Subversion Repositories dashGPS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------
2
* Copyright (C) 2010-2018 Arm Limited. All rights reserved.
3
*
4
*
5
* Project:       CMSIS NN Library
6
* Title:         arm_nnexamples_gru.cpp
7
*
8
* Description:   Gated Recurrent Unit Example
9
*
10
* Target Processor: Cortex-M4/Cortex-M7
11
*
12
* Redistribution and use in source and binary forms, with or without
13
* modification, are permitted provided that the following conditions
14
* are met:
15
*   - Redistributions of source code must retain the above copyright
16
*     notice, this list of conditions and the following disclaimer.
17
*   - Redistributions in binary form must reproduce the above copyright
18
*     notice, this list of conditions and the following disclaimer in
19
*     the documentation and/or other materials provided with the
20
*     distribution.
21
*   - Neither the name of Arm LIMITED nor the names of its contributors
22
*     may be used to endorse or promote products derived from this
23
*     software without specific prior written permission.
24
*
25
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
29
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
31
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
33
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
35
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36
* POSSIBILITY OF SUCH DAMAGE.
37
* -------------------------------------------------------------------- */
38
 
39
/**
40
 * @ingroup groupExamples
41
 */
42
 
43
/**
44
 * @defgroup GRUExample Gated Recurrent Unit Example
45
 *
46
 * \par Description:
47
 * \par
48
 * Demonstrates a gated recurrent unit (GRU) example with the use of fully-connected,
49
 * Tanh/Sigmoid activation functions.
50
 *
51
 * \par Model definition:
52
 * \par
53
 * GRU is a type of recurrent neural network (RNN). It contains two sigmoid gates and one hidden
54
 * state.
55
 * \par
56
 * The computation can be summarized as:
57
 * <pre>z[t] = sigmoid( W_z &sdot; {h[t-1],x[t]} )
58
 * r[t] = sigmoid( W_r &sdot; {h[t-1],x[t]} )
59
 * n[t] = tanh( W_n &sdot; [r[t] &times; {h[t-1], x[t]} )
60
 * h[t] = (1 - z[t]) &times; h[t-1] + z[t] &times; n[t] </pre>
61
 * \image html GRU.gif "Gate Recurrent Unit Diagram"
62
 *
63
 * \par Variables Description:
64
 * \par
65
 * \li \c update_gate_weights, \c reset_gate_weights, \c hidden_state_weights are weights corresponding to update gate (W_z), reset gate (W_r), and hidden state (W_n).
66
 * \li \c update_gate_bias, \c reset_gate_bias, \c hidden_state_bias are layer bias arrays
67
 * \li \c test_input1, \c test_input2, \c test_history are the inputs and initial history
68
 *
69
 * \par
70
 * The buffer is allocated as:
71
 * \par
72
 * | reset | input | history | update | hidden_state |
73
 * \par
74
 * In this way, the concatination is automatically done since (reset, input) and (input, history)
75
 * are physically concatinated in memory.
76
 * \par
77
 *  The ordering of the weight matrix should be adjusted accordingly.
78
 *
79
  *
80
 *
81
 * \par CMSIS DSP Software Library Functions Used:
82
 * \par
83
 * - arm_fully_connected_mat_q7_vec_q15_opt()
84
 * - arm_nn_activations_direct_q15()
85
 * - arm_mult_q15()
86
 * - arm_offset_q15()
87
 * - arm_sub_q15()
88
 * - arm_copy_q15()
89
 *
90
 * <b> Refer  </b>
91
 * \link arm_nnexamples_gru.cpp \endlink
92
 *
93
 */
94
 
95
#include <stdio.h>
96
#include <stdlib.h>
97
#include <math.h>
98
#include "arm_nnexamples_gru_test_data.h"
99
#include "arm_math.h"
100
#include "arm_nnfunctions.h"
101
 
102
#ifdef _RTE_
103
#include "RTE_Components.h"
104
#ifdef RTE_Compiler_EventRecorder
105
#include "EventRecorder.h"
106
#endif
107
#endif
108
 
109
#define DIM_HISTORY 32
110
#define DIM_INPUT 32
111
#define DIM_VEC 64
112
 
113
#define USE_X4
114
 
115
#ifndef USE_X4
116
static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X2;
117
static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X2;
118
static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X2;
119
#else
120
static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X4;
121
static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X4;
122
static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X4;
123
#endif
124
 
125
static q7_t update_gate_bias[DIM_HISTORY] = UPDATE_GATE_BIAS;
126
static q7_t reset_gate_bias[DIM_HISTORY] = RESET_GATE_BIAS;
127
static q7_t hidden_state_bias[DIM_HISTORY] = HIDDEN_STATE_BIAS;
128
 
