Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
12 | mjames | 1 | /**************************************************************************//** |
2 | * @file cmsis_gcc.h |
||
3 | * @brief CMSIS Cortex-M Core Function/Instruction Header File |
||
4 | * @version V4.30 |
||
5 | * @date 20. October 2015 |
||
6 | ******************************************************************************/ |
||
7 | /* Copyright (c) 2009 - 2015 ARM LIMITED |
||
8 | |||
9 | All rights reserved. |
||
10 | Redistribution and use in source and binary forms, with or without |
||
11 | modification, are permitted provided that the following conditions are met: |
||
12 | - Redistributions of source code must retain the above copyright |
||
13 | notice, this list of conditions and the following disclaimer. |
||
14 | - Redistributions in binary form must reproduce the above copyright |
||
15 | notice, this list of conditions and the following disclaimer in the |
||
16 | documentation and/or other materials provided with the distribution. |
||
17 | - Neither the name of ARM nor the names of its contributors may be used |
||
18 | to endorse or promote products derived from this software without |
||
19 | specific prior written permission. |
||
20 | * |
||
21 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
||
22 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||
23 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||
24 | ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE |
||
25 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||
26 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||
27 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
||
28 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
||
29 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
||
30 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
31 | POSSIBILITY OF SUCH DAMAGE. |
||
32 | ---------------------------------------------------------------------------*/ |
||
33 | |||
34 | |||
35 | #ifndef __CMSIS_GCC_H |
||
36 | #define __CMSIS_GCC_H |
||
37 | |||
38 | /* ignore some GCC warnings */ |
||
39 | #if defined ( __GNUC__ ) |
||
40 | #pragma GCC diagnostic push |
||
41 | #pragma GCC diagnostic ignored "-Wsign-conversion" |
||
42 | #pragma GCC diagnostic ignored "-Wconversion" |
||
43 | #pragma GCC diagnostic ignored "-Wunused-parameter" |
||
44 | #endif |
||
45 | |||
46 | |||
47 | /* ########################### Core Function Access ########################### */ |
||
48 | /** \ingroup CMSIS_Core_FunctionInterface |
||
49 | \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions |
||
50 | @{ |
||
51 | */ |
||
52 | |||
53 | /** |
||
54 | \brief Enable IRQ Interrupts |
||
55 | \details Enables IRQ interrupts by clearing the I-bit in the CPSR. |
||
56 | Can only be executed in Privileged modes. |
||
57 | */ |
||
58 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void) |
||
59 | { |
||
60 | __ASM volatile ("cpsie i" : : : "memory"); |
||
61 | } |
||
62 | |||
63 | |||
64 | /** |
||
65 | \brief Disable IRQ Interrupts |
||
66 | \details Disables IRQ interrupts by setting the I-bit in the CPSR. |
||
67 | Can only be executed in Privileged modes. |
||
68 | */ |
||
69 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void) |
||
70 | { |
||
71 | __ASM volatile ("cpsid i" : : : "memory"); |
||
72 | } |
||
73 | |||
74 | |||
75 | /** |
||
76 | \brief Get Control Register |
||
77 | \details Returns the content of the Control Register. |
||
78 | \return Control Register value |
||
79 | */ |
||
80 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void) |
||
81 | { |
||
82 | uint32_t result; |
||
83 | |||
84 | __ASM volatile ("MRS %0, control" : "=r" (result) ); |
||
85 | return(result); |
||
86 | } |
||
87 | |||
88 | |||
89 | /** |
||
90 | \brief Set Control Register |
||
91 | \details Writes the given value to the Control Register. |
||
92 | \param [in] control Control Register value to set |
||
93 | */ |
||
94 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control) |
||
95 | { |
||
96 | __ASM volatile ("MSR control, %0" : : "r" (control) : "memory"); |
||
97 | } |
||
98 | |||
99 | |||
100 | /** |
||
101 | \brief Get IPSR Register |
||
102 | \details Returns the content of the IPSR Register. |
||
103 | \return IPSR Register value |
||
104 | */ |
||
105 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void) |
||
106 | { |
||
107 | uint32_t result; |
||
108 | |||
109 | __ASM volatile ("MRS %0, ipsr" : "=r" (result) ); |
||
110 | return(result); |
||
111 | } |
||
112 | |||
113 | |||
114 | /** |
||
115 | \brief Get APSR Register |
||
116 | \details Returns the content of the APSR Register. |
||
117 | \return APSR Register value |
||
118 | */ |
||
119 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void) |
||
120 | { |
||
121 | uint32_t result; |
||
122 | |||
123 | __ASM volatile ("MRS %0, apsr" : "=r" (result) ); |
||
124 | return(result); |
||
125 | } |
||
126 | |||
127 | |||
128 | /** |
||
129 | \brief Get xPSR Register |
||
130 | \details Returns the content of the xPSR Register. |
||
131 | |||
132 | \return xPSR Register value |
||
133 | */ |
||
134 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void) |
||
135 | { |
||
136 | uint32_t result; |
||
137 | |||
138 | __ASM volatile ("MRS %0, xpsr" : "=r" (result) ); |
||
139 | return(result); |
||
140 | } |
||
141 | |||
142 | |||
143 | /** |
||
144 | \brief Get Process Stack Pointer |
||
145 | \details Returns the current value of the Process Stack Pointer (PSP). |
||
146 | \return PSP Register value |
||
147 | */ |
||
148 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void) |
||
149 | { |
||
150 | register uint32_t result; |
||
151 | |||
152 | __ASM volatile ("MRS %0, psp\n" : "=r" (result) ); |
