Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Copyright (C) 2010-2015 ARM Limited. All rights reserved. |
||
3 | * |
||
5 | mjames | 4 | * $Date: 20. October 2015 |
5 | * $Revision: V1.4.5 b |
||
2 | mjames | 6 | * |
5 | mjames | 7 | * Project: CMSIS DSP Library |
8 | * Title: arm_math.h |
||
2 | mjames | 9 | * |
5 | mjames | 10 | * Description: Public header file for CMSIS DSP Library |
2 | mjames | 11 | * |
12 | * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0 |
||
13 | * |
||
14 | * Redistribution and use in source and binary forms, with or without |
||
15 | * modification, are permitted provided that the following conditions |
||
16 | * are met: |
||
17 | * - Redistributions of source code must retain the above copyright |
||
18 | * notice, this list of conditions and the following disclaimer. |
||
19 | * - Redistributions in binary form must reproduce the above copyright |
||
20 | * notice, this list of conditions and the following disclaimer in |
||
21 | * the documentation and/or other materials provided with the |
||
22 | * distribution. |
||
23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
24 | * may be used to endorse or promote products derived from this |
||
25 | * software without specific prior written permission. |
||
26 | * |
||
27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
38 | * POSSIBILITY OF SUCH DAMAGE. |
||
39 | * -------------------------------------------------------------------- */ |
||
40 | |||
41 | /** |
||
42 | \mainpage CMSIS DSP Software Library |
||
43 | * |
||
44 | * Introduction |
||
45 | * ------------ |
||
46 | * |
||
47 | * This user manual describes the CMSIS DSP software library, |
||
48 | * a suite of common signal processing functions for use on Cortex-M processor based devices. |
||
49 | * |
||
50 | * The library is divided into a number of functions each covering a specific category: |
||
51 | * - Basic math functions |
||
52 | * - Fast math functions |
||
53 | * - Complex math functions |
||
54 | * - Filters |
||
55 | * - Matrix functions |
||
56 | * - Transforms |
||
57 | * - Motor control functions |
||
58 | * - Statistical functions |
||
59 | * - Support functions |
||
60 | * - Interpolation functions |
||
61 | * |
||
62 | * The library has separate functions for operating on 8-bit integers, 16-bit integers, |
||
63 | * 32-bit integer and 32-bit floating-point values. |
||
64 | * |
||
65 | * Using the Library |
||
66 | * ------------ |
||
67 | * |
||
68 | * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. |
||
69 | * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7) |
||
70 | * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7) |
||
71 | * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7) |
||
72 | * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7) |
||
73 | * - arm_cortexM7l_math.lib (Little endian on Cortex-M7) |
||
74 | * - arm_cortexM7b_math.lib (Big endian on Cortex-M7) |
||
75 | * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) |
||
76 | * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) |
||
77 | * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) |
||
78 | * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) |
||
79 | * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) |
||
80 | * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) |
||
81 | * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+) |
||
82 | * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+) |
||
83 | * |
||
84 | * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. |
||
85 | * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single |
||
86 | * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. |
||
87 | * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or |
||
88 | * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. |
||
89 | * |
||
90 | * Examples |
||
91 | * -------- |
||
92 | * |
||
93 | * The library ships with a number of examples which demonstrate how to use the library functions. |
||
94 | * |
||
95 | * Toolchain Support |
||
96 | * ------------ |
||
97 | * |
||
98 | * The library has been developed and tested with MDK-ARM version 5.14.0.0 |
||
99 | * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. |
||
100 | * |
||
101 | * Building the Library |
||
102 | * ------------ |
||
103 | * |
||
104 | * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder. |
||
105 | * - arm_cortexM_math.uvprojx |
||
106 | * |
||
107 | * |
||
108 | * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above. |
||
109 | * |
||
110 | * Pre-processor Macros |
||
111 | * ------------ |
||
112 | * |
||
113 | * Each library project have differant pre-processor macros. |
||
114 | * |
||
115 | * - UNALIGNED_SUPPORT_DISABLE: |
||
116 | * |
||
117 | * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access |
||
118 | * |
||
119 | * - ARM_MATH_BIG_ENDIAN: |
||
120 | * |
||
121 | * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. |
||
122 | * |
||
123 | * - ARM_MATH_MATRIX_CHECK: |
||
124 | * |
||
125 | * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices |
||
126 | * |
||
127 | * - ARM_MATH_ROUNDING: |
||
128 | * |
||
129 | * Define macro ARM_MATH_ROUNDING for rounding on support functions |
||
130 | * |
||
131 | * - ARM_MATH_CMx: |
||
132 | * |
||
133 | * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target |
||
134 | * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and |
||
135 | * ARM_MATH_CM7 for building the library on cortex-M7. |
||
136 | * |
||
137 | * - __FPU_PRESENT: |
||
138 | * |
||
139 | * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries |
||
140 | * |
||
141 | * <hr> |
||
142 | * CMSIS-DSP in ARM::CMSIS Pack |
||
143 | * ----------------------------- |
||
5 | mjames | 144 | * |
2 | mjames | 145 | * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: |
146 | * |File/Folder |Content | |
||
147 | * |------------------------------|------------------------------------------------------------------------| |
||
148 | * |\b CMSIS\\Documentation\\DSP | This documentation | |
||
149 | * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | |
||
150 | * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | |
||
151 | * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | |
||
5 | mjames | 152 | * |
2 | mjames | 153 | * <hr> |
154 | * Revision History of CMSIS-DSP |
||
155 | * ------------ |
||
156 | * Please refer to \ref ChangeLog_pg. |
||
157 | * |
||
158 | * Copyright Notice |
||
159 | * ------------ |
||
160 | * |
||
161 | * Copyright (C) 2010-2015 ARM Limited. All rights reserved. |
||
162 | */ |
||
163 | |||
164 | |||
165 | /** |
||
166 | * @defgroup groupMath Basic Math Functions |
||
167 | */ |
||
168 | |||
169 | /** |
||
170 | * @defgroup groupFastMath Fast Math Functions |
||
171 | * This set of functions provides a fast approximation to sine, cosine, and square root. |
||
172 | * As compared to most of the other functions in the CMSIS math library, the fast math functions |
||
173 | * operate on individual values and not arrays. |
||
174 | * There are separate functions for Q15, Q31, and floating-point data. |
||
175 | * |
||
176 | */ |
||
177 | |||
178 | /** |
||
179 | * @defgroup groupCmplxMath Complex Math Functions |
||
180 | * This set of functions operates on complex data vectors. |
||
181 | * The data in the complex arrays is stored in an interleaved fashion |
||
182 | * (real, imag, real, imag, ...). |
||
183 | * In the API functions, the number of samples in a complex array refers |
||
184 | * to the number of complex values; the array contains twice this number of |
||
185 | * real values. |
||
186 | */ |
||
187 | |||
188 | /** |
||
189 | * @defgroup groupFilters Filtering Functions |
||
190 | */ |
||
191 | |||
192 | /** |
||
193 | * @defgroup groupMatrix Matrix Functions |
||
194 | * |
||
195 | * This set of functions provides basic matrix math operations. |
||
196 | * The functions operate on matrix data structures. For example, |
||
197 | * the type |
||
198 | * definition for the floating-point matrix structure is shown |
||
199 | * below: |
||
200 | * <pre> |
||
201 | * typedef struct |
||
202 | * { |
||
203 | * uint16_t numRows; // number of rows of the matrix. |
||
204 | * uint16_t numCols; // number of columns of the matrix. |
||
205 | * float32_t *pData; // points to the data of the matrix. |
||
206 | * } arm_matrix_instance_f32; |
||
207 | * </pre> |
||
208 | * There are similar definitions for Q15 and Q31 data types. |
||
209 | * |
||
210 | * The structure specifies the size of the matrix and then points to |
||
211 | * an array of data. The array is of size <code>numRows X numCols</code> |
||
212 | * and the values are arranged in row order. That is, the |
||
213 | * matrix element (i, j) is stored at: |
||
214 | * <pre> |
||
215 | * pData[i*numCols + j] |
||
216 | * </pre> |
||
217 | * |
||
218 | * \par Init Functions |
||
219 | * There is an associated initialization function for each type of matrix |
||
220 | * data structure. |
||
221 | * The initialization function sets the values of the internal structure fields. |
||
222 | * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> |
||
223 | * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. |
||
224 | * |
||
225 | * \par |
||
226 | * Use of the initialization function is optional. However, if initialization function is used |
||
227 | * then the instance structure cannot be placed into a const data section. |
||
228 | * To place the instance structure in a const data |
||
229 | * section, manually initialize the data structure. For example: |
||
230 | * <pre> |
||
231 | * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> |
||
232 | * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> |
||
233 | * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> |
||
234 | * </pre> |
||
235 | * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> |
||
236 | * specifies the number of columns, and <code>pData</code> points to the |
||
237 | * data array. |
||
238 | * |
||
239 | * \par Size Checking |
||
240 | * By default all of the matrix functions perform size checking on the input and |
||
241 | * output matrices. For example, the matrix addition function verifies that the |
||
242 | * two input matrices and the output matrix all have the same number of rows and |
||
243 | * columns. If the size check fails the functions return: |
||
244 | * <pre> |
||
245 | * ARM_MATH_SIZE_MISMATCH |
||
246 | * </pre> |
||
247 | * Otherwise the functions return |
||
248 | * <pre> |
||
249 | * ARM_MATH_SUCCESS |
||
250 | * </pre> |
||
251 | * There is some overhead associated with this matrix size checking. |
||
252 | * The matrix size checking is enabled via the \#define |
||
253 | * <pre> |
||
254 | * ARM_MATH_MATRIX_CHECK |
||
255 | * </pre> |
||
256 | * within the library project settings. By default this macro is defined |
||
257 | * and size checking is enabled. By changing the project settings and |
||
258 | * undefining this macro size checking is eliminated and the functions |
||
259 | * run a bit faster. With size checking disabled the functions always |
||
260 | * return <code>ARM_MATH_SUCCESS</code>. |
||
261 | */ |
||
262 | |||
263 | /** |
||
264 | * @defgroup groupTransforms Transform Functions |
||
265 | */ |
||
266 | |||
267 | /** |
||
268 | * @defgroup groupController Controller Functions |
||
269 | */ |
||
270 | |||
271 | /** |
||
272 | * @defgroup groupStats Statistics Functions |
||
273 | */ |
||
274 | /** |
||
275 | * @defgroup groupSupport Support Functions |
||
276 | */ |
||
277 | |||
278 | /** |
||
279 | * @defgroup groupInterpolation Interpolation Functions |
||
280 | * These functions perform 1- and 2-dimensional interpolation of data. |
||
281 | * Linear interpolation is used for 1-dimensional data and |
||
282 | * bilinear interpolation is used for 2-dimensional data. |
||
283 | */ |
||
284 | |||
285 | /** |
||
286 | * @defgroup groupExamples Examples |
||
287 | */ |
||
288 | #ifndef _ARM_MATH_H |
||
289 | #define _ARM_MATH_H |
||
290 | |||
5 | mjames | 291 | /* ignore some GCC warnings */ |
292 | #if defined ( __GNUC__ ) |
||
293 | #pragma GCC diagnostic push |
||
294 | #pragma GCC diagnostic ignored "-Wsign-conversion" |
||
295 | #pragma GCC diagnostic ignored "-Wconversion" |
||
296 | #pragma GCC diagnostic ignored "-Wunused-parameter" |
||
297 | #endif |
||
298 | |||
2 | mjames | 299 | #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ |
300 | |||
301 | #if defined(ARM_MATH_CM7) |
||
302 | #include "core_cm7.h" |
||
303 | #elif defined (ARM_MATH_CM4) |
||
304 | #include "core_cm4.h" |
||
305 | #elif defined (ARM_MATH_CM3) |
||
306 | #include "core_cm3.h" |
||
307 | #elif defined (ARM_MATH_CM0) |
||
308 | #include "core_cm0.h" |
||
309 | #define ARM_MATH_CM0_FAMILY |
||
5 | mjames | 310 | #elif defined (ARM_MATH_CM0PLUS) |
311 | #include "core_cm0plus.h" |
||
312 | #define ARM_MATH_CM0_FAMILY |
||
2 | mjames | 313 | #else |
314 | #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0" |
||
315 | #endif |
||
316 | |||
317 | #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ |
||
318 | #include "string.h" |
||
319 | #include "math.h" |
||
5 | mjames | 320 | #ifdef __cplusplus |
2 | mjames | 321 | extern "C" |
322 | { |
||
323 | #endif |
||
324 | |||
325 | |||
326 | /** |
||
327 | * @brief Macros required for reciprocal calculation in Normalized LMS |
||
328 | */ |
||
329 | |||
5 | mjames | 330 | #define DELTA_Q31 (0x100) |
331 | #define DELTA_Q15 0x5 |
||
332 | #define INDEX_MASK 0x0000003F |
||
2 | mjames | 333 | #ifndef PI |
5 | mjames | 334 | #define PI 3.14159265358979f |
2 | mjames | 335 | #endif |
336 | |||
337 | /** |
||
338 | * @brief Macros required for SINE and COSINE Fast math approximations |
||
339 | */ |
||
340 | |||
341 | #define FAST_MATH_TABLE_SIZE 512 |
||
342 | #define FAST_MATH_Q31_SHIFT (32 - 10) |
||
343 | #define FAST_MATH_Q15_SHIFT (16 - 10) |
||
344 | #define CONTROLLER_Q31_SHIFT (32 - 9) |
||
345 | #define TABLE_SIZE 256 |
||
5 | mjames | 346 | #define TABLE_SPACING_Q31 0x400000 |
347 | #define TABLE_SPACING_Q15 0x80 |
||
2 | mjames | 348 | |
349 | /** |
||
350 | * @brief Macros required for SINE and COSINE Controller functions |
||
351 | */ |
||
352 | /* 1.31(q31) Fixed value of 2/360 */ |
||
353 | /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ |
||
5 | mjames | 354 | #define INPUT_SPACING 0xB60B61 |
2 | mjames | 355 | |
356 | /** |
||
357 | * @brief Macro for Unaligned Support |
||
358 | */ |
||
359 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
360 | #define ALIGN4 |
||
361 | #else |
||
362 | #if defined (__GNUC__) |
||
363 | #define ALIGN4 __attribute__((aligned(4))) |
||
364 | #else |
||
365 | #define ALIGN4 __align(4) |
||
366 | #endif |
||
5 | mjames | 367 | #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
2 | mjames | 368 | |
369 | /** |
||
370 | * @brief Error status returned by some functions in the library. |
||
371 | */ |
||
372 | |||
373 | typedef enum |
||
374 | { |
||
375 | ARM_MATH_SUCCESS = 0, /**< No error */ |
||
376 | ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ |
||
377 | ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ |
||
378 | ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ |
||
379 | ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ |
||
380 | ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ |
||
381 | ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ |
||
382 | } arm_status; |
||
383 | |||
384 | /** |
||
385 | * @brief 8-bit fractional data type in 1.7 format. |
||
386 | */ |
||
387 | typedef int8_t q7_t; |
||
388 | |||
389 | /** |
||
390 | * @brief 16-bit fractional data type in 1.15 format. |
||
391 | */ |
||
392 | typedef int16_t q15_t; |
||
393 | |||
394 | /** |
||
395 | * @brief 32-bit fractional data type in 1.31 format. |
||
396 | */ |
||
397 | typedef int32_t q31_t; |
||
398 | |||
399 | /** |
||
400 | * @brief 64-bit fractional data type in 1.63 format. |
||
401 | */ |
||
402 | typedef int64_t q63_t; |
||
403 | |||
404 | /** |
||
405 | * @brief 32-bit floating-point type definition. |
||
406 | */ |
||
407 | typedef float float32_t; |
||
408 | |||
409 | /** |
||
410 | * @brief 64-bit floating-point type definition. |
||
411 | */ |
||
412 | typedef double float64_t; |
||
413 | |||
414 | /** |
||
415 | * @brief definition to read/write two 16 bit values. |
||
416 | */ |
||
417 | #if defined __CC_ARM |
||
418 | #define __SIMD32_TYPE int32_t __packed |
||
419 | #define CMSIS_UNUSED __attribute__((unused)) |
||
5 | mjames | 420 | |
421 | #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) |
||
422 | #define __SIMD32_TYPE int32_t |
||
423 | #define CMSIS_UNUSED __attribute__((unused)) |
||
424 | |||
425 | #elif defined __GNUC__ |
||
426 | #define __SIMD32_TYPE int32_t |
||
427 | #define CMSIS_UNUSED __attribute__((unused)) |
||
428 | |||
2 | mjames | 429 | #elif defined __ICCARM__ |
430 | #define __SIMD32_TYPE int32_t __packed |
||
431 | #define CMSIS_UNUSED |
||
5 | mjames | 432 | |
433 | #elif defined __CSMC__ |
||
2 | mjames | 434 | #define __SIMD32_TYPE int32_t |
435 | #define CMSIS_UNUSED |
||
5 | mjames | 436 | |
2 | mjames | 437 | #elif defined __TASKING__ |
438 | #define __SIMD32_TYPE __unaligned int32_t |
||
439 | #define CMSIS_UNUSED |
||
5 | mjames | 440 | |
2 | mjames | 441 | #else |
442 | #error Unknown compiler |
||
443 | #endif |
||
444 | |||
5 | mjames | 445 | #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) |
2 | mjames | 446 | #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) |
447 | #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) |
||
5 | mjames | 448 | #define __SIMD64(addr) (*(int64_t **) & (addr)) |
2 | mjames | 449 | |
450 | #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) |
||
451 | /** |
||
452 | * @brief definition to pack two 16 bit values. |
||
453 | */ |
||
454 | #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ |
||
455 | (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) |
||
456 | #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ |
||
457 | (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) |
||
458 | |||
459 | #endif |
||
460 | |||
461 | |||
462 | /** |
||
463 | * @brief definition to pack four 8 bit values. |
||
464 | */ |
||
465 | #ifndef ARM_MATH_BIG_ENDIAN |
||
466 | |||
5 | mjames | 467 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ |
468 | (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ |
||
469 | (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ |
||
470 | (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) |
||
2 | mjames | 471 | #else |
472 | |||
5 | mjames | 473 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ |
474 | (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ |
||
475 | (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ |
||
476 | (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) |
||
2 | mjames | 477 | |
478 | #endif |
||
479 | |||
480 | |||
481 | /** |
||
482 | * @brief Clips Q63 to Q31 values. |
||
483 | */ |
||
484 | static __INLINE q31_t clip_q63_to_q31( |
||
485 | q63_t x) |
||
486 | { |
||
487 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
||
488 | ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; |
||
489 | } |
||
490 | |||
491 | /** |
||
492 | * @brief Clips Q63 to Q15 values. |
||
493 | */ |
||
494 | static __INLINE q15_t clip_q63_to_q15( |
||
495 | q63_t x) |
||
496 | { |
||
497 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
||
498 | ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); |
||
499 | } |
||
500 | |||
501 | /** |
||
502 | * @brief Clips Q31 to Q7 values. |
||
503 | */ |
||
504 | static __INLINE q7_t clip_q31_to_q7( |
||
505 | q31_t x) |
||
506 | { |
||
507 | return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? |
||
508 | ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; |
||
509 | } |
||
510 | |||
511 | /** |
||
512 | * @brief Clips Q31 to Q15 values. |
||
513 | */ |
||
514 | static __INLINE q15_t clip_q31_to_q15( |
||
515 | q31_t x) |
||
516 | { |
||
517 | return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? |
||
518 | ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; |
||
519 | } |
||
520 | |||
521 | /** |
||
522 | * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. |
||
523 | */ |
||
524 | |||
525 | static __INLINE q63_t mult32x64( |
||
526 | q63_t x, |
||
527 | q31_t y) |
||
528 | { |
||
529 | return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + |
||
530 | (((q63_t) (x >> 32) * y))); |
||
531 | } |
||
532 | |||
5 | mjames | 533 | /* |
534 | #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) |
||
535 | #define __CLZ __clz |
||
536 | #endif |
||
537 | */ |
||
538 | /* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */ |
||
2 | mjames | 539 | #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ) |
540 | static __INLINE uint32_t __CLZ( |
||
541 | q31_t data); |
||
542 | |||
543 | static __INLINE uint32_t __CLZ( |
||
544 | q31_t data) |
||
545 | { |
||
546 | uint32_t count = 0; |
||
547 | uint32_t mask = 0x80000000; |
||
548 | |||
549 | while((data & mask) == 0) |
||
550 | { |
||
551 | count += 1u; |
||
552 | mask = mask >> 1u; |
||
553 | } |
||
554 | |||
555 | return (count); |
||
556 | } |
||
557 | #endif |
||
558 | |||
559 | /** |
||
560 | * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. |
||
561 | */ |
||
562 | |||
563 | static __INLINE uint32_t arm_recip_q31( |
||
564 | q31_t in, |
||
565 | q31_t * dst, |
||
566 | q31_t * pRecipTable) |
||
567 | { |
||
5 | mjames | 568 | q31_t out; |
569 | uint32_t tempVal; |
||
2 | mjames | 570 | uint32_t index, i; |
571 | uint32_t signBits; |
||
572 | |||
573 | if(in > 0) |
||
574 | { |
||
5 | mjames | 575 | signBits = ((uint32_t) (__CLZ( in) - 1)); |
2 | mjames | 576 | } |
577 | else |
||
578 | { |
||
5 | mjames | 579 | signBits = ((uint32_t) (__CLZ(-in) - 1)); |
2 | mjames | 580 | } |
581 | |||
582 | /* Convert input sample to 1.31 format */ |
||
5 | mjames | 583 | in = (in << signBits); |
2 | mjames | 584 | |
585 | /* calculation of index for initial approximated Val */ |
||
5 | mjames | 586 | index = (uint32_t)(in >> 24); |
2 | mjames | 587 | index = (index & INDEX_MASK); |
588 | |||
589 | /* 1.31 with exp 1 */ |
||
590 | out = pRecipTable[index]; |
||
591 | |||
592 | /* calculation of reciprocal value */ |
||
593 | /* running approximation for two iterations */ |
||
594 | for (i = 0u; i < 2u; i++) |
||
595 | { |
||
5 | mjames | 596 | tempVal = (uint32_t) (((q63_t) in * out) >> 31); |
597 | tempVal = 0x7FFFFFFFu - tempVal; |
||
2 | mjames | 598 | /* 1.31 with exp 1 */ |
5 | mjames | 599 | /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ |
600 | out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); |
||
2 | mjames | 601 | } |
602 | |||
603 | /* write output */ |
||
604 | *dst = out; |
||
605 | |||
606 | /* return num of signbits of out = 1/in value */ |
||
607 | return (signBits + 1u); |
||
608 | } |
||
609 | |||
5 | mjames | 610 | |
2 | mjames | 611 | /** |
612 | * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. |
||
613 | */ |
||
614 | static __INLINE uint32_t arm_recip_q15( |
||
615 | q15_t in, |
||
616 | q15_t * dst, |
||
617 | q15_t * pRecipTable) |
||
618 | { |
||
5 | mjames | 619 | q15_t out = 0; |
620 | uint32_t tempVal = 0; |
||
2 | mjames | 621 | uint32_t index = 0, i = 0; |
622 | uint32_t signBits = 0; |
||
623 | |||
624 | if(in > 0) |
||
625 | { |
||
5 | mjames | 626 | signBits = ((uint32_t)(__CLZ( in) - 17)); |
2 | mjames | 627 | } |
628 | else |
||
629 | { |
||
5 | mjames | 630 | signBits = ((uint32_t)(__CLZ(-in) - 17)); |
2 | mjames | 631 | } |
632 | |||
633 | /* Convert input sample to 1.15 format */ |
||
5 | mjames | 634 | in = (in << signBits); |
2 | mjames | 635 | |
636 | /* calculation of index for initial approximated Val */ |
||
5 | mjames | 637 | index = (uint32_t)(in >> 8); |
2 | mjames | 638 | index = (index & INDEX_MASK); |
639 | |||
640 | /* 1.15 with exp 1 */ |
||
641 | out = pRecipTable[index]; |
||
642 | |||
643 | /* calculation of reciprocal value */ |
||
644 | /* running approximation for two iterations */ |
||
5 | mjames | 645 | for (i = 0u; i < 2u; i++) |
2 | mjames | 646 | { |
5 | mjames | 647 | tempVal = (uint32_t) (((q31_t) in * out) >> 15); |
648 | tempVal = 0x7FFFu - tempVal; |
||
2 | mjames | 649 | /* 1.15 with exp 1 */ |
650 | out = (q15_t) (((q31_t) out * tempVal) >> 14); |
||
5 | mjames | 651 | /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ |
2 | mjames | 652 | } |
653 | |||
654 | /* write output */ |
||
655 | *dst = out; |
||
656 | |||
657 | /* return num of signbits of out = 1/in value */ |
||
658 | return (signBits + 1); |
||
659 | } |
||
660 | |||
661 | |||
662 | /* |
||
663 | * @brief C custom defined intrinisic function for only M0 processors |
||
664 | */ |
||
665 | #if defined(ARM_MATH_CM0_FAMILY) |
||
666 | static __INLINE q31_t __SSAT( |
||
667 | q31_t x, |
||
668 | uint32_t y) |
||
669 | { |
||
670 | int32_t posMax, negMin; |
||
671 | uint32_t i; |
||
672 | |||
673 | posMax = 1; |
||
674 | for (i = 0; i < (y - 1); i++) |
||
675 | { |
||
676 | posMax = posMax * 2; |
||
677 | } |
||
678 | |||
679 | if(x > 0) |
||
680 | { |
||
681 | posMax = (posMax - 1); |
||
682 | |||
683 | if(x > posMax) |
||
684 | { |
||
685 | x = posMax; |
||
686 | } |
||
687 | } |
||
688 | else |
||
689 | { |
||
690 | negMin = -posMax; |
||
691 | |||
692 | if(x < negMin) |
||
693 | { |
||
694 | x = negMin; |
||
695 | } |
||
696 | } |
||
697 | return (x); |
||
698 | } |
||
699 | #endif /* end of ARM_MATH_CM0_FAMILY */ |
||
700 | |||
701 | |||
702 | /* |
||
703 | * @brief C custom defined intrinsic function for M3 and M0 processors |
||
704 | */ |
||
705 | #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) |
||
706 | |||
707 | /* |
||
708 | * @brief C custom defined QADD8 for M3 and M0 processors |
||
709 | */ |
||
5 | mjames | 710 | static __INLINE uint32_t __QADD8( |
711 | uint32_t x, |
||
712 | uint32_t y) |
||
2 | mjames | 713 | { |
5 | mjames | 714 | q31_t r, s, t, u; |
2 | mjames | 715 | |
5 | mjames | 716 | r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; |
717 | s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; |
||
718 | t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; |
||
719 | u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; |
||
2 | mjames | 720 | |
5 | mjames | 721 | return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); |
722 | } |
||
2 | mjames | 723 | |
724 | |||
725 | /* |
||
726 | * @brief C custom defined QSUB8 for M3 and M0 processors |
||
727 | */ |
||
5 | mjames | 728 | static __INLINE uint32_t __QSUB8( |
729 | uint32_t x, |
||
730 | uint32_t y) |
||
2 | mjames | 731 | { |
732 | q31_t r, s, t, u; |
||
733 | |||
5 | mjames | 734 | r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; |
735 | s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; |
||
736 | t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; |
||
737 | u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; |
||
2 | mjames | 738 | |
5 | mjames | 739 | return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); |
2 | mjames | 740 | } |
741 | |||
742 | |||
743 | /* |
||
744 | * @brief C custom defined QADD16 for M3 and M0 processors |
||
745 | */ |
||
5 | mjames | 746 | static __INLINE uint32_t __QADD16( |
747 | uint32_t x, |
||
748 | uint32_t y) |
||
2 | mjames | 749 | { |
5 | mjames | 750 | /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ |
751 | q31_t r = 0, s = 0; |
||
2 | mjames | 752 | |
5 | mjames | 753 | r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
754 | s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
2 | mjames | 755 | |
5 | mjames | 756 | return ((uint32_t)((s << 16) | (r ))); |
757 | } |
||
2 | mjames | 758 | |
759 | |||
760 | /* |
||
761 | * @brief C custom defined SHADD16 for M3 and M0 processors |
||
762 | */ |
||
5 | mjames | 763 | static __INLINE uint32_t __SHADD16( |
764 | uint32_t x, |
||
765 | uint32_t y) |
||
2 | mjames | 766 | { |
767 | q31_t r, s; |
||
768 | |||
5 | mjames | 769 | r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
770 | s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
2 | mjames | 771 | |
5 | mjames | 772 | return ((uint32_t)((s << 16) | (r ))); |
773 | } |
||
2 | mjames | 774 | |
775 | |||
776 | /* |
||
777 | * @brief C custom defined QSUB16 for M3 and M0 processors |
||
778 | */ |
||
5 | mjames | 779 | static __INLINE uint32_t __QSUB16( |
780 | uint32_t x, |
||
781 | uint32_t y) |
||
2 | mjames | 782 | { |
783 | q31_t r, s; |
||
784 | |||
5 | mjames | 785 | r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
786 | s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
2 | mjames | 787 | |
5 | mjames | 788 | return ((uint32_t)((s << 16) | (r ))); |
789 | } |
||
2 | mjames | 790 | |
791 | |||
792 | /* |
||
793 | * @brief C custom defined SHSUB16 for M3 and M0 processors |
||
794 | */ |
||
5 | mjames | 795 | static __INLINE uint32_t __SHSUB16( |
796 | uint32_t x, |
||
797 | uint32_t y) |
||
2 | mjames | 798 | { |
799 | q31_t r, s; |
||
800 | |||
5 | mjames | 801 | r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
802 | s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
2 | mjames | 803 | |
5 | mjames | 804 | return ((uint32_t)((s << 16) | (r ))); |
805 | } |
||
2 | mjames | 806 | |
807 | |||
808 | /* |
||
809 | * @brief C custom defined QASX for M3 and M0 processors |
||
810 | */ |
||
5 | mjames | 811 | static __INLINE uint32_t __QASX( |
812 | uint32_t x, |
||
813 | uint32_t y) |
||
2 | mjames | 814 | { |
5 | mjames | 815 | q31_t r, s; |
2 | mjames | 816 | |
5 | mjames | 817 | r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
818 | s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
2 | mjames | 819 | |
5 | mjames | 820 | return ((uint32_t)((s << 16) | (r ))); |
2 | mjames | 821 | } |
822 | |||
5 | mjames | 823 | |
2 | mjames | 824 | /* |
825 | * @brief C custom defined SHASX for M3 and M0 processors |
||
826 | */ |
||
5 | mjames | 827 | static __INLINE uint32_t __SHASX( |
828 | uint32_t x, |
||
829 | uint32_t y) |
||
2 | mjames | 830 | { |
831 | q31_t r, s; |
||
832 | |||
5 | mjames | 833 | r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
834 | s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
2 | mjames | 835 | |
5 | mjames | 836 | return ((uint32_t)((s << 16) | (r ))); |
2 | mjames | 837 | } |
838 | |||
839 | |||
840 | /* |
||
841 | * @brief C custom defined QSAX for M3 and M0 processors |
||
842 | */ |
||
5 | mjames | 843 | static __INLINE uint32_t __QSAX( |
844 | uint32_t x, |
||
845 | uint32_t y) |
||
