Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | /* ---------------------------------------------------------------------- |
| 2 | * Copyright (C) 2010-2018 Arm Limited. All rights reserved. |
||
| 3 | * |
||
| 4 | * |
||
| 5 | * Project: CMSIS NN Library |
||
| 6 | * Title: arm_nnexamples_gru.cpp |
||
| 7 | * |
||
| 8 | * Description: Gated Recurrent Unit Example |
||
| 9 | * |
||
| 10 | * Target Processor: Cortex-M4/Cortex-M7 |
||
| 11 | * |
||
| 12 | * Redistribution and use in source and binary forms, with or without |
||
| 13 | * modification, are permitted provided that the following conditions |
||
| 14 | * are met: |
||
| 15 | * - Redistributions of source code must retain the above copyright |
||
| 16 | * notice, this list of conditions and the following disclaimer. |
||
| 17 | * - Redistributions in binary form must reproduce the above copyright |
||
| 18 | * notice, this list of conditions and the following disclaimer in |
||
| 19 | * the documentation and/or other materials provided with the |
||
| 20 | * distribution. |
||
| 21 | * - Neither the name of Arm LIMITED nor the names of its contributors |
||
| 22 | * may be used to endorse or promote products derived from this |
||
| 23 | * software without specific prior written permission. |
||
| 24 | * |
||
| 25 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
| 26 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
| 27 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
| 28 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
| 29 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 30 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
| 31 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
| 32 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
| 33 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
| 34 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
| 35 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
| 36 | * POSSIBILITY OF SUCH DAMAGE. |
||
| 37 | * -------------------------------------------------------------------- */ |
||
| 38 | |||
| 39 | /** |
||
| 40 | * @ingroup groupExamples |
||
| 41 | */ |
||
| 42 | |||
| 43 | /** |
||
| 44 | * @defgroup GRUExample Gated Recurrent Unit Example |
||
| 45 | * |
||
| 46 | * \par Description: |
||
| 47 | * \par |
||
| 48 | * Demonstrates a gated recurrent unit (GRU) example with the use of fully-connected, |
||
| 49 | * Tanh/Sigmoid activation functions. |
||
| 50 | * |
||
| 51 | * \par Model definition: |
||
| 52 | * \par |
||
| 53 | * GRU is a type of recurrent neural network (RNN). It contains two sigmoid gates and one hidden |
||
| 54 | * state. |
||
| 55 | * \par |
||
| 56 | * The computation can be summarized as: |
||
| 57 | * <pre>z[t] = sigmoid( W_z ⋅ {h[t-1],x[t]} ) |
||
| 58 | * r[t] = sigmoid( W_r ⋅ {h[t-1],x[t]} ) |
||
| 59 | * n[t] = tanh( W_n ⋅ [r[t] × {h[t-1], x[t]} ) |
||
| 60 | * h[t] = (1 - z[t]) × h[t-1] + z[t] × n[t] </pre> |
||
| 61 | * \image html GRU.gif "Gate Recurrent Unit Diagram" |
||
| 62 | * |
||
| 63 | * \par Variables Description: |
||
| 64 | * \par |
||
| 65 | * \li \c update_gate_weights, \c reset_gate_weights, \c hidden_state_weights are weights corresponding to update gate (W_z), reset gate (W_r), and hidden state (W_n). |
||
| 66 | * \li \c update_gate_bias, \c reset_gate_bias, \c hidden_state_bias are layer bias arrays |
||
| 67 | * \li \c test_input1, \c test_input2, \c test_history are the inputs and initial history |
||
| 68 | * |
||
| 69 | * \par |
||
| 70 | * The buffer is allocated as: |