||
153 | return(result); |
||
154 | } |
||
155 | |||
156 | |||
157 | /** |
||
158 | \brief Set Process Stack Pointer |
||
159 | \details Assigns the given value to the Process Stack Pointer (PSP). |
||
160 | \param [in] topOfProcStack Process Stack Pointer value to set |
||
161 | */ |
||
162 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack) |
||
163 | { |
||
164 | __ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) : "sp"); |
||
165 | } |
||
166 | |||
167 | |||
168 | /** |
||
169 | \brief Get Main Stack Pointer |
||
170 | \details Returns the current value of the Main Stack Pointer (MSP). |
||
171 | \return MSP Register value |
||
172 | */ |
||
173 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void) |
||
174 | { |
||
175 | register uint32_t result; |
||
176 | |||
177 | __ASM volatile ("MRS %0, msp\n" : "=r" (result) ); |
||
178 | return(result); |
||
179 | } |
||
180 | |||
181 | |||
182 | /** |
||
183 | \brief Set Main Stack Pointer |
||
184 | \details Assigns the given value to the Main Stack Pointer (MSP). |
||
185 | |||
186 | \param [in] topOfMainStack Main Stack Pointer value to set |
||
187 | */ |
||
188 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack) |
||
189 | { |
||
190 | __ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) : "sp"); |
||
191 | } |
||
192 | |||
193 | |||
194 | /** |
||
195 | \brief Get Priority Mask |
||
196 | \details Returns the current state of the priority mask bit from the Priority Mask Register. |
||
197 | \return Priority Mask value |
||
198 | */ |
||
199 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void) |
||
200 | { |
||
201 | uint32_t result; |
||
202 | |||
203 | __ASM volatile ("MRS %0, primask" : "=r" (result) ); |
||
204 | return(result); |
||
205 | } |
||
206 | |||
207 | |||
208 | /** |
||
209 | \brief Set Priority Mask |
||
210 | \details Assigns the given value to the Priority Mask Register. |
||
211 | \param [in] priMask Priority Mask |
||
212 | */ |
||
213 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask) |
||
214 | { |
||
215 | __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory"); |
||
216 | } |
||
217 | |||
218 | |||
219 | #if (__CORTEX_M >= 0x03U) |
||
220 | |||
221 | /** |
||
222 | \brief Enable FIQ |
||
223 | \details Enables FIQ interrupts by clearing the F-bit in the CPSR. |
||
224 | Can only be executed in Privileged modes. |
||
225 | */ |
||
226 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void) |
||
227 | { |
||
228 | __ASM volatile ("cpsie f" : : : "memory"); |
||
229 | } |
||
230 | |||
231 | |||
232 | /** |
||
233 | \brief Disable FIQ |
||
234 | \details Disables FIQ interrupts by setting the F-bit in the CPSR. |
||
235 | Can only be executed in Privileged modes. |
||
236 | */ |
||
237 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void) |
||
238 | { |
||
239 | __ASM volatile ("cpsid f" : : : "memory"); |
||
240 | } |
||
241 | |||
242 | |||
243 | /** |
||
244 | \brief Get Base Priority |
||
245 | \details Returns the current value of the Base Priority register. |
||
246 | \return Base Priority register value |
||
247 | */ |
||
248 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void) |
||
249 | { |
||
250 | uint32_t result; |
||
251 | |||
252 | __ASM volatile ("MRS %0, basepri" : "=r" (result) ); |
||
253 | return(result); |
||
254 | } |
||
255 | |||
256 | |||
257 | /** |
||
258 | \brief Set Base Priority |
||
259 | \details Assigns the given value to the Base Priority register. |
||
260 | \param [in] basePri Base Priority value to set |
||
261 | */ |
||
262 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value) |
||
263 | { |
||
264 | __ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory"); |
||
265 | } |
||
266 | |||
267 | |||
268 | /** |
||
269 | \brief Set Base Priority with condition |
||
270 | \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, |
||
271 | or the new value increases the BASEPRI priority level. |
||
272 | \param [in] basePri Base Priority value to set |
||
273 | */ |
||
274 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value) |
||
275 | { |
||
276 | __ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory"); |
||
277 | } |
||
278 | |||
279 | |||
280 | /** |
||
281 | \brief Get Fault Mask |
||
282 | \details Returns the current value of the Fault Mask register. |
||
283 | \return Fault Mask register value |
||
284 | */ |
||
285 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void) |
||
286 | { |
||
287 | uint32_t result; |
||
288 | |||
289 | __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); |
||
290 | return(result); |
||
291 | } |
||
292 | |||
293 | |||
294 | /** |
||
295 | \brief Set Fault Mask |
||
296 | \details Assigns the given value to the Fault Mask register. |
||
297 | \param [in] faultMask Fault Mask value to set |
||
298 | */ |
||
299 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask) |
||
300 | { |
||
301 | __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory"); |
||
302 | } |
||
303 | |||
304 | #endif /* (__CORTEX_M >= 0x03U) */ |
||
305 | |||
306 | |||
307 | #if (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) |
||
308 | |||
309 | /** |
||
310 | \brief Get FPSCR |
||
311 | \details Returns the current value of the Floating Point Status/Control register. |
||
312 | \return Floating Point Status/Control register value |
||
313 | */ |
||
314 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void) |
||
315 | { |
||
316 | #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U) |
||
317 | uint32_t result; |
||
318 | |||
319 | /* Empty asm statement works as a scheduling barrier */ |
||
320 | __ASM volatile (""); |
||
321 | __ASM volatile ("VMRS %0, fpscr" : "=r" (result) ); |