2 | mjames | 846 | { |
5 | mjames | 847 | q31_t r, s; |
2 | mjames | 848 | |
5 | mjames | 849 | r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
850 | s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
2 | mjames | 851 | |
5 | mjames | 852 | return ((uint32_t)((s << 16) | (r ))); |
2 | mjames | 853 | } |
854 | |||
5 | mjames | 855 | |
2 | mjames | 856 | /* |
857 | * @brief C custom defined SHSAX for M3 and M0 processors |
||
858 | */ |
||
5 | mjames | 859 | static __INLINE uint32_t __SHSAX( |
860 | uint32_t x, |
||
861 | uint32_t y) |
||
2 | mjames | 862 | { |
863 | q31_t r, s; |
||
864 | |||
5 | mjames | 865 | r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
866 | s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
2 | mjames | 867 | |
5 | mjames | 868 | return ((uint32_t)((s << 16) | (r ))); |
869 | } |
||
2 | mjames | 870 | |
871 | |||
872 | /* |
||
873 | * @brief C custom defined SMUSDX for M3 and M0 processors |
||
874 | */ |
||
5 | mjames | 875 | static __INLINE uint32_t __SMUSDX( |
876 | uint32_t x, |
||
877 | uint32_t y) |
||
2 | mjames | 878 | { |
5 | mjames | 879 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - |
880 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); |
||
2 | mjames | 881 | } |
882 | |||
883 | /* |
||
884 | * @brief C custom defined SMUADX for M3 and M0 processors |
||
885 | */ |
||
5 | mjames | 886 | static __INLINE uint32_t __SMUADX( |
887 | uint32_t x, |
||
888 | uint32_t y) |
||
2 | mjames | 889 | { |
5 | mjames | 890 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
891 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); |
||
2 | mjames | 892 | } |
893 | |||
5 | mjames | 894 | |
2 | mjames | 895 | /* |
896 | * @brief C custom defined QADD for M3 and M0 processors |
||
897 | */ |
||
5 | mjames | 898 | static __INLINE int32_t __QADD( |
899 | int32_t x, |
||
900 | int32_t y) |
||
2 | mjames | 901 | { |
5 | mjames | 902 | return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); |
2 | mjames | 903 | } |
904 | |||
5 | mjames | 905 | |
2 | mjames | 906 | /* |
907 | * @brief C custom defined QSUB for M3 and M0 processors |
||
908 | */ |
||
5 | mjames | 909 | static __INLINE int32_t __QSUB( |
910 | int32_t x, |
||
911 | int32_t y) |
||
2 | mjames | 912 | { |
5 | mjames | 913 | return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); |
2 | mjames | 914 | } |
915 | |||
5 | mjames | 916 | |
2 | mjames | 917 | /* |
918 | * @brief C custom defined SMLAD for M3 and M0 processors |
||
919 | */ |
||
5 | mjames | 920 | static __INLINE uint32_t __SMLAD( |
921 | uint32_t x, |
||
922 | uint32_t y, |
||
923 | uint32_t sum) |
||
2 | mjames | 924 | { |
5 | mjames | 925 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
926 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + |
||
927 | ( ((q31_t)sum ) ) )); |
||
2 | mjames | 928 | } |
929 | |||
5 | mjames | 930 | |
2 | mjames | 931 | /* |
932 | * @brief C custom defined SMLADX for M3 and M0 processors |
||
933 | */ |
||
5 | mjames | 934 | static __INLINE uint32_t __SMLADX( |
935 | uint32_t x, |
||
936 | uint32_t y, |
||
937 | uint32_t sum) |
||
2 | mjames | 938 | { |
5 | mjames | 939 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
940 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
941 | ( ((q31_t)sum ) ) )); |
||
2 | mjames | 942 | } |
943 | |||
5 | mjames | 944 | |
2 | mjames | 945 | /* |
946 | * @brief C custom defined SMLSDX for M3 and M0 processors |
||
947 | */ |
||
5 | mjames | 948 | static __INLINE uint32_t __SMLSDX( |
949 | uint32_t x, |
||
950 | uint32_t y, |
||
951 | uint32_t sum) |
||
2 | mjames | 952 | { |
5 | mjames | 953 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - |
954 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
955 | ( ((q31_t)sum ) ) )); |
||
2 | mjames | 956 | } |
957 | |||
5 | mjames | 958 | |
2 | mjames | 959 | /* |
960 | * @brief C custom defined SMLALD for M3 and M0 processors |
||
961 | */ |
||
5 | mjames | 962 | static __INLINE uint64_t __SMLALD( |
963 | uint32_t x, |
||
964 | uint32_t y, |
||
965 | uint64_t sum) |
||
2 | mjames | 966 | { |
5 | mjames | 967 | /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ |
968 | return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
969 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + |
||
970 | ( ((q63_t)sum ) ) )); |
||
2 | mjames | 971 | } |
972 | |||
5 | mjames | 973 | |
2 | mjames | 974 | /* |
975 | * @brief C custom defined SMLALDX for M3 and M0 processors |
||
976 | */ |
||
5 | mjames | 977 | static __INLINE uint64_t __SMLALDX( |
978 | uint32_t x, |
||
979 | uint32_t y, |
||
980 | uint64_t sum) |
||
2 | mjames | 981 | { |
5 | mjames | 982 | /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ |
983 | return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
||
984 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
985 | ( ((q63_t)sum ) ) )); |
||
2 | mjames | 986 | } |
987 | |||
5 | mjames | 988 | |
2 | mjames | 989 | /* |
990 | * @brief C custom defined SMUAD for M3 and M0 processors |
||
991 | */ |
||
5 | mjames | 992 | static __INLINE uint32_t __SMUAD( |
993 | uint32_t x, |
||
994 | uint32_t y) |
||
2 | mjames | 995 | { |
5 | mjames | 996 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
997 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); |
||
2 | mjames | 998 | } |
999 | |||
5 | mjames | 1000 | |
2 | mjames | 1001 | /* |
1002 | * @brief C custom defined SMUSD for M3 and M0 processors |
||
1003 | */ |
||
5 | mjames | 1004 | static __INLINE uint32_t __SMUSD( |
1005 | uint32_t x, |
||
1006 | uint32_t y) |
||
2 | mjames | 1007 | { |
5 | mjames | 1008 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - |
1009 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); |
||
2 | mjames | 1010 | } |
1011 | |||
1012 | |||
1013 | /* |
||
1014 | * @brief C custom defined SXTB16 for M3 and M0 processors |
||
1015 | */ |
||
5 | mjames | 1016 | static __INLINE uint32_t __SXTB16( |
1017 | uint32_t x) |
||
2 | mjames | 1018 | { |
5 | mjames | 1019 | return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | |
1020 | ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); |
||
2 | mjames | 1021 | } |
1022 | |||
1023 | #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ |
||
1024 | |||
1025 | |||
1026 | /** |
||
1027 | * @brief Instance structure for the Q7 FIR filter. |
||
1028 | */ |
||
1029 | typedef struct |
||
1030 | { |
||
1031 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1032 | q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1033 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
1034 | } arm_fir_instance_q7; |
||
1035 | |||
1036 | /** |
||
1037 | * @brief Instance structure for the Q15 FIR filter. |
||
1038 | */ |
||
1039 | typedef struct |
||
1040 | { |
||
1041 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1042 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1043 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
1044 | } arm_fir_instance_q15; |
||
1045 | |||
1046 | /** |
||
1047 | * @brief Instance structure for the Q31 FIR filter. |
||
1048 | */ |
||
1049 | typedef struct |
||
1050 | { |
||
1051 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1052 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1053 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
1054 | } arm_fir_instance_q31; |
||
1055 | |||
1056 | /** |
||
1057 | * @brief Instance structure for the floating-point FIR filter. |
||
1058 | */ |
||
1059 | typedef struct |
||
1060 | { |
||
1061 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1062 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1063 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
1064 | } arm_fir_instance_f32; |
||
1065 | |||
1066 | |||
1067 | /** |
||
1068 | * @brief Processing function for the Q7 FIR filter. |
||
5 | mjames | 1069 | * @param[in] S points to an instance of the Q7 FIR filter structure. |
1070 | * @param[in] pSrc points to the block of input data. |
||
1071 | * @param[out] pDst points to the block of output data. |
||
1072 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 1073 | */ |
1074 | void arm_fir_q7( |
||
1075 | const arm_fir_instance_q7 * S, |
||
1076 | q7_t * pSrc, |
||
1077 | q7_t * pDst, |
||
1078 | uint32_t blockSize); |
||
1079 | |||
1080 | |||
1081 | /** |
||
1082 | * @brief Initialization function for the Q7 FIR filter. |
||
5 | mjames | 1083 | * @param[in,out] S points to an instance of the Q7 FIR structure. |
1084 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
1085 | * @param[in] pCoeffs points to the filter coefficients. |
||
1086 | * @param[in] pState points to the state buffer. |
||
1087 | * @param[in] blockSize number of samples that are processed. |
||
2 | mjames | 1088 | */ |
1089 | void arm_fir_init_q7( |
||
1090 | arm_fir_instance_q7 * S, |
||
1091 | uint16_t numTaps, |
||
1092 | q7_t * pCoeffs, |
||
1093 | q7_t * pState, |
||
1094 | uint32_t blockSize); |
||
1095 | |||
1096 | |||
1097 | /** |
||
1098 | * @brief Processing function for the Q15 FIR filter. |
||
5 | mjames | 1099 | * @param[in] S points to an instance of the Q15 FIR structure. |
1100 | * @param[in] pSrc points to the block of input data. |
||
1101 | * @param[out] pDst points to the block of output data. |
||
1102 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 1103 | */ |
1104 | void arm_fir_q15( |
||
1105 | const arm_fir_instance_q15 * S, |
||
1106 | q15_t * pSrc, |
||
1107 | q15_t * pDst, |
||
1108 | uint32_t blockSize); |
||
1109 | |||
5 | mjames | 1110 | |
2 | mjames | 1111 | /** |
1112 | * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. |
||
5 | mjames | 1113 | * @param[in] S points to an instance of the Q15 FIR filter structure. |
1114 | * @param[in] pSrc points to the block of input data. |
||
1115 | * @param[out] pDst points to the block of output data. |
||
1116 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 1117 | */ |
1118 | void arm_fir_fast_q15( |
||
1119 | const arm_fir_instance_q15 * S, |
||
1120 | q15_t * pSrc, |
||
1121 | q15_t * pDst, |
||
1122 | uint32_t blockSize); |
||
1123 | |||
5 | mjames | 1124 | |
2 | mjames | 1125 | /** |
1126 | * @brief Initialization function for the Q15 FIR filter. |
||
5 | mjames | 1127 | * @param[in,out] S points to an instance of the Q15 FIR filter structure. |
1128 | * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. |
||
1129 | * @param[in] pCoeffs points to the filter coefficients. |
||
1130 | * @param[in] pState points to the state buffer. |
||
1131 | * @param[in] blockSize number of samples that are processed at a time. |
||
2 | mjames | 1132 | * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if |
1133 | * <code>numTaps</code> is not a supported value. |
||
1134 | */ |
||
1135 | arm_status arm_fir_init_q15( |
||
1136 | arm_fir_instance_q15 * S, |
||
1137 | uint16_t numTaps, |
||
1138 | q15_t * pCoeffs, |
||
1139 | q15_t * pState, |
||
1140 | uint32_t blockSize); |
||
1141 | |||
5 | mjames | 1142 | |
2 | mjames | 1143 | /** |
1144 | * @brief Processing function for the Q31 FIR filter. |
||
5 | mjames | 1145 | * @param[in] S points to an instance of the Q31 FIR filter structure. |
1146 | * @param[in] pSrc points to the block of input data. |
||
1147 | * @param[out] pDst points to the block of output data. |
||
1148 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 1149 | */ |
1150 | void arm_fir_q31( |
||
1151 | const arm_fir_instance_q31 * S, |
||
1152 | q31_t * pSrc, |
||
1153 | q31_t * pDst, |
||
1154 | uint32_t blockSize); |
||
1155 | |||
5 | mjames | 1156 | |
2 | mjames | 1157 | /** |
1158 | * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. |
||
5 | mjames | 1159 | * @param[in] S points to an instance of the Q31 FIR structure. |
1160 | * @param[in] pSrc points to the block of input data. |
||
1161 | * @param[out] pDst points to the block of output data. |
||
1162 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 1163 | */ |
1164 | void arm_fir_fast_q31( |
||
1165 | const arm_fir_instance_q31 * S, |
||
1166 | q31_t * pSrc, |
||
1167 | q31_t * pDst, |
||
1168 | uint32_t blockSize); |
||
1169 | |||
5 | mjames | 1170 | |
2 | mjames | 1171 | /** |
1172 | * @brief Initialization function for the Q31 FIR filter. |
||
5 | mjames | 1173 | * @param[in,out] S points to an instance of the Q31 FIR structure. |
1174 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
1175 | * @param[in] pCoeffs points to the filter coefficients. |
||
1176 | * @param[in] pState points to the state buffer. |
||
1177 | * @param[in] blockSize number of samples that are processed at a time. |
||
2 | mjames | 1178 | */ |
1179 | void arm_fir_init_q31( |
||
1180 | arm_fir_instance_q31 * S, |
||
1181 | uint16_t numTaps, |
||
1182 | q31_t * pCoeffs, |
||
1183 | q31_t * pState, |
||
1184 | uint32_t blockSize); |
||
1185 | |||
5 | mjames | 1186 | |
2 | mjames | 1187 | /** |
1188 | * @brief Processing function for the floating-point FIR filter. |
||
5 | mjames | 1189 | * @param[in] S points to an instance of the floating-point FIR structure. |
1190 | * @param[in] pSrc points to the block of input data. |
||
1191 | * @param[out] pDst points to the block of output data. |
||
1192 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 1193 | */ |
1194 | void arm_fir_f32( |
||
1195 | const arm_fir_instance_f32 * S, |
||
1196 | float32_t * pSrc, |
||
1197 | float32_t * pDst, |
||
1198 | uint32_t blockSize); |
||
1199 | |||
5 | mjames | 1200 | |
2 | mjames | 1201 | /** |
1202 | * @brief Initialization function for the floating-point FIR filter. |
||
5 | mjames | 1203 | * @param[in,out] S points to an instance of the floating-point FIR filter structure. |
1204 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
1205 | * @param[in] pCoeffs points to the filter coefficients. |
||
1206 | * @param[in] pState points to the state buffer. |
||
1207 | * @param[in] blockSize number of samples that are processed at a time. |
||
2 | mjames | 1208 | */ |
1209 | void arm_fir_init_f32( |
||
1210 | arm_fir_instance_f32 * S, |
||
1211 | uint16_t numTaps, |
||
1212 | float32_t * pCoeffs, |
||
1213 | float32_t * pState, |
||
1214 | uint32_t blockSize); |
||
1215 | |||
1216 | |||
1217 | /** |
||
1218 | * @brief Instance structure for the Q15 Biquad cascade filter. |
||
1219 | */ |
||
1220 | typedef struct |
||
1221 | { |
||
5 | mjames | 1222 | int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
1223 | q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
1224 | q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
1225 | int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
||
2 | mjames | 1226 | } arm_biquad_casd_df1_inst_q15; |
1227 | |||
1228 | /** |
||
1229 | * @brief Instance structure for the Q31 Biquad cascade filter. |
||
1230 | */ |
||
1231 | typedef struct |
||
1232 | { |
||
1233 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
1234 | q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
1235 | q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
1236 | uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
||
1237 | } arm_biquad_casd_df1_inst_q31; |
||
1238 | |||
1239 | /** |
||
1240 | * @brief Instance structure for the floating-point Biquad cascade filter. |
||
1241 | */ |
||
1242 | typedef struct |
||
1243 | { |
||
5 | mjames | 1244 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
1245 | float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
1246 | float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
2 | mjames | 1247 | } arm_biquad_casd_df1_inst_f32; |
1248 | |||
1249 | |||
1250 | /** |
||
1251 | * @brief Processing function for the Q15 Biquad cascade filter. |
||
5 | mjames | 1252 | * @param[in] S points to an instance of the Q15 Biquad cascade structure. |
1253 | * @param[in] pSrc points to the block of input data. |
||
1254 | * @param[out] pDst points to the block of output data. |
||
1255 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 1256 | */ |
1257 | void arm_biquad_cascade_df1_q15( |
||
1258 | const arm_biquad_casd_df1_inst_q15 * S, |
||
1259 | q15_t * pSrc, |
||
1260 | q15_t * pDst, |
||
1261 | uint32_t blockSize); |
||
1262 | |||
5 | mjames | 1263 | |
2 | mjames | 1264 | /** |
1265 | * @brief Initialization function for the Q15 Biquad cascade filter. |
||
5 | mjames | 1266 | * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. |
1267 | * @param[in] numStages number of 2nd order stages in the filter. |
||
1268 | * @param[in] pCoeffs points to the filter coefficients. |
||
1269 | * @param[in] pState points to the state buffer. |
||
1270 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
||
2 | mjames | 1271 | */ |
1272 | void arm_biquad_cascade_df1_init_q15( |
||
1273 | arm_biquad_casd_df1_inst_q15 * S, |
||
1274 | uint8_t numStages, |
||
1275 | q15_t * pCoeffs, |
||
1276 | q15_t * pState, |
||
1277 | int8_t postShift); |
||
1278 | |||
1279 | |||
1280 | /** |
||
1281 | * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
||
5 | mjames | 1282 | * @param[in] S points to an instance of the Q15 Biquad cascade structure. |
1283 | * @param[in] pSrc points to the block of input data. |
||
1284 | * @param[out] pDst points to the block of output data. |
||
1285 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 1286 | */ |
1287 | void arm_biquad_cascade_df1_fast_q15( |
||
1288 | const arm_biquad_casd_df1_inst_q15 * S, |
||
1289 | q15_t * pSrc, |
||
1290 | q15_t * pDst, |
||
1291 | uint32_t blockSize); |
||
1292 | |||
1293 | |||
1294 | /** |
||
1295 | * @brief Processing function for the Q31 Biquad cascade filter |
||
5 | mjames | 1296 | * @param[in] S points to an instance of the Q31 Biquad cascade structure. |
1297 | * @param[in] pSrc points to the block of input data. |
||
1298 | * @param[out] pDst points to the block of output data. |
||
2 | mjames | 1299 | * @param[in] blockSize number of samples to process. |
1300 | */ |
||
1301 | void arm_biquad_cascade_df1_q31( |
||
1302 | const arm_biquad_casd_df1_inst_q31 * S, |
||
1303 | q31_t * pSrc, |
||
1304 | q31_t * pDst, |
||
1305 | uint32_t blockSize); |
||
1306 | |||
5 | mjames | 1307 | |
2 | mjames | 1308 | /** |
1309 | * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
||
5 | mjames | 1310 | * @param[in] S points to an instance of the Q31 Biquad cascade structure. |
1311 | * @param[in] pSrc points to the block of input data. |
||
1312 | * @param[out] pDst points to the block of output data. |
||
2 | mjames | 1313 | * @param[in] blockSize number of samples to process. |
1314 | */ |
||
1315 | void arm_biquad_cascade_df1_fast_q31( |
||
1316 | const arm_biquad_casd_df1_inst_q31 * S, |
||
1317 | q31_t * pSrc, |
||
1318 | q31_t * pDst, |
||
1319 | uint32_t blockSize); |
||
1320 | |||
5 | mjames | 1321 | |
2 | mjames | 1322 | /** |
1323 | * @brief Initialization function for the Q31 Biquad cascade filter. |
||
5 | mjames | 1324 | * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. |
1325 | * @param[in] numStages number of 2nd order stages in the filter. |
||
1326 | * @param[in] pCoeffs points to the filter coefficients. |
||
1327 | * @param[in] pState points to the state buffer. |
||
1328 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
||
2 | mjames | 1329 | */ |
1330 | void arm_biquad_cascade_df1_init_q31( |
||
1331 | arm_biquad_casd_df1_inst_q31 * S, |
||
1332 | uint8_t numStages, |
||
1333 | q31_t * pCoeffs, |
||
1334 | q31_t * pState, |
||
1335 | int8_t postShift); |
||
1336 | |||
5 | mjames | 1337 | |
2 | mjames | 1338 | /** |
1339 | * @brief Processing function for the floating-point Biquad cascade filter. |
||
5 | mjames | 1340 | * @param[in] S points to an instance of the floating-point Biquad cascade structure. |
1341 | * @param[in] pSrc points to the block of input data. |
||
1342 | * @param[out] pDst points to the block of output data. |
||
2 | mjames | 1343 | * @param[in] blockSize number of samples to process. |
1344 | */ |
||
1345 | void arm_biquad_cascade_df1_f32( |
||
1346 | const arm_biquad_casd_df1_inst_f32 * S, |
||
1347 | float32_t * pSrc, |
||
1348 | float32_t * pDst, |
||
1349 | uint32_t blockSize); |
||
1350 | |||
5 | mjames | 1351 | |
2 | mjames | 1352 | /** |
1353 | * @brief Initialization function for the floating-point Biquad cascade filter. |
||
5 | mjames | 1354 | * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. |
1355 | * @param[in] numStages number of 2nd order stages in the filter. |
||
1356 | * @param[in] pCoeffs points to the filter coefficients. |
||
1357 | * @param[in] pState points to the state buffer. |
||
2 | mjames | 1358 | */ |
1359 | void arm_biquad_cascade_df1_init_f32( |
||
1360 | arm_biquad_casd_df1_inst_f32 * S, |
||
1361 | uint8_t numStages, |
||
1362 | float32_t * pCoeffs, |
||
1363 | float32_t * pState); |
||
1364 | |||
1365 | |||
1366 | /** |
||
1367 | * @brief Instance structure for the floating-point matrix structure. |
||
1368 | */ |
||
1369 | typedef struct |
||
1370 | { |
||
1371 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1372 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1373 | float32_t *pData; /**< points to the data of the matrix. */ |
||
1374 | } arm_matrix_instance_f32; |
||
1375 | |||
1376 | |||
1377 | /** |
||
1378 | * @brief Instance structure for the floating-point matrix structure. |
||
1379 | */ |
||
1380 | typedef struct |
||
1381 | { |
||
1382 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1383 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1384 | float64_t *pData; /**< points to the data of the matrix. */ |
||
1385 | } arm_matrix_instance_f64; |
||
1386 | |||
1387 | /** |
||
1388 | * @brief Instance structure for the Q15 matrix structure. |
||
1389 | */ |
||
1390 | typedef struct |
||
1391 | { |
||
1392 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1393 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1394 | q15_t *pData; /**< points to the data of the matrix. */ |
||
1395 | } arm_matrix_instance_q15; |
||
1396 | |||
1397 | /** |
||
1398 | * @brief Instance structure for the Q31 matrix structure. |
||
1399 | */ |
||
1400 | typedef struct |
||
1401 | { |
||
1402 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1403 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1404 | q31_t *pData; /**< points to the data of the matrix. */ |
||
1405 | } arm_matrix_instance_q31; |
||
1406 | |||
1407 | |||
1408 | /** |
||
1409 | * @brief Floating-point matrix addition. |
||
5 | mjames | 1410 | * @param[in] pSrcA points to the first input matrix structure |
1411 | * @param[in] pSrcB points to the second input matrix structure |
||
1412 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1413 | * @return The function returns either |
1414 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1415 | */ |
||
1416 | arm_status arm_mat_add_f32( |
||
1417 | const arm_matrix_instance_f32 * pSrcA, |
||
1418 | const arm_matrix_instance_f32 * pSrcB, |
||
1419 | arm_matrix_instance_f32 * pDst); |
||
1420 | |||
5 | mjames | 1421 | |
2 | mjames | 1422 | /** |
1423 | * @brief Q15 matrix addition. |
||
5 | mjames | 1424 | * @param[in] pSrcA points to the first input matrix structure |
1425 | * @param[in] pSrcB points to the second input matrix structure |
||
1426 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1427 | * @return The function returns either |
1428 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1429 | */ |
||
1430 | arm_status arm_mat_add_q15( |
||
1431 | const arm_matrix_instance_q15 * pSrcA, |
||
1432 | const arm_matrix_instance_q15 * pSrcB, |
||
1433 | arm_matrix_instance_q15 * pDst); |
||
1434 | |||
5 | mjames | 1435 | |
2 | mjames | 1436 | /** |
1437 | * @brief Q31 matrix addition. |
||
5 | mjames | 1438 | * @param[in] pSrcA points to the first input matrix structure |
1439 | * @param[in] pSrcB points to the second input matrix structure |
||
1440 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1441 | * @return The function returns either |
1442 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1443 | */ |
||
1444 | arm_status arm_mat_add_q31( |
||
1445 | const arm_matrix_instance_q31 * pSrcA, |
||
1446 | const arm_matrix_instance_q31 * pSrcB, |
||
1447 | arm_matrix_instance_q31 * pDst); |
||
1448 | |||
5 | mjames | 1449 | |
2 | mjames | 1450 | /** |
1451 | * @brief Floating-point, complex, matrix multiplication. |
||
5 | mjames | 1452 | * @param[in] pSrcA points to the first input matrix structure |
1453 | * @param[in] pSrcB points to the second input matrix structure |
||
1454 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1455 | * @return The function returns either |
1456 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1457 | */ |
||
1458 | arm_status arm_mat_cmplx_mult_f32( |
||
1459 | const arm_matrix_instance_f32 * pSrcA, |
||
1460 | const arm_matrix_instance_f32 * pSrcB, |
||
1461 | arm_matrix_instance_f32 * pDst); |
||
1462 | |||
5 | mjames | 1463 | |
2 | mjames | 1464 | /** |
1465 | * @brief Q15, complex, matrix multiplication. |
||
5 | mjames | 1466 | * @param[in] pSrcA points to the first input matrix structure |
1467 | * @param[in] pSrcB points to the second input matrix structure |
||
1468 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1469 | * @return The function returns either |
1470 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1471 | */ |
||
1472 | arm_status arm_mat_cmplx_mult_q15( |
||
1473 | const arm_matrix_instance_q15 * pSrcA, |
||
1474 | const arm_matrix_instance_q15 * pSrcB, |
||
1475 | arm_matrix_instance_q15 * pDst, |
||
1476 | q15_t * pScratch); |
||
1477 | |||
5 | mjames | 1478 | |
2 | mjames | 1479 | /** |
1480 | * @brief Q31, complex, matrix multiplication. |
||
5 | mjames | 1481 | * @param[in] pSrcA points to the first input matrix structure |
1482 | * @param[in] pSrcB points to the second input matrix structure |
||
1483 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1484 | * @return The function returns either |
1485 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1486 | */ |
||
1487 | arm_status arm_mat_cmplx_mult_q31( |
||
1488 | const arm_matrix_instance_q31 * pSrcA, |
||
1489 | const arm_matrix_instance_q31 * pSrcB, |
||
1490 | arm_matrix_instance_q31 * pDst); |
||
1491 | |||
1492 | |||
1493 | /** |
||
1494 | * @brief Floating-point matrix transpose. |
||
5 | mjames | 1495 | * @param[in] pSrc points to the input matrix |
1496 | * @param[out] pDst points to the output matrix |
||
1497 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
2 | mjames | 1498 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
1499 | */ |
||
1500 | arm_status arm_mat_trans_f32( |
||
1501 | const arm_matrix_instance_f32 * pSrc, |
||
1502 | arm_matrix_instance_f32 * pDst); |
||
1503 | |||
1504 | |||
1505 | /** |
||
1506 | * @brief Q15 matrix transpose. |
||
5 | mjames | 1507 | * @param[in] pSrc points to the input matrix |
1508 | * @param[out] pDst points to the output matrix |
||
1509 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
2 | mjames | 1510 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
1511 | */ |
||
1512 | arm_status arm_mat_trans_q15( |
||
1513 | const arm_matrix_instance_q15 * pSrc, |
||
1514 | arm_matrix_instance_q15 * pDst); |
||
1515 | |||
5 | mjames | 1516 | |
2 | mjames | 1517 | /** |
1518 | * @brief Q31 matrix transpose. |
||
5 | mjames | 1519 | * @param[in] pSrc points to the input matrix |
1520 | * @param[out] pDst points to the output matrix |
||
1521 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
2 | mjames | 1522 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
1523 | */ |
||
1524 | arm_status arm_mat_trans_q31( |
||
1525 | const arm_matrix_instance_q31 * pSrc, |
||
1526 | arm_matrix_instance_q31 * pDst); |
||
1527 | |||
1528 | |||
1529 | /** |
||
1530 | * @brief Floating-point matrix multiplication |
||
5 | mjames | 1531 | * @param[in] pSrcA points to the first input matrix structure |
1532 | * @param[in] pSrcB points to the second input matrix structure |
||
1533 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1534 | * @return The function returns either |
1535 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1536 | */ |
||
1537 | arm_status arm_mat_mult_f32( |
||
1538 | const arm_matrix_instance_f32 * pSrcA, |
||
1539 | const arm_matrix_instance_f32 * pSrcB, |
||
1540 | arm_matrix_instance_f32 * pDst); |
||
1541 | |||
5 | mjames | 1542 | |
2 | mjames | 1543 | /** |
1544 | * @brief Q15 matrix multiplication |
||
5 | mjames | 1545 | * @param[in] pSrcA points to the first input matrix structure |
1546 | * @param[in] pSrcB points to the second input matrix structure |
||
1547 | * @param[out] pDst points to output matrix structure |
||
1548 | * @param[in] pState points to the array for storing intermediate results |
||
2 | mjames | 1549 | * @return The function returns either |
1550 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1551 | */ |
||
1552 | arm_status arm_mat_mult_q15( |
||
1553 | const arm_matrix_instance_q15 * pSrcA, |
||
1554 | const arm_matrix_instance_q15 * pSrcB, |
||
1555 | arm_matrix_instance_q15 * pDst, |
||
1556 | q15_t * pState); |
||
1557 | |||
5 | mjames | 1558 | |
2 | mjames | 1559 | /** |
1560 | * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
||
5 | mjames | 1561 | * @param[in] pSrcA points to the first input matrix structure |
1562 | * @param[in] pSrcB points to the second input matrix structure |
||
1563 | * @param[out] pDst points to output matrix structure |
||
1564 | * @param[in] pState points to the array for storing intermediate results |
||
2 | mjames | 1565 | * @return The function returns either |
1566 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1567 | */ |
||
1568 | arm_status arm_mat_mult_fast_q15( |
||
1569 | const arm_matrix_instance_q15 * pSrcA, |
||
1570 | const arm_matrix_instance_q15 * pSrcB, |
||
1571 | arm_matrix_instance_q15 * pDst, |
||
1572 | q15_t * pState); |
||
1573 | |||
5 | mjames | 1574 | |
2 | mjames | 1575 | /** |
1576 | * @brief Q31 matrix multiplication |
||
5 | mjames | 1577 | * @param[in] pSrcA points to the first input matrix structure |
1578 | * @param[in] pSrcB points to the second input matrix structure |
||
1579 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1580 | * @return The function returns either |
1581 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1582 | */ |
||
1583 | arm_status arm_mat_mult_q31( |
||
1584 | const arm_matrix_instance_q31 * pSrcA, |
||
1585 | const arm_matrix_instance_q31 * pSrcB, |
||
1586 | arm_matrix_instance_q31 * pDst); |
||
1587 | |||
5 | mjames | 1588 | |
2 | mjames | 1589 | /** |
1590 | * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
||