||
| 71 | * \par |
||
| 72 | * | reset | input | history | update | hidden_state | |
||
| 73 | * \par |
||
| 74 | * In this way, the concatination is automatically done since (reset, input) and (input, history) |
||
| 75 | * are physically concatinated in memory. |
||
| 76 | * \par |
||
| 77 | * The ordering of the weight matrix should be adjusted accordingly. |
||
| 78 | * |
||
| 79 | * |
||
| 80 | * |
||
| 81 | * \par CMSIS DSP Software Library Functions Used: |
||
| 82 | * \par |
||
| 83 | * - arm_fully_connected_mat_q7_vec_q15_opt() |
||
| 84 | * - arm_nn_activations_direct_q15() |
||
| 85 | * - arm_mult_q15() |
||
| 86 | * - arm_offset_q15() |
||
| 87 | * - arm_sub_q15() |
||
| 88 | * - arm_copy_q15() |
||
| 89 | * |
||
| 90 | * <b> Refer </b> |
||
| 91 | * \link arm_nnexamples_gru.cpp \endlink |
||
| 92 | * |
||
| 93 | */ |
||
| 94 | |||
| 95 | #include <stdio.h> |
||
| 96 | #include <stdlib.h> |
||
| 97 | #include <math.h> |
||
| 98 | #include "arm_nnexamples_gru_test_data.h" |
||
| 99 | #include "arm_math.h" |
||
| 100 | #include "arm_nnfunctions.h" |
||
| 101 | |||
| 102 | #ifdef _RTE_ |
||
| 103 | #include "RTE_Components.h" |
||
| 104 | #ifdef RTE_Compiler_EventRecorder |
||
| 105 | #include "EventRecorder.h" |
||
| 106 | #endif |
||
| 107 | #endif |
||
| 108 | |||
| 109 | #define DIM_HISTORY 32 |
||
| 110 | #define DIM_INPUT 32 |
||
| 111 | #define DIM_VEC 64 |
||
| 112 | |||
| 113 | #define USE_X4 |
||
| 114 | |||
| 115 | #ifndef USE_X4 |
||
| 116 | static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X2; |
||
| 117 | static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X2; |
||
| 118 | static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X2; |
||
| 119 | #else |
||
| 120 | static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X4; |
||
| 121 | static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X4; |
||
| 122 | static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X4; |
||
| 123 | #endif |
||
| 124 | |||
| 125 | static q7_t update_gate_bias[DIM_HISTORY] = UPDATE_GATE_BIAS; |
||
| 126 | static q7_t reset_gate_bias[DIM_HISTORY] = RESET_GATE_BIAS; |
||
| 127 | static q7_t hidden_state_bias[DIM_HISTORY] = HIDDEN_STATE_BIAS; |
||
| 128 | |||
| 129 | static q15_t test_input1[DIM_INPUT] = INPUT_DATA1; |
||
| 130 | static q15_t test_input2[DIM_INPUT] = INPUT_DATA2; |
||
| 131 | static q15_t test_history[DIM_HISTORY] = HISTORY_DATA; |
||
| 132 | |||
| 133 | q15_t scratch_buffer[DIM_HISTORY * 4 + DIM_INPUT]; |
||
| 134 | |||
| 135 | void gru_example(q15_t * scratch_input, uint16_t input_size, uint16_t history_size, |
||
| 136 | q7_t * weights_update, q7_t * weights_reset, q7_t * weights_hidden_state, |
||
| 137 | q7_t * bias_update, q7_t * bias_reset, q7_t * bias_hidden_state) |
||
| 138 | { |
||
| 139 | q15_t *reset = scratch_input; |
||
| 140 | q15_t *input = scratch_input + history_size; |
||
| 141 | q15_t *history = scratch_input + history_size + input_size; |
||
| 142 | q15_t *update = scratch_input + 2 * history_size + input_size; |
||
| 143 | q15_t *hidden_state = scratch_input + 3 * history_size + input_size; |
||
| 144 | |||
| 145 | // reset gate calculation |
||
| 146 | // the range of the output can be adjusted with bias_shift and output_shift |
||
| 147 | #ifndef USE_X4 |
||
| 148 | arm_fully_connected_mat_q7_vec_q15(input, weights_reset, input_size + history_size, history_size, 0, 15, bias_reset, |
||
| 149 | reset, NULL); |
||
| 150 | #else |
||
| 151 | arm_fully_connected_mat_q7_vec_q15_opt(input, weights_reset, input_size + history_size, history_size, 0, 15, |
