | * Target Processor: Cortex-M cores |
||
28 | * |
||
29 | * -------------------------------------------------------------------- */ |
||
30 | |||
31 | #include "arm_math.h" |
||
32 | #include "arm_nnfunctions.h" |
||
33 | |||
34 | /** |
||
35 | * @ingroup groupNN |
||
36 | */ |
||
37 | |||
38 | /** |
||
39 | * @addtogroup NNConv |
||
40 | * @{ |
||
41 | */ |
||
42 | |||
43 | /** |
||
44 | * @brief Fast Q15 convolution function (non-sqaure shape) |
||
45 | * @param[in] Im_in pointer to input tensor |
||
46 | * @param[in] dim_im_in_x input tensor dimention x |
||
47 | * @param[in] dim_im_in_y input tensor dimention y |
||
48 | * @param[in] ch_im_in number of input tensor channels |
||
49 | * @param[in] wt pointer to kernel weights |
||
50 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
51 | * @param[in] dim_kernel_x filter kernel size x |
||
52 | * @param[in] dim_kernel_y filter kernel size y |
||
53 | * @param[in] padding_x padding size x |
||
54 | * @param[in] padding_y padding size y |
||
55 | * @param[in] stride_x convolution stride x |
||
56 | * @param[in] stride_y convolution stride y |
||
57 | * @param[in] bias pointer to bias |
||
58 | * @param[in] bias_shift amount of left-shift for bias |
||
59 | * @param[in] out_shift amount of right-shift for output |
||
60 | * @param[in,out] Im_out pointer to output tensor |
||
61 | * @param[in] dim_im_out_x output tensor dimension x |
||
62 | * @param[in] dim_im_out_y output tensor dimension y |
||
63 | * @param[in,out] bufferA pointer to buffer space for input |
||
64 | * @param[in,out] bufferB pointer to buffer space for output |
||
65 | * @return The function returns either |
||
66 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
67 | * |
||
68 | * @details |
||
69 | * |
||
70 | * <b>Buffer size:</b> |
||
71 | * |
||
72 | * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel |
||
73 | * |
||
74 | * bufferB size: 0 |
||
75 | * |
||
76 | * <b>Input dimension constraints:</b> |
||
77 | * |
||
78 | * ch_im_in is multiple of 2 |
||
79 | * |
||
80 | * ch_im_out is multipe of 2 |
||
81 | * |
||
82 | */ |
||
83 | |||
84 | arm_status |
||
85 | arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, |
||
86 | const uint16_t dim_im_in_x, |
||
87 | const uint16_t dim_im_in_y, |
||
88 | const uint16_t ch_im_in, |
||
89 | const q15_t * wt, |
||
90 | const uint16_t ch_im_out, |
||
91 | const uint16_t dim_kernel_x, |
||
92 | const uint16_t dim_kernel_y, |
||
93 | const uint16_t padding_x, |
||
94 | const uint16_t padding_y, |
||
95 | const uint16_t stride_x, |
||
96 | const uint16_t stride_y, |
||
97 | const q15_t * bias, |
||
98 | const uint16_t bias_shift, |
||
99 | const uint16_t out_shift, |
||
100 | q15_t * Im_out, |
||
101 | const uint16_t dim_im_out_x, |
||
102 | const uint16_t dim_im_out_y, |
||
103 | q15_t * bufferA, |
||
104 | q7_t * bufferB) |
||
105 | { |
||
106 | |||
107 | #if defined (ARM_MATH_DSP) |
||
108 | int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; |
||
109 | |||
110 | q15_t *pBuffer = bufferA; |
||
111 | q15_t *im_buffer = bufferA; |
||
112 | q15_t *pOut = Im_out; |
||
113 | |||
114 | if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) |
||
115 | { |
||
116 | /* check if the input dimension meets the constraints */ |
||
117 | return ARM_MATH_SIZE_MISMATCH; |
||
118 | } |
||
119 | |||
120 | /* Run the following code for Cortex-M4 and Cortex-M7 */ |
||
121 | |||
122 | /* This part implements the im2col function */ |
||
123 | for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) |
||
124 | { |
||
125 | for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) |
||
126 | { |
||
127 | for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++) |
||
128 | { |
||
129 | for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++) |
||
130 | { |
||
131 | if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) |
||
132 | { |
||
133 | /* arm_fill_q15(0, pBuffer, ch_im_in); */ |
||
134 | memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); |
||
135 | } else |
||
136 | { |
||
137 | /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ |
||
138 | memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); |
||
139 | } |
||