||
322 | __ASM volatile (""); |
||
323 | return(result); |
||
324 | #else |
||
325 | return(0); |
||
326 | #endif |
||
327 | } |
||
328 | |||
329 | |||
330 | /** |
||
331 | \brief Set FPSCR |
||
332 | \details Assigns the given value to the Floating Point Status/Control register. |
||
333 | \param [in] fpscr Floating Point Status/Control value to set |
||
334 | */ |
||
335 | __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr) |
||
336 | { |
||
337 | #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U) |
||
338 | /* Empty asm statement works as a scheduling barrier */ |
||
339 | __ASM volatile (""); |
||
340 | __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc"); |
||
341 | __ASM volatile (""); |
||
342 | #endif |
||
343 | } |
||
344 | |||
345 | #endif /* (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) */ |
||
346 | |||
347 | |||
348 | |||
349 | /*@} end of CMSIS_Core_RegAccFunctions */ |
||
350 | |||
351 | |||
352 | /* ########################## Core Instruction Access ######################### */ |
||
353 | /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface |
||
354 | Access to dedicated instructions |
||
355 | @{ |
||
356 | */ |
||
357 | |||
358 | /* Define macros for porting to both thumb1 and thumb2. |
||
359 | * For thumb1, use low register (r0-r7), specified by constraint "l" |
||
360 | * Otherwise, use general registers, specified by constraint "r" */ |
||
361 | #if defined (__thumb__) && !defined (__thumb2__) |
||
362 | #define __CMSIS_GCC_OUT_REG(r) "=l" (r) |
||
363 | #define __CMSIS_GCC_USE_REG(r) "l" (r) |
||
364 | #else |
||
365 | #define __CMSIS_GCC_OUT_REG(r) "=r" (r) |
||
366 | #define __CMSIS_GCC_USE_REG(r) "r" (r) |
||
367 | #endif |
||
368 | |||
369 | /** |
||
370 | \brief No Operation |
||
371 | \details No Operation does nothing. This instruction can be used for code alignment purposes. |
||
372 | */ |
||
373 | __attribute__((always_inline)) __STATIC_INLINE void __NOP(void) |
||
374 | { |
||
375 | __ASM volatile ("nop"); |
||
376 | } |
||
377 | |||
378 | |||
379 | /** |
||
380 | \brief Wait For Interrupt |
||
381 | \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. |
||
382 | */ |
||
383 | __attribute__((always_inline)) __STATIC_INLINE void __WFI(void) |
||
384 | { |
||
385 | __ASM volatile ("wfi"); |
||
386 | } |
||
387 | |||
388 | |||
389 | /** |
||
390 | \brief Wait For Event |
||
391 | \details Wait For Event is a hint instruction that permits the processor to enter |
||
392 | a low-power state until one of a number of events occurs. |
||
393 | */ |
||
394 | __attribute__((always_inline)) __STATIC_INLINE void __WFE(void) |
||
395 | { |
||
396 | __ASM volatile ("wfe"); |
||
397 | } |
||
398 | |||
399 | |||
400 | /** |
||
401 | \brief Send Event |
||
402 | \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. |
||
403 | */ |
||
404 | __attribute__((always_inline)) __STATIC_INLINE void __SEV(void) |
||
405 | { |
||
406 | __ASM volatile ("sev"); |
||
407 | } |
||
408 | |||
409 | |||
410 | /** |
||
411 | \brief Instruction Synchronization Barrier |
||
412 | \details Instruction Synchronization Barrier flushes the pipeline in the processor, |
||
413 | so that all instructions following the ISB are fetched from cache or memory, |
||
414 | after the instruction has been completed. |
||
415 | */ |
||
416 | __attribute__((always_inline)) __STATIC_INLINE void __ISB(void) |
||
417 | { |
||
418 | __ASM volatile ("isb 0xF":::"memory"); |
||
419 | } |
||
420 | |||
421 | |||
422 | /** |
||
423 | \brief Data Synchronization Barrier |
||
424 | \details Acts as a special kind of Data Memory Barrier. |
||
425 | It completes when all explicit memory accesses before this instruction complete. |
||
426 | */ |
||
427 | __attribute__((always_inline)) __STATIC_INLINE void __DSB(void) |
||
428 | { |
||
429 | __ASM volatile ("dsb 0xF":::"memory"); |
||
430 | } |
||
431 | |||
432 | |||
433 | /** |
||
434 | \brief Data Memory Barrier |
||
435 | \details Ensures the apparent order of the explicit memory operations before |
||
436 | and after the instruction, without ensuring their completion. |
||
437 | */ |
||
438 | __attribute__((always_inline)) __STATIC_INLINE void __DMB(void) |
||
439 | { |
||
440 | __ASM volatile ("dmb 0xF":::"memory"); |
||
441 | } |
||
442 | |||
443 | |||
444 | /** |
||
445 | \brief Reverse byte order (32 bit) |
||
446 | \details Reverses the byte order in integer value. |
||
447 | \param [in] value Value to reverse |
||
448 | \return Reversed value |
||
449 | */ |
||
450 | __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value) |
||
451 | { |
||
452 | #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5) |
||
453 | return __builtin_bswap32(value); |
||
454 | #else |
||
455 | uint32_t result; |
||
456 | |||
457 | __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); |
||
458 | return(result); |
||
459 | #endif |
||
460 | } |
||
461 | |||
462 | |||
463 | /** |
||
464 | \brief Reverse byte order (16 bit) |
||
465 | \details Reverses the byte order in two unsigned short values. |
||
466 | \param [in] value Value to reverse |
||
467 | \return Reversed value |
||
468 | */ |
||
469 | __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value) |
||
470 | { |
||
471 | uint32_t result; |
||
472 | |||
473 | __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); |
||
474 | return(result); |
||
475 | } |
||
476 | |||
477 | |||
478 | /** |
||
479 | \brief Reverse byte order in signed short value |
||
480 | \details Reverses the byte order in a signed short value with sign extension to integer. |
||
481 | \param [in] value Value to reverse |
||
482 | \return Reversed value |
||
483 | */ |
||
484 | __attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value) |
