Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* |
2 | * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. |
||
3 | * |
||
4 | * SPDX-License-Identifier: Apache-2.0 |
||
5 | * |
||
6 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
7 | * not use this file except in compliance with the License. |
||
8 | * You may obtain a copy of the License at |
||
9 | * |
||
10 | * www.apache.org/licenses/LICENSE-2.0 |
||
11 | * |
||
12 | * Unless required by applicable law or agreed to in writing, software |
||
13 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
14 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
15 | * See the License for the specific language governing permissions and |
||
16 | * limitations under the License. |
||
17 | */ |
||
18 | |||
19 | /* ---------------------------------------------------------------------- |
||
20 | * Project: CMSIS NN Library |
||
21 | * Title: arm_convolve_1x1_HWC_q7_fast_nonsquare.c |
||
22 | * Description: Fast Q7 version of 1x1 convolution (non-square shape) |
||
23 | * |
||
24 | * $Date: 17. January 2018 |
||
25 | * $Revision: V.1.0.0 |
||
26 | * |
||
27 | * Target Processor: Cortex-M cores |
||
28 | * |
||
29 | * -------------------------------------------------------------------- */ |
||
30 | |||
31 | #include "arm_math.h" |
||
32 | #include "arm_nnfunctions.h" |
||
33 | |||
34 | /** |
||
35 | * @ingroup groupNN |
||
36 | */ |
||
37 | |||
38 | /** |
||
39 | * @addtogroup NNConv |
||
40 | * @{ |
||
41 | */ |
||
42 | |||
43 | /** |
||
44 | * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) |
||
45 | * @param[in] Im_in pointer to input tensor |
||
46 | * @param[in] dim_im_in_x input tensor dimention x |
||
47 | * @param[in] dim_im_in_y input tensor dimention y |
||
48 | * @param[in] ch_im_in number of input tensor channels |
||
49 | * @param[in] wt pointer to kernel weights |
||
50 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
51 | * @param[in] dim_kernel_x filter kernel size x |
||
52 | * @param[in] dim_kernel_y filter kernel size y |
||
53 | * @param[in] padding_x padding size x |
||
54 | * @param[in] padding_y padding size y |
||
55 | * @param[in] stride_x convolution stride x |
||
56 | * @param[in] stride_y convolution stride y |
||
57 | * @param[in] bias pointer to bias |
||
58 | * @param[in] bias_shift amount of left-shift for bias |
||
59 | * @param[in] out_shift amount of right-shift for output |
||
60 | * @param[in,out] Im_out pointer to output tensor |
||
61 | * @param[in] dim_im_out_x output tensor dimension x |
||
62 | * @param[in] dim_im_out_y output tensor dimension y |
||
63 | * @param[in,out] bufferA pointer to buffer space for input |
||
64 | * @param[in,out] bufferB pointer to buffer space for output |
||
65 | * @return The function returns either |
||
66 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
67 | * |
||
68 | * This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1 |
||
69 | * and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise |
||
70 | * separable convolution. |
||
71 | * |
||
72 | * This function is the version with full list of optimization tricks, but with |
||
73 | * some contraints: |
||
74 | * ch_im_in is multiple of 4 |
||
75 | * ch_im_out is multiple of 2 |
||
76 | * |
||
77 | * [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications |
||
78 | * https://arxiv.org/abs/1704.04861 |
||
79 | */ |
||
80 | |||
81 | arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, |
||
82 | const uint16_t dim_im_in_x, |
||
83 | const uint16_t dim_im_in_y, |
||
84 | const uint16_t ch_im_in, |
||
85 | const q7_t * wt, |
||
86 | const uint16_t ch_im_out, |
||
87 | const uint16_t dim_kernel_x, |
||
88 | const uint16_t dim_kernel_y, |
||
89 | const uint16_t padding_x, |
||
90 | const uint16_t padding_y, |
||
91 | const uint16_t stride_x, |
||
92 | const uint16_t stride_y, |
||
93 | const q7_t * bias, |
||
94 | const uint16_t bias_shift, |
||
95 | const uint16_t out_shift, |
||
96 | q7_t * Im_out, |
||
97 | const uint16_t dim_im_out_x, |
||
98 | const uint16_t dim_im_out_y, |
||
99 | q15_t * bufferA, |
||
100 | q7_t * bufferB) |
||
101 | { |
||
102 | |||
103 | #if defined (ARM_MATH_DSP) |
||