5 | mjames | 1591 | * @param[in] pSrcA points to the first input matrix structure |
1592 | * @param[in] pSrcB points to the second input matrix structure |
||
1593 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1594 | * @return The function returns either |
1595 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1596 | */ |
||
1597 | arm_status arm_mat_mult_fast_q31( |
||
1598 | const arm_matrix_instance_q31 * pSrcA, |
||
1599 | const arm_matrix_instance_q31 * pSrcB, |
||
1600 | arm_matrix_instance_q31 * pDst); |
||
1601 | |||
1602 | |||
1603 | /** |
||
1604 | * @brief Floating-point matrix subtraction |
||
5 | mjames | 1605 | * @param[in] pSrcA points to the first input matrix structure |
1606 | * @param[in] pSrcB points to the second input matrix structure |
||
1607 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1608 | * @return The function returns either |
1609 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1610 | */ |
||
1611 | arm_status arm_mat_sub_f32( |
||
1612 | const arm_matrix_instance_f32 * pSrcA, |
||
1613 | const arm_matrix_instance_f32 * pSrcB, |
||
1614 | arm_matrix_instance_f32 * pDst); |
||
1615 | |||
5 | mjames | 1616 | |
2 | mjames | 1617 | /** |
1618 | * @brief Q15 matrix subtraction |
||
5 | mjames | 1619 | * @param[in] pSrcA points to the first input matrix structure |
1620 | * @param[in] pSrcB points to the second input matrix structure |
||
1621 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1622 | * @return The function returns either |
1623 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1624 | */ |
||
1625 | arm_status arm_mat_sub_q15( |
||
1626 | const arm_matrix_instance_q15 * pSrcA, |
||
1627 | const arm_matrix_instance_q15 * pSrcB, |
||
1628 | arm_matrix_instance_q15 * pDst); |
||
1629 | |||
5 | mjames | 1630 | |
2 | mjames | 1631 | /** |
1632 | * @brief Q31 matrix subtraction |
||
5 | mjames | 1633 | * @param[in] pSrcA points to the first input matrix structure |
1634 | * @param[in] pSrcB points to the second input matrix structure |
||
1635 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1636 | * @return The function returns either |
1637 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1638 | */ |
||
1639 | arm_status arm_mat_sub_q31( |
||
1640 | const arm_matrix_instance_q31 * pSrcA, |
||
1641 | const arm_matrix_instance_q31 * pSrcB, |
||
1642 | arm_matrix_instance_q31 * pDst); |
||
1643 | |||
5 | mjames | 1644 | |
2 | mjames | 1645 | /** |
1646 | * @brief Floating-point matrix scaling. |
||
5 | mjames | 1647 | * @param[in] pSrc points to the input matrix |
1648 | * @param[in] scale scale factor |
||
1649 | * @param[out] pDst points to the output matrix |
||
2 | mjames | 1650 | * @return The function returns either |
1651 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1652 | */ |
||
1653 | arm_status arm_mat_scale_f32( |
||
1654 | const arm_matrix_instance_f32 * pSrc, |
||
1655 | float32_t scale, |
||
1656 | arm_matrix_instance_f32 * pDst); |
||
1657 | |||
5 | mjames | 1658 | |
2 | mjames | 1659 | /** |
1660 | * @brief Q15 matrix scaling. |
||
5 | mjames | 1661 | * @param[in] pSrc points to input matrix |
1662 | * @param[in] scaleFract fractional portion of the scale factor |
||
1663 | * @param[in] shift number of bits to shift the result by |
||
1664 | * @param[out] pDst points to output matrix |
||
2 | mjames | 1665 | * @return The function returns either |
1666 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1667 | */ |
||
1668 | arm_status arm_mat_scale_q15( |
||
1669 | const arm_matrix_instance_q15 * pSrc, |
||
1670 | q15_t scaleFract, |
||
1671 | int32_t shift, |
||
1672 | arm_matrix_instance_q15 * pDst); |
||
1673 | |||
5 | mjames | 1674 | |
2 | mjames | 1675 | /** |
1676 | * @brief Q31 matrix scaling. |
||
5 | mjames | 1677 | * @param[in] pSrc points to input matrix |
1678 | * @param[in] scaleFract fractional portion of the scale factor |
||
1679 | * @param[in] shift number of bits to shift the result by |
||
1680 | * @param[out] pDst points to output matrix structure |
||
2 | mjames | 1681 | * @return The function returns either |
1682 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1683 | */ |
||
1684 | arm_status arm_mat_scale_q31( |
||
1685 | const arm_matrix_instance_q31 * pSrc, |
||
1686 | q31_t scaleFract, |
||
1687 | int32_t shift, |
||
1688 | arm_matrix_instance_q31 * pDst); |
||
1689 | |||
1690 | |||
1691 | /** |
||
1692 | * @brief Q31 matrix initialization. |
||
5 | mjames | 1693 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
1694 | * @param[in] nRows number of rows in the matrix. |
||
1695 | * @param[in] nColumns number of columns in the matrix. |
||
1696 | * @param[in] pData points to the matrix data array. |
||
2 | mjames | 1697 | */ |
1698 | void arm_mat_init_q31( |
||
1699 | arm_matrix_instance_q31 * S, |
||
1700 | uint16_t nRows, |
||
1701 | uint16_t nColumns, |
||
1702 | q31_t * pData); |
||
1703 | |||
5 | mjames | 1704 | |
2 | mjames | 1705 | /** |
1706 | * @brief Q15 matrix initialization. |
||
5 | mjames | 1707 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
1708 | * @param[in] nRows number of rows in the matrix. |
||
1709 | * @param[in] nColumns number of columns in the matrix. |
||
1710 | * @param[in] pData points to the matrix data array. |
||
2 | mjames | 1711 | */ |
1712 | void arm_mat_init_q15( |
||
1713 | arm_matrix_instance_q15 * S, |
||
1714 | uint16_t nRows, |
||
1715 | uint16_t nColumns, |
||
1716 | q15_t * pData); |
||
1717 | |||
5 | mjames | 1718 | |
2 | mjames | 1719 | /** |
1720 | * @brief Floating-point matrix initialization. |
||
5 | mjames | 1721 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
1722 | * @param[in] nRows number of rows in the matrix. |
||
1723 | * @param[in] nColumns number of columns in the matrix. |
||
1724 | * @param[in] pData points to the matrix data array. |
||
2 | mjames | 1725 | */ |
1726 | void arm_mat_init_f32( |
||
1727 | arm_matrix_instance_f32 * S, |
||
1728 | uint16_t nRows, |
||
1729 | uint16_t nColumns, |
||
1730 | float32_t * pData); |
||
1731 | |||
1732 | |||
1733 | |||
1734 | /** |
||
1735 | * @brief Instance structure for the Q15 PID Control. |
||
1736 | */ |
||
1737 | typedef struct |
||
1738 | { |
||
5 | mjames | 1739 | q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
2 | mjames | 1740 | #ifdef ARM_MATH_CM0_FAMILY |
1741 | q15_t A1; |
||
1742 | q15_t A2; |
||
1743 | #else |
||
1744 | q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ |
||
1745 | #endif |
||
5 | mjames | 1746 | q15_t state[3]; /**< The state array of length 3. */ |
2 | mjames | 1747 | q15_t Kp; /**< The proportional gain. */ |
1748 | q15_t Ki; /**< The integral gain. */ |
||
1749 | q15_t Kd; /**< The derivative gain. */ |
||
1750 | } arm_pid_instance_q15; |
||
1751 | |||
1752 | /** |
||
1753 | * @brief Instance structure for the Q31 PID Control. |
||
1754 | */ |
||
1755 | typedef struct |
||
1756 | { |
||
1757 | q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
||
1758 | q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
||
1759 | q31_t A2; /**< The derived gain, A2 = Kd . */ |
||
1760 | q31_t state[3]; /**< The state array of length 3. */ |
||
1761 | q31_t Kp; /**< The proportional gain. */ |
||
1762 | q31_t Ki; /**< The integral gain. */ |
||
1763 | q31_t Kd; /**< The derivative gain. */ |
||
1764 | } arm_pid_instance_q31; |
||
1765 | |||
1766 | /** |
||
1767 | * @brief Instance structure for the floating-point PID Control. |
||
1768 | */ |
||
1769 | typedef struct |
||
1770 | { |
||
1771 | float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
||
1772 | float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
||
1773 | float32_t A2; /**< The derived gain, A2 = Kd . */ |
||
1774 | float32_t state[3]; /**< The state array of length 3. */ |
||
5 | mjames | 1775 | float32_t Kp; /**< The proportional gain. */ |
1776 | float32_t Ki; /**< The integral gain. */ |
||
1777 | float32_t Kd; /**< The derivative gain. */ |
||
2 | mjames | 1778 | } arm_pid_instance_f32; |
1779 | |||
1780 | |||
1781 | |||
1782 | /** |
||
1783 | * @brief Initialization function for the floating-point PID Control. |
||
5 | mjames | 1784 | * @param[in,out] S points to an instance of the PID structure. |
2 | mjames | 1785 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
1786 | */ |
||
1787 | void arm_pid_init_f32( |
||
1788 | arm_pid_instance_f32 * S, |
||
1789 | int32_t resetStateFlag); |
||
1790 | |||
5 | mjames | 1791 | |
2 | mjames | 1792 | /** |
1793 | * @brief Reset function for the floating-point PID Control. |
||
5 | mjames | 1794 | * @param[in,out] S is an instance of the floating-point PID Control structure |
2 | mjames | 1795 | */ |
1796 | void arm_pid_reset_f32( |
||
1797 | arm_pid_instance_f32 * S); |
||
1798 | |||
1799 | |||
1800 | /** |
||
1801 | * @brief Initialization function for the Q31 PID Control. |
||
5 | mjames | 1802 | * @param[in,out] S points to an instance of the Q15 PID structure. |
2 | mjames | 1803 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
1804 | */ |
||
1805 | void arm_pid_init_q31( |
||
1806 | arm_pid_instance_q31 * S, |
||
1807 | int32_t resetStateFlag); |
||
1808 | |||
1809 | |||
1810 | /** |
||
1811 | * @brief Reset function for the Q31 PID Control. |
||
5 | mjames | 1812 | * @param[in,out] S points to an instance of the Q31 PID Control structure |
2 | mjames | 1813 | */ |
1814 | |||
1815 | void arm_pid_reset_q31( |
||
1816 | arm_pid_instance_q31 * S); |
||
1817 | |||
5 | mjames | 1818 | |
2 | mjames | 1819 | /** |
1820 | * @brief Initialization function for the Q15 PID Control. |
||
5 | mjames | 1821 | * @param[in,out] S points to an instance of the Q15 PID structure. |
1822 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
||
2 | mjames | 1823 | */ |
1824 | void arm_pid_init_q15( |
||
1825 | arm_pid_instance_q15 * S, |
||
1826 | int32_t resetStateFlag); |
||
1827 | |||
5 | mjames | 1828 | |
2 | mjames | 1829 | /** |
1830 | * @brief Reset function for the Q15 PID Control. |
||
5 | mjames | 1831 | * @param[in,out] S points to an instance of the q15 PID Control structure |
2 | mjames | 1832 | */ |
1833 | void arm_pid_reset_q15( |
||
1834 | arm_pid_instance_q15 * S); |
||
1835 | |||
1836 | |||
1837 | /** |
||
1838 | * @brief Instance structure for the floating-point Linear Interpolate function. |
||
1839 | */ |
||
1840 | typedef struct |
||
1841 | { |
||
1842 | uint32_t nValues; /**< nValues */ |
||
1843 | float32_t x1; /**< x1 */ |
||
1844 | float32_t xSpacing; /**< xSpacing */ |
||
1845 | float32_t *pYData; /**< pointer to the table of Y values */ |
||
1846 | } arm_linear_interp_instance_f32; |
||
1847 | |||
1848 | /** |
||
1849 | * @brief Instance structure for the floating-point bilinear interpolation function. |
||
1850 | */ |
||
1851 | typedef struct |
||
1852 | { |
||
1853 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1854 | uint16_t numCols; /**< number of columns in the data table. */ |
||
1855 | float32_t *pData; /**< points to the data table. */ |
||
1856 | } arm_bilinear_interp_instance_f32; |
||
1857 | |||
1858 | /** |
||
1859 | * @brief Instance structure for the Q31 bilinear interpolation function. |
||
1860 | */ |
||
1861 | typedef struct |
||
1862 | { |
||
1863 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1864 | uint16_t numCols; /**< number of columns in the data table. */ |
||
1865 | q31_t *pData; /**< points to the data table. */ |
||
1866 | } arm_bilinear_interp_instance_q31; |
||
1867 | |||
1868 | /** |
||
1869 | * @brief Instance structure for the Q15 bilinear interpolation function. |
||
1870 | */ |
||
1871 | typedef struct |
||
1872 | { |
||
1873 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1874 | uint16_t numCols; /**< number of columns in the data table. */ |
||
1875 | q15_t *pData; /**< points to the data table. */ |
||
1876 | } arm_bilinear_interp_instance_q15; |
||
1877 | |||
1878 | /** |
||
1879 | * @brief Instance structure for the Q15 bilinear interpolation function. |
||
1880 | */ |
||
1881 | typedef struct |
||
1882 | { |
||
1883 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1884 | uint16_t numCols; /**< number of columns in the data table. */ |
||
5 | mjames | 1885 | q7_t *pData; /**< points to the data table. */ |
2 | mjames | 1886 | } arm_bilinear_interp_instance_q7; |
1887 | |||
1888 | |||
1889 | /** |
||
1890 | * @brief Q7 vector multiplication. |
||
5 | mjames | 1891 | * @param[in] pSrcA points to the first input vector |
1892 | * @param[in] pSrcB points to the second input vector |
||
1893 | * @param[out] pDst points to the output vector |
||
1894 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 1895 | */ |
1896 | void arm_mult_q7( |
||
1897 | q7_t * pSrcA, |
||
1898 | q7_t * pSrcB, |
||
1899 | q7_t * pDst, |
||
1900 | uint32_t blockSize); |
||
1901 | |||
5 | mjames | 1902 | |
2 | mjames | 1903 | /** |
1904 | * @brief Q15 vector multiplication. |
||
5 | mjames | 1905 | * @param[in] pSrcA points to the first input vector |
1906 | * @param[in] pSrcB points to the second input vector |
||
1907 | * @param[out] pDst points to the output vector |
||
1908 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 1909 | */ |
1910 | void arm_mult_q15( |
||
1911 | q15_t * pSrcA, |
||
1912 | q15_t * pSrcB, |
||
1913 | q15_t * pDst, |
||
1914 | uint32_t blockSize); |
||
1915 | |||
5 | mjames | 1916 | |
2 | mjames | 1917 | /** |
1918 | * @brief Q31 vector multiplication. |
||
5 | mjames | 1919 | * @param[in] pSrcA points to the first input vector |
1920 | * @param[in] pSrcB points to the second input vector |
||
1921 | * @param[out] pDst points to the output vector |
||
1922 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 1923 | */ |
1924 | void arm_mult_q31( |
||
1925 | q31_t * pSrcA, |
||
1926 | q31_t * pSrcB, |
||
1927 | q31_t * pDst, |
||
1928 | uint32_t blockSize); |
||
1929 | |||
5 | mjames | 1930 | |
2 | mjames | 1931 | /** |
1932 | * @brief Floating-point vector multiplication. |
||
5 | mjames | 1933 | * @param[in] pSrcA points to the first input vector |
1934 | * @param[in] pSrcB points to the second input vector |
||
1935 | * @param[out] pDst points to the output vector |
||
1936 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 1937 | */ |
1938 | void arm_mult_f32( |
||
1939 | float32_t * pSrcA, |
||
1940 | float32_t * pSrcB, |
||
1941 | float32_t * pDst, |
||
1942 | uint32_t blockSize); |
||
1943 | |||
1944 | |||
1945 | /** |
||
1946 | * @brief Instance structure for the Q15 CFFT/CIFFT function. |
||
1947 | */ |
||
1948 | typedef struct |
||
1949 | { |
||
1950 | uint16_t fftLen; /**< length of the FFT. */ |
||
1951 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
1952 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
5 | mjames | 1953 | q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ |
2 | mjames | 1954 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
1955 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
1956 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
1957 | } arm_cfft_radix2_instance_q15; |
||
1958 | |||
1959 | /* Deprecated */ |
||
1960 | arm_status arm_cfft_radix2_init_q15( |
||
1961 | arm_cfft_radix2_instance_q15 * S, |
||
1962 | uint16_t fftLen, |
||
1963 | uint8_t ifftFlag, |
||
1964 | uint8_t bitReverseFlag); |
||
1965 | |||
1966 | /* Deprecated */ |
||
1967 | void arm_cfft_radix2_q15( |
||
1968 | const arm_cfft_radix2_instance_q15 * S, |
||
1969 | q15_t * pSrc); |
||
1970 | |||
1971 | |||
1972 | /** |
||
1973 | * @brief Instance structure for the Q15 CFFT/CIFFT function. |
||
1974 | */ |
||
1975 | typedef struct |
||
1976 | { |
||
1977 | uint16_t fftLen; /**< length of the FFT. */ |
||
1978 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
1979 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
1980 | q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
1981 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
1982 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
1983 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
1984 | } arm_cfft_radix4_instance_q15; |
||
1985 | |||
1986 | /* Deprecated */ |
||
1987 | arm_status arm_cfft_radix4_init_q15( |
||
1988 | arm_cfft_radix4_instance_q15 * S, |
||
1989 | uint16_t fftLen, |
||
1990 | uint8_t ifftFlag, |
||
1991 | uint8_t bitReverseFlag); |
||
1992 | |||
1993 | /* Deprecated */ |
||
1994 | void arm_cfft_radix4_q15( |
||
1995 | const arm_cfft_radix4_instance_q15 * S, |
||
1996 | q15_t * pSrc); |
||
1997 | |||
1998 | /** |
||
1999 | * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. |
||
2000 | */ |
||
2001 | typedef struct |
||
2002 | { |
||
2003 | uint16_t fftLen; /**< length of the FFT. */ |
||
2004 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2005 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
5 | mjames | 2006 | q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
2 | mjames | 2007 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
2008 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2009 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
2010 | } arm_cfft_radix2_instance_q31; |
||
2011 | |||
2012 | /* Deprecated */ |
||
2013 | arm_status arm_cfft_radix2_init_q31( |
||
2014 | arm_cfft_radix2_instance_q31 * S, |
||
2015 | uint16_t fftLen, |
||
2016 | uint8_t ifftFlag, |
||
2017 | uint8_t bitReverseFlag); |
||
2018 | |||
2019 | /* Deprecated */ |
||
2020 | void arm_cfft_radix2_q31( |
||
2021 | const arm_cfft_radix2_instance_q31 * S, |
||
2022 | q31_t * pSrc); |
||
2023 | |||
2024 | /** |
||
2025 | * @brief Instance structure for the Q31 CFFT/CIFFT function. |
||
2026 | */ |
||
2027 | typedef struct |
||
2028 | { |
||
2029 | uint16_t fftLen; /**< length of the FFT. */ |
||
2030 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2031 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2032 | q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2033 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2034 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2035 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
2036 | } arm_cfft_radix4_instance_q31; |
||
2037 | |||
2038 | /* Deprecated */ |
||
2039 | void arm_cfft_radix4_q31( |
||
2040 | const arm_cfft_radix4_instance_q31 * S, |
||
2041 | q31_t * pSrc); |
||
2042 | |||
2043 | /* Deprecated */ |
||
2044 | arm_status arm_cfft_radix4_init_q31( |
||
2045 | arm_cfft_radix4_instance_q31 * S, |
||
2046 | uint16_t fftLen, |
||
2047 | uint8_t ifftFlag, |
||
2048 | uint8_t bitReverseFlag); |
||
2049 | |||
2050 | /** |
||
2051 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
2052 | */ |
||
2053 | typedef struct |
||
2054 | { |
||
2055 | uint16_t fftLen; /**< length of the FFT. */ |
||
2056 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2057 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2058 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2059 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2060 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2061 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
5 | mjames | 2062 | float32_t onebyfftLen; /**< value of 1/fftLen. */ |
2 | mjames | 2063 | } arm_cfft_radix2_instance_f32; |
2064 | |||
2065 | /* Deprecated */ |
||
2066 | arm_status arm_cfft_radix2_init_f32( |
||
2067 | arm_cfft_radix2_instance_f32 * S, |
||
2068 | uint16_t fftLen, |
||
2069 | uint8_t ifftFlag, |
||
2070 | uint8_t bitReverseFlag); |
||
2071 | |||
2072 | /* Deprecated */ |
||
2073 | void arm_cfft_radix2_f32( |
||
2074 | const arm_cfft_radix2_instance_f32 * S, |
||
2075 | float32_t * pSrc); |
||
2076 | |||
2077 | /** |
||
2078 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
2079 | */ |
||
2080 | typedef struct |
||
2081 | { |
||
2082 | uint16_t fftLen; /**< length of the FFT. */ |
||
2083 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2084 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2085 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2086 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2087 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2088 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
5 | mjames | 2089 | float32_t onebyfftLen; /**< value of 1/fftLen. */ |
2 | mjames | 2090 | } arm_cfft_radix4_instance_f32; |
2091 | |||
2092 | /* Deprecated */ |
||
2093 | arm_status arm_cfft_radix4_init_f32( |
||
2094 | arm_cfft_radix4_instance_f32 * S, |
||
2095 | uint16_t fftLen, |
||
2096 | uint8_t ifftFlag, |
||
2097 | uint8_t bitReverseFlag); |
||
2098 | |||
2099 | /* Deprecated */ |
||
2100 | void arm_cfft_radix4_f32( |
||
2101 | const arm_cfft_radix4_instance_f32 * S, |
||
2102 | float32_t * pSrc); |
||
2103 | |||
2104 | /** |
||
2105 | * @brief Instance structure for the fixed-point CFFT/CIFFT function. |
||
2106 | */ |
||
2107 | typedef struct |
||
2108 | { |
||
2109 | uint16_t fftLen; /**< length of the FFT. */ |
||
2110 | const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2111 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2112 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
2113 | } arm_cfft_instance_q15; |
||
2114 | |||
5 | mjames | 2115 | void arm_cfft_q15( |
2116 | const arm_cfft_instance_q15 * S, |
||
2 | mjames | 2117 | q15_t * p1, |
2118 | uint8_t ifftFlag, |
||
5 | mjames | 2119 | uint8_t bitReverseFlag); |
2 | mjames | 2120 | |
2121 | /** |
||
2122 | * @brief Instance structure for the fixed-point CFFT/CIFFT function. |
||
2123 | */ |
||
2124 | typedef struct |
||
2125 | { |
||
2126 | uint16_t fftLen; /**< length of the FFT. */ |
||
2127 | const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2128 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2129 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
2130 | } arm_cfft_instance_q31; |
||
2131 | |||
5 | mjames | 2132 | void arm_cfft_q31( |
2133 | const arm_cfft_instance_q31 * S, |
||
2 | mjames | 2134 | q31_t * p1, |
2135 | uint8_t ifftFlag, |
||
5 | mjames | 2136 | uint8_t bitReverseFlag); |
2137 | |||
2 | mjames | 2138 | /** |
2139 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
2140 | */ |
||
2141 | typedef struct |
||
2142 | { |
||
2143 | uint16_t fftLen; /**< length of the FFT. */ |
||
2144 | const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2145 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2146 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
2147 | } arm_cfft_instance_f32; |
||
2148 | |||
2149 | void arm_cfft_f32( |
||
2150 | const arm_cfft_instance_f32 * S, |
||
2151 | float32_t * p1, |
||
2152 | uint8_t ifftFlag, |
||
2153 | uint8_t bitReverseFlag); |
||
2154 | |||
2155 | /** |
||
2156 | * @brief Instance structure for the Q15 RFFT/RIFFT function. |
||
2157 | */ |
||
2158 | typedef struct |
||
2159 | { |
||
2160 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
2161 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
2162 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
2163 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2164 | q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
2165 | q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
2166 | const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
||
2167 | } arm_rfft_instance_q15; |
||
2168 | |||
2169 | arm_status arm_rfft_init_q15( |
||
2170 | arm_rfft_instance_q15 * S, |
||
2171 | uint32_t fftLenReal, |
||
2172 | uint32_t ifftFlagR, |
||
2173 | uint32_t bitReverseFlag); |
||
2174 | |||
2175 | void arm_rfft_q15( |
||
2176 | const arm_rfft_instance_q15 * S, |
||
2177 | q15_t * pSrc, |
||
2178 | q15_t * pDst); |
||
2179 | |||
2180 | /** |
||
2181 | * @brief Instance structure for the Q31 RFFT/RIFFT function. |
||
2182 | */ |
||
2183 | typedef struct |
||
2184 | { |
||
2185 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
2186 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
2187 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
2188 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2189 | q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
2190 | q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
2191 | const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
||
2192 | } arm_rfft_instance_q31; |
||
2193 | |||
2194 | arm_status arm_rfft_init_q31( |
||
2195 | arm_rfft_instance_q31 * S, |
||
2196 | uint32_t fftLenReal, |
||
2197 | uint32_t ifftFlagR, |
||
2198 | uint32_t bitReverseFlag); |
||
2199 | |||
2200 | void arm_rfft_q31( |
||
2201 | const arm_rfft_instance_q31 * S, |
||
2202 | q31_t * pSrc, |
||
2203 | q31_t * pDst); |
||
2204 | |||
2205 | /** |
||
2206 | * @brief Instance structure for the floating-point RFFT/RIFFT function. |
||
2207 | */ |
||
2208 | typedef struct |
||
2209 | { |
||
2210 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
2211 | uint16_t fftLenBy2; /**< length of the complex FFT. */ |
||
2212 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
2213 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
2214 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2215 | float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
2216 | float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
2217 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
||
2218 | } arm_rfft_instance_f32; |
||
2219 | |||
2220 | arm_status arm_rfft_init_f32( |
||
2221 | arm_rfft_instance_f32 * S, |
||
2222 | arm_cfft_radix4_instance_f32 * S_CFFT, |
||
2223 | uint32_t fftLenReal, |
||
2224 | uint32_t ifftFlagR, |
||
2225 | uint32_t bitReverseFlag); |
||
2226 | |||
2227 | void arm_rfft_f32( |
||
2228 | const arm_rfft_instance_f32 * S, |
||
2229 | float32_t * pSrc, |
||
2230 | float32_t * pDst); |
||
2231 | |||
2232 | /** |
||
2233 | * @brief Instance structure for the floating-point RFFT/RIFFT function. |
||
2234 | */ |
||
2235 | typedef struct |
||
2236 | { |
||
2237 | arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ |
||
5 | mjames | 2238 | uint16_t fftLenRFFT; /**< length of the real sequence */ |
2239 | float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ |
||
2 | mjames | 2240 | } arm_rfft_fast_instance_f32 ; |
2241 | |||
2242 | arm_status arm_rfft_fast_init_f32 ( |
||
5 | mjames | 2243 | arm_rfft_fast_instance_f32 * S, |
2244 | uint16_t fftLen); |
||
2 | mjames | 2245 | |
2246 | void arm_rfft_fast_f32( |
||
2247 | arm_rfft_fast_instance_f32 * S, |
||
2248 | float32_t * p, float32_t * pOut, |
||
2249 | uint8_t ifftFlag); |
||
2250 | |||
2251 | /** |
||
2252 | * @brief Instance structure for the floating-point DCT4/IDCT4 function. |
||
2253 | */ |
||
2254 | typedef struct |
||
2255 | { |
||
5 | mjames | 2256 | uint16_t N; /**< length of the DCT4. */ |
2257 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
2258 | float32_t normalize; /**< normalizing factor. */ |
||
2259 | float32_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2260 | float32_t *pCosFactor; /**< points to the cosFactor table. */ |
||
2 | mjames | 2261 | arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ |
2262 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
||
2263 | } arm_dct4_instance_f32; |
||
2264 | |||
5 | mjames | 2265 | |
2 | mjames | 2266 | /** |
2267 | * @brief Initialization function for the floating-point DCT4/IDCT4. |
||
5 | mjames | 2268 | * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. |
2269 | * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. |
||
2270 | * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. |
||
2 | mjames | 2271 | * @param[in] N length of the DCT4. |
2272 | * @param[in] Nby2 half of the length of the DCT4. |
||
2273 | * @param[in] normalize normalizing factor. |
||
5 | mjames | 2274 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. |
2 | mjames | 2275 | */ |
2276 | arm_status arm_dct4_init_f32( |
||
2277 | arm_dct4_instance_f32 * S, |
||
2278 | arm_rfft_instance_f32 * S_RFFT, |
||
2279 | arm_cfft_radix4_instance_f32 * S_CFFT, |
||
2280 | uint16_t N, |
||
2281 | uint16_t Nby2, |
||
2282 | float32_t normalize); |
||
2283 | |||
5 | mjames | 2284 | |
2 | mjames | 2285 | /** |
2286 | * @brief Processing function for the floating-point DCT4/IDCT4. |
||
5 | mjames | 2287 | * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. |
2288 | * @param[in] pState points to state buffer. |
||
2289 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
||
2 | mjames | 2290 | */ |
2291 | void arm_dct4_f32( |
||
2292 | const arm_dct4_instance_f32 * S, |
||
2293 | float32_t * pState, |
||
2294 | float32_t * pInlineBuffer); |
||
2295 | |||
5 | mjames | 2296 | |
2 | mjames | 2297 | /** |
2298 | * @brief Instance structure for the Q31 DCT4/IDCT4 function. |
||
2299 | */ |
||
2300 | typedef struct |
||
2301 | { |
||
5 | mjames | 2302 | uint16_t N; /**< length of the DCT4. */ |
2303 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
2304 | q31_t normalize; /**< normalizing factor. */ |
||
2305 | q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2306 | q31_t *pCosFactor; /**< points to the cosFactor table. */ |
||
2 | mjames | 2307 | arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ |
2308 | arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
||
2309 | } arm_dct4_instance_q31; |
||
2310 | |||
5 | mjames | 2311 | |
2 | mjames | 2312 | /** |
2313 | * @brief Initialization function for the Q31 DCT4/IDCT4. |
||
5 | mjames | 2314 | * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. |
2315 | * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure |
||
2316 | * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure |
||
2 | mjames | 2317 | * @param[in] N length of the DCT4. |
2318 | * @param[in] Nby2 half of the length of the DCT4. |
||
2319 | * @param[in] normalize normalizing factor. |
||
5 | mjames | 2320 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
2 | mjames | 2321 | */ |
2322 | arm_status arm_dct4_init_q31( |
||
2323 | arm_dct4_instance_q31 * S, |
||
2324 | arm_rfft_instance_q31 * S_RFFT, |
||
2325 | arm_cfft_radix4_instance_q31 * S_CFFT, |
||
2326 | uint16_t N, |
||
2327 | uint16_t Nby2, |
||
2328 | q31_t normalize); |
||
2329 | |||
5 | mjames | 2330 | |
2 | mjames | 2331 | /** |
2332 | * @brief Processing function for the Q31 DCT4/IDCT4. |
||
5 | mjames | 2333 | * @param[in] S points to an instance of the Q31 DCT4 structure. |
2334 | * @param[in] pState points to state buffer. |
||
2335 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
||
2 | mjames | 2336 | */ |
2337 | void arm_dct4_q31( |
||
2338 | const arm_dct4_instance_q31 * S, |
||
2339 | q31_t * pState, |
||
2340 | q31_t * pInlineBuffer); |
||
2341 | |||
5 | mjames | 2342 | |
2 | mjames | 2343 | /** |
2344 | * @brief Instance structure for the Q15 DCT4/IDCT4 function. |
||
2345 | */ |
||
2346 | typedef struct |
||
2347 | { |
||