129
static q15_t test_input1[DIM_INPUT] = INPUT_DATA1;
130
static q15_t test_input2[DIM_INPUT] = INPUT_DATA2;
131
static q15_t test_history[DIM_HISTORY] = HISTORY_DATA;
132
 
133
q15_t     scratch_buffer[DIM_HISTORY * 4 + DIM_INPUT];
134
 
135
void gru_example(q15_t * scratch_input, uint16_t input_size, uint16_t history_size,
136
                 q7_t * weights_update, q7_t * weights_reset, q7_t * weights_hidden_state,
137
                 q7_t * bias_update, q7_t * bias_reset, q7_t * bias_hidden_state)
138
{
139
  q15_t    *reset = scratch_input;
140
  q15_t    *input = scratch_input + history_size;
141
  q15_t    *history = scratch_input + history_size + input_size;
142
  q15_t    *update = scratch_input + 2 * history_size + input_size;
143
  q15_t    *hidden_state = scratch_input + 3 * history_size + input_size;
144
 
145
  // reset gate calculation
146
  // the range of the output can be adjusted with bias_shift and output_shift
147
#ifndef USE_X4
148
  arm_fully_connected_mat_q7_vec_q15(input, weights_reset, input_size + history_size, history_size, 0, 15, bias_reset,
149
                                     reset, NULL);
150
#else
151
  arm_fully_connected_mat_q7_vec_q15_opt(input, weights_reset, input_size + history_size, history_size, 0, 15,
152
                                         bias_reset, reset, NULL);
153
#endif
154
  // sigmoid function, the size of the integer bit-width should be consistent with out_shift
155
  arm_nn_activations_direct_q15(reset, history_size, 0, ARM_SIGMOID);
156
  arm_mult_q15(history, reset, reset, history_size);
157
 
158
  // update gate calculation
159
  // the range of the output can be adjusted with bias_shift and output_shift
160
#ifndef USE_X4
161
  arm_fully_connected_mat_q7_vec_q15(input, weights_update, input_size + history_size, history_size, 0, 15,
162
                                     bias_update, update, NULL);
163
#else
164
  arm_fully_connected_mat_q7_vec_q15_opt(input, weights_update, input_size + history_size, history_size, 0, 15,
165
                                         bias_update, update, NULL);
166
#endif
167
 
168
  // sigmoid function, the size of the integer bit-width should be consistent with out_shift
169
  arm_nn_activations_direct_q15(update, history_size, 0, ARM_SIGMOID);
170
 
171
  // hidden state calculation
172
#ifndef USE_X4
173
  arm_fully_connected_mat_q7_vec_q15(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
174
                                     bias_hidden_state, hidden_state, NULL);
175
#else
176
  arm_fully_connected_mat_q7_vec_q15_opt(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
177
                                         bias_hidden_state, hidden_state, NULL);
178
#endif
179
 
180
  // tanh function, the size of the integer bit-width should be consistent with out_shift
181
  arm_nn_activations_direct_q15(hidden_state, history_size, 0, ARM_TANH);
182
  arm_mult_q15(update, hidden_state, hidden_state, history_size);
183
 
184
  // we calculate z - 1 here
185
  // so final addition becomes substraction
186
  arm_offset_q15(update, 0x8000, update, history_size);
187
  // multiply history
188
  arm_mult_q15(history, update, update, history_size);
189
  // calculate history_out
190
  arm_sub_q15(hidden_state, update, history, history_size);
191
 
192
  return;
193
}
194
 
195
int main()
196
{
197
  #ifdef RTE_Compiler_EventRecorder
198
  EventRecorderInitialize (EventRecordAll, 1);  // initialize and start Event Recorder
199
  #endif
200
 
201
  printf("Start GRU execution\n");
202
  int       input_size = DIM_INPUT;
203
  int       history_size = DIM_HISTORY;
204
 
205
  // copy over the input data 
206
  arm_copy_q15(test_input1, scratch_buffer + history_size, input_size);
207
  arm_copy_q15(test_history, scratch_buffer + history_size + input_size, history_size);
208
 
209
  gru_example(scratch_buffer, input_size, history_size,
210
              update_gate_weights, reset_gate_weights, hidden_state_weights,
211
              update_gate_bias, reset_gate_bias, hidden_state_bias);
212
  printf("Complete first iteration on GRU\n");
213
 
214
  arm_copy_q15(test_input2, scratch_buffer + history_size, input_size);
215
  gru_example(scratch_buffer, input_size, history_size,
216
              update_gate_weights, reset_gate_weights, hidden_state_weights,
217
              update_gate_bias, reset_gate_bias, hidden_state_bias);
218
  printf("Complete second iteration on GRU\n");
219
 
220
  return 0;
221
}