||
| 152 | bias_reset, reset, NULL); |
||
| 153 | #endif |
||
| 154 | // sigmoid function, the size of the integer bit-width should be consistent with out_shift |
||
| 155 | arm_nn_activations_direct_q15(reset, history_size, 0, ARM_SIGMOID); |
||
| 156 | arm_mult_q15(history, reset, reset, history_size); |
||
| 157 | |||
| 158 | // update gate calculation |
||
| 159 | // the range of the output can be adjusted with bias_shift and output_shift |
||
| 160 | #ifndef USE_X4 |
||
| 161 | arm_fully_connected_mat_q7_vec_q15(input, weights_update, input_size + history_size, history_size, 0, 15, |
||
| 162 | bias_update, update, NULL); |
||
| 163 | #else |
||
| 164 | arm_fully_connected_mat_q7_vec_q15_opt(input, weights_update, input_size + history_size, history_size, 0, 15, |
||
| 165 | bias_update, update, NULL); |
||
| 166 | #endif |
||
| 167 | |||
| 168 | // sigmoid function, the size of the integer bit-width should be consistent with out_shift |
||
| 169 | arm_nn_activations_direct_q15(update, history_size, 0, ARM_SIGMOID); |
||
| 170 | |||
| 171 | // hidden state calculation |
||
| 172 | #ifndef USE_X4 |
||
| 173 | arm_fully_connected_mat_q7_vec_q15(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15, |
||
| 174 | bias_hidden_state, hidden_state, NULL); |
||
| 175 | #else |
||
| 176 | arm_fully_connected_mat_q7_vec_q15_opt(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15, |
||
| 177 | bias_hidden_state, hidden_state, NULL); |
||
| 178 | #endif |
||
| 179 | |||
| 180 | // tanh function, the size of the integer bit-width should be consistent with out_shift |
||
| 181 | arm_nn_activations_direct_q15(hidden_state, history_size, 0, ARM_TANH); |
||
| 182 | arm_mult_q15(update, hidden_state, hidden_state, history_size); |
||
| 183 | |||
| 184 | // we calculate z - 1 here |
||
| 185 | // so final addition becomes substraction |
||
| 186 | arm_offset_q15(update, 0x8000, update, history_size); |
||
| 187 | // multiply history |
||
| 188 | arm_mult_q15(history, update, update, history_size); |
||
| 189 | // calculate history_out |
||
| 190 | arm_sub_q15(hidden_state, update, history, history_size); |
||
| 191 | |||
| 192 | return; |
||
| 193 | } |
||
| 194 | |||
| 195 | int main() |
||
| 196 | { |
||
| 197 | #ifdef RTE_Compiler_EventRecorder |
||
| 198 | EventRecorderInitialize (EventRecordAll, 1); // initialize and start Event Recorder |
||
| 199 | #endif |
||
| 200 | |||
| 201 | printf("Start GRU execution\n"); |
||
| 202 | int input_size = DIM_INPUT; |
||
| 203 | int history_size = DIM_HISTORY; |
||
| 204 | |||
| 205 | // copy over the input data |
||
| 206 | arm_copy_q15(test_input1, scratch_buffer + history_size, input_size); |
||
| 207 | arm_copy_q15(test_history, scratch_buffer + history_size + input_size, history_size); |
||
| 208 | |||
| 209 | gru_example(scratch_buffer, input_size, history_size, |
||
| 210 | update_gate_weights, reset_gate_weights, hidden_state_weights, |
||
| 211 | update_gate_bias, reset_gate_bias, hidden_state_bias); |
||
| 212 | printf("Complete first iteration on GRU\n"); |
||
| 213 | |||
| 214 | arm_copy_q15(test_input2, scratch_buffer + history_size, input_size); |
||
| 215 | gru_example(scratch_buffer, input_size, history_size, |
||
| 216 | update_gate_weights, reset_gate_weights, hidden_state_weights, |
||
| 217 | update_gate_bias, reset_gate_bias, hidden_state_bias); |
||
| 218 | printf("Complete second iteration on GRU\n"); |
||
| 219 | |||
| 220 | return 0; |
||
| 221 | } |