5 | mjames | 2348 | uint16_t N; /**< length of the DCT4. */ |
2349 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
2350 | q15_t normalize; /**< normalizing factor. */ |
||
2351 | q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2352 | q15_t *pCosFactor; /**< points to the cosFactor table. */ |
||
2 | mjames | 2353 | arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ |
2354 | arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
||
2355 | } arm_dct4_instance_q15; |
||
2356 | |||
5 | mjames | 2357 | |
2 | mjames | 2358 | /** |
2359 | * @brief Initialization function for the Q15 DCT4/IDCT4. |
||
5 | mjames | 2360 | * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. |
2361 | * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. |
||
2362 | * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. |
||
2 | mjames | 2363 | * @param[in] N length of the DCT4. |
2364 | * @param[in] Nby2 half of the length of the DCT4. |
||
2365 | * @param[in] normalize normalizing factor. |
||
5 | mjames | 2366 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
2 | mjames | 2367 | */ |
2368 | arm_status arm_dct4_init_q15( |
||
2369 | arm_dct4_instance_q15 * S, |
||
2370 | arm_rfft_instance_q15 * S_RFFT, |
||
2371 | arm_cfft_radix4_instance_q15 * S_CFFT, |
||
2372 | uint16_t N, |
||
2373 | uint16_t Nby2, |
||
2374 | q15_t normalize); |
||
2375 | |||
5 | mjames | 2376 | |
2 | mjames | 2377 | /** |
2378 | * @brief Processing function for the Q15 DCT4/IDCT4. |
||
5 | mjames | 2379 | * @param[in] S points to an instance of the Q15 DCT4 structure. |
2380 | * @param[in] pState points to state buffer. |
||
2381 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
||
2 | mjames | 2382 | */ |
2383 | void arm_dct4_q15( |
||
2384 | const arm_dct4_instance_q15 * S, |
||
2385 | q15_t * pState, |
||
2386 | q15_t * pInlineBuffer); |
||
2387 | |||
5 | mjames | 2388 | |
2 | mjames | 2389 | /** |
2390 | * @brief Floating-point vector addition. |
||
5 | mjames | 2391 | * @param[in] pSrcA points to the first input vector |
2392 | * @param[in] pSrcB points to the second input vector |
||
2393 | * @param[out] pDst points to the output vector |
||
2394 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2395 | */ |
2396 | void arm_add_f32( |
||
2397 | float32_t * pSrcA, |
||
2398 | float32_t * pSrcB, |
||
2399 | float32_t * pDst, |
||
2400 | uint32_t blockSize); |
||
2401 | |||
5 | mjames | 2402 | |
2 | mjames | 2403 | /** |
2404 | * @brief Q7 vector addition. |
||
5 | mjames | 2405 | * @param[in] pSrcA points to the first input vector |
2406 | * @param[in] pSrcB points to the second input vector |
||
2407 | * @param[out] pDst points to the output vector |
||
2408 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2409 | */ |
2410 | void arm_add_q7( |
||
2411 | q7_t * pSrcA, |
||
2412 | q7_t * pSrcB, |
||
2413 | q7_t * pDst, |
||
2414 | uint32_t blockSize); |
||
2415 | |||
5 | mjames | 2416 | |
2 | mjames | 2417 | /** |
2418 | * @brief Q15 vector addition. |
||
5 | mjames | 2419 | * @param[in] pSrcA points to the first input vector |
2420 | * @param[in] pSrcB points to the second input vector |
||
2421 | * @param[out] pDst points to the output vector |
||
2422 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2423 | */ |
2424 | void arm_add_q15( |
||
2425 | q15_t * pSrcA, |
||
2426 | q15_t * pSrcB, |
||
2427 | q15_t * pDst, |
||
2428 | uint32_t blockSize); |
||
2429 | |||
5 | mjames | 2430 | |
2 | mjames | 2431 | /** |
2432 | * @brief Q31 vector addition. |
||
5 | mjames | 2433 | * @param[in] pSrcA points to the first input vector |
2434 | * @param[in] pSrcB points to the second input vector |
||
2435 | * @param[out] pDst points to the output vector |
||
2436 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2437 | */ |
2438 | void arm_add_q31( |
||
2439 | q31_t * pSrcA, |
||
2440 | q31_t * pSrcB, |
||
2441 | q31_t * pDst, |
||
2442 | uint32_t blockSize); |
||
2443 | |||
5 | mjames | 2444 | |
2 | mjames | 2445 | /** |
2446 | * @brief Floating-point vector subtraction. |
||
5 | mjames | 2447 | * @param[in] pSrcA points to the first input vector |
2448 | * @param[in] pSrcB points to the second input vector |
||
2449 | * @param[out] pDst points to the output vector |
||
2450 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2451 | */ |
2452 | void arm_sub_f32( |
||
2453 | float32_t * pSrcA, |
||
2454 | float32_t * pSrcB, |
||
2455 | float32_t * pDst, |
||
2456 | uint32_t blockSize); |
||
2457 | |||
5 | mjames | 2458 | |
2 | mjames | 2459 | /** |
2460 | * @brief Q7 vector subtraction. |
||
5 | mjames | 2461 | * @param[in] pSrcA points to the first input vector |
2462 | * @param[in] pSrcB points to the second input vector |
||
2463 | * @param[out] pDst points to the output vector |
||
2464 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2465 | */ |
2466 | void arm_sub_q7( |
||
2467 | q7_t * pSrcA, |
||
2468 | q7_t * pSrcB, |
||
2469 | q7_t * pDst, |
||
2470 | uint32_t blockSize); |
||
2471 | |||
5 | mjames | 2472 | |
2 | mjames | 2473 | /** |
2474 | * @brief Q15 vector subtraction. |
||
5 | mjames | 2475 | * @param[in] pSrcA points to the first input vector |
2476 | * @param[in] pSrcB points to the second input vector |
||
2477 | * @param[out] pDst points to the output vector |
||
2478 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2479 | */ |
2480 | void arm_sub_q15( |
||
2481 | q15_t * pSrcA, |
||
2482 | q15_t * pSrcB, |
||
2483 | q15_t * pDst, |
||
2484 | uint32_t blockSize); |
||
2485 | |||
5 | mjames | 2486 | |
2 | mjames | 2487 | /** |
2488 | * @brief Q31 vector subtraction. |
||
5 | mjames | 2489 | * @param[in] pSrcA points to the first input vector |
2490 | * @param[in] pSrcB points to the second input vector |
||
2491 | * @param[out] pDst points to the output vector |
||
2492 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2493 | */ |
2494 | void arm_sub_q31( |
||
2495 | q31_t * pSrcA, |
||
2496 | q31_t * pSrcB, |
||
2497 | q31_t * pDst, |
||
2498 | uint32_t blockSize); |
||
2499 | |||
5 | mjames | 2500 | |
2 | mjames | 2501 | /** |
2502 | * @brief Multiplies a floating-point vector by a scalar. |
||
5 | mjames | 2503 | * @param[in] pSrc points to the input vector |
2504 | * @param[in] scale scale factor to be applied |
||
2505 | * @param[out] pDst points to the output vector |
||
2506 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2507 | */ |
2508 | void arm_scale_f32( |
||
2509 | float32_t * pSrc, |
||
2510 | float32_t scale, |
||
2511 | float32_t * pDst, |
||
2512 | uint32_t blockSize); |
||
2513 | |||
5 | mjames | 2514 | |
2 | mjames | 2515 | /** |
2516 | * @brief Multiplies a Q7 vector by a scalar. |
||
5 | mjames | 2517 | * @param[in] pSrc points to the input vector |
2518 | * @param[in] scaleFract fractional portion of the scale value |
||
2519 | * @param[in] shift number of bits to shift the result by |
||
2520 | * @param[out] pDst points to the output vector |
||
2521 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2522 | */ |
2523 | void arm_scale_q7( |
||
2524 | q7_t * pSrc, |
||
2525 | q7_t scaleFract, |
||
2526 | int8_t shift, |
||
2527 | q7_t * pDst, |
||
2528 | uint32_t blockSize); |
||
2529 | |||
5 | mjames | 2530 | |
2 | mjames | 2531 | /** |
2532 | * @brief Multiplies a Q15 vector by a scalar. |
||
5 | mjames | 2533 | * @param[in] pSrc points to the input vector |
2534 | * @param[in] scaleFract fractional portion of the scale value |
||
2535 | * @param[in] shift number of bits to shift the result by |
||
2536 | * @param[out] pDst points to the output vector |
||
2537 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2538 | */ |
2539 | void arm_scale_q15( |
||
2540 | q15_t * pSrc, |
||
2541 | q15_t scaleFract, |
||
2542 | int8_t shift, |
||
2543 | q15_t * pDst, |
||
2544 | uint32_t blockSize); |
||
2545 | |||
5 | mjames | 2546 | |
2 | mjames | 2547 | /** |
2548 | * @brief Multiplies a Q31 vector by a scalar. |
||
5 | mjames | 2549 | * @param[in] pSrc points to the input vector |
2550 | * @param[in] scaleFract fractional portion of the scale value |
||
2551 | * @param[in] shift number of bits to shift the result by |
||
2552 | * @param[out] pDst points to the output vector |
||
2553 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2554 | */ |
2555 | void arm_scale_q31( |
||
2556 | q31_t * pSrc, |
||
2557 | q31_t scaleFract, |
||
2558 | int8_t shift, |
||
2559 | q31_t * pDst, |
||
2560 | uint32_t blockSize); |
||
2561 | |||
5 | mjames | 2562 | |
2 | mjames | 2563 | /** |
2564 | * @brief Q7 vector absolute value. |
||
5 | mjames | 2565 | * @param[in] pSrc points to the input buffer |
2566 | * @param[out] pDst points to the output buffer |
||
2567 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2568 | */ |
2569 | void arm_abs_q7( |
||
2570 | q7_t * pSrc, |
||
2571 | q7_t * pDst, |
||
2572 | uint32_t blockSize); |
||
2573 | |||
5 | mjames | 2574 | |
2 | mjames | 2575 | /** |
2576 | * @brief Floating-point vector absolute value. |
||
5 | mjames | 2577 | * @param[in] pSrc points to the input buffer |
2578 | * @param[out] pDst points to the output buffer |
||
2579 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2580 | */ |
2581 | void arm_abs_f32( |
||
2582 | float32_t * pSrc, |
||
2583 | float32_t * pDst, |
||
2584 | uint32_t blockSize); |
||
2585 | |||
5 | mjames | 2586 | |
2 | mjames | 2587 | /** |
2588 | * @brief Q15 vector absolute value. |
||
5 | mjames | 2589 | * @param[in] pSrc points to the input buffer |
2590 | * @param[out] pDst points to the output buffer |
||
2591 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2592 | */ |
2593 | void arm_abs_q15( |
||
2594 | q15_t * pSrc, |
||
2595 | q15_t * pDst, |
||
2596 | uint32_t blockSize); |
||
2597 | |||
5 | mjames | 2598 | |
2 | mjames | 2599 | /** |
2600 | * @brief Q31 vector absolute value. |
||
5 | mjames | 2601 | * @param[in] pSrc points to the input buffer |
2602 | * @param[out] pDst points to the output buffer |
||
2603 | * @param[in] blockSize number of samples in each vector |
||
2 | mjames | 2604 | */ |
2605 | void arm_abs_q31( |
||
2606 | q31_t * pSrc, |
||
2607 | q31_t * pDst, |
||
2608 | uint32_t blockSize); |
||
2609 | |||
5 | mjames | 2610 | |
2 | mjames | 2611 | /** |
2612 | * @brief Dot product of floating-point vectors. |
||
5 | mjames | 2613 | * @param[in] pSrcA points to the first input vector |
2614 | * @param[in] pSrcB points to the second input vector |
||
2615 | * @param[in] blockSize number of samples in each vector |
||
2616 | * @param[out] result output result returned here |
||
2 | mjames | 2617 | */ |
2618 | void arm_dot_prod_f32( |
||
2619 | float32_t * pSrcA, |
||
2620 | float32_t * pSrcB, |
||
2621 | uint32_t blockSize, |
||
2622 | float32_t * result); |
||
2623 | |||
5 | mjames | 2624 | |
2 | mjames | 2625 | /** |
2626 | * @brief Dot product of Q7 vectors. |
||
5 | mjames | 2627 | * @param[in] pSrcA points to the first input vector |
2628 | * @param[in] pSrcB points to the second input vector |
||
2629 | * @param[in] blockSize number of samples in each vector |
||
2630 | * @param[out] result output result returned here |
||
2 | mjames | 2631 | */ |
2632 | void arm_dot_prod_q7( |
||
2633 | q7_t * pSrcA, |
||
2634 | q7_t * pSrcB, |
||
2635 | uint32_t blockSize, |
||
2636 | q31_t * result); |
||
2637 | |||
5 | mjames | 2638 | |
2 | mjames | 2639 | /** |
2640 | * @brief Dot product of Q15 vectors. |
||
5 | mjames | 2641 | * @param[in] pSrcA points to the first input vector |
2642 | * @param[in] pSrcB points to the second input vector |
||
2643 | * @param[in] blockSize number of samples in each vector |
||
2644 | * @param[out] result output result returned here |
||
2 | mjames | 2645 | */ |
2646 | void arm_dot_prod_q15( |
||
2647 | q15_t * pSrcA, |
||
2648 | q15_t * pSrcB, |
||
2649 | uint32_t blockSize, |
||
2650 | q63_t * result); |
||
2651 | |||
5 | mjames | 2652 | |
2 | mjames | 2653 | /** |
2654 | * @brief Dot product of Q31 vectors. |
||
5 | mjames | 2655 | * @param[in] pSrcA points to the first input vector |
2656 | * @param[in] pSrcB points to the second input vector |
||
2657 | * @param[in] blockSize number of samples in each vector |
||
2658 | * @param[out] result output result returned here |
||
2 | mjames | 2659 | */ |
2660 | void arm_dot_prod_q31( |
||
2661 | q31_t * pSrcA, |
||
2662 | q31_t * pSrcB, |
||
2663 | uint32_t blockSize, |
||
2664 | q63_t * result); |
||
2665 | |||
5 | mjames | 2666 | |
2 | mjames | 2667 | /** |
2668 | * @brief Shifts the elements of a Q7 vector a specified number of bits. |
||
5 | mjames | 2669 | * @param[in] pSrc points to the input vector |
2670 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
2671 | * @param[out] pDst points to the output vector |
||
2672 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2673 | */ |
2674 | void arm_shift_q7( |
||
2675 | q7_t * pSrc, |
||
2676 | int8_t shiftBits, |
||
2677 | q7_t * pDst, |
||
2678 | uint32_t blockSize); |
||
2679 | |||
5 | mjames | 2680 | |
2 | mjames | 2681 | /** |
2682 | * @brief Shifts the elements of a Q15 vector a specified number of bits. |
||
5 | mjames | 2683 | * @param[in] pSrc points to the input vector |
2684 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
2685 | * @param[out] pDst points to the output vector |
||
2686 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2687 | */ |
2688 | void arm_shift_q15( |
||
2689 | q15_t * pSrc, |
||
2690 | int8_t shiftBits, |
||
2691 | q15_t * pDst, |
||
2692 | uint32_t blockSize); |
||
2693 | |||
5 | mjames | 2694 | |
2 | mjames | 2695 | /** |
2696 | * @brief Shifts the elements of a Q31 vector a specified number of bits. |
||
5 | mjames | 2697 | * @param[in] pSrc points to the input vector |
2698 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
2699 | * @param[out] pDst points to the output vector |
||
2700 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2701 | */ |
2702 | void arm_shift_q31( |
||
2703 | q31_t * pSrc, |
||
2704 | int8_t shiftBits, |
||
2705 | q31_t * pDst, |
||
2706 | uint32_t blockSize); |
||
2707 | |||
5 | mjames | 2708 | |
2 | mjames | 2709 | /** |
2710 | * @brief Adds a constant offset to a floating-point vector. |
||
5 | mjames | 2711 | * @param[in] pSrc points to the input vector |
2712 | * @param[in] offset is the offset to be added |
||
2713 | * @param[out] pDst points to the output vector |
||
2714 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2715 | */ |
2716 | void arm_offset_f32( |
||
2717 | float32_t * pSrc, |
||
2718 | float32_t offset, |
||
2719 | float32_t * pDst, |
||
2720 | uint32_t blockSize); |
||
2721 | |||
5 | mjames | 2722 | |
2 | mjames | 2723 | /** |
2724 | * @brief Adds a constant offset to a Q7 vector. |
||
5 | mjames | 2725 | * @param[in] pSrc points to the input vector |
2726 | * @param[in] offset is the offset to be added |
||
2727 | * @param[out] pDst points to the output vector |
||
2728 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2729 | */ |
2730 | void arm_offset_q7( |
||
2731 | q7_t * pSrc, |
||
2732 | q7_t offset, |
||
2733 | q7_t * pDst, |
||
2734 | uint32_t blockSize); |
||
2735 | |||
5 | mjames | 2736 | |
2 | mjames | 2737 | /** |
2738 | * @brief Adds a constant offset to a Q15 vector. |
||
5 | mjames | 2739 | * @param[in] pSrc points to the input vector |
2740 | * @param[in] offset is the offset to be added |
||
2741 | * @param[out] pDst points to the output vector |
||
2742 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2743 | */ |
2744 | void arm_offset_q15( |
||
2745 | q15_t * pSrc, |
||
2746 | q15_t offset, |
||
2747 | q15_t * pDst, |
||
2748 | uint32_t blockSize); |
||
2749 | |||
5 | mjames | 2750 | |
2 | mjames | 2751 | /** |
2752 | * @brief Adds a constant offset to a Q31 vector. |
||
5 | mjames | 2753 | * @param[in] pSrc points to the input vector |
2754 | * @param[in] offset is the offset to be added |
||
2755 | * @param[out] pDst points to the output vector |
||
2756 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2757 | */ |
2758 | void arm_offset_q31( |
||
2759 | q31_t * pSrc, |
||
2760 | q31_t offset, |
||
2761 | q31_t * pDst, |
||
2762 | uint32_t blockSize); |
||
2763 | |||
5 | mjames | 2764 | |
2 | mjames | 2765 | /** |
2766 | * @brief Negates the elements of a floating-point vector. |
||
5 | mjames | 2767 | * @param[in] pSrc points to the input vector |
2768 | * @param[out] pDst points to the output vector |
||
2769 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2770 | */ |
2771 | void arm_negate_f32( |
||
2772 | float32_t * pSrc, |
||
2773 | float32_t * pDst, |
||
2774 | uint32_t blockSize); |
||
2775 | |||
5 | mjames | 2776 | |
2 | mjames | 2777 | /** |
2778 | * @brief Negates the elements of a Q7 vector. |
||
5 | mjames | 2779 | * @param[in] pSrc points to the input vector |
2780 | * @param[out] pDst points to the output vector |
||
2781 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2782 | */ |
2783 | void arm_negate_q7( |
||
2784 | q7_t * pSrc, |
||
2785 | q7_t * pDst, |
||
2786 | uint32_t blockSize); |
||
2787 | |||
5 | mjames | 2788 | |
2 | mjames | 2789 | /** |
2790 | * @brief Negates the elements of a Q15 vector. |
||
5 | mjames | 2791 | * @param[in] pSrc points to the input vector |
2792 | * @param[out] pDst points to the output vector |
||
2793 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2794 | */ |
2795 | void arm_negate_q15( |
||
2796 | q15_t * pSrc, |
||
2797 | q15_t * pDst, |
||
2798 | uint32_t blockSize); |
||
2799 | |||
5 | mjames | 2800 | |
2 | mjames | 2801 | /** |
2802 | * @brief Negates the elements of a Q31 vector. |
||
5 | mjames | 2803 | * @param[in] pSrc points to the input vector |
2804 | * @param[out] pDst points to the output vector |
||
2805 | * @param[in] blockSize number of samples in the vector |
||
2 | mjames | 2806 | */ |
2807 | void arm_negate_q31( |
||
2808 | q31_t * pSrc, |
||
2809 | q31_t * pDst, |
||
2810 | uint32_t blockSize); |
||
5 | mjames | 2811 | |
2812 | |||
2 | mjames | 2813 | /** |
2814 | * @brief Copies the elements of a floating-point vector. |
||
5 | mjames | 2815 | * @param[in] pSrc input pointer |
2816 | * @param[out] pDst output pointer |
||
2817 | * @param[in] blockSize number of samples to process |
||
2 | mjames | 2818 | */ |
2819 | void arm_copy_f32( |
||
2820 | float32_t * pSrc, |
||
2821 | float32_t * pDst, |
||
2822 | uint32_t blockSize); |
||
2823 | |||
5 | mjames | 2824 | |
2 | mjames | 2825 | /** |
2826 | * @brief Copies the elements of a Q7 vector. |
||
5 | mjames | 2827 | * @param[in] pSrc input pointer |
2828 | * @param[out] pDst output pointer |
||
2829 | * @param[in] blockSize number of samples to process |
||
2 | mjames | 2830 | */ |
2831 | void arm_copy_q7( |
||
2832 | q7_t * pSrc, |
||
2833 | q7_t * pDst, |
||
2834 | uint32_t blockSize); |
||
2835 | |||
5 | mjames | 2836 | |
2 | mjames | 2837 | /** |
2838 | * @brief Copies the elements of a Q15 vector. |
||
5 | mjames | 2839 | * @param[in] pSrc input pointer |
2840 | * @param[out] pDst output pointer |
||
2841 | * @param[in] blockSize number of samples to process |
||
2 | mjames | 2842 | */ |
2843 | void arm_copy_q15( |
||
2844 | q15_t * pSrc, |
||
2845 | q15_t * pDst, |
||
2846 | uint32_t blockSize); |
||
2847 | |||
5 | mjames | 2848 | |
2 | mjames | 2849 | /** |
2850 | * @brief Copies the elements of a Q31 vector. |
||
5 | mjames | 2851 | * @param[in] pSrc input pointer |
2852 | * @param[out] pDst output pointer |
||
2853 | * @param[in] blockSize number of samples to process |
||
2 | mjames | 2854 | */ |
2855 | void arm_copy_q31( |
||
2856 | q31_t * pSrc, |
||
2857 | q31_t * pDst, |
||
2858 | uint32_t blockSize); |
||
5 | mjames | 2859 | |
2860 | |||
2 | mjames | 2861 | /** |
2862 | * @brief Fills a constant value into a floating-point vector. |
||
5 | mjames | 2863 | * @param[in] value input value to be filled |
2864 | * @param[out] pDst output pointer |
||
2865 | * @param[in] blockSize number of samples to process |
||
2 | mjames | 2866 | */ |
2867 | void arm_fill_f32( |
||
2868 | float32_t value, |
||
2869 | float32_t * pDst, |
||
2870 | uint32_t blockSize); |
||
2871 | |||
5 | mjames | 2872 | |
2 | mjames | 2873 | /** |
2874 | * @brief Fills a constant value into a Q7 vector. |
||
5 | mjames | 2875 | * @param[in] value input value to be filled |
2876 | * @param[out] pDst output pointer |
||
2877 | * @param[in] blockSize number of samples to process |
||
2 | mjames | 2878 | */ |
2879 | void arm_fill_q7( |
||
2880 | q7_t value, |
||
2881 | q7_t * pDst, |
||
2882 | uint32_t blockSize); |
||
2883 | |||
5 | mjames | 2884 | |
2 | mjames | 2885 | /** |
2886 | * @brief Fills a constant value into a Q15 vector. |
||
5 | mjames | 2887 | * @param[in] value input value to be filled |
2888 | * @param[out] pDst output pointer |
||
2889 | * @param[in] blockSize number of samples to process |
||
2 | mjames | 2890 | */ |
2891 | void arm_fill_q15( |
||
2892 | q15_t value, |
||
2893 | q15_t * pDst, |
||
2894 | uint32_t blockSize); |
||
2895 | |||
5 | mjames | 2896 | |
2 | mjames | 2897 | /** |
2898 | * @brief Fills a constant value into a Q31 vector. |
||
5 | mjames | 2899 | * @param[in] value input value to be filled |
2900 | * @param[out] pDst output pointer |
||
2901 | * @param[in] blockSize number of samples to process |
||
2 | mjames | 2902 | */ |
2903 | void arm_fill_q31( |
||
2904 | q31_t value, |
||
2905 | q31_t * pDst, |
||
2906 | uint32_t blockSize); |
||
2907 | |||
5 | mjames | 2908 | |
2 | mjames | 2909 | /** |
2910 | * @brief Convolution of floating-point sequences. |
||
5 | mjames | 2911 | * @param[in] pSrcA points to the first input sequence. |
2912 | * @param[in] srcALen length of the first input sequence. |
||
2913 | * @param[in] pSrcB points to the second input sequence. |
||
2914 | * @param[in] srcBLen length of the second input sequence. |
||
2915 | * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
||
2 | mjames | 2916 | */ |
2917 | void arm_conv_f32( |
||
2918 | float32_t * pSrcA, |
||
2919 | uint32_t srcALen, |
||
2920 | float32_t * pSrcB, |
||
2921 | uint32_t srcBLen, |
||
2922 | float32_t * pDst); |
||
2923 | |||
2924 | |||
2925 | /** |
||
2926 | * @brief Convolution of Q15 sequences. |
||
5 | mjames | 2927 | * @param[in] pSrcA points to the first input sequence. |
2928 | * @param[in] srcALen length of the first input sequence. |
||
2929 | * @param[in] pSrcB points to the second input sequence. |
||
2930 | * @param[in] srcBLen length of the second input sequence. |
||
2931 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
2932 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
2933 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
2 | mjames | 2934 | */ |
2935 | void arm_conv_opt_q15( |
||
2936 | q15_t * pSrcA, |
||
2937 | uint32_t srcALen, |
||
2938 | q15_t * pSrcB, |
||
2939 | uint32_t srcBLen, |
||
2940 | q15_t * pDst, |
||
2941 | q15_t * pScratch1, |
||
2942 | q15_t * pScratch2); |
||
2943 | |||
2944 | |||
2945 | /** |
||
2946 | * @brief Convolution of Q15 sequences. |
||
5 | mjames | 2947 | * @param[in] pSrcA points to the first input sequence. |
2948 | * @param[in] srcALen length of the first input sequence. |
||
2949 | * @param[in] pSrcB points to the second input sequence. |
||
2950 | * @param[in] srcBLen length of the second input sequence. |
||
2951 | * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
||
2 | mjames | 2952 | */ |
2953 | void arm_conv_q15( |
||
2954 | q15_t * pSrcA, |
||
2955 | uint32_t srcALen, |
||
2956 | q15_t * pSrcB, |
||
2957 | uint32_t srcBLen, |
||
2958 | q15_t * pDst); |
||
2959 | |||
5 | mjames | 2960 | |
2 | mjames | 2961 | /** |
2962 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
5 | mjames | 2963 | * @param[in] pSrcA points to the first input sequence. |
2964 | * @param[in] srcALen length of the first input sequence. |
||
2965 | * @param[in] pSrcB points to the second input sequence. |
||
2966 | * @param[in] srcBLen length of the second input sequence. |
||
2967 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
2 | mjames | 2968 | */ |
2969 | void arm_conv_fast_q15( |
||
5 | mjames | 2970 | q15_t * pSrcA, |
2971 | uint32_t srcALen, |
||
2972 | q15_t * pSrcB, |
||
2973 | uint32_t srcBLen, |
||
2974 | q15_t * pDst); |
||
2 | mjames | 2975 | |
5 | mjames | 2976 | |
2 | mjames | 2977 | /** |
2978 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
5 | mjames | 2979 | * @param[in] pSrcA points to the first input sequence. |
2980 | * @param[in] srcALen length of the first input sequence. |
||
2981 | * @param[in] pSrcB points to the second input sequence. |
||
2982 | * @param[in] srcBLen length of the second input sequence. |
||
2983 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
2984 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
2985 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
2 | mjames | 2986 | */ |
2987 | void arm_conv_fast_opt_q15( |
||
2988 | q15_t * pSrcA, |
||
2989 | uint32_t srcALen, |
||
2990 | q15_t * pSrcB, |
||
2991 | uint32_t srcBLen, |
||
2992 | q15_t * pDst, |
||
2993 | q15_t * pScratch1, |
||
2994 | q15_t * pScratch2); |
||
2995 | |||
2996 | |||
2997 | /** |
||
2998 | * @brief Convolution of Q31 sequences. |
||
5 | mjames | 2999 | * @param[in] pSrcA points to the first input sequence. |
3000 | * @param[in] srcALen length of the first input sequence. |
||
3001 | * @param[in] pSrcB points to the second input sequence. |
||
3002 | * @param[in] srcBLen length of the second input sequence. |
||
3003 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
2 | mjames | 3004 | */ |
3005 | void arm_conv_q31( |
||
3006 | q31_t * pSrcA, |
||
3007 | uint32_t srcALen, |
||
3008 | q31_t * pSrcB, |
||
3009 | uint32_t srcBLen, |
||
3010 | q31_t * pDst); |
||
3011 | |||
5 | mjames | 3012 | |
2 | mjames | 3013 | /** |
3014 | * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
5 | mjames | 3015 | * @param[in] pSrcA points to the first input sequence. |
3016 | * @param[in] srcALen length of the first input sequence. |
||
3017 | * @param[in] pSrcB points to the second input sequence. |
||
3018 | * @param[in] srcBLen length of the second input sequence. |
||
3019 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
2 | mjames | 3020 | */ |
3021 | void arm_conv_fast_q31( |
||
3022 | q31_t * pSrcA, |
||
3023 | uint32_t srcALen, |
||
3024 | q31_t * pSrcB, |
||
3025 | uint32_t srcBLen, |
||
3026 | q31_t * pDst); |
||
3027 | |||
3028 | |||
3029 | /** |
||
3030 | * @brief Convolution of Q7 sequences. |
||
5 | mjames | 3031 | * @param[in] pSrcA points to the first input sequence. |
3032 | * @param[in] srcALen length of the first input sequence. |
||
3033 | * @param[in] pSrcB points to the second input sequence. |
||
3034 | * @param[in] srcBLen length of the second input sequence. |
||
3035 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
3036 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3037 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
2 | mjames | 3038 | */ |
3039 | void arm_conv_opt_q7( |
||
3040 | q7_t * pSrcA, |
||
3041 | uint32_t srcALen, |
||
3042 | q7_t * pSrcB, |
||
3043 | uint32_t srcBLen, |
||
3044 | q7_t * pDst, |
||
3045 | q15_t * pScratch1, |
||
3046 | q15_t * pScratch2); |
||
3047 | |||
3048 | |||
3049 | /** |
||
3050 | * @brief Convolution of Q7 sequences. |
||
5 | mjames | 3051 | * @param[in] pSrcA points to the first input sequence. |
3052 | * @param[in] srcALen length of the first input sequence. |
||
3053 | * @param[in] pSrcB points to the second input sequence. |
||
3054 | * @param[in] srcBLen length of the second input sequence. |
||
3055 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
2 | mjames | 3056 | */ |
3057 | void arm_conv_q7( |
||
3058 | q7_t * pSrcA, |
||
3059 | uint32_t srcALen, |
||
3060 | q7_t * pSrcB, |
||
3061 | uint32_t srcBLen, |
||
3062 | q7_t * pDst); |
||
3063 | |||
3064 | |||
3065 | /** |
||
3066 | * @brief Partial convolution of floating-point sequences. |
||
5 | mjames | 3067 | * @param[in] pSrcA points to the first input sequence. |
3068 | * @param[in] srcALen length of the first input sequence. |
||
3069 | * @param[in] pSrcB points to the second input sequence. |
||
3070 | * @param[in] srcBLen length of the second input sequence. |
||
3071 | * @param[out] pDst points to the block of output data |
||
3072 | * @param[in] firstIndex is the first output sample to start with. |
||
3073 | * @param[in] numPoints is the number of output points to be computed. |
||
2 | mjames | 3074 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
3075 | */ |
||
3076 | arm_status arm_conv_partial_f32( |
||
3077 | float32_t * pSrcA, |
||
3078 | uint32_t srcALen, |
||
3079 | float32_t * pSrcB, |
||
3080 | uint32_t srcBLen, |
||
3081 | float32_t * pDst, |
||
3082 | uint32_t firstIndex, |
||
3083 | uint32_t numPoints); |
||
3084 | |||
5 | mjames | 3085 | |
3086 | /** |
||
2 | mjames | 3087 | * @brief Partial convolution of Q15 sequences. |
5 | mjames | 3088 | * @param[in] pSrcA points to the first input sequence. |
3089 | * @param[in] srcALen length of the first input sequence. |
||
3090 | * @param[in] pSrcB points to the second input sequence. |
||
3091 | * @param[in] srcBLen length of the second input sequence. |
||
3092 | * @param[out] pDst points to the block of output data |
||
3093 | * @param[in] firstIndex is the first output sample to start with. |
||
3094 | * @param[in] numPoints is the number of output points to be computed. |
||
3095 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3096 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
2 | mjames | 3097 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
3098 | */ |
||
3099 | arm_status arm_conv_partial_opt_q15( |
||
3100 | q15_t * pSrcA, |
||
3101 | uint32_t srcALen, |
||
3102 | q15_t * pSrcB, |
||
3103 | uint32_t srcBLen, |
||
3104 | q15_t * pDst, |
||
3105 | uint32_t firstIndex, |
||
3106 | uint32_t numPoints, |
||
3107 | q15_t * pScratch1, |
||
3108 | q15_t * pScratch2); |
||
3109 | |||
3110 | |||
5 | mjames | 3111 | /** |
2 | mjames | 3112 | * @brief Partial convolution of Q15 sequences. |
5 | mjames | 3113 | * @param[in] pSrcA points to the first input sequence. |
3114 | * @param[in] srcALen length of the first input sequence. |
||
3115 | * @param[in] pSrcB points to the second input sequence. |
||
3116 | * @param[in] srcBLen length of the second input sequence. |
||
3117 | * @param[out] pDst points to the block of output data |
||
3118 | * @param[in] firstIndex is the first output sample to start with. |
||
3119 | * @param[in] numPoints is the number of output points to be computed. |
||
2 | mjames | 3120 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
3121 | */ |
||