||
485 | { |
||
486 | #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) |
||
487 | return (short)__builtin_bswap16(value); |
||
488 | #else |
||
489 | int32_t result; |
||
490 | |||
491 | __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); |
||
492 | return(result); |
||
493 | #endif |
||
494 | } |
||
495 | |||
496 | |||
497 | /** |
||
498 | \brief Rotate Right in unsigned value (32 bit) |
||
499 | \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. |
||
500 | \param [in] value Value to rotate |
||
501 | \param [in] value Number of Bits to rotate |
||
502 | \return Rotated value |
||
503 | */ |
||
504 | __attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2) |
||
505 | { |
||
506 | return (op1 >> op2) | (op1 << (32U - op2)); |
||
507 | } |
||
508 | |||
509 | |||
510 | /** |
||
511 | \brief Breakpoint |
||
512 | \details Causes the processor to enter Debug state. |
||
513 | Debug tools can use this to investigate system state when the instruction at a particular address is reached. |
||
514 | \param [in] value is ignored by the processor. |
||
515 | If required, a debugger can use it to store additional information about the breakpoint. |
||
516 | */ |
||
517 | #define __BKPT(value) __ASM volatile ("bkpt "#value) |
||
518 | |||
519 | |||
520 | /** |
||
521 | \brief Reverse bit order of value |
||
522 | \details Reverses the bit order of the given value. |
||
523 | \param [in] value Value to reverse |
||
524 | \return Reversed value |
||
525 | */ |
||
526 | __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value) |
||
527 | { |
||
528 | uint32_t result; |
||
529 | |||
530 | #if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) |
||
531 | __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); |
||
532 | #else |
||
533 | int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */ |
||
534 | |||
535 | result = value; /* r will be reversed bits of v; first get LSB of v */ |
||
536 | for (value >>= 1U; value; value >>= 1U) |
||
537 | { |
||
538 | result <<= 1U; |
||
539 | result |= value & 1U; |
||
540 | s--; |
||
541 | } |
||
542 | result <<= s; /* shift when v's highest bits are zero */ |
||
543 | #endif |
||
544 | return(result); |
||
545 | } |
||
546 | |||
547 | |||
548 | /** |
||
549 | \brief Count leading zeros |
||
550 | \details Counts the number of leading zeros of a data value. |
||
551 | \param [in] value Value to count the leading zeros |
||
552 | \return number of leading zeros in value |
||
553 | */ |
||
554 | #define __CLZ __builtin_clz |
||
555 | |||
556 | |||
557 | #if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) |
||
558 | |||
559 | /** |
||
560 | \brief LDR Exclusive (8 bit) |
||
561 | \details Executes a exclusive LDR instruction for 8 bit value. |
||
562 | \param [in] ptr Pointer to data |
||
563 | \return value of type uint8_t at (*ptr) |
||
564 | */ |
||
565 | __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr) |
||
566 | { |
||
567 | uint32_t result; |
||
568 | |||
569 | #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) |
||
570 | __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) ); |
||
571 | #else |
||
572 | /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not |
||
573 | accepted by assembler. So has to use following less efficient pattern. |
||
574 | */ |
||
575 | __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); |
||
576 | #endif |
||
577 | return ((uint8_t) result); /* Add explicit type cast here */ |
||
578 | } |
||
579 | |||
580 | |||
581 | /** |
||
582 | \brief LDR Exclusive (16 bit) |
||
583 | \details Executes a exclusive LDR instruction for 16 bit values. |
||
584 | \param [in] ptr Pointer to data |
||
585 | \return value of type uint16_t at (*ptr) |
||
586 | */ |
||
587 | __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr) |
||
588 | { |
||
589 | uint32_t result; |
||
590 | |||
591 | #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) |
||
592 | __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) ); |
||
593 | #else |
||
594 | /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not |
||
595 | accepted by assembler. So has to use following less efficient pattern. |
||
596 | */ |
||
597 | __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); |
||
598 | #endif |
||
599 | return ((uint16_t) result); /* Add explicit type cast here */ |
||
600 | } |
||
601 | |||
602 | |||
603 | /** |
||
604 | \brief LDR Exclusive (32 bit) |
||
605 | \details Executes a exclusive LDR instruction for 32 bit values. |
||
606 | \param [in] ptr Pointer to data |
||
607 | \return value of type uint32_t at (*ptr) |
||
608 | */ |
||
609 | __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr) |
||
610 | { |
||
611 | uint32_t result; |
||
612 | |||
613 | __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) ); |
||
614 | return(result); |
||
615 | } |
||
616 | |||
617 | |||
618 | /** |
||
619 | \brief STR Exclusive (8 bit) |
||
620 | \details Executes a exclusive STR instruction for 8 bit values. |
||
621 | \param [in] value Value to store |
||
622 | \param [in] ptr Pointer to location |
||
623 | \return 0 Function succeeded |
||
624 | \return 1 Function failed |
||
625 | */ |
||
626 | __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) |
||
627 | { |
||
628 | uint32_t result; |
||
629 | |||
630 | __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); |
||
631 | return(result); |
||
632 | } |
||
633 | |||
634 | |||
635 | /** |
||
636 | \brief STR Exclusive (16 bit) |
||
637 | \details Executes a exclusive STR instruction for 16 bit values. |
||
638 | \param [in] value Value to store |
||
639 | \param [in] ptr Pointer to location |
||
640 | \return 0 Function succeeded |
||
641 | \return 1 Function failed |
