Subversion Repositories testOled

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/*
2
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
3
 *
4
 * SPDX-License-Identifier: Apache-2.0
5
 *
6
 * Licensed under the Apache License, Version 2.0 (the License); you may
7
 * not use this file except in compliance with the License.
8
 * You may obtain a copy of the License at
9
 *
10
 * www.apache.org/licenses/LICENSE-2.0
11
 *
12
 * Unless required by applicable law or agreed to in writing, software
13
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
14
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
 * See the License for the specific language governing permissions and
16
 * limitations under the License.
17
 */
18
 
19
/* ----------------------------------------------------------------------
20
 * Project:      CMSIS NN Library
21
 * Title:        arm_convolve_1x1_HWC_q7_fast_nonsquare.c
22
 * Description:  Fast Q7 version of 1x1 convolution (non-square shape)
23
 *
24
 * $Date:        17. January 2018
25
 * $Revision:    V.1.0.0
26
 *
27
 * Target Processor:  Cortex-M cores
28
 *
29
 * -------------------------------------------------------------------- */
30
 
31
#include "arm_math.h"
32
#include "arm_nnfunctions.h"
33
 
34
/**
35
 *  @ingroup groupNN
36
 */
37
 
38
/**
39
 * @addtogroup NNConv
40
 * @{
41
 */
42
 
43
/**
44
 * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
45
 * @param[in]       Im_in        pointer to input tensor
46
 * @param[in]       dim_im_in_x  input tensor dimention x
47
 * @param[in]       dim_im_in_y  input tensor dimention y
48
 * @param[in]       ch_im_in     number of input tensor channels
49
 * @param[in]       wt           pointer to kernel weights
50
 * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
51
 * @param[in]       dim_kernel_x filter kernel size x
52
 * @param[in]       dim_kernel_y filter kernel size y
53
 * @param[in]       padding_x    padding size x
54
 * @param[in]       padding_y    padding size y
55
 * @param[in]       stride_x     convolution stride x
56
 * @param[in]       stride_y     convolution stride y
57
 * @param[in]       bias         pointer to bias
58
 * @param[in]       bias_shift   amount of left-shift for bias
59
 * @param[in]       out_shift    amount of right-shift for output
60
 * @param[in,out]   Im_out       pointer to output tensor
61
 * @param[in]       dim_im_out_x output tensor dimension x
62
 * @param[in]       dim_im_out_y output tensor dimension y
63
 * @param[in,out]   bufferA      pointer to buffer space for input
64
 * @param[in,out]   bufferB      pointer to buffer space for output
65
 * @return     The function returns either
66
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
67
 *
68
 * This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1
69
 * and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise
70
 * separable convolution.
71
 *
72
 * This function is the version with full list of optimization tricks, but with
73
 * some contraints:
74
 *   ch_im_in is multiple of 4
75
 *   ch_im_out is multiple of 2
76
 *
77
 * [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
78
 * https://arxiv.org/abs/1704.04861
79
 */
80
 
81
arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
82
                                                  const uint16_t dim_im_in_x,
83
                                                  const uint16_t dim_im_in_y,
84
                                                  const uint16_t ch_im_in,
85
                                                  const q7_t * wt,
86
                                                  const uint16_t ch_im_out,
87
                                                  const uint16_t dim_kernel_x,
88
                                                  const uint16_t dim_kernel_y,
89
                                                  const uint16_t padding_x,
90
                                                  const uint16_t padding_y,
91
                                                  const uint16_t stride_x,
92
                                                  const uint16_t stride_y,
93
                                                  const q7_t * bias,
94
                                                  const uint16_t bias_shift,
95
                                                  const uint16_t out_shift,
96
                                                  q7_t * Im_out,
97
                                                  const uint16_t dim_im_out_x,
98
                                                  const uint16_t dim_im_out_y,
99
                                                  q15_t * bufferA,
100
                                                  q7_t * bufferB)
101
{
102
 
103
#if defined (ARM_MATH_DSP)
104
    /* Run the following code for Cortex-M4 and Cortex-M7 */
105
 
106
    int16_t   i_out_y, i_out_x;
107
    int16_t   i_ch_out;
108
 
109
    /* -----------------------
110
     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
111
     *  im2col are done to output in q15_t format from q7_t input
112
     */
113
 
114
    q15_t    *pBuffer = bufferA;
115
    q7_t     *pOut = Im_out;
116
 
117
    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
118
        || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
119
    {
120
        /* check if the input dimension meets the constraints */
121
        return ARM_MATH_SIZE_MISMATCH;
122
    }
123
 
124
    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
125
    {
126
        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
127
        {
128
            /* This part implements the im2col function */
129
            arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer,
130
                                             ch_im_in);
131
            pBuffer += ch_im_in;
132
 
133
            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
134
            {
135
                pOut =
136
                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut);
137
                /* counter reset */
138
                pBuffer = bufferA;
139
            }
140
        }
141
    }
142
 
143
    /* check if there is left-over for compute */
144
    if (pBuffer != bufferA)
145
    {
146
        const q7_t *pA = wt;
147
        for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
148
        {
149
            q31_t     sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
150
            q15_t    *pB = bufferA;
151
            /* basically each time it process 4 entries */
152
            uint16_t  colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
153
 
154
            while (colCnt)
155
            {
156
 
157
                q31_t     inA1, inA2;
158
                q31_t     inB1, inB2;
159
 
160
                pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2);
161
 
162
                inB1 = *__SIMD32(pB)++;
163
                sum = __SMLAD(inA1, inB1, sum);
164
                inB2 = *__SIMD32(pB)++;
165
                sum = __SMLAD(inA2, inB2, sum);
166
 
167
                colCnt--;
168
            }
169
            colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
170
            while (colCnt)
171
            {
172
                q7_t      inA1 = *pA++;
173
                q15_t     inB1 = *pB++;
174
                sum += inA1 * inB1;
175
                colCnt--;
176
            }
177
            *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
178
            pOut++;
179
 
180
        }
181
 
182
    }
183
 
184
#else
185
    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
186
 
187
    int       i, j, k, l, m, n;
188
    int       conv_out;
189
    int       in_row, in_col;
190
 
191
    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
192
        || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
193
    {
194
        /* check if the input dimension meets the constraints */
195
        return ARM_MATH_SIZE_MISMATCH;
196
    }
197
 
198
    for (i = 0; i < ch_im_out; i++)
199
    {
200
        for (j = 0; j < dim_im_out_y; j++)
201
        {
202
            for (k = 0; k < dim_im_out_x; k++)
203
            {
204
                conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
205
                for (m = 0; m < dim_kernel_y; m++)
206
                {
207
                    for (n = 0; n < dim_kernel_x; n++)
208
                    {
209
                        // if-for implementation
210
                        in_row = stride_y * j + m - padding_y;
211
                        in_col = stride_x * k + n - padding_x;
212
                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
213
                        {
214
                            for (l = 0; l < ch_im_in; l++)
215
                            {
216
                                conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
217
                                    wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l];
218
                            }
219
                        }
220
                    }
221
                }
222
                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
223
            }
224
        }
225
    }
226
 
227
#endif                          /* ARM_MATH_DSP */
228
 
229
    /* Return to application */
230
    return ARM_MATH_SUCCESS;
231
}
232
 
233
/**
234
 * @} end of NNConv group
235
 */