3122 | arm_status arm_conv_partial_q15( |
||
3123 | q15_t * pSrcA, |
||
3124 | uint32_t srcALen, |
||
3125 | q15_t * pSrcB, |
||
3126 | uint32_t srcBLen, |
||
3127 | q15_t * pDst, |
||
3128 | uint32_t firstIndex, |
||
3129 | uint32_t numPoints); |
||
3130 | |||
5 | mjames | 3131 | |
2 | mjames | 3132 | /** |
3133 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
5 | mjames | 3134 | * @param[in] pSrcA points to the first input sequence. |
3135 | * @param[in] srcALen length of the first input sequence. |
||
3136 | * @param[in] pSrcB points to the second input sequence. |
||
3137 | * @param[in] srcBLen length of the second input sequence. |
||
3138 | * @param[out] pDst points to the block of output data |
||
3139 | * @param[in] firstIndex is the first output sample to start with. |
||
3140 | * @param[in] numPoints is the number of output points to be computed. |
||
2 | mjames | 3141 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
3142 | */ |
||
3143 | arm_status arm_conv_partial_fast_q15( |
||
5 | mjames | 3144 | q15_t * pSrcA, |
3145 | uint32_t srcALen, |
||
3146 | q15_t * pSrcB, |
||
3147 | uint32_t srcBLen, |
||
3148 | q15_t * pDst, |
||
3149 | uint32_t firstIndex, |
||
3150 | uint32_t numPoints); |
||
2 | mjames | 3151 | |
3152 | |||
3153 | /** |
||
3154 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
5 | mjames | 3155 | * @param[in] pSrcA points to the first input sequence. |
3156 | * @param[in] srcALen length of the first input sequence. |
||
3157 | * @param[in] pSrcB points to the second input sequence. |
||
3158 | * @param[in] srcBLen length of the second input sequence. |
||
3159 | * @param[out] pDst points to the block of output data |
||
3160 | * @param[in] firstIndex is the first output sample to start with. |
||
3161 | * @param[in] numPoints is the number of output points to be computed. |
||
3162 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3163 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
2 | mjames | 3164 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
3165 | */ |
||
3166 | arm_status arm_conv_partial_fast_opt_q15( |
||
3167 | q15_t * pSrcA, |
||
3168 | uint32_t srcALen, |
||
3169 | q15_t * pSrcB, |
||
3170 | uint32_t srcBLen, |
||
3171 | q15_t * pDst, |
||
3172 | uint32_t firstIndex, |
||
3173 | uint32_t numPoints, |
||
3174 | q15_t * pScratch1, |
||
3175 | q15_t * pScratch2); |
||
3176 | |||
3177 | |||
3178 | /** |
||
3179 | * @brief Partial convolution of Q31 sequences. |
||
5 | mjames | 3180 | * @param[in] pSrcA points to the first input sequence. |
3181 | * @param[in] srcALen length of the first input sequence. |
||
3182 | * @param[in] pSrcB points to the second input sequence. |
||
3183 | * @param[in] srcBLen length of the second input sequence. |
||
3184 | * @param[out] pDst points to the block of output data |
||
3185 | * @param[in] firstIndex is the first output sample to start with. |
||
3186 | * @param[in] numPoints is the number of output points to be computed. |
||
2 | mjames | 3187 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
3188 | */ |
||
3189 | arm_status arm_conv_partial_q31( |
||
3190 | q31_t * pSrcA, |
||
3191 | uint32_t srcALen, |
||
3192 | q31_t * pSrcB, |
||
3193 | uint32_t srcBLen, |
||
3194 | q31_t * pDst, |
||
3195 | uint32_t firstIndex, |
||
3196 | uint32_t numPoints); |
||
3197 | |||
3198 | |||
3199 | /** |
||
3200 | * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
5 | mjames | 3201 | * @param[in] pSrcA points to the first input sequence. |
3202 | * @param[in] srcALen length of the first input sequence. |
||
3203 | * @param[in] pSrcB points to the second input sequence. |
||
3204 | * @param[in] srcBLen length of the second input sequence. |
||
3205 | * @param[out] pDst points to the block of output data |
||
3206 | * @param[in] firstIndex is the first output sample to start with. |
||
3207 | * @param[in] numPoints is the number of output points to be computed. |
||
2 | mjames | 3208 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
3209 | */ |
||
3210 | arm_status arm_conv_partial_fast_q31( |
||
3211 | q31_t * pSrcA, |
||
3212 | uint32_t srcALen, |
||
3213 | q31_t * pSrcB, |
||
3214 | uint32_t srcBLen, |
||
3215 | q31_t * pDst, |
||
3216 | uint32_t firstIndex, |
||
3217 | uint32_t numPoints); |
||
3218 | |||
3219 | |||
3220 | /** |
||
3221 | * @brief Partial convolution of Q7 sequences |
||
5 | mjames | 3222 | * @param[in] pSrcA points to the first input sequence. |
3223 | * @param[in] srcALen length of the first input sequence. |
||
3224 | * @param[in] pSrcB points to the second input sequence. |
||
3225 | * @param[in] srcBLen length of the second input sequence. |
||
3226 | * @param[out] pDst points to the block of output data |
||
3227 | * @param[in] firstIndex is the first output sample to start with. |
||
3228 | * @param[in] numPoints is the number of output points to be computed. |
||
3229 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3230 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
2 | mjames | 3231 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
3232 | */ |
||
3233 | arm_status arm_conv_partial_opt_q7( |
||
3234 | q7_t * pSrcA, |
||
3235 | uint32_t srcALen, |
||
3236 | q7_t * pSrcB, |
||
3237 | uint32_t srcBLen, |
||
3238 | q7_t * pDst, |
||
3239 | uint32_t firstIndex, |
||
3240 | uint32_t numPoints, |
||
3241 | q15_t * pScratch1, |
||
3242 | q15_t * pScratch2); |
||
3243 | |||
3244 | |||
3245 | /** |
||
3246 | * @brief Partial convolution of Q7 sequences. |
||
5 | mjames | 3247 | * @param[in] pSrcA points to the first input sequence. |
3248 | * @param[in] srcALen length of the first input sequence. |
||
3249 | * @param[in] pSrcB points to the second input sequence. |
||
3250 | * @param[in] srcBLen length of the second input sequence. |
||
3251 | * @param[out] pDst points to the block of output data |
||
3252 | * @param[in] firstIndex is the first output sample to start with. |
||
3253 | * @param[in] numPoints is the number of output points to be computed. |
||
2 | mjames | 3254 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
3255 | */ |
||
3256 | arm_status arm_conv_partial_q7( |
||
3257 | q7_t * pSrcA, |
||
3258 | uint32_t srcALen, |
||
3259 | q7_t * pSrcB, |
||
3260 | uint32_t srcBLen, |
||
3261 | q7_t * pDst, |
||
3262 | uint32_t firstIndex, |
||
3263 | uint32_t numPoints); |
||
3264 | |||
3265 | |||
3266 | /** |
||
3267 | * @brief Instance structure for the Q15 FIR decimator. |
||
3268 | */ |
||
3269 | typedef struct |
||
3270 | { |
||
5 | mjames | 3271 | uint8_t M; /**< decimation factor. */ |
3272 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
3273 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
3274 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
2 | mjames | 3275 | } arm_fir_decimate_instance_q15; |
3276 | |||
3277 | /** |
||
3278 | * @brief Instance structure for the Q31 FIR decimator. |
||
3279 | */ |
||
3280 | typedef struct |
||
3281 | { |
||
3282 | uint8_t M; /**< decimation factor. */ |
||
3283 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
5 | mjames | 3284 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
3285 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
2 | mjames | 3286 | } arm_fir_decimate_instance_q31; |
3287 | |||
3288 | /** |
||
3289 | * @brief Instance structure for the floating-point FIR decimator. |
||
3290 | */ |
||
3291 | typedef struct |
||
3292 | { |
||
5 | mjames | 3293 | uint8_t M; /**< decimation factor. */ |
3294 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
3295 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
3296 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
2 | mjames | 3297 | } arm_fir_decimate_instance_f32; |
3298 | |||
3299 | |||
3300 | /** |
||
3301 | * @brief Processing function for the floating-point FIR decimator. |
||
5 | mjames | 3302 | * @param[in] S points to an instance of the floating-point FIR decimator structure. |
3303 | * @param[in] pSrc points to the block of input data. |
||
3304 | * @param[out] pDst points to the block of output data |
||
3305 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3306 | */ |
3307 | void arm_fir_decimate_f32( |
||
3308 | const arm_fir_decimate_instance_f32 * S, |
||
3309 | float32_t * pSrc, |
||
3310 | float32_t * pDst, |
||
3311 | uint32_t blockSize); |
||
3312 | |||
3313 | |||
3314 | /** |
||
3315 | * @brief Initialization function for the floating-point FIR decimator. |
||
5 | mjames | 3316 | * @param[in,out] S points to an instance of the floating-point FIR decimator structure. |
3317 | * @param[in] numTaps number of coefficients in the filter. |
||
3318 | * @param[in] M decimation factor. |
||
3319 | * @param[in] pCoeffs points to the filter coefficients. |
||
3320 | * @param[in] pState points to the state buffer. |
||
3321 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3322 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
3323 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
3324 | */ |
||
3325 | arm_status arm_fir_decimate_init_f32( |
||
3326 | arm_fir_decimate_instance_f32 * S, |
||
3327 | uint16_t numTaps, |
||
3328 | uint8_t M, |
||
3329 | float32_t * pCoeffs, |
||
3330 | float32_t * pState, |
||
3331 | uint32_t blockSize); |
||
3332 | |||
5 | mjames | 3333 | |
2 | mjames | 3334 | /** |
3335 | * @brief Processing function for the Q15 FIR decimator. |
||
5 | mjames | 3336 | * @param[in] S points to an instance of the Q15 FIR decimator structure. |
3337 | * @param[in] pSrc points to the block of input data. |
||
3338 | * @param[out] pDst points to the block of output data |
||
3339 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3340 | */ |
3341 | void arm_fir_decimate_q15( |
||
3342 | const arm_fir_decimate_instance_q15 * S, |
||
3343 | q15_t * pSrc, |
||
3344 | q15_t * pDst, |
||
3345 | uint32_t blockSize); |
||
3346 | |||
5 | mjames | 3347 | |
2 | mjames | 3348 | /** |
3349 | * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
||
5 | mjames | 3350 | * @param[in] S points to an instance of the Q15 FIR decimator structure. |
3351 | * @param[in] pSrc points to the block of input data. |
||
3352 | * @param[out] pDst points to the block of output data |
||
3353 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3354 | */ |
3355 | void arm_fir_decimate_fast_q15( |
||
3356 | const arm_fir_decimate_instance_q15 * S, |
||
3357 | q15_t * pSrc, |
||
3358 | q15_t * pDst, |
||
3359 | uint32_t blockSize); |
||
3360 | |||
3361 | |||
3362 | /** |
||
3363 | * @brief Initialization function for the Q15 FIR decimator. |
||
5 | mjames | 3364 | * @param[in,out] S points to an instance of the Q15 FIR decimator structure. |
3365 | * @param[in] numTaps number of coefficients in the filter. |
||
3366 | * @param[in] M decimation factor. |
||
3367 | * @param[in] pCoeffs points to the filter coefficients. |
||
3368 | * @param[in] pState points to the state buffer. |
||
3369 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3370 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
3371 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
3372 | */ |
||
3373 | arm_status arm_fir_decimate_init_q15( |
||
3374 | arm_fir_decimate_instance_q15 * S, |
||
3375 | uint16_t numTaps, |
||
3376 | uint8_t M, |
||
3377 | q15_t * pCoeffs, |
||
3378 | q15_t * pState, |
||
3379 | uint32_t blockSize); |
||
3380 | |||
5 | mjames | 3381 | |
2 | mjames | 3382 | /** |
3383 | * @brief Processing function for the Q31 FIR decimator. |
||
5 | mjames | 3384 | * @param[in] S points to an instance of the Q31 FIR decimator structure. |
3385 | * @param[in] pSrc points to the block of input data. |
||
3386 | * @param[out] pDst points to the block of output data |
||
2 | mjames | 3387 | * @param[in] blockSize number of input samples to process per call. |
3388 | */ |
||
3389 | void arm_fir_decimate_q31( |
||
3390 | const arm_fir_decimate_instance_q31 * S, |
||
3391 | q31_t * pSrc, |
||
3392 | q31_t * pDst, |
||
3393 | uint32_t blockSize); |
||
3394 | |||
3395 | /** |
||
3396 | * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
||
5 | mjames | 3397 | * @param[in] S points to an instance of the Q31 FIR decimator structure. |
3398 | * @param[in] pSrc points to the block of input data. |
||
3399 | * @param[out] pDst points to the block of output data |
||
3400 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3401 | */ |
3402 | void arm_fir_decimate_fast_q31( |
||
3403 | arm_fir_decimate_instance_q31 * S, |
||
3404 | q31_t * pSrc, |
||
3405 | q31_t * pDst, |
||
3406 | uint32_t blockSize); |
||
3407 | |||
3408 | |||
3409 | /** |
||
3410 | * @brief Initialization function for the Q31 FIR decimator. |
||
5 | mjames | 3411 | * @param[in,out] S points to an instance of the Q31 FIR decimator structure. |
3412 | * @param[in] numTaps number of coefficients in the filter. |
||
3413 | * @param[in] M decimation factor. |
||
3414 | * @param[in] pCoeffs points to the filter coefficients. |
||
3415 | * @param[in] pState points to the state buffer. |
||
3416 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3417 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
3418 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
3419 | */ |
||
3420 | arm_status arm_fir_decimate_init_q31( |
||
3421 | arm_fir_decimate_instance_q31 * S, |
||
3422 | uint16_t numTaps, |
||
3423 | uint8_t M, |
||
3424 | q31_t * pCoeffs, |
||
3425 | q31_t * pState, |
||
3426 | uint32_t blockSize); |
||
3427 | |||
3428 | |||
3429 | /** |
||
3430 | * @brief Instance structure for the Q15 FIR interpolator. |
||
3431 | */ |
||
3432 | typedef struct |
||
3433 | { |
||
3434 | uint8_t L; /**< upsample factor. */ |
||
3435 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
3436 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
||
3437 | q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
||
3438 | } arm_fir_interpolate_instance_q15; |
||
3439 | |||
3440 | /** |
||
3441 | * @brief Instance structure for the Q31 FIR interpolator. |
||
3442 | */ |
||
3443 | typedef struct |
||
3444 | { |
||
3445 | uint8_t L; /**< upsample factor. */ |
||
3446 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
5 | mjames | 3447 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
3448 | q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
||
2 | mjames | 3449 | } arm_fir_interpolate_instance_q31; |
3450 | |||
3451 | /** |
||
3452 | * @brief Instance structure for the floating-point FIR interpolator. |
||
3453 | */ |
||
3454 | typedef struct |
||
3455 | { |
||
3456 | uint8_t L; /**< upsample factor. */ |
||
3457 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
5 | mjames | 3458 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
3459 | float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ |
||
2 | mjames | 3460 | } arm_fir_interpolate_instance_f32; |
3461 | |||
3462 | |||
3463 | /** |
||
3464 | * @brief Processing function for the Q15 FIR interpolator. |
||
5 | mjames | 3465 | * @param[in] S points to an instance of the Q15 FIR interpolator structure. |
3466 | * @param[in] pSrc points to the block of input data. |
||
3467 | * @param[out] pDst points to the block of output data. |
||
3468 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3469 | */ |
3470 | void arm_fir_interpolate_q15( |
||
3471 | const arm_fir_interpolate_instance_q15 * S, |
||
3472 | q15_t * pSrc, |
||
3473 | q15_t * pDst, |
||
3474 | uint32_t blockSize); |
||
3475 | |||
3476 | |||
3477 | /** |
||
3478 | * @brief Initialization function for the Q15 FIR interpolator. |
||
5 | mjames | 3479 | * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. |
3480 | * @param[in] L upsample factor. |
||
3481 | * @param[in] numTaps number of filter coefficients in the filter. |
||
3482 | * @param[in] pCoeffs points to the filter coefficient buffer. |
||
3483 | * @param[in] pState points to the state buffer. |
||
3484 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3485 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
3486 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
3487 | */ |
||
3488 | arm_status arm_fir_interpolate_init_q15( |
||
3489 | arm_fir_interpolate_instance_q15 * S, |
||
3490 | uint8_t L, |
||
3491 | uint16_t numTaps, |
||
3492 | q15_t * pCoeffs, |
||
3493 | q15_t * pState, |
||
3494 | uint32_t blockSize); |
||
3495 | |||
5 | mjames | 3496 | |
2 | mjames | 3497 | /** |
3498 | * @brief Processing function for the Q31 FIR interpolator. |
||
5 | mjames | 3499 | * @param[in] S points to an instance of the Q15 FIR interpolator structure. |
3500 | * @param[in] pSrc points to the block of input data. |
||
3501 | * @param[out] pDst points to the block of output data. |
||
3502 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3503 | */ |
3504 | void arm_fir_interpolate_q31( |
||
3505 | const arm_fir_interpolate_instance_q31 * S, |
||
3506 | q31_t * pSrc, |
||
3507 | q31_t * pDst, |
||
3508 | uint32_t blockSize); |
||
3509 | |||
5 | mjames | 3510 | |
2 | mjames | 3511 | /** |
3512 | * @brief Initialization function for the Q31 FIR interpolator. |
||
5 | mjames | 3513 | * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. |
3514 | * @param[in] L upsample factor. |
||
3515 | * @param[in] numTaps number of filter coefficients in the filter. |
||
3516 | * @param[in] pCoeffs points to the filter coefficient buffer. |
||
3517 | * @param[in] pState points to the state buffer. |
||
3518 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3519 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
3520 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
3521 | */ |
||
3522 | arm_status arm_fir_interpolate_init_q31( |
||
3523 | arm_fir_interpolate_instance_q31 * S, |
||
3524 | uint8_t L, |
||
3525 | uint16_t numTaps, |
||
3526 | q31_t * pCoeffs, |
||
3527 | q31_t * pState, |
||
3528 | uint32_t blockSize); |
||
3529 | |||
3530 | |||
3531 | /** |
||
3532 | * @brief Processing function for the floating-point FIR interpolator. |
||
5 | mjames | 3533 | * @param[in] S points to an instance of the floating-point FIR interpolator structure. |
3534 | * @param[in] pSrc points to the block of input data. |
||
3535 | * @param[out] pDst points to the block of output data. |
||
3536 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3537 | */ |
3538 | void arm_fir_interpolate_f32( |
||
3539 | const arm_fir_interpolate_instance_f32 * S, |
||
3540 | float32_t * pSrc, |
||
3541 | float32_t * pDst, |
||
3542 | uint32_t blockSize); |
||
3543 | |||
5 | mjames | 3544 | |
2 | mjames | 3545 | /** |
3546 | * @brief Initialization function for the floating-point FIR interpolator. |
||
5 | mjames | 3547 | * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. |
3548 | * @param[in] L upsample factor. |
||
3549 | * @param[in] numTaps number of filter coefficients in the filter. |
||
3550 | * @param[in] pCoeffs points to the filter coefficient buffer. |
||
3551 | * @param[in] pState points to the state buffer. |
||
3552 | * @param[in] blockSize number of input samples to process per call. |
||
2 | mjames | 3553 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
3554 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
3555 | */ |
||
3556 | arm_status arm_fir_interpolate_init_f32( |
||
3557 | arm_fir_interpolate_instance_f32 * S, |
||
3558 | uint8_t L, |
||
3559 | uint16_t numTaps, |
||
3560 | float32_t * pCoeffs, |
||
3561 | float32_t * pState, |
||
3562 | uint32_t blockSize); |
||
3563 | |||
5 | mjames | 3564 | |
2 | mjames | 3565 | /** |
3566 | * @brief Instance structure for the high precision Q31 Biquad cascade filter. |
||
3567 | */ |
||
3568 | typedef struct |
||
3569 | { |
||
3570 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3571 | q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
||
3572 | q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3573 | uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ |
||
3574 | } arm_biquad_cas_df1_32x64_ins_q31; |
||
3575 | |||
3576 | |||
3577 | /** |
||
5 | mjames | 3578 | * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. |
3579 | * @param[in] pSrc points to the block of input data. |
||
3580 | * @param[out] pDst points to the block of output data |
||
3581 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3582 | */ |
3583 | void arm_biquad_cas_df1_32x64_q31( |
||
3584 | const arm_biquad_cas_df1_32x64_ins_q31 * S, |
||
3585 | q31_t * pSrc, |
||
3586 | q31_t * pDst, |
||
3587 | uint32_t blockSize); |
||
3588 | |||
3589 | |||
3590 | /** |
||
5 | mjames | 3591 | * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. |
3592 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3593 | * @param[in] pCoeffs points to the filter coefficients. |
||
3594 | * @param[in] pState points to the state buffer. |
||
3595 | * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format |
||
2 | mjames | 3596 | */ |
3597 | void arm_biquad_cas_df1_32x64_init_q31( |
||
3598 | arm_biquad_cas_df1_32x64_ins_q31 * S, |
||
3599 | uint8_t numStages, |
||
3600 | q31_t * pCoeffs, |
||
3601 | q63_t * pState, |
||
3602 | uint8_t postShift); |
||
3603 | |||
3604 | |||
3605 | /** |
||
3606 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
3607 | */ |
||
3608 | typedef struct |
||
3609 | { |
||
3610 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3611 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
||
3612 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3613 | } arm_biquad_cascade_df2T_instance_f32; |
||
3614 | |||
3615 | /** |
||
3616 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
3617 | */ |
||
3618 | typedef struct |
||
3619 | { |
||
3620 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3621 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
||
3622 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3623 | } arm_biquad_cascade_stereo_df2T_instance_f32; |
||
3624 | |||
3625 | /** |
||
3626 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
3627 | */ |
||
3628 | typedef struct |
||
3629 | { |
||
3630 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3631 | float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
||
3632 | float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3633 | } arm_biquad_cascade_df2T_instance_f64; |
||
3634 | |||
3635 | |||
3636 | /** |
||
3637 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
||
5 | mjames | 3638 | * @param[in] S points to an instance of the filter data structure. |
3639 | * @param[in] pSrc points to the block of input data. |
||
3640 | * @param[out] pDst points to the block of output data |
||
3641 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3642 | */ |
3643 | void arm_biquad_cascade_df2T_f32( |
||
3644 | const arm_biquad_cascade_df2T_instance_f32 * S, |
||
3645 | float32_t * pSrc, |
||
3646 | float32_t * pDst, |
||
3647 | uint32_t blockSize); |
||
3648 | |||
3649 | |||
3650 | /** |
||
3651 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels |
||
5 | mjames | 3652 | * @param[in] S points to an instance of the filter data structure. |
3653 | * @param[in] pSrc points to the block of input data. |
||
3654 | * @param[out] pDst points to the block of output data |
||
3655 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3656 | */ |
3657 | void arm_biquad_cascade_stereo_df2T_f32( |
||
3658 | const arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
||
3659 | float32_t * pSrc, |
||
3660 | float32_t * pDst, |
||
3661 | uint32_t blockSize); |
||
3662 | |||
5 | mjames | 3663 | |
2 | mjames | 3664 | /** |
3665 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
||
5 | mjames | 3666 | * @param[in] S points to an instance of the filter data structure. |
3667 | * @param[in] pSrc points to the block of input data. |
||
3668 | * @param[out] pDst points to the block of output data |
||
3669 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3670 | */ |
3671 | void arm_biquad_cascade_df2T_f64( |
||
3672 | const arm_biquad_cascade_df2T_instance_f64 * S, |
||
3673 | float64_t * pSrc, |
||
3674 | float64_t * pDst, |
||
3675 | uint32_t blockSize); |
||
3676 | |||
3677 | |||
3678 | /** |
||
3679 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
5 | mjames | 3680 | * @param[in,out] S points to an instance of the filter data structure. |
3681 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3682 | * @param[in] pCoeffs points to the filter coefficients. |
||
3683 | * @param[in] pState points to the state buffer. |
||
2 | mjames | 3684 | */ |
3685 | void arm_biquad_cascade_df2T_init_f32( |
||
3686 | arm_biquad_cascade_df2T_instance_f32 * S, |
||
3687 | uint8_t numStages, |
||
3688 | float32_t * pCoeffs, |
||
3689 | float32_t * pState); |
||
3690 | |||
3691 | |||
3692 | /** |
||
3693 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
5 | mjames | 3694 | * @param[in,out] S points to an instance of the filter data structure. |
3695 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3696 | * @param[in] pCoeffs points to the filter coefficients. |
||
3697 | * @param[in] pState points to the state buffer. |
||
2 | mjames | 3698 | */ |
3699 | void arm_biquad_cascade_stereo_df2T_init_f32( |
||
3700 | arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
||
3701 | uint8_t numStages, |
||
3702 | float32_t * pCoeffs, |
||
3703 | float32_t * pState); |
||
3704 | |||
3705 | |||
3706 | /** |
||
3707 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
5 | mjames | 3708 | * @param[in,out] S points to an instance of the filter data structure. |
3709 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3710 | * @param[in] pCoeffs points to the filter coefficients. |
||
3711 | * @param[in] pState points to the state buffer. |
||
2 | mjames | 3712 | */ |
3713 | void arm_biquad_cascade_df2T_init_f64( |
||
3714 | arm_biquad_cascade_df2T_instance_f64 * S, |
||
3715 | uint8_t numStages, |
||
3716 | float64_t * pCoeffs, |
||
3717 | float64_t * pState); |
||
3718 | |||
3719 | |||
3720 | /** |
||
3721 | * @brief Instance structure for the Q15 FIR lattice filter. |
||
3722 | */ |
||
3723 | typedef struct |
||
3724 | { |
||
5 | mjames | 3725 | uint16_t numStages; /**< number of filter stages. */ |
3726 | q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
3727 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
2 | mjames | 3728 | } arm_fir_lattice_instance_q15; |
3729 | |||
3730 | /** |
||
3731 | * @brief Instance structure for the Q31 FIR lattice filter. |
||
3732 | */ |
||
3733 | typedef struct |
||
3734 | { |
||
5 | mjames | 3735 | uint16_t numStages; /**< number of filter stages. */ |
3736 | q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
3737 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
2 | mjames | 3738 | } arm_fir_lattice_instance_q31; |
3739 | |||
3740 | /** |
||
3741 | * @brief Instance structure for the floating-point FIR lattice filter. |
||
3742 | */ |
||
3743 | typedef struct |
||
3744 | { |
||
3745 | uint16_t numStages; /**< number of filter stages. */ |
||
3746 | float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
3747 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
3748 | } arm_fir_lattice_instance_f32; |
||
3749 | |||
5 | mjames | 3750 | |
2 | mjames | 3751 | /** |
3752 | * @brief Initialization function for the Q15 FIR lattice filter. |
||
5 | mjames | 3753 | * @param[in] S points to an instance of the Q15 FIR lattice structure. |
2 | mjames | 3754 | * @param[in] numStages number of filter stages. |
5 | mjames | 3755 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
3756 | * @param[in] pState points to the state buffer. The array is of length numStages. |
||
2 | mjames | 3757 | */ |
3758 | void arm_fir_lattice_init_q15( |
||
3759 | arm_fir_lattice_instance_q15 * S, |
||
3760 | uint16_t numStages, |
||
3761 | q15_t * pCoeffs, |
||
3762 | q15_t * pState); |
||
3763 | |||
3764 | |||
3765 | /** |
||
3766 | * @brief Processing function for the Q15 FIR lattice filter. |
||
5 | mjames | 3767 | * @param[in] S points to an instance of the Q15 FIR lattice structure. |
3768 | * @param[in] pSrc points to the block of input data. |
||
3769 | * @param[out] pDst points to the block of output data. |
||
3770 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3771 | */ |
3772 | void arm_fir_lattice_q15( |
||
3773 | const arm_fir_lattice_instance_q15 * S, |
||
3774 | q15_t * pSrc, |
||
3775 | q15_t * pDst, |
||
3776 | uint32_t blockSize); |
||
3777 | |||
5 | mjames | 3778 | |
2 | mjames | 3779 | /** |
3780 | * @brief Initialization function for the Q31 FIR lattice filter. |
||
5 | mjames | 3781 | * @param[in] S points to an instance of the Q31 FIR lattice structure. |
2 | mjames | 3782 | * @param[in] numStages number of filter stages. |
5 | mjames | 3783 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
3784 | * @param[in] pState points to the state buffer. The array is of length numStages. |
||
2 | mjames | 3785 | */ |
3786 | void arm_fir_lattice_init_q31( |
||
3787 | arm_fir_lattice_instance_q31 * S, |
||
3788 | uint16_t numStages, |
||
3789 | q31_t * pCoeffs, |
||
3790 | q31_t * pState); |
||
3791 | |||
3792 | |||
3793 | /** |
||
3794 | * @brief Processing function for the Q31 FIR lattice filter. |
||
5 | mjames | 3795 | * @param[in] S points to an instance of the Q31 FIR lattice structure. |
3796 | * @param[in] pSrc points to the block of input data. |
||
3797 | * @param[out] pDst points to the block of output data |
||
3798 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3799 | */ |
3800 | void arm_fir_lattice_q31( |
||
3801 | const arm_fir_lattice_instance_q31 * S, |
||
3802 | q31_t * pSrc, |
||
3803 | q31_t * pDst, |
||
3804 | uint32_t blockSize); |
||
3805 | |||
5 | mjames | 3806 | |
2 | mjames | 3807 | /** |
3808 | * @brief Initialization function for the floating-point FIR lattice filter. |
||
5 | mjames | 3809 | * @param[in] S points to an instance of the floating-point FIR lattice structure. |
2 | mjames | 3810 | * @param[in] numStages number of filter stages. |
5 | mjames | 3811 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
3812 | * @param[in] pState points to the state buffer. The array is of length numStages. |
||
2 | mjames | 3813 | */ |
3814 | void arm_fir_lattice_init_f32( |
||
3815 | arm_fir_lattice_instance_f32 * S, |
||
3816 | uint16_t numStages, |
||
3817 | float32_t * pCoeffs, |
||
3818 | float32_t * pState); |
||
3819 | |||
5 | mjames | 3820 | |
2 | mjames | 3821 | /** |
3822 | * @brief Processing function for the floating-point FIR lattice filter. |
||
5 | mjames | 3823 | * @param[in] S points to an instance of the floating-point FIR lattice structure. |
3824 | * @param[in] pSrc points to the block of input data. |
||
3825 | * @param[out] pDst points to the block of output data |