||
642 | */ |
||
643 | __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) |
||
644 | { |
||
645 | uint32_t result; |
||
646 | |||
647 | __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); |
||
648 | return(result); |
||
649 | } |
||
650 | |||
651 | |||
652 | /** |
||
653 | \brief STR Exclusive (32 bit) |
||
654 | \details Executes a exclusive STR instruction for 32 bit values. |
||
655 | \param [in] value Value to store |
||
656 | \param [in] ptr Pointer to location |
||
657 | \return 0 Function succeeded |
||
658 | \return 1 Function failed |
||
659 | */ |
||
660 | __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) |
||
661 | { |
||
662 | uint32_t result; |
||
663 | |||
664 | __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); |
||
665 | return(result); |
||
666 | } |
||
667 | |||
668 | |||
669 | /** |
||
670 | \brief Remove the exclusive lock |
||
671 | \details Removes the exclusive lock which is created by LDREX. |
||
672 | */ |
||
673 | __attribute__((always_inline)) __STATIC_INLINE void __CLREX(void) |
||
674 | { |
||
675 | __ASM volatile ("clrex" ::: "memory"); |
||
676 | } |
||
677 | |||
678 | |||
679 | /** |
||
680 | \brief Signed Saturate |
||
681 | \details Saturates a signed value. |
||
682 | \param [in] value Value to be saturated |
||
683 | \param [in] sat Bit position to saturate to (1..32) |
||
684 | \return Saturated value |
||
685 | */ |
||
686 | #define __SSAT(ARG1,ARG2) \ |
||
687 | ({ \ |
||
688 | uint32_t __RES, __ARG1 = (ARG1); \ |
||
689 | __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ |
||
690 | __RES; \ |
||
691 | }) |
||
692 | |||
693 | |||
694 | /** |
||
695 | \brief Unsigned Saturate |
||
696 | \details Saturates an unsigned value. |
||
697 | \param [in] value Value to be saturated |
||
698 | \param [in] sat Bit position to saturate to (0..31) |
||
699 | \return Saturated value |
||
700 | */ |
||
701 | #define __USAT(ARG1,ARG2) \ |
||
702 | ({ \ |
||
703 | uint32_t __RES, __ARG1 = (ARG1); \ |
||
704 | __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ |
||
705 | __RES; \ |
||
706 | }) |
||
707 | |||
708 | |||
709 | /** |
||
710 | \brief Rotate Right with Extend (32 bit) |
||
711 | \details Moves each bit of a bitstring right by one bit. |
||
712 | The carry input is shifted in at the left end of the bitstring. |
||
713 | \param [in] value Value to rotate |
||
714 | \return Rotated value |
||
715 | */ |
||
716 | __attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value) |
||
717 | { |
||
718 | uint32_t result; |
||
719 | |||
720 | __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); |
||
721 | return(result); |
||
722 | } |
||
723 | |||
724 | |||
725 | /** |
||
726 | \brief LDRT Unprivileged (8 bit) |
||
727 | \details Executes a Unprivileged LDRT instruction for 8 bit value. |
||
728 | \param [in] ptr Pointer to data |
||
729 | \return value of type uint8_t at (*ptr) |
||
730 | */ |
||
731 | __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr) |
||
732 | { |
||
733 | uint32_t result; |
||
734 | |||
735 | #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) |
||
736 | __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*addr) ); |
||
737 | #else |
||
738 | /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not |
||
739 | accepted by assembler. So has to use following less efficient pattern. |
||
740 | */ |
||
741 | __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); |
||
742 | #endif |
||
743 | return ((uint8_t) result); /* Add explicit type cast here */ |
||
744 | } |
||
745 | |||
746 | |||
747 | /** |
||
748 | \brief LDRT Unprivileged (16 bit) |
||
749 | \details Executes a Unprivileged LDRT instruction for 16 bit values. |
||
750 | \param [in] ptr Pointer to data |
||
751 | \return value of type uint16_t at (*ptr) |
||
752 | */ |
||
753 | __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr) |
||
754 | { |
||
755 | uint32_t result; |
||
756 | |||
757 | #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) |
||
758 | __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*addr) ); |
||
759 | #else |
||
760 | /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not |
||
761 | accepted by assembler. So has to use following less efficient pattern. |
||
762 | */ |
||
763 | __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); |
||
764 | #endif |
||
765 | return ((uint16_t) result); /* Add explicit type cast here */ |
||
766 | } |
||
767 | |||
768 | |||
769 | /** |
||
770 | \brief LDRT Unprivileged (32 bit) |
||
771 | \details Executes a Unprivileged LDRT instruction for 32 bit values. |
||
772 | \param [in] ptr Pointer to data |
||
773 | \return value of type uint32_t at (*ptr) |
||
774 | */ |
||
775 | __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr) |
||
776 | { |
||
777 | uint32_t result; |
||
778 | |||
779 | __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*addr) ); |
||
780 | return(result); |
||
781 | } |
||
782 | |||
783 | |||
784 | /** |
||
785 | \brief STRT Unprivileged (8 bit) |
||
786 | \details Executes a Unprivileged STRT instruction for 8 bit values. |
||
787 | \param [in] value Value to store |
||
788 | \param [in] ptr Pointer to location |
||
789 | */ |
||
790 | __attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr) |
||
791 | { |
||
792 | __ASM volatile ("strbt %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) ); |
||
793 | } |
||
794 | |||
795 | |||
796 | /** |
||
797 | \brief STRT Unprivileged (16 bit) |
||
798 | \details Executes a Unprivileged STRT instruction for 16 bit values. |
||
799 | \param [in] value Value to store |
||
800 | \param [in] ptr Pointer to location |
||
801 | */ |
||
802 | __attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr) |
||
803 | { |