104 | /* Run the following code for Cortex-M4 and Cortex-M7 */ |
||
105 | |||
106 | int16_t i_out_y, i_out_x; |
||
107 | int16_t i_ch_out; |
||
108 | |||
109 | /* ----------------------- |
||
110 | * Here we use bufferA as q15_t internally as computation are done with q15_t level |
||
111 | * im2col are done to output in q15_t format from q7_t input |
||
112 | */ |
||
113 | |||
114 | q15_t *pBuffer = bufferA; |
||
115 | q7_t *pOut = Im_out; |
||
116 | |||
117 | if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 |
||
118 | || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) |
||
119 | { |
||
120 | /* check if the input dimension meets the constraints */ |
||
121 | return ARM_MATH_SIZE_MISMATCH; |
||
122 | } |
||
123 | |||
124 | for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) |
||
125 | { |
||
126 | for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) |
||
127 | { |
||
128 | /* This part implements the im2col function */ |
||
129 | arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer, |
||
130 | ch_im_in); |
||
131 | pBuffer += ch_im_in; |
||
132 | |||
133 | if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) |
||
134 | { |
||
135 | pOut = |
||
136 | arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut); |
||
137 | /* counter reset */ |
||
138 | pBuffer = bufferA; |
||
139 | } |
||
140 | } |
||
141 | } |
||
142 | |||
143 | /* check if there is left-over for compute */ |
||
144 | if (pBuffer != bufferA) |
||
145 | { |
||
146 | const q7_t *pA = wt; |
||
147 | for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) |
||
148 | { |
||
149 | q31_t sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); |
||
150 | q15_t *pB = bufferA; |
||
151 | /* basically each time it process 4 entries */ |
||
152 | uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2; |
||
153 | |||
154 | while (colCnt) |
||
155 | { |
||
156 | |||
157 | q31_t inA1, inA2; |
||
158 | q31_t inB1, inB2; |
||
159 | |||
160 | pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2); |
||
161 | |||
162 | inB1 = *__SIMD32(pB)++; |
||
163 | sum = __SMLAD(inA1, inB1, sum); |
||
164 | inB2 = *__SIMD32(pB)++; |
||
165 | sum = __SMLAD(inA2, inB2, sum); |
||
166 | |||
167 | colCnt--; |
||
168 | } |
||
169 | colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3; |
||
170 | while (colCnt) |
||
171 | { |
||
172 | q7_t inA1 = *pA++; |
||
173 | q15_t inB1 = *pB++; |
||
174 | sum += inA1 * inB1; |
||
175 | colCnt--; |
||
176 | } |
||
177 | *pOut = (q7_t) __SSAT((sum >> out_shift), 8); |
||
178 | pOut++; |
||
179 | |||
180 | } |
||
181 | |||
182 | } |
||
183 | |||
184 | #else |
||
185 | /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ |
||
186 | |||
187 | int i, j, k, l, m, n; |
||
188 | int conv_out; |
||
189 | int in_row, in_col; |
||
190 | |||
191 | if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 |
||
192 | || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) |
||
193 | { |
||
194 | /* check if the input dimension meets the constraints */ |
||
195 | return ARM_MATH_SIZE_MISMATCH; |
||
196 | } |
||
197 | |||
198 | for (i = 0; i < ch_im_out; i++) |
||
199 | { |
||
200 | for (j = 0; j < dim_im_out_y; j++) |
||
201 | { |
||
202 | for (k = 0; k < dim_im_out_x; k++) |
||
203 | { |
||
204 | conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); |
||
205 | for (m = 0; m < dim_kernel_y; m++) |
||
206 | { |
||
207 | for (n = 0; n < dim_kernel_x; n++) |
||
208 | { |
||
209 | // if-for implementation |
||
210 | in_row = stride_y * j + m - padding_y; |
||
211 | in_col = stride_x * k + n - padding_x; |
||
212 | if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) |
||
213 | { |
||
214 | for (l = 0; l < ch_im_in; l++) |
||
215 | { |
||
216 | conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * |
||
217 | wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l]; |
||
218 | } |
||
219 | } |
||
220 | } |
||
221 | } |
||
222 | Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); |
||
223 | } |
||
224 | } |
||
225 | } |
||
226 | |||
227 | #endif /* ARM_MATH_DSP */ |
||
228 | |||
229 | /* Return to application */ |
||
230 | return ARM_MATH_SUCCESS; |
||
231 | } |
||
232 | |||
233 | /** |
||
234 | * @} end of NNConv group |
||
235 | */ |