||
3826 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3827 | */ |
3828 | void arm_fir_lattice_f32( |
||
3829 | const arm_fir_lattice_instance_f32 * S, |
||
3830 | float32_t * pSrc, |
||
3831 | float32_t * pDst, |
||
3832 | uint32_t blockSize); |
||
3833 | |||
5 | mjames | 3834 | |
2 | mjames | 3835 | /** |
3836 | * @brief Instance structure for the Q15 IIR lattice filter. |
||
3837 | */ |
||
3838 | typedef struct |
||
3839 | { |
||
5 | mjames | 3840 | uint16_t numStages; /**< number of stages in the filter. */ |
3841 | q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
3842 | q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
3843 | q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
2 | mjames | 3844 | } arm_iir_lattice_instance_q15; |
3845 | |||
3846 | /** |
||
3847 | * @brief Instance structure for the Q31 IIR lattice filter. |
||
3848 | */ |
||
3849 | typedef struct |
||
3850 | { |
||
5 | mjames | 3851 | uint16_t numStages; /**< number of stages in the filter. */ |
3852 | q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
3853 | q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
3854 | q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
2 | mjames | 3855 | } arm_iir_lattice_instance_q31; |
3856 | |||
3857 | /** |
||
3858 | * @brief Instance structure for the floating-point IIR lattice filter. |
||
3859 | */ |
||
3860 | typedef struct |
||
3861 | { |
||
5 | mjames | 3862 | uint16_t numStages; /**< number of stages in the filter. */ |
3863 | float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
3864 | float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
3865 | float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
2 | mjames | 3866 | } arm_iir_lattice_instance_f32; |
3867 | |||
5 | mjames | 3868 | |
2 | mjames | 3869 | /** |
3870 | * @brief Processing function for the floating-point IIR lattice filter. |
||
5 | mjames | 3871 | * @param[in] S points to an instance of the floating-point IIR lattice structure. |
3872 | * @param[in] pSrc points to the block of input data. |
||
3873 | * @param[out] pDst points to the block of output data. |
||
3874 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3875 | */ |
3876 | void arm_iir_lattice_f32( |
||
3877 | const arm_iir_lattice_instance_f32 * S, |
||
3878 | float32_t * pSrc, |
||
3879 | float32_t * pDst, |
||
3880 | uint32_t blockSize); |
||
3881 | |||
5 | mjames | 3882 | |
2 | mjames | 3883 | /** |
3884 | * @brief Initialization function for the floating-point IIR lattice filter. |
||
5 | mjames | 3885 | * @param[in] S points to an instance of the floating-point IIR lattice structure. |
3886 | * @param[in] numStages number of stages in the filter. |
||
3887 | * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
||
3888 | * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
||
3889 | * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. |
||
3890 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3891 | */ |
3892 | void arm_iir_lattice_init_f32( |
||
3893 | arm_iir_lattice_instance_f32 * S, |
||
3894 | uint16_t numStages, |
||
3895 | float32_t * pkCoeffs, |
||
3896 | float32_t * pvCoeffs, |
||
3897 | float32_t * pState, |
||
3898 | uint32_t blockSize); |
||
3899 | |||
3900 | |||
3901 | /** |
||
3902 | * @brief Processing function for the Q31 IIR lattice filter. |
||
5 | mjames | 3903 | * @param[in] S points to an instance of the Q31 IIR lattice structure. |
3904 | * @param[in] pSrc points to the block of input data. |
||
3905 | * @param[out] pDst points to the block of output data. |
||
3906 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3907 | */ |
3908 | void arm_iir_lattice_q31( |
||
3909 | const arm_iir_lattice_instance_q31 * S, |
||
3910 | q31_t * pSrc, |
||
3911 | q31_t * pDst, |
||
3912 | uint32_t blockSize); |
||
3913 | |||
3914 | |||
3915 | /** |
||
3916 | * @brief Initialization function for the Q31 IIR lattice filter. |
||
5 | mjames | 3917 | * @param[in] S points to an instance of the Q31 IIR lattice structure. |
3918 | * @param[in] numStages number of stages in the filter. |
||
3919 | * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
||
3920 | * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
||
3921 | * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. |
||
3922 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3923 | */ |
3924 | void arm_iir_lattice_init_q31( |
||
3925 | arm_iir_lattice_instance_q31 * S, |
||
3926 | uint16_t numStages, |
||
3927 | q31_t * pkCoeffs, |
||
3928 | q31_t * pvCoeffs, |
||
3929 | q31_t * pState, |
||
3930 | uint32_t blockSize); |
||
3931 | |||
3932 | |||
3933 | /** |
||
3934 | * @brief Processing function for the Q15 IIR lattice filter. |
||
5 | mjames | 3935 | * @param[in] S points to an instance of the Q15 IIR lattice structure. |
3936 | * @param[in] pSrc points to the block of input data. |
||
3937 | * @param[out] pDst points to the block of output data. |
||
3938 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3939 | */ |
3940 | void arm_iir_lattice_q15( |
||
3941 | const arm_iir_lattice_instance_q15 * S, |
||
3942 | q15_t * pSrc, |
||
3943 | q15_t * pDst, |
||
3944 | uint32_t blockSize); |
||
3945 | |||
3946 | |||
3947 | /** |
||
3948 | * @brief Initialization function for the Q15 IIR lattice filter. |
||
5 | mjames | 3949 | * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. |
2 | mjames | 3950 | * @param[in] numStages number of stages in the filter. |
5 | mjames | 3951 | * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. |
3952 | * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. |
||
3953 | * @param[in] pState points to state buffer. The array is of length numStages+blockSize. |
||
3954 | * @param[in] blockSize number of samples to process per call. |
||
2 | mjames | 3955 | */ |
3956 | void arm_iir_lattice_init_q15( |
||
3957 | arm_iir_lattice_instance_q15 * S, |
||
3958 | uint16_t numStages, |
||
3959 | q15_t * pkCoeffs, |
||
3960 | q15_t * pvCoeffs, |
||
3961 | q15_t * pState, |
||
3962 | uint32_t blockSize); |
||
3963 | |||
5 | mjames | 3964 | |
2 | mjames | 3965 | /** |
3966 | * @brief Instance structure for the floating-point LMS filter. |
||
3967 | */ |
||
3968 | typedef struct |
||
3969 | { |
||
3970 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
3971 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
3972 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
3973 | float32_t mu; /**< step size that controls filter coefficient updates. */ |
||
3974 | } arm_lms_instance_f32; |
||
3975 | |||
5 | mjames | 3976 | |
2 | mjames | 3977 | /** |
3978 | * @brief Processing function for floating-point LMS filter. |
||
5 | mjames | 3979 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
3980 | * @param[in] pSrc points to the block of input data. |
||
3981 | * @param[in] pRef points to the block of reference data. |
||
3982 | * @param[out] pOut points to the block of output data. |
||
3983 | * @param[out] pErr points to the block of error data. |
||
3984 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 3985 | */ |
3986 | void arm_lms_f32( |
||
3987 | const arm_lms_instance_f32 * S, |
||
3988 | float32_t * pSrc, |
||
3989 | float32_t * pRef, |
||
3990 | float32_t * pOut, |
||
3991 | float32_t * pErr, |
||
3992 | uint32_t blockSize); |
||
3993 | |||
5 | mjames | 3994 | |
2 | mjames | 3995 | /** |
3996 | * @brief Initialization function for floating-point LMS filter. |
||
5 | mjames | 3997 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
3998 | * @param[in] numTaps number of filter coefficients. |
||
3999 | * @param[in] pCoeffs points to the coefficient buffer. |
||
4000 | * @param[in] pState points to state buffer. |
||
4001 | * @param[in] mu step size that controls filter coefficient updates. |
||
4002 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 4003 | */ |
4004 | void arm_lms_init_f32( |
||
4005 | arm_lms_instance_f32 * S, |
||
4006 | uint16_t numTaps, |
||
4007 | float32_t * pCoeffs, |
||
4008 | float32_t * pState, |
||
4009 | float32_t mu, |
||
4010 | uint32_t blockSize); |
||
4011 | |||
5 | mjames | 4012 | |
2 | mjames | 4013 | /** |
4014 | * @brief Instance structure for the Q15 LMS filter. |
||
4015 | */ |
||
4016 | typedef struct |
||
4017 | { |
||
4018 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4019 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4020 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4021 | q15_t mu; /**< step size that controls filter coefficient updates. */ |
||
4022 | uint32_t postShift; /**< bit shift applied to coefficients. */ |
||
4023 | } arm_lms_instance_q15; |
||
4024 | |||
4025 | |||
4026 | /** |
||
4027 | * @brief Initialization function for the Q15 LMS filter. |
||
5 | mjames | 4028 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
4029 | * @param[in] numTaps number of filter coefficients. |
||
4030 | * @param[in] pCoeffs points to the coefficient buffer. |
||
4031 | * @param[in] pState points to the state buffer. |
||
4032 | * @param[in] mu step size that controls filter coefficient updates. |
||
4033 | * @param[in] blockSize number of samples to process. |
||
4034 | * @param[in] postShift bit shift applied to coefficients. |
||
2 | mjames | 4035 | */ |
4036 | void arm_lms_init_q15( |
||
4037 | arm_lms_instance_q15 * S, |
||
4038 | uint16_t numTaps, |
||
4039 | q15_t * pCoeffs, |
||
4040 | q15_t * pState, |
||
4041 | q15_t mu, |
||
4042 | uint32_t blockSize, |
||
4043 | uint32_t postShift); |
||
4044 | |||
5 | mjames | 4045 | |
2 | mjames | 4046 | /** |
4047 | * @brief Processing function for Q15 LMS filter. |
||
5 | mjames | 4048 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
4049 | * @param[in] pSrc points to the block of input data. |
||
4050 | * @param[in] pRef points to the block of reference data. |
||
4051 | * @param[out] pOut points to the block of output data. |
||
4052 | * @param[out] pErr points to the block of error data. |
||
4053 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 4054 | */ |
4055 | void arm_lms_q15( |
||
4056 | const arm_lms_instance_q15 * S, |
||
4057 | q15_t * pSrc, |
||
4058 | q15_t * pRef, |
||
4059 | q15_t * pOut, |
||
4060 | q15_t * pErr, |
||
4061 | uint32_t blockSize); |
||
4062 | |||
4063 | |||
4064 | /** |
||
4065 | * @brief Instance structure for the Q31 LMS filter. |
||
4066 | */ |
||
4067 | typedef struct |
||
4068 | { |
||
4069 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4070 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4071 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4072 | q31_t mu; /**< step size that controls filter coefficient updates. */ |
||
4073 | uint32_t postShift; /**< bit shift applied to coefficients. */ |
||
4074 | } arm_lms_instance_q31; |
||
4075 | |||
5 | mjames | 4076 | |
2 | mjames | 4077 | /** |
4078 | * @brief Processing function for Q31 LMS filter. |
||
5 | mjames | 4079 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
4080 | * @param[in] pSrc points to the block of input data. |
||
4081 | * @param[in] pRef points to the block of reference data. |
||
4082 | * @param[out] pOut points to the block of output data. |
||
4083 | * @param[out] pErr points to the block of error data. |
||
4084 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 4085 | */ |
4086 | void arm_lms_q31( |
||
4087 | const arm_lms_instance_q31 * S, |
||
4088 | q31_t * pSrc, |
||
4089 | q31_t * pRef, |
||
4090 | q31_t * pOut, |
||
4091 | q31_t * pErr, |
||
4092 | uint32_t blockSize); |
||
4093 | |||
5 | mjames | 4094 | |
2 | mjames | 4095 | /** |
4096 | * @brief Initialization function for Q31 LMS filter. |
||
5 | mjames | 4097 | * @param[in] S points to an instance of the Q31 LMS filter structure. |
4098 | * @param[in] numTaps number of filter coefficients. |
||
4099 | * @param[in] pCoeffs points to coefficient buffer. |
||
4100 | * @param[in] pState points to state buffer. |
||
4101 | * @param[in] mu step size that controls filter coefficient updates. |
||
4102 | * @param[in] blockSize number of samples to process. |
||
4103 | * @param[in] postShift bit shift applied to coefficients. |
||
2 | mjames | 4104 | */ |
4105 | void arm_lms_init_q31( |
||
4106 | arm_lms_instance_q31 * S, |
||
4107 | uint16_t numTaps, |
||
4108 | q31_t * pCoeffs, |
||
4109 | q31_t * pState, |
||
4110 | q31_t mu, |
||
4111 | uint32_t blockSize, |
||
4112 | uint32_t postShift); |
||
4113 | |||
5 | mjames | 4114 | |
2 | mjames | 4115 | /** |
4116 | * @brief Instance structure for the floating-point normalized LMS filter. |
||
4117 | */ |
||
4118 | typedef struct |
||
4119 | { |
||
4120 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4121 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4122 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
5 | mjames | 4123 | float32_t mu; /**< step size that control filter coefficient updates. */ |
4124 | float32_t energy; /**< saves previous frame energy. */ |
||
4125 | float32_t x0; /**< saves previous input sample. */ |
||
2 | mjames | 4126 | } arm_lms_norm_instance_f32; |
4127 | |||
5 | mjames | 4128 | |
2 | mjames | 4129 | /** |
4130 | * @brief Processing function for floating-point normalized LMS filter. |
||
5 | mjames | 4131 | * @param[in] S points to an instance of the floating-point normalized LMS filter structure. |
4132 | * @param[in] pSrc points to the block of input data. |
||
4133 | * @param[in] pRef points to the block of reference data. |
||
4134 | * @param[out] pOut points to the block of output data. |
||
4135 | * @param[out] pErr points to the block of error data. |
||
4136 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 4137 | */ |
4138 | void arm_lms_norm_f32( |
||
4139 | arm_lms_norm_instance_f32 * S, |
||
4140 | float32_t * pSrc, |
||
4141 | float32_t * pRef, |
||
4142 | float32_t * pOut, |
||
4143 | float32_t * pErr, |
||
4144 | uint32_t blockSize); |
||
4145 | |||
5 | mjames | 4146 | |
2 | mjames | 4147 | /** |
4148 | * @brief Initialization function for floating-point normalized LMS filter. |
||
5 | mjames | 4149 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
4150 | * @param[in] numTaps number of filter coefficients. |
||
4151 | * @param[in] pCoeffs points to coefficient buffer. |
||
4152 | * @param[in] pState points to state buffer. |
||
4153 | * @param[in] mu step size that controls filter coefficient updates. |
||
4154 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 4155 | */ |
4156 | void arm_lms_norm_init_f32( |
||
4157 | arm_lms_norm_instance_f32 * S, |
||
4158 | uint16_t numTaps, |
||
4159 | float32_t * pCoeffs, |
||
4160 | float32_t * pState, |
||
4161 | float32_t mu, |
||
4162 | uint32_t blockSize); |
||
4163 | |||
4164 | |||
4165 | /** |
||
4166 | * @brief Instance structure for the Q31 normalized LMS filter. |
||
4167 | */ |
||
4168 | typedef struct |
||
4169 | { |
||
4170 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4171 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4172 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4173 | q31_t mu; /**< step size that controls filter coefficient updates. */ |
||
4174 | uint8_t postShift; /**< bit shift applied to coefficients. */ |
||
4175 | q31_t *recipTable; /**< points to the reciprocal initial value table. */ |
||
4176 | q31_t energy; /**< saves previous frame energy. */ |
||
4177 | q31_t x0; /**< saves previous input sample. */ |
||
4178 | } arm_lms_norm_instance_q31; |
||
4179 | |||
5 | mjames | 4180 | |
2 | mjames | 4181 | /** |
4182 | * @brief Processing function for Q31 normalized LMS filter. |
||
5 | mjames | 4183 | * @param[in] S points to an instance of the Q31 normalized LMS filter structure. |
4184 | * @param[in] pSrc points to the block of input data. |
||
4185 | * @param[in] pRef points to the block of reference data. |
||
4186 | * @param[out] pOut points to the block of output data. |
||
4187 | * @param[out] pErr points to the block of error data. |
||
4188 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 4189 | */ |
4190 | void arm_lms_norm_q31( |
||
4191 | arm_lms_norm_instance_q31 * S, |
||
4192 | q31_t * pSrc, |
||
4193 | q31_t * pRef, |
||
4194 | q31_t * pOut, |
||
4195 | q31_t * pErr, |
||
4196 | uint32_t blockSize); |
||
4197 | |||
5 | mjames | 4198 | |
2 | mjames | 4199 | /** |
4200 | * @brief Initialization function for Q31 normalized LMS filter. |
||
5 | mjames | 4201 | * @param[in] S points to an instance of the Q31 normalized LMS filter structure. |
4202 | * @param[in] numTaps number of filter coefficients. |
||
4203 | * @param[in] pCoeffs points to coefficient buffer. |
||
4204 | * @param[in] pState points to state buffer. |
||
4205 | * @param[in] mu step size that controls filter coefficient updates. |
||
4206 | * @param[in] blockSize number of samples to process. |
||
4207 | * @param[in] postShift bit shift applied to coefficients. |
||
2 | mjames | 4208 | */ |
4209 | void arm_lms_norm_init_q31( |
||
4210 | arm_lms_norm_instance_q31 * S, |
||
4211 | uint16_t numTaps, |
||
4212 | q31_t * pCoeffs, |
||
4213 | q31_t * pState, |
||
4214 | q31_t mu, |
||
4215 | uint32_t blockSize, |
||
4216 | uint8_t postShift); |
||
4217 | |||
5 | mjames | 4218 | |
2 | mjames | 4219 | /** |
4220 | * @brief Instance structure for the Q15 normalized LMS filter. |
||
4221 | */ |
||
4222 | typedef struct |
||
4223 | { |
||
5 | mjames | 4224 | uint16_t numTaps; /**< Number of coefficients in the filter. */ |
2 | mjames | 4225 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
4226 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
5 | mjames | 4227 | q15_t mu; /**< step size that controls filter coefficient updates. */ |
4228 | uint8_t postShift; /**< bit shift applied to coefficients. */ |
||
4229 | q15_t *recipTable; /**< Points to the reciprocal initial value table. */ |
||
4230 | q15_t energy; /**< saves previous frame energy. */ |
||
4231 | q15_t x0; /**< saves previous input sample. */ |
||
2 | mjames | 4232 | } arm_lms_norm_instance_q15; |
4233 | |||
5 | mjames | 4234 | |
2 | mjames | 4235 | /** |
4236 | * @brief Processing function for Q15 normalized LMS filter. |
||
5 | mjames | 4237 | * @param[in] S points to an instance of the Q15 normalized LMS filter structure. |
4238 | * @param[in] pSrc points to the block of input data. |
||
4239 | * @param[in] pRef points to the block of reference data. |
||
4240 | * @param[out] pOut points to the block of output data. |
||
4241 | * @param[out] pErr points to the block of error data. |
||
4242 | * @param[in] blockSize number of samples to process. |
||
2 | mjames | 4243 | */ |
4244 | void arm_lms_norm_q15( |
||
4245 | arm_lms_norm_instance_q15 * S, |
||
4246 | q15_t * pSrc, |
||
4247 | q15_t * pRef, |
||
4248 | q15_t * pOut, |
||
4249 | q15_t * pErr, |
||
4250 | uint32_t blockSize); |
||
4251 | |||
4252 | |||
4253 | /** |
||
4254 | * @brief Initialization function for Q15 normalized LMS filter. |
||
5 | mjames | 4255 | * @param[in] S points to an instance of the Q15 normalized LMS filter structure. |
4256 | * @param[in] numTaps number of filter coefficients. |
||
4257 | * @param[in] pCoeffs points to coefficient buffer. |
||
4258 | * @param[in] pState points to state buffer. |
||
4259 | * @param[in] mu step size that controls filter coefficient updates. |
||
4260 | * @param[in] blockSize number of samples to process. |
||
4261 | * @param[in] postShift bit shift applied to coefficients. |
||
2 | mjames | 4262 | */ |
4263 | void arm_lms_norm_init_q15( |
||
4264 | arm_lms_norm_instance_q15 * S, |
||
4265 | uint16_t numTaps, |
||
4266 | q15_t * pCoeffs, |
||
4267 | q15_t * pState, |
||
4268 | q15_t mu, |
||
4269 | uint32_t blockSize, |
||
4270 | uint8_t postShift); |
||
4271 | |||
5 | mjames | 4272 | |
2 | mjames | 4273 | /** |
4274 | * @brief Correlation of floating-point sequences. |
||
5 | mjames | 4275 | * @param[in] pSrcA points to the first input sequence. |
4276 | * @param[in] srcALen length of the first input sequence. |
||
4277 | * @param[in] pSrcB points to the second input sequence. |
||
4278 | * @param[in] srcBLen length of the second input sequence. |
||
4279 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
2 | mjames | 4280 | */ |
4281 | void arm_correlate_f32( |
||
4282 | float32_t * pSrcA, |
||
4283 | uint32_t srcALen, |
||
4284 | float32_t * pSrcB, |
||
4285 | uint32_t srcBLen, |
||
4286 | float32_t * pDst); |
||
4287 | |||
4288 | |||
4289 | /** |
||
4290 | * @brief Correlation of Q15 sequences |
||
5 | mjames | 4291 | * @param[in] pSrcA points to the first input sequence. |
4292 | * @param[in] srcALen length of the first input sequence. |
||
4293 | * @param[in] pSrcB points to the second input sequence. |
||
4294 | * @param[in] srcBLen length of the second input sequence. |
||
4295 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4296 | * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
2 | mjames | 4297 | */ |
4298 | void arm_correlate_opt_q15( |
||
4299 | q15_t * pSrcA, |
||
4300 | uint32_t srcALen, |
||
4301 | q15_t * pSrcB, |
||
4302 | uint32_t srcBLen, |
||
4303 | q15_t * pDst, |
||
4304 | q15_t * pScratch); |
||
4305 | |||
4306 | |||
4307 | /** |
||
4308 | * @brief Correlation of Q15 sequences. |
||
5 | mjames | 4309 | * @param[in] pSrcA points to the first input sequence. |
4310 | * @param[in] srcALen length of the first input sequence. |
||
4311 | * @param[in] pSrcB points to the second input sequence. |
||
4312 | * @param[in] srcBLen length of the second input sequence. |
||
4313 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
2 | mjames | 4314 | */ |
4315 | |||
4316 | void arm_correlate_q15( |
||
4317 | q15_t * pSrcA, |
||
4318 | uint32_t srcALen, |
||
4319 | q15_t * pSrcB, |
||
4320 | uint32_t srcBLen, |
||
4321 | q15_t * pDst); |
||
4322 | |||
5 | mjames | 4323 | |
2 | mjames | 4324 | /** |
4325 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
||
5 | mjames | 4326 | * @param[in] pSrcA points to the first input sequence. |
4327 | * @param[in] srcALen length of the first input sequence. |
||
4328 | * @param[in] pSrcB points to the second input sequence. |
||
4329 | * @param[in] srcBLen length of the second input sequence. |
||
4330 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
2 | mjames | 4331 | */ |
4332 | |||
4333 | void arm_correlate_fast_q15( |
||
5 | mjames | 4334 | q15_t * pSrcA, |
4335 | uint32_t srcALen, |
||
4336 | q15_t * pSrcB, |
||
4337 | uint32_t srcBLen, |
||
4338 | q15_t * pDst); |
||
2 | mjames | 4339 | |
4340 | |||
4341 | /** |
||
4342 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
||
5 | mjames | 4343 | * @param[in] pSrcA points to the first input sequence. |
4344 | * @param[in] srcALen length of the first input sequence. |
||
4345 | * @param[in] pSrcB points to the second input sequence. |
||
4346 | * @param[in] srcBLen length of the second input sequence. |
||
4347 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4348 | * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
2 | mjames | 4349 | */ |
4350 | void arm_correlate_fast_opt_q15( |
||
4351 | q15_t * pSrcA, |
||
4352 | uint32_t srcALen, |
||
4353 | q15_t * pSrcB, |
||
4354 | uint32_t srcBLen, |
||
4355 | q15_t * pDst, |
||
4356 | q15_t * pScratch); |
||
4357 | |||
5 | mjames | 4358 | |
2 | mjames | 4359 | /** |
4360 | * @brief Correlation of Q31 sequences. |
||
5 | mjames | 4361 | * @param[in] pSrcA points to the first input sequence. |
4362 | * @param[in] srcALen length of the first input sequence. |
||
4363 | * @param[in] pSrcB points to the second input sequence. |
||
4364 | * @param[in] srcBLen length of the second input sequence. |
||
4365 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
2 | mjames | 4366 | */ |
4367 | void arm_correlate_q31( |
||
4368 | q31_t * pSrcA, |
||
4369 | uint32_t srcALen, |
||
4370 | q31_t * pSrcB, |
||
4371 | uint32_t srcBLen, |
||
4372 | q31_t * pDst); |
||
4373 | |||
5 | mjames | 4374 | |
2 | mjames | 4375 | /** |
4376 | * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
5 | mjames | 4377 | * @param[in] pSrcA points to the first input sequence. |
4378 | * @param[in] srcALen length of the first input sequence. |
||
4379 | * @param[in] pSrcB points to the second input sequence. |
||
4380 | * @param[in] srcBLen length of the second input sequence. |
||
4381 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
2 | mjames | 4382 | */ |
4383 | void arm_correlate_fast_q31( |
||
4384 | q31_t * pSrcA, |
||
4385 | uint32_t srcALen, |
||
4386 | q31_t * pSrcB, |
||
4387 | uint32_t srcBLen, |
||
4388 | q31_t * pDst); |
||
4389 | |||
4390 | |||
4391 | /** |
||
4392 | * @brief Correlation of Q7 sequences. |
||
5 | mjames | 4393 | * @param[in] pSrcA points to the first input sequence. |
4394 | * @param[in] srcALen length of the first input sequence. |
||
4395 | * @param[in] pSrcB points to the second input sequence. |
||
4396 | * @param[in] srcBLen length of the second input sequence. |
||
4397 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4398 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
4399 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
2 | mjames | 4400 | */ |
4401 | void arm_correlate_opt_q7( |
||
4402 | q7_t * pSrcA, |
||
4403 | uint32_t srcALen, |
||
4404 | q7_t * pSrcB, |
||
4405 | uint32_t srcBLen, |
||
4406 | q7_t * pDst, |
||
4407 | q15_t * pScratch1, |
||
4408 | q15_t * pScratch2); |
||
4409 | |||
4410 | |||
4411 | /** |
||
4412 | * @brief Correlation of Q7 sequences. |
||
5 | mjames | 4413 | * @param[in] pSrcA points to the first input sequence. |
4414 | * @param[in] srcALen length of the first input sequence. |
||
4415 | * @param[in] pSrcB points to the second input sequence. |
||
4416 | * @param[in] srcBLen length of the second input sequence. |
||
4417 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
2 | mjames | 4418 | */ |
4419 | void arm_correlate_q7( |
||
4420 | q7_t * pSrcA, |
||
4421 | uint32_t srcALen, |
||
4422 | q7_t * pSrcB, |
||
4423 | uint32_t srcBLen, |
||
4424 | q7_t * pDst); |
||
4425 | |||
4426 | |||
4427 | /** |
||
4428 | * @brief Instance structure for the floating-point sparse FIR filter. |
||
4429 | */ |
||
4430 | typedef struct |
||
4431 | { |
||
4432 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4433 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4434 | float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4435 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4436 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4437 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4438 | } arm_fir_sparse_instance_f32; |
||
4439 | |||
4440 | /** |
||
4441 | * @brief Instance structure for the Q31 sparse FIR filter. |
||
4442 | */ |
||
4443 | typedef struct |
||
4444 | { |
||
4445 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4446 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4447 | q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4448 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4449 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4450 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4451 | } arm_fir_sparse_instance_q31; |
||
4452 | |||
4453 | /** |
||
4454 | * @brief Instance structure for the Q15 sparse FIR filter. |
||
4455 | */ |
||
4456 | typedef struct |
||
4457 | { |
||
4458 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4459 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4460 | q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4461 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4462 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4463 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4464 | } arm_fir_sparse_instance_q15; |
||
4465 | |||
4466 | /** |
||
4467 | * @brief Instance structure for the Q7 sparse FIR filter. |
||
4468 | */ |
||
4469 | typedef struct |
||
4470 | { |
||
4471 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4472 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4473 | q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4474 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4475 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4476 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4477 | } arm_fir_sparse_instance_q7; |
||
4478 | |||
5 | mjames | 4479 | |
2 | mjames | 4480 | /** |
4481 | * @brief Processing function for the floating-point sparse FIR filter. |
||
5 | mjames | 4482 | * @param[in] S points to an instance of the floating-point sparse FIR structure. |
4483 | * @param[in] pSrc points to the block of input data. |
||
4484 | * @param[out] pDst points to the block of output data |
||
4485 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
2 | mjames | 4486 | * @param[in] blockSize number of input samples to process per call. |
4487 | */ |
||
4488 | void arm_fir_sparse_f32( |
||
4489 | arm_fir_sparse_instance_f32 * S, |
||
4490 | float32_t * pSrc, |
||
4491 | float32_t * pDst, |
||
4492 | float32_t * pScratchIn, |
||
4493 | uint32_t blockSize); |
||
4494 | |||
5 | mjames | 4495 | |
2 | mjames | 4496 | /** |
4497 | * @brief Initialization function for the floating-point sparse FIR filter. |
||
5 | mjames | 4498 | * @param[in,out] S points to an instance of the floating-point sparse FIR structure. |
2 | mjames | 4499 | * @param[in] numTaps number of nonzero coefficients in the filter. |
5 | mjames | 4500 | * @param[in] pCoeffs points to the array of filter coefficients. |
4501 | * @param[in] pState points to the state buffer. |
||
4502 | * @param[in] pTapDelay points to the array of offset times. |
||
2 | mjames | 4503 | * @param[in] maxDelay maximum offset time supported. |
4504 | * @param[in] blockSize number of samples that will be processed per block. |
||
4505 | */ |
||
4506 | void arm_fir_sparse_init_f32( |
||
4507 | arm_fir_sparse_instance_f32 * S, |
||
4508 | uint16_t numTaps, |
||
4509 | float32_t * pCoeffs, |
||
4510 | float32_t * pState, |
||
4511 | int32_t * pTapDelay, |
||
4512 | uint16_t maxDelay, |
||
4513 | uint32_t blockSize); |
||
4514 | |||
5 | mjames | 4515 | |
2 | mjames | 4516 | /** |
4517 | * @brief Processing function for the Q31 sparse FIR filter. |
||
5 | mjames | 4518 | * @param[in] S points to an instance of the Q31 sparse FIR structure. |
4519 | * @param[in] pSrc points to the block of input data. |
||
4520 | * @param[out] pDst points to the block of output data |
||
4521 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
2 | mjames | 4522 | * @param[in] blockSize number of input samples to process per call. |
4523 | */ |
||
4524 | void arm_fir_sparse_q31( |
||
4525 | arm_fir_sparse_instance_q31 * S, |
||
4526 | q31_t * pSrc, |
||
4527 | q31_t * pDst, |
||