||
804 | __ASM volatile ("strht %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) ); |
||
805 | } |
||
806 | |||
807 | |||
808 | /** |
||
809 | \brief STRT Unprivileged (32 bit) |
||
810 | \details Executes a Unprivileged STRT instruction for 32 bit values. |
||
811 | \param [in] value Value to store |
||
812 | \param [in] ptr Pointer to location |
||
813 | */ |
||
814 | __attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr) |
||
815 | { |
||
816 | __ASM volatile ("strt %1, %0" : "=Q" (*addr) : "r" (value) ); |
||
817 | } |
||
818 | |||
819 | #endif /* (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) */ |
||
820 | |||
821 | /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ |
||
822 | |||
823 | |||
824 | /* ################### Compiler specific Intrinsics ########################### */ |
||
825 | /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics |
||
826 | Access to dedicated SIMD instructions |
||
827 | @{ |
||
828 | */ |
||
829 | |||
830 | #if (__CORTEX_M >= 0x04U) /* only for Cortex-M4 and above */ |
||
831 | |||
832 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) |
||
833 | { |
||
834 | uint32_t result; |
||
835 | |||
836 | __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
837 | return(result); |
||
838 | } |
||
839 | |||
840 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) |
||
841 | { |
||
842 | uint32_t result; |
||
843 | |||
844 | __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
845 | return(result); |
||
846 | } |
||
847 | |||
848 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) |
||
849 | { |
||
850 | uint32_t result; |
||
851 | |||
852 | __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
853 | return(result); |
||
854 | } |
||
855 | |||
856 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) |
||
857 | { |
||
858 | uint32_t result; |
||
859 | |||
860 | __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
861 | return(result); |
||
862 | } |
||
863 | |||
864 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) |
||
865 | { |
||
866 | uint32_t result; |
||
867 | |||
868 | __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
869 | return(result); |
||
870 | } |
||
871 | |||
872 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) |
||
873 | { |
||
874 | uint32_t result; |
||
875 | |||
876 | __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
877 | return(result); |
||
878 | } |
||
879 | |||
880 | |||
881 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) |
||
882 | { |
||
883 | uint32_t result; |
||
884 | |||
885 | __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
886 | return(result); |
||
887 | } |
||
888 | |||
889 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) |
||
890 | { |
||
891 | uint32_t result; |
||
892 | |||
893 | __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
894 | return(result); |
||
895 | } |
||
896 | |||
897 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) |
||
898 | { |
||
899 | uint32_t result; |
||
900 | |||
901 | __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
902 | return(result); |
||
903 | } |
||
904 | |||
905 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) |
||
906 | { |
||
907 | uint32_t result; |
||
908 | |||
909 | __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
910 | return(result); |
||
911 | } |
||
912 | |||
913 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) |
||
914 | { |
||
915 | uint32_t result; |
||
916 | |||
917 | __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
918 | return(result); |
||
919 | } |
||
920 | |||
921 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) |
||
922 | { |
||
923 | uint32_t result; |
||
924 | |||
925 | __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
926 | return(result); |
||
927 | } |
||
928 | |||
929 | |||
930 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) |
||
931 | { |
||
932 | uint32_t result; |
||
933 | |||
934 | __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
935 | return(result); |
||
936 | } |
||
937 | |||
938 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) |
||
939 | { |
||
940 | uint32_t result; |
||
941 | |||
942 | __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
943 | return(result); |
||
944 | } |
||
945 | |||
946 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) |
||
947 | { |
||
948 | uint32_t result; |
||
949 | |||
950 | __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
951 | return(result); |
||
952 | } |
||
953 | |||
954 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) |
||
955 | { |
||
956 | uint32_t result; |
||
957 | |||
958 | __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
959 | return(result); |
||
960 | } |
||
961 | |||
962 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) |
||
963 | { |
||
964 | uint32_t result; |
||
965 | |||
966 | __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
967 | return(result); |
||
968 | } |
||
969 | |||
970 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) |
||
971 | { |
||
972 | uint32_t result; |
||
973 | |||
974 | __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
975 | return(result); |
||
976 | } |
||
977 | |||
978 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) |
||
979 | { |
||
980 | uint32_t result; |
||
981 | |||
982 | __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
983 | return(result); |
||
984 | } |
||
985 | |||
986 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) |
||
987 | { |
||
988 | uint32_t result; |
||
989 | |||
990 | __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
991 | return(result); |
||
992 | } |
||
993 | |||
994 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) |
||
995 | { |
||
996 | uint32_t result; |