140 | pBuffer += ch_im_in; |
||
141 | } |
||
142 | } |
||
143 | |||
144 | if (i_out_x & 0x1) |
||
145 | { |
||
146 | int i; |
||
147 | /* initialize the matrix pointers for A */ |
||
148 | const q15_t *pA = wt; |
||
149 | |||
150 | /* set up the second output pointers */ |
||
151 | q15_t *pOut2 = pOut + ch_im_out; |
||
152 | |||
153 | /* this loop over rows in A */ |
||
154 | for (i = 0; i < ch_im_out; i += 2) |
||
155 | { |
||
156 | /* setup pointers for B */ |
||
157 | q15_t *pB = im_buffer; |
||
158 | const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x; |
||
159 | |||
160 | /* aling the second pointer for A */ |
||
161 | const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x; |
||
162 | |||
163 | /* init the sum with bias */ |
||
164 | q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); |
||
165 | q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); |
||
166 | q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); |
||
167 | q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); |
||
168 | |||
169 | uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1; |
||
170 | /* accumulate over the vector */ |
||
171 | while (colCnt) |
||
172 | { |
||
173 | q31_t inA1 = *__SIMD32(pA)++; |
||
174 | q31_t inB1 = *__SIMD32(pB)++; |
||
175 | q31_t inA2 = *__SIMD32(pA2)++; |
||
176 | q31_t inB2 = *__SIMD32(pB2)++; |
||
177 | |||
178 | sum = __SMLAD(inA1, inB1, sum); |
||
179 | sum2 = __SMLAD(inA1, inB2, sum2); |
||
180 | sum3 = __SMLAD(inA2, inB1, sum3); |
||
181 | sum4 = __SMLAD(inA2, inB2, sum4); |
||
182 | |||
183 | colCnt--; |
||
184 | } /* while over colCnt */ |
||
185 | colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1; |
||
186 | while (colCnt) |
||
187 | { |
||
188 | q15_t inA1 = *pA++; |
||
189 | q15_t inB1 = *pB++; |
||
190 | q15_t inA2 = *pA2++; |
||
191 | q15_t inB2 = *pB2++; |
||
192 | |||
193 | sum += inA1 * inB1; |
||
194 | sum2 += inA1 * inB2; |
||
195 | sum3 += inA2 * inB1; |
||
196 | sum4 += inA2 * inB2; |
||
197 | colCnt--; |
||
198 | } /* while over colCnt */ |
||
199 | *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16); |
||
200 | *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16); |
||
201 | *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16); |
||
202 | *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16); |
||
203 | |||
204 | /* skip the row computed with A2 */ |
||
205 | pA += ch_im_in * dim_kernel_y * dim_kernel_x; |
||
206 | } /* for over ch_im_out */ |
||
207 | |||
208 | pOut += ch_im_out; |
||
209 | /* counter reset */ |
||
210 | pBuffer = im_buffer; |
||
211 | } |
||
212 | } |
||
213 | } |
||
214 | |||
215 | #else |
||
216 | /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ |
||
217 | uint16_t i, j, k, l, m, n; |
||
218 | int conv_out; |
||
219 | signed char in_row, in_col; |
||
220 | |||
221 | if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) |
||
222 | { |
||
223 | /* check if the input dimension meets the constraints */ |
||
224 | return ARM_MATH_SIZE_MISMATCH; |
||
225 | } |
||
226 | |||
227 | for (i = 0; i < ch_im_out; i++) |
||
228 | { |
||
229 | for (j = 0; j < dim_im_out_y; j++) |
||
230 | { |
||
231 | for (k = 0; k < dim_im_out_x; k++) |
||
232 | { |
||
233 | conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); |
||
234 | for (m = 0; m < dim_kernel_y; m++) |
||
235 | { |
||
236 | for (n = 0; n < dim_kernel_x; n++) |
||
237 | { |
||
238 | in_row = stride_y * j + m - padding_y; |
||
239 | in_col = stride_x * k + n - padding_x; |
||
240 | if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) |
||
241 | { |
||
242 | for (l = 0; l < ch_im_in; l++) |
||
243 | { |
||
244 | conv_out += |
||
245 | Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + |
||
246 | l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x + |
||
247 | n) * ch_im_in + l]; |
||
248 | } |
||
249 | } |
||
250 | } |
||
251 | } |
||
252 | Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); |
||
253 | } |
||
254 | } |
||
255 | } |
||
256 | |||
257 | #endif /* ARM_MATH_DSP */ |
||
258 | |||
259 | /* Return to application */ |
||
260 | return ARM_MATH_SUCCESS; |
||
261 | } |
||
262 | |||
263 | /** |
||
264 | * @} end of NNConv group |
||
265 | */ |