4528 | q31_t * pScratchIn, |
||
4529 | uint32_t blockSize); |
||
4530 | |||
5 | mjames | 4531 | |
2 | mjames | 4532 | /** |
4533 | * @brief Initialization function for the Q31 sparse FIR filter. |
||
5 | mjames | 4534 | * @param[in,out] S points to an instance of the Q31 sparse FIR structure. |
2 | mjames | 4535 | * @param[in] numTaps number of nonzero coefficients in the filter. |
5 | mjames | 4536 | * @param[in] pCoeffs points to the array of filter coefficients. |
4537 | * @param[in] pState points to the state buffer. |
||
4538 | * @param[in] pTapDelay points to the array of offset times. |
||
2 | mjames | 4539 | * @param[in] maxDelay maximum offset time supported. |
4540 | * @param[in] blockSize number of samples that will be processed per block. |
||
4541 | */ |
||
4542 | void arm_fir_sparse_init_q31( |
||
4543 | arm_fir_sparse_instance_q31 * S, |
||
4544 | uint16_t numTaps, |
||
4545 | q31_t * pCoeffs, |
||
4546 | q31_t * pState, |
||
4547 | int32_t * pTapDelay, |
||
4548 | uint16_t maxDelay, |
||
4549 | uint32_t blockSize); |
||
4550 | |||
5 | mjames | 4551 | |
2 | mjames | 4552 | /** |
4553 | * @brief Processing function for the Q15 sparse FIR filter. |
||
5 | mjames | 4554 | * @param[in] S points to an instance of the Q15 sparse FIR structure. |
4555 | * @param[in] pSrc points to the block of input data. |
||
4556 | * @param[out] pDst points to the block of output data |
||
4557 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
4558 | * @param[in] pScratchOut points to a temporary buffer of size blockSize. |
||
2 | mjames | 4559 | * @param[in] blockSize number of input samples to process per call. |
4560 | */ |
||
4561 | void arm_fir_sparse_q15( |
||
4562 | arm_fir_sparse_instance_q15 * S, |
||
4563 | q15_t * pSrc, |
||
4564 | q15_t * pDst, |
||
4565 | q15_t * pScratchIn, |
||
4566 | q31_t * pScratchOut, |
||
4567 | uint32_t blockSize); |
||
4568 | |||
4569 | |||
4570 | /** |
||
4571 | * @brief Initialization function for the Q15 sparse FIR filter. |
||
5 | mjames | 4572 | * @param[in,out] S points to an instance of the Q15 sparse FIR structure. |
2 | mjames | 4573 | * @param[in] numTaps number of nonzero coefficients in the filter. |
5 | mjames | 4574 | * @param[in] pCoeffs points to the array of filter coefficients. |
4575 | * @param[in] pState points to the state buffer. |
||
4576 | * @param[in] pTapDelay points to the array of offset times. |
||
2 | mjames | 4577 | * @param[in] maxDelay maximum offset time supported. |
4578 | * @param[in] blockSize number of samples that will be processed per block. |
||
4579 | */ |
||
4580 | void arm_fir_sparse_init_q15( |
||
4581 | arm_fir_sparse_instance_q15 * S, |
||
4582 | uint16_t numTaps, |
||
4583 | q15_t * pCoeffs, |
||
4584 | q15_t * pState, |
||
4585 | int32_t * pTapDelay, |
||
4586 | uint16_t maxDelay, |
||
4587 | uint32_t blockSize); |
||
4588 | |||
5 | mjames | 4589 | |
2 | mjames | 4590 | /** |
4591 | * @brief Processing function for the Q7 sparse FIR filter. |
||
5 | mjames | 4592 | * @param[in] S points to an instance of the Q7 sparse FIR structure. |
4593 | * @param[in] pSrc points to the block of input data. |
||
4594 | * @param[out] pDst points to the block of output data |
||
4595 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
4596 | * @param[in] pScratchOut points to a temporary buffer of size blockSize. |
||
2 | mjames | 4597 | * @param[in] blockSize number of input samples to process per call. |
4598 | */ |
||
4599 | void arm_fir_sparse_q7( |
||
4600 | arm_fir_sparse_instance_q7 * S, |
||
4601 | q7_t * pSrc, |
||
4602 | q7_t * pDst, |
||
4603 | q7_t * pScratchIn, |
||
4604 | q31_t * pScratchOut, |
||
4605 | uint32_t blockSize); |
||
4606 | |||
5 | mjames | 4607 | |
2 | mjames | 4608 | /** |
4609 | * @brief Initialization function for the Q7 sparse FIR filter. |
||
5 | mjames | 4610 | * @param[in,out] S points to an instance of the Q7 sparse FIR structure. |
2 | mjames | 4611 | * @param[in] numTaps number of nonzero coefficients in the filter. |
5 | mjames | 4612 | * @param[in] pCoeffs points to the array of filter coefficients. |
4613 | * @param[in] pState points to the state buffer. |
||
4614 | * @param[in] pTapDelay points to the array of offset times. |
||
2 | mjames | 4615 | * @param[in] maxDelay maximum offset time supported. |
4616 | * @param[in] blockSize number of samples that will be processed per block. |
||
4617 | */ |
||
4618 | void arm_fir_sparse_init_q7( |
||
4619 | arm_fir_sparse_instance_q7 * S, |
||
4620 | uint16_t numTaps, |
||
4621 | q7_t * pCoeffs, |
||
4622 | q7_t * pState, |
||
4623 | int32_t * pTapDelay, |
||
4624 | uint16_t maxDelay, |
||
4625 | uint32_t blockSize); |
||
4626 | |||
4627 | |||
5 | mjames | 4628 | /** |
2 | mjames | 4629 | * @brief Floating-point sin_cos function. |
5 | mjames | 4630 | * @param[in] theta input value in degrees |
4631 | * @param[out] pSinVal points to the processed sine output. |
||
4632 | * @param[out] pCosVal points to the processed cos output. |
||
2 | mjames | 4633 | */ |
4634 | void arm_sin_cos_f32( |
||
4635 | float32_t theta, |
||
4636 | float32_t * pSinVal, |
||
5 | mjames | 4637 | float32_t * pCosVal); |
2 | mjames | 4638 | |
5 | mjames | 4639 | |
4640 | /** |
||
2 | mjames | 4641 | * @brief Q31 sin_cos function. |
4642 | * @param[in] theta scaled input value in degrees |
||
5 | mjames | 4643 | * @param[out] pSinVal points to the processed sine output. |
4644 | * @param[out] pCosVal points to the processed cosine output. |
||
2 | mjames | 4645 | */ |
4646 | void arm_sin_cos_q31( |
||
4647 | q31_t theta, |
||
4648 | q31_t * pSinVal, |
||
4649 | q31_t * pCosVal); |
||
4650 | |||
4651 | |||
4652 | /** |
||
4653 | * @brief Floating-point complex conjugate. |
||
5 | mjames | 4654 | * @param[in] pSrc points to the input vector |
4655 | * @param[out] pDst points to the output vector |
||
4656 | * @param[in] numSamples number of complex samples in each vector |
||
2 | mjames | 4657 | */ |
4658 | void arm_cmplx_conj_f32( |
||
4659 | float32_t * pSrc, |
||
4660 | float32_t * pDst, |
||
4661 | uint32_t numSamples); |
||
4662 | |||
4663 | /** |
||
4664 | * @brief Q31 complex conjugate. |
||
5 | mjames | 4665 | * @param[in] pSrc points to the input vector |
4666 | * @param[out] pDst points to the output vector |
||
4667 | * @param[in] numSamples number of complex samples in each vector |
||
2 | mjames | 4668 | */ |
4669 | void arm_cmplx_conj_q31( |
||
4670 | q31_t * pSrc, |
||
4671 | q31_t * pDst, |
||
4672 | uint32_t numSamples); |
||
4673 | |||
5 | mjames | 4674 | |
2 | mjames | 4675 | /** |
4676 | * @brief Q15 complex conjugate. |
||
5 | mjames | 4677 | * @param[in] pSrc points to the input vector |
4678 | * @param[out] pDst points to the output vector |
||
4679 | * @param[in] numSamples number of complex samples in each vector |
||
2 | mjames | 4680 | */ |
4681 | void arm_cmplx_conj_q15( |
||
4682 | q15_t * pSrc, |
||
4683 | q15_t * pDst, |
||
4684 | uint32_t numSamples); |
||
4685 | |||
4686 | |||
4687 | /** |
||
4688 | * @brief Floating-point complex magnitude squared |
||
5 | mjames | 4689 | * @param[in] pSrc points to the complex input vector |
4690 | * @param[out] pDst points to the real output vector |
||
4691 | * @param[in] numSamples number of complex samples in the input vector |
||
2 | mjames | 4692 | */ |
4693 | void arm_cmplx_mag_squared_f32( |
||
4694 | float32_t * pSrc, |
||
4695 | float32_t * pDst, |
||
4696 | uint32_t numSamples); |
||
4697 | |||
5 | mjames | 4698 | |
2 | mjames | 4699 | /** |
4700 | * @brief Q31 complex magnitude squared |
||
5 | mjames | 4701 | * @param[in] pSrc points to the complex input vector |
4702 | * @param[out] pDst points to the real output vector |
||
4703 | * @param[in] numSamples number of complex samples in the input vector |
||
2 | mjames | 4704 | */ |
4705 | void arm_cmplx_mag_squared_q31( |
||
4706 | q31_t * pSrc, |
||
4707 | q31_t * pDst, |
||
4708 | uint32_t numSamples); |
||
4709 | |||
5 | mjames | 4710 | |
2 | mjames | 4711 | /** |
4712 | * @brief Q15 complex magnitude squared |
||
5 | mjames | 4713 | * @param[in] pSrc points to the complex input vector |
4714 | * @param[out] pDst points to the real output vector |
||
4715 | * @param[in] numSamples number of complex samples in the input vector |
||
2 | mjames | 4716 | */ |
4717 | void arm_cmplx_mag_squared_q15( |
||
4718 | q15_t * pSrc, |
||
4719 | q15_t * pDst, |
||
4720 | uint32_t numSamples); |
||
4721 | |||
4722 | |||
4723 | /** |
||
4724 | * @ingroup groupController |
||
4725 | */ |
||
4726 | |||
4727 | /** |
||
4728 | * @defgroup PID PID Motor Control |
||
4729 | * |
||
4730 | * A Proportional Integral Derivative (PID) controller is a generic feedback control |
||
4731 | * loop mechanism widely used in industrial control systems. |
||
4732 | * A PID controller is the most commonly used type of feedback controller. |
||
4733 | * |
||
4734 | * This set of functions implements (PID) controllers |
||
4735 | * for Q15, Q31, and floating-point data types. The functions operate on a single sample |
||
4736 | * of data and each call to the function returns a single processed value. |
||
4737 | * <code>S</code> points to an instance of the PID control data structure. <code>in</code> |
||
4738 | * is the input sample value. The functions return the output value. |
||
4739 | * |
||
4740 | * \par Algorithm: |
||
4741 | * <pre> |
||
4742 | * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] |
||
4743 | * A0 = Kp + Ki + Kd |
||
4744 | * A1 = (-Kp ) - (2 * Kd ) |
||
4745 | * A2 = Kd </pre> |
||
4746 | * |
||
4747 | * \par |
||
4748 | * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant |
||
4749 | * |
||
4750 | * \par |
||
4751 | * \image html PID.gif "Proportional Integral Derivative Controller" |
||
4752 | * |
||
4753 | * \par |
||
4754 | * The PID controller calculates an "error" value as the difference between |
||
4755 | * the measured output and the reference input. |
||
4756 | * The controller attempts to minimize the error by adjusting the process control inputs. |
||
4757 | * The proportional value determines the reaction to the current error, |
||
4758 | * the integral value determines the reaction based on the sum of recent errors, |
||
4759 | * and the derivative value determines the reaction based on the rate at which the error has been changing. |
||
4760 | * |
||
4761 | * \par Instance Structure |
||
4762 | * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. |
||
4763 | * A separate instance structure must be defined for each PID Controller. |
||
4764 | * There are separate instance structure declarations for each of the 3 supported data types. |
||
4765 | * |
||
4766 | * \par Reset Functions |
||
4767 | * There is also an associated reset function for each data type which clears the state array. |
||
4768 | * |
||
4769 | * \par Initialization Functions |
||
4770 | * There is also an associated initialization function for each data type. |
||
4771 | * The initialization function performs the following operations: |
||
4772 | * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. |
||
4773 | * - Zeros out the values in the state buffer. |
||
4774 | * |
||
4775 | * \par |
||
4776 | * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. |
||
4777 | * |
||
4778 | * \par Fixed-Point Behavior |
||
4779 | * Care must be taken when using the fixed-point versions of the PID Controller functions. |
||
4780 | * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. |
||
4781 | * Refer to the function specific documentation below for usage guidelines. |
||
4782 | */ |
||
4783 | |||
4784 | /** |
||
4785 | * @addtogroup PID |
||
4786 | * @{ |
||
4787 | */ |
||
4788 | |||
4789 | /** |
||
4790 | * @brief Process function for the floating-point PID Control. |
||
5 | mjames | 4791 | * @param[in,out] S is an instance of the floating-point PID Control structure |
4792 | * @param[in] in input sample to process |
||
2 | mjames | 4793 | * @return out processed output sample. |
4794 | */ |
||
4795 | static __INLINE float32_t arm_pid_f32( |
||
4796 | arm_pid_instance_f32 * S, |
||
4797 | float32_t in) |
||
4798 | { |
||
4799 | float32_t out; |
||
4800 | |||
4801 | /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ |
||
4802 | out = (S->A0 * in) + |
||
4803 | (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); |
||
4804 | |||
4805 | /* Update state */ |
||
4806 | S->state[1] = S->state[0]; |
||
4807 | S->state[0] = in; |
||
4808 | S->state[2] = out; |
||
4809 | |||
4810 | /* return to application */ |
||
4811 | return (out); |
||
4812 | |||
4813 | } |
||
4814 | |||
4815 | /** |
||
4816 | * @brief Process function for the Q31 PID Control. |
||
5 | mjames | 4817 | * @param[in,out] S points to an instance of the Q31 PID Control structure |
4818 | * @param[in] in input sample to process |
||
2 | mjames | 4819 | * @return out processed output sample. |
4820 | * |
||
4821 | * <b>Scaling and Overflow Behavior:</b> |
||
4822 | * \par |
||
4823 | * The function is implemented using an internal 64-bit accumulator. |
||
4824 | * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. |
||
4825 | * Thus, if the accumulator result overflows it wraps around rather than clip. |
||
4826 | * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. |
||
4827 | * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. |
||
4828 | */ |
||
4829 | static __INLINE q31_t arm_pid_q31( |
||
4830 | arm_pid_instance_q31 * S, |
||
4831 | q31_t in) |
||
4832 | { |
||
4833 | q63_t acc; |
||
4834 | q31_t out; |
||
4835 | |||
4836 | /* acc = A0 * x[n] */ |
||
4837 | acc = (q63_t) S->A0 * in; |
||
4838 | |||
4839 | /* acc += A1 * x[n-1] */ |
||
4840 | acc += (q63_t) S->A1 * S->state[0]; |
||
4841 | |||
4842 | /* acc += A2 * x[n-2] */ |
||
4843 | acc += (q63_t) S->A2 * S->state[1]; |
||
4844 | |||
4845 | /* convert output to 1.31 format to add y[n-1] */ |
||
4846 | out = (q31_t) (acc >> 31u); |
||
4847 | |||
4848 | /* out += y[n-1] */ |
||
4849 | out += S->state[2]; |
||
4850 | |||
4851 | /* Update state */ |
||
4852 | S->state[1] = S->state[0]; |
||
4853 | S->state[0] = in; |
||
4854 | S->state[2] = out; |
||
4855 | |||
4856 | /* return to application */ |
||
4857 | return (out); |
||
4858 | } |
||
4859 | |||
5 | mjames | 4860 | |
2 | mjames | 4861 | /** |
4862 | * @brief Process function for the Q15 PID Control. |
||
5 | mjames | 4863 | * @param[in,out] S points to an instance of the Q15 PID Control structure |
4864 | * @param[in] in input sample to process |
||
2 | mjames | 4865 | * @return out processed output sample. |
4866 | * |
||
4867 | * <b>Scaling and Overflow Behavior:</b> |
||
4868 | * \par |
||
4869 | * The function is implemented using a 64-bit internal accumulator. |
||
4870 | * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. |
||
4871 | * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. |
||
4872 | * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. |
||
4873 | * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. |
||
4874 | * Lastly, the accumulator is saturated to yield a result in 1.15 format. |
||
4875 | */ |
||
4876 | static __INLINE q15_t arm_pid_q15( |
||
4877 | arm_pid_instance_q15 * S, |
||
4878 | q15_t in) |
||
4879 | { |
||
4880 | q63_t acc; |
||
4881 | q15_t out; |
||
4882 | |||
4883 | #ifndef ARM_MATH_CM0_FAMILY |
||
4884 | __SIMD32_TYPE *vstate; |
||
4885 | |||
4886 | /* Implementation of PID controller */ |
||
4887 | |||
4888 | /* acc = A0 * x[n] */ |
||
5 | mjames | 4889 | acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); |
2 | mjames | 4890 | |
4891 | /* acc += A1 * x[n-1] + A2 * x[n-2] */ |
||
4892 | vstate = __SIMD32_CONST(S->state); |
||
5 | mjames | 4893 | acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); |
2 | mjames | 4894 | #else |
4895 | /* acc = A0 * x[n] */ |
||
4896 | acc = ((q31_t) S->A0) * in; |
||
4897 | |||
4898 | /* acc += A1 * x[n-1] + A2 * x[n-2] */ |
||
4899 | acc += (q31_t) S->A1 * S->state[0]; |
||
4900 | acc += (q31_t) S->A2 * S->state[1]; |
||
4901 | #endif |
||
4902 | |||
4903 | /* acc += y[n-1] */ |
||
4904 | acc += (q31_t) S->state[2] << 15; |
||
4905 | |||
4906 | /* saturate the output */ |
||
4907 | out = (q15_t) (__SSAT((acc >> 15), 16)); |
||
4908 | |||
4909 | /* Update state */ |
||
4910 | S->state[1] = S->state[0]; |
||
4911 | S->state[0] = in; |
||
4912 | S->state[2] = out; |
||
4913 | |||
4914 | /* return to application */ |
||
4915 | return (out); |
||
4916 | } |
||
4917 | |||
4918 | /** |
||
4919 | * @} end of PID group |
||
4920 | */ |
||
4921 | |||
4922 | |||
4923 | /** |
||
4924 | * @brief Floating-point matrix inverse. |
||
5 | mjames | 4925 | * @param[in] src points to the instance of the input floating-point matrix structure. |
4926 | * @param[out] dst points to the instance of the output floating-point matrix structure. |
||
2 | mjames | 4927 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
4928 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
||
4929 | */ |
||
4930 | arm_status arm_mat_inverse_f32( |
||
4931 | const arm_matrix_instance_f32 * src, |
||
4932 | arm_matrix_instance_f32 * dst); |
||
4933 | |||
4934 | |||
4935 | /** |
||
4936 | * @brief Floating-point matrix inverse. |
||
5 | mjames | 4937 | * @param[in] src points to the instance of the input floating-point matrix structure. |
4938 | * @param[out] dst points to the instance of the output floating-point matrix structure. |
||
2 | mjames | 4939 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
4940 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
||
4941 | */ |
||
4942 | arm_status arm_mat_inverse_f64( |
||
4943 | const arm_matrix_instance_f64 * src, |
||
4944 | arm_matrix_instance_f64 * dst); |
||
4945 | |||
4946 | |||
4947 | |||
4948 | /** |
||
4949 | * @ingroup groupController |
||
4950 | */ |
||
4951 | |||
4952 | /** |
||
4953 | * @defgroup clarke Vector Clarke Transform |
||
4954 | * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. |
||
4955 | * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents |
||
4956 | * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. |
||
4957 | * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below |
||
4958 | * \image html clarke.gif Stator current space vector and its components in (a,b). |
||
4959 | * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> |
||
4960 | * can be calculated using only <code>Ia</code> and <code>Ib</code>. |
||
4961 | * |
||
4962 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
4963 | * The library provides separate functions for Q31 and floating-point data types. |
||
4964 | * \par Algorithm |
||
4965 | * \image html clarkeFormula.gif |
||
4966 | * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and |
||
4967 | * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. |
||
4968 | * \par Fixed-Point Behavior |
||
4969 | * Care must be taken when using the Q31 version of the Clarke transform. |
||
4970 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
4971 | * Refer to the function specific documentation below for usage guidelines. |
||
4972 | */ |
||
4973 | |||
4974 | /** |
||
4975 | * @addtogroup clarke |
||
4976 | * @{ |
||
4977 | */ |
||
4978 | |||
4979 | /** |
||
4980 | * |
||
4981 | * @brief Floating-point Clarke transform |
||
5 | mjames | 4982 | * @param[in] Ia input three-phase coordinate <code>a</code> |
4983 | * @param[in] Ib input three-phase coordinate <code>b</code> |
||
4984 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
4985 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
2 | mjames | 4986 | */ |
4987 | static __INLINE void arm_clarke_f32( |
||
4988 | float32_t Ia, |
||
4989 | float32_t Ib, |
||
4990 | float32_t * pIalpha, |
||
4991 | float32_t * pIbeta) |
||
4992 | { |
||
4993 | /* Calculate pIalpha using the equation, pIalpha = Ia */ |
||
4994 | *pIalpha = Ia; |
||
4995 | |||
4996 | /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ |
||
5 | mjames | 4997 | *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); |
2 | mjames | 4998 | } |
4999 | |||
5 | mjames | 5000 | |
2 | mjames | 5001 | /** |
5002 | * @brief Clarke transform for Q31 version |
||
5 | mjames | 5003 | * @param[in] Ia input three-phase coordinate <code>a</code> |
5004 | * @param[in] Ib input three-phase coordinate <code>b</code> |
||
5005 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
5006 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
2 | mjames | 5007 | * |
5008 | * <b>Scaling and Overflow Behavior:</b> |
||
5009 | * \par |
||
5010 | * The function is implemented using an internal 32-bit accumulator. |
||
5011 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
5012 | * There is saturation on the addition, hence there is no risk of overflow. |
||
5013 | */ |
||
5014 | static __INLINE void arm_clarke_q31( |
||
5015 | q31_t Ia, |
||
5016 | q31_t Ib, |
||
5017 | q31_t * pIalpha, |
||
5018 | q31_t * pIbeta) |
||
5019 | { |
||
5020 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5021 | |||
5022 | /* Calculating pIalpha from Ia by equation pIalpha = Ia */ |
||
5023 | *pIalpha = Ia; |
||
5024 | |||
5025 | /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ |
||
5026 | product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); |
||
5027 | |||
5028 | /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ |
||
5029 | product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); |
||
5030 | |||
5031 | /* pIbeta is calculated by adding the intermediate products */ |
||
5032 | *pIbeta = __QADD(product1, product2); |
||
5033 | } |
||
5034 | |||
5035 | /** |
||
5036 | * @} end of clarke group |
||
5037 | */ |
||
5038 | |||
5039 | /** |
||
5040 | * @brief Converts the elements of the Q7 vector to Q31 vector. |
||
5 | mjames | 5041 | * @param[in] pSrc input pointer |
5042 | * @param[out] pDst output pointer |
||
5043 | * @param[in] blockSize number of samples to process |
||
2 | mjames | 5044 | */ |
5045 | void arm_q7_to_q31( |
||
5046 | q7_t * pSrc, |
||
5047 | q31_t * pDst, |
||
5048 | uint32_t blockSize); |
||
5049 | |||
5050 | |||
5051 | |||
5052 | /** |
||
5053 | * @ingroup groupController |
||
5054 | */ |
||
5055 | |||
5056 | /** |
||
5057 | * @defgroup inv_clarke Vector Inverse Clarke Transform |
||
5058 | * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. |
||
5059 | * |
||
5060 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
5061 | * The library provides separate functions for Q31 and floating-point data types. |
||
5062 | * \par Algorithm |
||
5063 | * \image html clarkeInvFormula.gif |
||
5064 | * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and |
||
5065 | * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. |
||
5066 | * \par Fixed-Point Behavior |
||
5067 | * Care must be taken when using the Q31 version of the Clarke transform. |
||
5068 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
5069 | * Refer to the function specific documentation below for usage guidelines. |
||
5070 | */ |
||
5071 | |||
5072 | /** |
||
5073 | * @addtogroup inv_clarke |
||
5074 | * @{ |
||
5075 | */ |
||
5076 | |||
5077 | /** |
||
5078 | * @brief Floating-point Inverse Clarke transform |
||
5 | mjames | 5079 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha |
5080 | * @param[in] Ibeta input two-phase orthogonal vector axis beta |
||
5081 | * @param[out] pIa points to output three-phase coordinate <code>a</code> |
||
5082 | * @param[out] pIb points to output three-phase coordinate <code>b</code> |
||
2 | mjames | 5083 | */ |
5084 | static __INLINE void arm_inv_clarke_f32( |
||
5085 | float32_t Ialpha, |
||
5086 | float32_t Ibeta, |
||
5087 | float32_t * pIa, |
||
5088 | float32_t * pIb) |
||
5089 | { |
||
5090 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
||
5091 | *pIa = Ialpha; |
||
5092 | |||
5093 | /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ |
||
5 | mjames | 5094 | *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; |
2 | mjames | 5095 | } |
5096 | |||
5 | mjames | 5097 | |
2 | mjames | 5098 | /** |
5099 | * @brief Inverse Clarke transform for Q31 version |
||
5 | mjames | 5100 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha |
5101 | * @param[in] Ibeta input two-phase orthogonal vector axis beta |
||
5102 | * @param[out] pIa points to output three-phase coordinate <code>a</code> |
||
5103 | * @param[out] pIb points to output three-phase coordinate <code>b</code> |
||
2 | mjames | 5104 | * |
5105 | * <b>Scaling and Overflow Behavior:</b> |
||
5106 | * \par |
||
5107 | * The function is implemented using an internal 32-bit accumulator. |
||
5108 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
5109 | * There is saturation on the subtraction, hence there is no risk of overflow. |
||
5110 | */ |
||
5111 | static __INLINE void arm_inv_clarke_q31( |
||
5112 | q31_t Ialpha, |
||
5113 | q31_t Ibeta, |
||
5114 | q31_t * pIa, |
||
5115 | q31_t * pIb) |
||
5116 | { |
||
5117 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5118 | |||
5119 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
||
5120 | *pIa = Ialpha; |
||
5121 | |||
5122 | /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ |
||
5123 | product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); |
||
5124 | |||
5125 | /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ |
||
5126 | product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); |
||
5127 | |||
5128 | /* pIb is calculated by subtracting the products */ |
||
5129 | *pIb = __QSUB(product2, product1); |
||
5130 | } |
||
5131 | |||
5132 | /** |
||
5133 | * @} end of inv_clarke group |
||
5134 | */ |
||
5135 | |||
5136 | /** |
||
5137 | * @brief Converts the elements of the Q7 vector to Q15 vector. |
||
5 | mjames | 5138 | * @param[in] pSrc input pointer |
5139 | * @param[out] pDst output pointer |
||
5140 | * @param[in] blockSize number of samples to process |
||
2 | mjames | 5141 | */ |
5142 | void arm_q7_to_q15( |
||
5143 | q7_t * pSrc, |
||
5144 | q15_t * pDst, |
||
5145 | uint32_t blockSize); |
||
5146 | |||
5147 | |||
5148 | |||
5149 | /** |
||
5150 | * @ingroup groupController |
||
5151 | */ |
||
5152 | |||
5153 | /** |
||
5154 | * @defgroup park Vector Park Transform |
||
5155 | * |
||
5156 | * Forward Park transform converts the input two-coordinate vector to flux and torque components. |
||
5157 | * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents |
||
5158 | * from the stationary to the moving reference frame and control the spatial relationship between |
||
5159 | * the stator vector current and rotor flux vector. |
||
5160 | * If we consider the d axis aligned with the rotor flux, the diagram below shows the |
||
5161 | * current vector and the relationship from the two reference frames: |
||
5162 | * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" |
||
5163 | * |
||
5164 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
5165 | * The library provides separate functions for Q31 and floating-point data types. |
||
5166 | * \par Algorithm |
||
5167 | * \image html parkFormula.gif |
||
5168 | * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, |
||
5169 | * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
||
5170 | * cosine and sine values of theta (rotor flux position). |
||
5171 | * \par Fixed-Point Behavior |
||
5172 | * Care must be taken when using the Q31 version of the Park transform. |
||
5173 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
5174 | * Refer to the function specific documentation below for usage guidelines. |
||
5175 | */ |
||
5176 | |||
5177 | /** |
||
5178 | * @addtogroup park |
||
5179 | * @{ |
||
5180 | */ |
||
5181 | |||
5182 | /** |
||
5183 | * @brief Floating-point Park transform |
||
5 | mjames | 5184 | * @param[in] Ialpha input two-phase vector coordinate alpha |
5185 | * @param[in] Ibeta input two-phase vector coordinate beta |
||
5186 | * @param[out] pId points to output rotor reference frame d |
||
5187 | * @param[out] pIq points to output rotor reference frame q |
||
5188 | * @param[in] sinVal sine value of rotation angle theta |
||
5189 | * @param[in] cosVal cosine value of rotation angle theta |
||
2 | mjames | 5190 | * |
5191 | * The function implements the forward Park transform. |
||
5192 | * |
||
5193 | */ |
||
5194 | static __INLINE void arm_park_f32( |
||
5195 | float32_t Ialpha, |
||
5196 | float32_t Ibeta, |
||
5197 | float32_t * pId, |
||
5198 | float32_t * pIq, |
||
5199 | float32_t sinVal, |
||
5200 | float32_t cosVal) |
||
5201 | { |
||
5202 | /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ |
||
5203 | *pId = Ialpha * cosVal + Ibeta * sinVal; |
||
5204 | |||
5205 | /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ |
||
5206 | *pIq = -Ialpha * sinVal + Ibeta * cosVal; |
||
5207 | } |
||
5208 | |||
5 | mjames | 5209 | |
2 | mjames | 5210 | /** |
5211 | * @brief Park transform for Q31 version |
||
5 | mjames | 5212 | * @param[in] Ialpha input two-phase vector coordinate alpha |
5213 | * @param[in] Ibeta input two-phase vector coordinate beta |
||
5214 | * @param[out] pId points to output rotor reference frame d |
||
5215 | * @param[out] pIq points to output rotor reference frame q |
||
5216 | * @param[in] sinVal sine value of rotation angle theta |
||
5217 | * @param[in] cosVal cosine value of rotation angle theta |
||
2 | mjames | 5218 | * |
5219 | * <b>Scaling and Overflow Behavior:</b> |
||
5220 | * \par |
||
5221 | * The function is implemented using an internal 32-bit accumulator. |
||
5222 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
5223 | * There is saturation on the addition and subtraction, hence there is no risk of overflow. |
||
5224 | */ |
||
5225 | static __INLINE void arm_park_q31( |
||
5226 | q31_t Ialpha, |
||
5227 | q31_t Ibeta, |
||
5228 | q31_t * pId, |
||
5229 | q31_t * pIq, |
||
5230 | q31_t sinVal, |
||
5231 | q31_t cosVal) |
||
5232 | { |
||
5233 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5234 | q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
||
5235 | |||
5236 | /* Intermediate product is calculated by (Ialpha * cosVal) */ |
||
5237 | product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); |
||
5238 | |||
5239 | /* Intermediate product is calculated by (Ibeta * sinVal) */ |
||
5240 | product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); |
||
5241 | |||
5242 | |||
5243 | /* Intermediate product is calculated by (Ialpha * sinVal) */ |
||
5244 | product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); |
||
5245 | |||
5246 | /* Intermediate product is calculated by (Ibeta * cosVal) */ |
||
5247 | product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); |
||
5248 | |||