||
997 | |||
998 | __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
999 | return(result); |
||
1000 | } |
||
1001 | |||
1002 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) |
||
1003 | { |
||
1004 | uint32_t result; |
||
1005 | |||
1006 | __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1007 | return(result); |
||
1008 | } |
||
1009 | |||
1010 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) |
||
1011 | { |
||
1012 | uint32_t result; |
||
1013 | |||
1014 | __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1015 | return(result); |
||
1016 | } |
||
1017 | |||
1018 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) |
||
1019 | { |
||
1020 | uint32_t result; |
||
1021 | |||
1022 | __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1023 | return(result); |
||
1024 | } |
||
1025 | |||
1026 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2) |
||
1027 | { |
||
1028 | uint32_t result; |
||
1029 | |||
1030 | __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1031 | return(result); |
||
1032 | } |
||
1033 | |||
1034 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2) |
||
1035 | { |
||
1036 | uint32_t result; |
||
1037 | |||
1038 | __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1039 | return(result); |
||
1040 | } |
||
1041 | |||
1042 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) |
||
1043 | { |
||
1044 | uint32_t result; |
||
1045 | |||
1046 | __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1047 | return(result); |
||
1048 | } |
||
1049 | |||
1050 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2) |
||
1051 | { |
||
1052 | uint32_t result; |
||
1053 | |||
1054 | __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1055 | return(result); |
||
1056 | } |
||
1057 | |||
1058 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) |
||
1059 | { |
||
1060 | uint32_t result; |
||
1061 | |||
1062 | __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1063 | return(result); |
||
1064 | } |
||
1065 | |||
1066 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) |
||
1067 | { |
||
1068 | uint32_t result; |
||
1069 | |||
1070 | __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1071 | return(result); |
||
1072 | } |
||
1073 | |||
1074 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) |
||
1075 | { |
||
1076 | uint32_t result; |
||
1077 | |||
1078 | __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1079 | return(result); |
||
1080 | } |
||
1081 | |||
1082 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) |
||
1083 | { |
||
1084 | uint32_t result; |
||
1085 | |||
1086 | __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1087 | return(result); |
||
1088 | } |
||
1089 | |||
1090 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) |
||
1091 | { |
||
1092 | uint32_t result; |
||
1093 | |||
1094 | __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1095 | return(result); |
||
1096 | } |
||
1097 | |||
1098 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2) |
||
1099 | { |
||
1100 | uint32_t result; |
||
1101 | |||
1102 | __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1103 | return(result); |
||
1104 | } |
||
1105 | |||
1106 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) |
||
1107 | { |
||
1108 | uint32_t result; |
||
1109 | |||
1110 | __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1111 | return(result); |
||
1112 | } |
||
1113 | |||
1114 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) |
||
1115 | { |
||
1116 | uint32_t result; |
||
1117 | |||
1118 | __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1119 | return(result); |
||
1120 | } |
||
1121 | |||
1122 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) |
||
1123 | { |
||
1124 | uint32_t result; |
||
1125 | |||
1126 | __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1127 | return(result); |
||
1128 | } |
||
1129 | |||
1130 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) |
||
1131 | { |
||
1132 | uint32_t result; |
||
1133 | |||
1134 | __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); |
||
1135 | return(result); |
||
1136 | } |
||
1137 | |||
1138 | #define __SSAT16(ARG1,ARG2) \ |
||
1139 | ({ \ |
||
1140 | int32_t __RES, __ARG1 = (ARG1); \ |
||
1141 | __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ |
||
1142 | __RES; \ |
||
1143 | }) |
||
1144 | |||
1145 | #define __USAT16(ARG1,ARG2) \ |
||
1146 | ({ \ |
||
1147 | uint32_t __RES, __ARG1 = (ARG1); \ |
||
1148 | __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ |
||
1149 | __RES; \ |
||
1150 | }) |
||
1151 | |||
1152 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1) |
||
1153 | { |
||
1154 | uint32_t result; |
||
1155 | |||
1156 | __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1)); |
||
1157 | return(result); |
||
1158 | } |
||
1159 | |||
1160 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) |
||
1161 | { |
||
1162 | uint32_t result; |
||
1163 | |||
1164 | __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1165 | return(result); |
||
1166 | } |
||
1167 | |||
1168 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1) |
||
1169 | { |
||
1170 | uint32_t result; |
||
1171 | |||
1172 | __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1)); |
||
1173 | return(result); |
||
1174 | } |
||
1175 | |||
1176 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) |
||
1177 | { |
||
1178 | uint32_t result; |
||
1179 | |||
1180 | __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1181 | return(result); |
||
1182 | } |
||
1183 | |||
1184 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2) |
||
1185 | { |
||
1186 | uint32_t result; |
||
1187 | |||
1188 | __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1189 | return(result); |
||
1190 | } |
||
1191 | |||
1192 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2) |
||
1193 | { |
||
1194 | uint32_t result; |
||
1195 | |||
1196 | __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1197 | return(result); |
||
1198 | } |
||
1199 | |||
1200 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3) |
||
1201 | { |
||
1202 | uint32_t result; |
||
1203 | |||
1204 | __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); |
||
1205 | return(result); |
||
1206 | } |
||
1207 | |||
1208 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3) |
||
1209 | { |
||
1210 | uint32_t result; |
||
1211 | |||
1212 | __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); |
||
1213 | return(result); |
||
1214 | } |
||
1215 | |||
1216 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc) |
||
1217 | { |
||
1218 | union llreg_u{ |
||
1219 | uint32_t w32[2]; |
||
1220 | uint64_t w64; |
||
1221 | } llr; |
||
1222 | llr.w64 = acc; |
||
1223 | |||
1224 | #ifndef __ARMEB__ /* Little endian */ |
||
1225 | __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); |
||
1226 | #else /* Big endian */ |
||
1227 | __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); |
||
1228 | #endif |
||
1229 | |||
1230 | return(llr.w64); |
||
1231 | } |
||
1232 | |||
1233 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc) |
||
1234 | { |
||
1235 | union llreg_u{ |
||
1236 | uint32_t w32[2]; |
||
1237 | uint64_t w64; |
||
1238 | } llr; |
||
1239 | llr.w64 = acc; |
||
1240 | |||
1241 | #ifndef __ARMEB__ /* Little endian */ |
||
1242 | __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); |
||
1243 | #else /* Big endian */ |
||
1244 | __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); |
||
1245 | #endif |
||
1246 | |||
1247 | return(llr.w64); |
||
1248 | } |
||
1249 | |||
1250 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2) |
||
1251 | { |
||
1252 | uint32_t result; |
||
1253 | |||
1254 | __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1255 | return(result); |
||
1256 | } |
||
1257 | |||
1258 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2) |
||
1259 | { |
||
1260 | uint32_t result; |
||
1261 | |||
1262 | __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1263 | return(result); |
||
1264 | } |
||
1265 | |||
1266 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3) |
||
1267 | { |
||
1268 | uint32_t result; |
||
1269 | |||
1270 | __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); |
||
1271 | return(result); |
||
1272 | } |
||
1273 | |||
1274 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3) |
||
1275 | { |
||
1276 | uint32_t result; |
||
1277 | |||
1278 | __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); |
||
1279 | return(result); |
||
1280 | } |
||
1281 | |||
1282 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc) |
||
1283 | { |
||
1284 | union llreg_u{ |
||
1285 | uint32_t w32[2]; |
||
1286 | uint64_t w64; |
||
1287 | } llr; |
||
1288 | llr.w64 = acc; |
||
1289 | |||
1290 | #ifndef __ARMEB__ /* Little endian */ |
||
1291 | __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); |
||
1292 | #else /* Big endian */ |
||
1293 | __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); |
||
1294 | #endif |
||
1295 | |||
1296 | return(llr.w64); |
||
1297 | } |
||
1298 | |||
1299 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc) |
||
1300 | { |
||
1301 | union llreg_u{ |
||
1302 | uint32_t w32[2]; |
||
1303 | uint64_t w64; |
||
1304 | } llr; |
||
1305 | llr.w64 = acc; |
||
1306 | |||
1307 | #ifndef __ARMEB__ /* Little endian */ |
||
1308 | __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); |
||
1309 | #else /* Big endian */ |
||
1310 | __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); |
||
1311 | #endif |
||
1312 | |||
1313 | return(llr.w64); |
||
1314 | } |
||
1315 | |||
1316 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2) |
||
1317 | { |
||
1318 | uint32_t result; |
||
1319 | |||
1320 | __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1321 | return(result); |
||
1322 | } |
||
1323 | |||
1324 | __attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QADD( int32_t op1, int32_t op2) |
||
1325 | { |
||
1326 | int32_t result; |
||
1327 | |||
1328 | __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1329 | return(result); |
||
1330 | } |
||
1331 | |||
1332 | __attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QSUB( int32_t op1, int32_t op2) |
||
1333 | { |
||
1334 | int32_t result; |
||
1335 | |||
1336 | __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); |
||
1337 | return(result); |
||
1338 | } |
||
1339 | |||
1340 | #define __PKHBT(ARG1,ARG2,ARG3) \ |
||
1341 | ({ \ |
||
1342 | uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ |
||
1343 | __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ |
||
1344 | __RES; \ |
||
1345 | }) |
||
1346 | |||
1347 | #define __PKHTB(ARG1,ARG2,ARG3) \ |
||
1348 | ({ \ |
||
1349 | uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ |
||
1350 | if (ARG3 == 0) \ |
||
1351 | __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \ |
||
1352 | else \ |
||
1353 | __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ |
||
1354 | __RES; \ |
||
1355 | }) |
||
1356 | |||
1357 | __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3) |
||
1358 | { |
||
1359 | int32_t result; |
||
1360 | |||
1361 | __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) ); |
||
1362 | return(result); |
||
1363 | } |
||
1364 | |||
1365 | #endif /* (__CORTEX_M >= 0x04) */ |
||
1366 | /*@} end of group CMSIS_SIMD_intrinsics */ |
||
1367 | |||
1368 | |||
1369 | #if defined ( __GNUC__ ) |
||
1370 | #pragma GCC diagnostic pop |
||
1371 | #endif |
||
1372 | |||
1373 | #endif /* __CMSIS_GCC_H */ |