5249 | /* Calculate pId by adding the two intermediate products 1 and 2 */ |
||
5250 | *pId = __QADD(product1, product2); |
||
5251 | |||
5252 | /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ |
||
5253 | *pIq = __QSUB(product4, product3); |
||
5254 | } |
||
5255 | |||
5256 | /** |
||
5257 | * @} end of park group |
||
5258 | */ |
||
5259 | |||
5260 | /** |
||
5261 | * @brief Converts the elements of the Q7 vector to floating-point vector. |
||
5 | mjames | 5262 | * @param[in] pSrc is input pointer |
5263 | * @param[out] pDst is output pointer |
||
5264 | * @param[in] blockSize is the number of samples to process |
||
2 | mjames | 5265 | */ |
5266 | void arm_q7_to_float( |
||
5267 | q7_t * pSrc, |
||
5268 | float32_t * pDst, |
||
5269 | uint32_t blockSize); |
||
5270 | |||
5271 | |||
5272 | /** |
||
5273 | * @ingroup groupController |
||
5274 | */ |
||
5275 | |||
5276 | /** |
||
5277 | * @defgroup inv_park Vector Inverse Park transform |
||
5278 | * Inverse Park transform converts the input flux and torque components to two-coordinate vector. |
||
5279 | * |
||
5280 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
5281 | * The library provides separate functions for Q31 and floating-point data types. |
||
5282 | * \par Algorithm |
||
5283 | * \image html parkInvFormula.gif |
||
5284 | * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, |
||
5285 | * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
||
5286 | * cosine and sine values of theta (rotor flux position). |
||
5287 | * \par Fixed-Point Behavior |
||
5288 | * Care must be taken when using the Q31 version of the Park transform. |
||
5289 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
5290 | * Refer to the function specific documentation below for usage guidelines. |
||
5291 | */ |
||
5292 | |||
5293 | /** |
||
5294 | * @addtogroup inv_park |
||
5295 | * @{ |
||
5296 | */ |
||
5297 | |||
5298 | /** |
||
5299 | * @brief Floating-point Inverse Park transform |
||
5 | mjames | 5300 | * @param[in] Id input coordinate of rotor reference frame d |
5301 | * @param[in] Iq input coordinate of rotor reference frame q |
||
5302 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
5303 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
5304 | * @param[in] sinVal sine value of rotation angle theta |
||
5305 | * @param[in] cosVal cosine value of rotation angle theta |
||
2 | mjames | 5306 | */ |
5307 | static __INLINE void arm_inv_park_f32( |
||
5308 | float32_t Id, |
||
5309 | float32_t Iq, |
||
5310 | float32_t * pIalpha, |
||
5311 | float32_t * pIbeta, |
||
5312 | float32_t sinVal, |
||
5313 | float32_t cosVal) |
||
5314 | { |
||
5315 | /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ |
||
5316 | *pIalpha = Id * cosVal - Iq * sinVal; |
||
5317 | |||
5318 | /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ |
||
5319 | *pIbeta = Id * sinVal + Iq * cosVal; |
||
5320 | } |
||
5321 | |||
5322 | |||
5323 | /** |
||
5 | mjames | 5324 | * @brief Inverse Park transform for Q31 version |
5325 | * @param[in] Id input coordinate of rotor reference frame d |
||
5326 | * @param[in] Iq input coordinate of rotor reference frame q |
||
5327 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
5328 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
5329 | * @param[in] sinVal sine value of rotation angle theta |
||
5330 | * @param[in] cosVal cosine value of rotation angle theta |
||
2 | mjames | 5331 | * |
5332 | * <b>Scaling and Overflow Behavior:</b> |
||
5333 | * \par |
||
5334 | * The function is implemented using an internal 32-bit accumulator. |
||
5335 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
5336 | * There is saturation on the addition, hence there is no risk of overflow. |
||
5337 | */ |
||
5338 | static __INLINE void arm_inv_park_q31( |
||
5339 | q31_t Id, |
||
5340 | q31_t Iq, |
||
5341 | q31_t * pIalpha, |
||
5342 | q31_t * pIbeta, |
||
5343 | q31_t sinVal, |
||
5344 | q31_t cosVal) |
||
5345 | { |
||
5346 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5347 | q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
||
5348 | |||
5349 | /* Intermediate product is calculated by (Id * cosVal) */ |
||
5350 | product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); |
||
5351 | |||
5352 | /* Intermediate product is calculated by (Iq * sinVal) */ |
||
5353 | product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); |
||
5354 | |||
5355 | |||
5356 | /* Intermediate product is calculated by (Id * sinVal) */ |
||
5357 | product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); |
||
5358 | |||
5359 | /* Intermediate product is calculated by (Iq * cosVal) */ |
||
5360 | product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); |
||
5361 | |||
5362 | /* Calculate pIalpha by using the two intermediate products 1 and 2 */ |
||
5363 | *pIalpha = __QSUB(product1, product2); |
||
5364 | |||
5365 | /* Calculate pIbeta by using the two intermediate products 3 and 4 */ |
||
5366 | *pIbeta = __QADD(product4, product3); |
||
5367 | } |
||
5368 | |||
5369 | /** |
||
5370 | * @} end of Inverse park group |
||
5371 | */ |
||
5372 | |||
5373 | |||
5374 | /** |
||
5375 | * @brief Converts the elements of the Q31 vector to floating-point vector. |
||
5 | mjames | 5376 | * @param[in] pSrc is input pointer |
5377 | * @param[out] pDst is output pointer |
||
5378 | * @param[in] blockSize is the number of samples to process |
||
2 | mjames | 5379 | */ |
5380 | void arm_q31_to_float( |
||
5381 | q31_t * pSrc, |
||
5382 | float32_t * pDst, |
||
5383 | uint32_t blockSize); |
||
5384 | |||
5385 | /** |
||
5386 | * @ingroup groupInterpolation |
||
5387 | */ |
||
5388 | |||
5389 | /** |
||
5390 | * @defgroup LinearInterpolate Linear Interpolation |
||
5391 | * |
||
5392 | * Linear interpolation is a method of curve fitting using linear polynomials. |
||
5393 | * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line |
||
5394 | * |
||
5395 | * \par |
||
5396 | * \image html LinearInterp.gif "Linear interpolation" |
||
5397 | * |
||
5398 | * \par |
||
5399 | * A Linear Interpolate function calculates an output value(y), for the input(x) |
||
5400 | * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) |
||
5401 | * |
||
5402 | * \par Algorithm: |
||
5403 | * <pre> |
||
5404 | * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) |
||
5405 | * where x0, x1 are nearest values of input x |
||
5406 | * y0, y1 are nearest values to output y |
||
5407 | * </pre> |
||
5408 | * |
||
5409 | * \par |
||
5410 | * This set of functions implements Linear interpolation process |
||
5411 | * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single |
||
5412 | * sample of data and each call to the function returns a single processed value. |
||
5413 | * <code>S</code> points to an instance of the Linear Interpolate function data structure. |
||
5414 | * <code>x</code> is the input sample value. The functions returns the output value. |
||
5415 | * |
||
5416 | * \par |
||
5417 | * if x is outside of the table boundary, Linear interpolation returns first value of the table |
||
5418 | * if x is below input range and returns last value of table if x is above range. |
||
5419 | */ |
||
5420 | |||
5421 | /** |
||
5422 | * @addtogroup LinearInterpolate |
||
5423 | * @{ |
||
5424 | */ |
||
5425 | |||
5426 | /** |
||
5427 | * @brief Process function for the floating-point Linear Interpolation Function. |
||
5 | mjames | 5428 | * @param[in,out] S is an instance of the floating-point Linear Interpolation structure |
5429 | * @param[in] x input sample to process |
||
2 | mjames | 5430 | * @return y processed output sample. |
5431 | * |
||
5432 | */ |
||
5433 | static __INLINE float32_t arm_linear_interp_f32( |
||
5434 | arm_linear_interp_instance_f32 * S, |
||
5435 | float32_t x) |
||
5436 | { |
||
5437 | float32_t y; |
||
5438 | float32_t x0, x1; /* Nearest input values */ |
||
5439 | float32_t y0, y1; /* Nearest output values */ |
||
5440 | float32_t xSpacing = S->xSpacing; /* spacing between input values */ |
||
5441 | int32_t i; /* Index variable */ |
||
5442 | float32_t *pYData = S->pYData; /* pointer to output table */ |
||
5443 | |||
5444 | /* Calculation of index */ |
||
5445 | i = (int32_t) ((x - S->x1) / xSpacing); |
||
5446 | |||
5447 | if(i < 0) |
||
5448 | { |
||
5449 | /* Iniatilize output for below specified range as least output value of table */ |
||
5450 | y = pYData[0]; |
||
5451 | } |
||
5452 | else if((uint32_t)i >= S->nValues) |
||
5453 | { |
||
5454 | /* Iniatilize output for above specified range as last output value of table */ |
||
5455 | y = pYData[S->nValues - 1]; |
||
5456 | } |
||
5457 | else |
||
5458 | { |
||
5459 | /* Calculation of nearest input values */ |
||
5 | mjames | 5460 | x0 = S->x1 + i * xSpacing; |
2 | mjames | 5461 | x1 = S->x1 + (i + 1) * xSpacing; |
5462 | |||
5463 | /* Read of nearest output values */ |
||
5464 | y0 = pYData[i]; |
||
5465 | y1 = pYData[i + 1]; |
||
5466 | |||
5467 | /* Calculation of output */ |
||
5468 | y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); |
||
5469 | |||
5470 | } |
||
5471 | |||
5472 | /* returns output value */ |
||
5473 | return (y); |
||
5474 | } |
||
5475 | |||
5 | mjames | 5476 | |
2 | mjames | 5477 | /** |
5478 | * |
||
5479 | * @brief Process function for the Q31 Linear Interpolation Function. |
||
5 | mjames | 5480 | * @param[in] pYData pointer to Q31 Linear Interpolation table |
5481 | * @param[in] x input sample to process |
||
5482 | * @param[in] nValues number of table values |
||
2 | mjames | 5483 | * @return y processed output sample. |
5484 | * |
||
5485 | * \par |
||
5486 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
5487 | * This function can support maximum of table size 2^12. |
||
5488 | * |
||
5489 | */ |
||
5490 | static __INLINE q31_t arm_linear_interp_q31( |
||
5491 | q31_t * pYData, |
||
5492 | q31_t x, |
||
5493 | uint32_t nValues) |
||
5494 | { |
||
5495 | q31_t y; /* output */ |
||
5496 | q31_t y0, y1; /* Nearest output values */ |
||
5497 | q31_t fract; /* fractional part */ |
||
5498 | int32_t index; /* Index to read nearest output values */ |
||
5499 | |||
5500 | /* Input is in 12.20 format */ |
||
5501 | /* 12 bits for the table index */ |
||
5502 | /* Index value calculation */ |
||
5 | mjames | 5503 | index = ((x & (q31_t)0xFFF00000) >> 20); |
2 | mjames | 5504 | |
5505 | if(index >= (int32_t)(nValues - 1)) |
||
5506 | { |
||
5507 | return (pYData[nValues - 1]); |
||
5508 | } |
||
5509 | else if(index < 0) |
||
5510 | { |
||
5511 | return (pYData[0]); |
||
5512 | } |
||
5513 | else |
||
5514 | { |
||
5515 | /* 20 bits for the fractional part */ |
||
5516 | /* shift left by 11 to keep fract in 1.31 format */ |
||
5517 | fract = (x & 0x000FFFFF) << 11; |
||
5518 | |||
5519 | /* Read two nearest output values from the index in 1.31(q31) format */ |
||
5520 | y0 = pYData[index]; |
||
5 | mjames | 5521 | y1 = pYData[index + 1]; |
2 | mjames | 5522 | |
5523 | /* Calculation of y0 * (1-fract) and y is in 2.30 format */ |
||
5524 | y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); |
||
5525 | |||
5526 | /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ |
||
5527 | y += ((q31_t) (((q63_t) y1 * fract) >> 32)); |
||
5528 | |||
5529 | /* Convert y to 1.31 format */ |
||
5530 | return (y << 1u); |
||
5531 | } |
||
5532 | } |
||
5533 | |||
5 | mjames | 5534 | |
2 | mjames | 5535 | /** |
5536 | * |
||
5537 | * @brief Process function for the Q15 Linear Interpolation Function. |
||
5 | mjames | 5538 | * @param[in] pYData pointer to Q15 Linear Interpolation table |
5539 | * @param[in] x input sample to process |
||
5540 | * @param[in] nValues number of table values |
||
2 | mjames | 5541 | * @return y processed output sample. |
5542 | * |
||
5543 | * \par |
||
5544 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
5545 | * This function can support maximum of table size 2^12. |
||
5546 | * |
||
5547 | */ |
||
5548 | static __INLINE q15_t arm_linear_interp_q15( |
||
5549 | q15_t * pYData, |
||
5550 | q31_t x, |
||
5551 | uint32_t nValues) |
||
5552 | { |
||
5553 | q63_t y; /* output */ |
||
5554 | q15_t y0, y1; /* Nearest output values */ |
||
5555 | q31_t fract; /* fractional part */ |
||
5556 | int32_t index; /* Index to read nearest output values */ |
||
5557 | |||
5558 | /* Input is in 12.20 format */ |
||
5559 | /* 12 bits for the table index */ |
||
5560 | /* Index value calculation */ |
||
5 | mjames | 5561 | index = ((x & (int32_t)0xFFF00000) >> 20); |
2 | mjames | 5562 | |
5563 | if(index >= (int32_t)(nValues - 1)) |
||
5564 | { |
||
5565 | return (pYData[nValues - 1]); |
||
5566 | } |
||
5567 | else if(index < 0) |
||
5568 | { |
||
5569 | return (pYData[0]); |
||
5570 | } |
||
5571 | else |
||
5572 | { |
||
5573 | /* 20 bits for the fractional part */ |
||
5574 | /* fract is in 12.20 format */ |
||
5575 | fract = (x & 0x000FFFFF); |
||
5576 | |||
5577 | /* Read two nearest output values from the index */ |
||
5578 | y0 = pYData[index]; |
||
5 | mjames | 5579 | y1 = pYData[index + 1]; |
2 | mjames | 5580 | |
5581 | /* Calculation of y0 * (1-fract) and y is in 13.35 format */ |
||
5582 | y = ((q63_t) y0 * (0xFFFFF - fract)); |
||
5583 | |||
5584 | /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ |
||
5585 | y += ((q63_t) y1 * (fract)); |
||
5586 | |||
5587 | /* convert y to 1.15 format */ |
||
5 | mjames | 5588 | return (q15_t) (y >> 20); |
2 | mjames | 5589 | } |
5 | mjames | 5590 | } |
2 | mjames | 5591 | |
5592 | |||
5593 | /** |
||
5594 | * |
||
5595 | * @brief Process function for the Q7 Linear Interpolation Function. |
||
5 | mjames | 5596 | * @param[in] pYData pointer to Q7 Linear Interpolation table |
5597 | * @param[in] x input sample to process |
||
5598 | * @param[in] nValues number of table values |
||
2 | mjames | 5599 | * @return y processed output sample. |
5600 | * |
||
5601 | * \par |
||
5602 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
5603 | * This function can support maximum of table size 2^12. |
||
5604 | */ |
||
5605 | static __INLINE q7_t arm_linear_interp_q7( |
||
5606 | q7_t * pYData, |
||
5607 | q31_t x, |
||
5608 | uint32_t nValues) |
||
5609 | { |
||
5610 | q31_t y; /* output */ |
||
5611 | q7_t y0, y1; /* Nearest output values */ |
||
5612 | q31_t fract; /* fractional part */ |
||
5613 | uint32_t index; /* Index to read nearest output values */ |
||
5614 | |||
5615 | /* Input is in 12.20 format */ |
||
5616 | /* 12 bits for the table index */ |
||
5617 | /* Index value calculation */ |
||
5618 | if (x < 0) |
||
5619 | { |
||
5620 | return (pYData[0]); |
||
5621 | } |
||
5622 | index = (x >> 20) & 0xfff; |
||
5623 | |||
5624 | if(index >= (nValues - 1)) |
||
5625 | { |
||
5626 | return (pYData[nValues - 1]); |
||
5627 | } |
||
5628 | else |
||
5629 | { |
||
5630 | /* 20 bits for the fractional part */ |
||
5631 | /* fract is in 12.20 format */ |
||
5632 | fract = (x & 0x000FFFFF); |
||
5633 | |||
5634 | /* Read two nearest output values from the index and are in 1.7(q7) format */ |
||
5635 | y0 = pYData[index]; |
||
5 | mjames | 5636 | y1 = pYData[index + 1]; |
2 | mjames | 5637 | |
5638 | /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ |
||
5639 | y = ((y0 * (0xFFFFF - fract))); |
||
5640 | |||
5641 | /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ |
||
5642 | y += (y1 * fract); |
||
5643 | |||
5644 | /* convert y to 1.7(q7) format */ |
||
5 | mjames | 5645 | return (q7_t) (y >> 20); |
5646 | } |
||
5647 | } |
||
2 | mjames | 5648 | |
5649 | /** |
||
5650 | * @} end of LinearInterpolate group |
||
5651 | */ |
||
5652 | |||
5653 | /** |
||
5654 | * @brief Fast approximation to the trigonometric sine function for floating-point data. |
||
5 | mjames | 5655 | * @param[in] x input value in radians. |
2 | mjames | 5656 | * @return sin(x). |
5657 | */ |
||
5658 | float32_t arm_sin_f32( |
||
5659 | float32_t x); |
||
5660 | |||
5 | mjames | 5661 | |
2 | mjames | 5662 | /** |
5663 | * @brief Fast approximation to the trigonometric sine function for Q31 data. |
||
5 | mjames | 5664 | * @param[in] x Scaled input value in radians. |
2 | mjames | 5665 | * @return sin(x). |
5666 | */ |
||
5667 | q31_t arm_sin_q31( |
||
5668 | q31_t x); |
||
5669 | |||
5 | mjames | 5670 | |
2 | mjames | 5671 | /** |
5672 | * @brief Fast approximation to the trigonometric sine function for Q15 data. |
||
5 | mjames | 5673 | * @param[in] x Scaled input value in radians. |
2 | mjames | 5674 | * @return sin(x). |
5675 | */ |
||
5676 | q15_t arm_sin_q15( |
||
5677 | q15_t x); |
||
5678 | |||
5 | mjames | 5679 | |
2 | mjames | 5680 | /** |
5681 | * @brief Fast approximation to the trigonometric cosine function for floating-point data. |
||
5 | mjames | 5682 | * @param[in] x input value in radians. |
2 | mjames | 5683 | * @return cos(x). |
5684 | */ |
||
5685 | float32_t arm_cos_f32( |
||
5686 | float32_t x); |
||
5687 | |||
5 | mjames | 5688 | |
2 | mjames | 5689 | /** |
5690 | * @brief Fast approximation to the trigonometric cosine function for Q31 data. |
||
5 | mjames | 5691 | * @param[in] x Scaled input value in radians. |
2 | mjames | 5692 | * @return cos(x). |
5693 | */ |
||
5694 | q31_t arm_cos_q31( |
||
5695 | q31_t x); |
||
5696 | |||
5 | mjames | 5697 | |
2 | mjames | 5698 | /** |
5699 | * @brief Fast approximation to the trigonometric cosine function for Q15 data. |
||
5 | mjames | 5700 | * @param[in] x Scaled input value in radians. |
2 | mjames | 5701 | * @return cos(x). |
5702 | */ |
||
5703 | q15_t arm_cos_q15( |
||
5704 | q15_t x); |
||
5705 | |||
5706 | |||
5707 | /** |
||
5708 | * @ingroup groupFastMath |
||
5709 | */ |
||
5710 | |||
5711 | |||
5712 | /** |
||
5713 | * @defgroup SQRT Square Root |
||
5714 | * |
||
5715 | * Computes the square root of a number. |
||
5716 | * There are separate functions for Q15, Q31, and floating-point data types. |
||
5717 | * The square root function is computed using the Newton-Raphson algorithm. |
||
5718 | * This is an iterative algorithm of the form: |
||
5719 | * <pre> |
||
5720 | * x1 = x0 - f(x0)/f'(x0) |
||
5721 | * </pre> |
||
5722 | * where <code>x1</code> is the current estimate, |
||
5723 | * <code>x0</code> is the previous estimate, and |
||
5724 | * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. |
||
5725 | * For the square root function, the algorithm reduces to: |
||
5726 | * <pre> |
||
5727 | * x0 = in/2 [initial guess] |
||
5728 | * x1 = 1/2 * ( x0 + in / x0) [each iteration] |
||
5729 | * </pre> |
||
5730 | */ |
||
5731 | |||
5732 | |||
5733 | /** |
||
5734 | * @addtogroup SQRT |
||
5735 | * @{ |
||
5736 | */ |
||
5737 | |||
5738 | /** |
||
5739 | * @brief Floating-point square root function. |
||
5 | mjames | 5740 | * @param[in] in input value. |
5741 | * @param[out] pOut square root of input value. |
||
2 | mjames | 5742 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
5743 | * <code>in</code> is negative value and returns zero output for negative values. |
||
5744 | */ |
||
5745 | static __INLINE arm_status arm_sqrt_f32( |
||
5746 | float32_t in, |
||
5747 | float32_t * pOut) |
||
5748 | { |
||
5749 | if(in >= 0.0f) |
||
5750 | { |
||
5751 | |||
5 | mjames | 5752 | #if (__FPU_USED == 1) && defined ( __CC_ARM ) |
2 | mjames | 5753 | *pOut = __sqrtf(in); |
5 | mjames | 5754 | #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) |
5755 | *pOut = __builtin_sqrtf(in); |
||
5756 | #elif (__FPU_USED == 1) && defined(__GNUC__) |
||
5757 | *pOut = __builtin_sqrtf(in); |
||
5758 | #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000) |
||
5759 | __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); |
||
2 | mjames | 5760 | #else |
5761 | *pOut = sqrtf(in); |
||
5762 | #endif |
||
5763 | |||
5764 | return (ARM_MATH_SUCCESS); |
||
5765 | } |
||
5766 | else |
||
5767 | { |
||
5768 | *pOut = 0.0f; |
||
5769 | return (ARM_MATH_ARGUMENT_ERROR); |
||
5770 | } |
||
5771 | } |
||
5772 | |||
5773 | |||
5774 | /** |
||
5775 | * @brief Q31 square root function. |
||
5 | mjames | 5776 | * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. |
5777 | * @param[out] pOut square root of input value. |
||
2 | mjames | 5778 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
5779 | * <code>in</code> is negative value and returns zero output for negative values. |
||
5780 | */ |
||
5781 | arm_status arm_sqrt_q31( |
||
5782 | q31_t in, |
||
5783 | q31_t * pOut); |
||
5784 | |||
5 | mjames | 5785 | |
2 | mjames | 5786 | /** |
5787 | * @brief Q15 square root function. |
||
5 | mjames | 5788 | * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. |
5789 | * @param[out] pOut square root of input value. |
||
2 | mjames | 5790 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
5791 | * <code>in</code> is negative value and returns zero output for negative values. |
||
5792 | */ |
||
5793 | arm_status arm_sqrt_q15( |
||
5794 | q15_t in, |
||
5795 | q15_t * pOut); |
||
5796 | |||
5797 | /** |
||
5798 | * @} end of SQRT group |
||
5799 | */ |
||
5800 | |||
5801 | |||
5802 | /** |
||
5803 | * @brief floating-point Circular write function. |
||
5804 | */ |
||
5805 | static __INLINE void arm_circularWrite_f32( |
||
5806 | int32_t * circBuffer, |
||
5807 | int32_t L, |
||
5808 | uint16_t * writeOffset, |
||
5809 | int32_t bufferInc, |
||
5810 | const int32_t * src, |
||
5811 | int32_t srcInc, |
||
5812 | uint32_t blockSize) |
||
5813 | { |
||
5814 | uint32_t i = 0u; |
||
5815 | int32_t wOffset; |
||
5816 | |||
5817 | /* Copy the value of Index pointer that points |
||
5818 | * to the current location where the input samples to be copied */ |
||
5819 | wOffset = *writeOffset; |
||
5820 | |||
5821 | /* Loop over the blockSize */ |
||
5822 | i = blockSize; |
||
5823 | |||
5824 | while(i > 0u) |
||
5825 | { |
||
5826 | /* copy the input sample to the circular buffer */ |
||
5827 | circBuffer[wOffset] = *src; |
||
5828 | |||
5829 | /* Update the input pointer */ |
||
5830 | src += srcInc; |
||
5831 | |||
5832 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
5833 | wOffset += bufferInc; |
||
5834 | if(wOffset >= L) |
||
5835 | wOffset -= L; |
||
5836 | |||
5837 | /* Decrement the loop counter */ |
||
5838 | i--; |
||
5839 | } |
||
5840 | |||
5841 | /* Update the index pointer */ |
||
5 | mjames | 5842 | *writeOffset = (uint16_t)wOffset; |
2 | mjames | 5843 | } |
5844 | |||
5845 | |||
5846 | |||
5847 | /** |
||
5848 | * @brief floating-point Circular Read function. |
||
5849 | */ |
||
5850 | static __INLINE void arm_circularRead_f32( |
||
5851 | int32_t * circBuffer, |
||
5852 | int32_t L, |
||
5853 | int32_t * readOffset, |
||
5854 | int32_t bufferInc, |
||
5855 | int32_t * dst, |
||
5856 | int32_t * dst_base, |
||
5857 | int32_t dst_length, |
||
5858 | int32_t dstInc, |
||
5859 | uint32_t blockSize) |
||
5860 | { |
||
5861 | uint32_t i = 0u; |
||
5862 | int32_t rOffset, dst_end; |
||
5863 | |||
5864 | /* Copy the value of Index pointer that points |
||
5865 | * to the current location from where the input samples to be read */ |
||
5866 | rOffset = *readOffset; |
||
5867 | dst_end = (int32_t) (dst_base + dst_length); |
||
5868 | |||
5869 | /* Loop over the blockSize */ |
||
5870 | i = blockSize; |
||
5871 | |||
5872 | while(i > 0u) |
||
5873 | { |
||
5874 | /* copy the sample from the circular buffer to the destination buffer */ |
||
5875 | *dst = circBuffer[rOffset]; |
||
5876 | |||
5877 | /* Update the input pointer */ |
||
5878 | dst += dstInc; |
||
5879 | |||
5880 | if(dst == (int32_t *) dst_end) |
||
5881 | { |
||
5882 | dst = dst_base; |
||
5883 | } |
||
5884 | |||
5885 | /* Circularly update rOffset. Watch out for positive and negative value */ |
||
5886 | rOffset += bufferInc; |
||
5887 | |||
5888 | if(rOffset >= L) |
||
5889 | { |
||
5890 | rOffset -= L; |
||
5891 | } |
||
5892 | |||
5893 | /* Decrement the loop counter */ |
||
5894 | i--; |
||
5895 | } |
||
5896 | |||
5897 | /* Update the index pointer */ |
||
5898 | *readOffset = rOffset; |
||
5899 | } |
||
5900 | |||
5 | mjames | 5901 | |
2 | mjames | 5902 | /** |
5903 | * @brief Q15 Circular write function. |
||
5904 | */ |
||
5905 | static __INLINE void arm_circularWrite_q15( |
||
5906 | q15_t * circBuffer, |
||
5907 | int32_t L, |
||
5908 | uint16_t * writeOffset, |
||
5909 | int32_t bufferInc, |
||
5910 | const q15_t * src, |
||
5911 | int32_t srcInc, |
||
5912 | uint32_t blockSize) |
||
5913 | { |
||
5914 | uint32_t i = 0u; |
||
5915 | int32_t wOffset; |
||
5916 | |||
5917 | /* Copy the value of Index pointer that points |
||
5918 | * to the current location where the input samples to be copied */ |
||
5919 | wOffset = *writeOffset; |
||
5920 | |||
5921 | /* Loop over the blockSize */ |
||
5922 | i = blockSize; |
||
5923 | |||
5924 | while(i > 0u) |
||
5925 | { |
||
5926 | /* copy the input sample to the circular buffer */ |
||
5927 | circBuffer[wOffset] = *src; |
||
5928 | |||
5929 | /* Update the input pointer */ |
||
5930 | src += srcInc; |
||
5931 | |||
5932 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
5933 | wOffset += bufferInc; |
||
5934 | if(wOffset >= L) |
||
5935 | wOffset -= L; |
||
5936 | |||
5937 | /* Decrement the loop counter */ |
||
5938 | i--; |
||
5939 | } |
||
5940 | |||
5941 | /* Update the index pointer */ |
||
5 | mjames | 5942 | *writeOffset = (uint16_t)wOffset; |
2 | mjames | 5943 | } |
5944 | |||
5945 | |||
5946 | /** |
||
5947 | * @brief Q15 Circular Read function. |
||
5948 | */ |
||
5949 | static __INLINE void arm_circularRead_q15( |
||
5950 | q15_t * circBuffer, |
||
5951 | int32_t L, |
||
5952 | int32_t * readOffset, |
||
5953 | int32_t bufferInc, |
||
5954 | q15_t * dst, |
||
5955 | q15_t * dst_base, |
||
5956 | int32_t dst_length, |
||
5957 | int32_t dstInc, |
||
5958 | uint32_t blockSize) |
||
5959 | { |
||
5960 | uint32_t i = 0; |
||
5961 | int32_t rOffset, dst_end; |
||
5962 | |||
5963 | /* Copy the value of Index pointer that points |
||
5964 | * to the current location from where the input samples to be read */ |
||
5965 | rOffset = *readOffset; |
||
5966 | |||
5967 | dst_end = (int32_t) (dst_base + dst_length); |
||
5968 | |||
5969 | /* Loop over the blockSize */ |
||
5970 | i = blockSize; |
||
5971 | |||
5972 | while(i > 0u) |
||
5973 | { |
||
5974 | /* copy the sample from the circular buffer to the destination buffer */ |
||
5975 | *dst = circBuffer[rOffset]; |
||
5976 | |||
5977 | /* Update the input pointer */ |
||
5978 | dst += dstInc; |
||
5979 | |||
5980 | if(dst == (q15_t *) dst_end) |
||
5981 | { |
||
5982 | dst = dst_base; |
||
5983 | } |
||
5984 | |||
5985 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
5986 | rOffset += bufferInc; |
||
5987 | |||
5988 | if(rOffset >= L) |
||
5989 | { |
||
5990 | rOffset -= L; |
||
5991 | } |
||
5992 | |||
5993 | /* Decrement the loop counter */ |
||
5994 | i--; |
||
5995 | } |
||
5996 | |||
5997 | /* Update the index pointer */ |
||
5998 | *readOffset = rOffset; |
||
5999 | } |
||
6000 | |||
6001 | |||
6002 | /** |
||
6003 | * @brief Q7 Circular write function. |
||
6004 | */ |
||
6005 | static __INLINE void arm_circularWrite_q7( |
||
6006 | q7_t * circBuffer, |
||
6007 | int32_t L, |
||
6008 | uint16_t * writeOffset, |
||
6009 | int32_t bufferInc, |
||
6010 | const q7_t * src, |
||
6011 | int32_t srcInc, |
||
6012 | uint32_t blockSize) |
||
6013 | { |
||
6014 | uint32_t i = 0u; |
||
6015 | int32_t wOffset; |
||
6016 | |||
6017 | /* Copy the value of Index pointer that points |
||
6018 | * to the current location where the input samples to be copied */ |
||
6019 | wOffset = *writeOffset; |
||
6020 | |||
6021 | /* Loop over the blockSize */ |
||
6022 | i = blockSize; |
||
6023 | |||
6024 | while(i > 0u) |
||
6025 | { |
||
6026 | /* copy the input sample to the circular buffer */ |
||
6027 | circBuffer[wOffset] = *src; |
||
6028 | |||
6029 | /* Update the input pointer */ |
||
6030 | src += srcInc; |
||
6031 | |||
6032 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
6033 | wOffset += bufferInc; |
||
6034 | if(wOffset >= L) |
||
6035 | wOffset -= L; |
||
6036 | |||
6037 | /* Decrement the loop counter */ |
||
6038 | i--; |
||
6039 | } |
||
6040 | |||
6041 | /* Update the index pointer */ |
||
5 | mjames | 6042 | *writeOffset = (uint16_t)wOffset; |
2 | mjames | 6043 | } |
6044 | |||
6045 | |||
6046 | /** |
||
6047 | * @brief Q7 Circular Read function. |
||
6048 | */ |
||
6049 | static __INLINE void arm_circularRead_q7( |
||
6050 | q7_t * circBuffer, |
||
6051 | int32_t L, |
||
6052 | int32_t * readOffset, |
||
6053 | int32_t bufferInc, |
||
6054 | q7_t * dst, |
||
6055 | q7_t * dst_base, |
||
6056 | int32_t dst_length, |
||
6057 | int32_t dstInc, |
||
6058 | uint32_t blockSize) |
||
6059 | { |
||
6060 | uint32_t i = 0; |
||
6061 | int32_t rOffset, dst_end; |
||
6062 | |||
6063 | /* Copy the value of Index pointer that points |
||
6064 | * to the current location from where the input samples to be read */ |
||
6065 | rOffset = *readOffset; |
||
6066 | |||
6067 | dst_end = (int32_t) (dst_base + dst_length); |
||
6068 | |||
6069 | /* Loop over the blockSize */ |
||
6070 | i = blockSize; |
||
6071 | |||
6072 | while(i > 0u) |
||
6073 | { |
||
6074 | /* copy the sample from the circular buffer to the destination buffer */ |
||
6075 | *dst = circBuffer[rOffset]; |
||
6076 | |||
6077 | /* Update the input pointer */ |
||
6078 | dst += dstInc; |
||
6079 | |||
6080 | if(dst == (q7_t *) dst_end) |
||
6081 | { |
||
6082 | dst = dst_base; |
||
6083 | } |
||
6084 | |||
6085 | /* Circularly update rOffset. Watch out for positive and negative value */ |
||
6086 | rOffset += bufferInc; |
||
6087 | |||
6088 | if(rOffset >= L) |
||
6089 | { |
||
6090 | rOffset -= L; |
||
6091 | } |
||
6092 | |||
6093 | /* Decrement the loop counter */ |
||
6094 | i--; |
||
6095 | } |
||
6096 | |||
6097 | /* Update the index pointer */ |
||
6098 | *readOffset = rOffset; |
||
6099 | } |
||
6100 | |||
6101 | |||
6102 | /** |
||
6103 | * @brief Sum of the squares of the elements of a Q31 vector. |
||
5 | mjames | 6104 | * @param[in] pSrc is input pointer |
6105 | * @param[in] blockSize is the number of samples to process |
||
6106 | * @param[out] pResult is output value. |
||
2 | mjames | 6107 | */ |
6108 | void arm_power_q31( |
||
6109 | q31_t * pSrc, |
||
6110 | uint32_t blockSize, |
||
6111 | q63_t * pResult); |
||
6112 | |||
5 | mjames | 6113 | |
2 | mjames | 6114 | /** |
6115 | * @brief Sum of the squares of the elements of a floating-point vector. |
||
5 | mjames | 6116 | * @param[in] pSrc is input pointer |
6117 | * @param[in] blockSize is the number of samples to process |
||
6118 | * @param[out] pResult is output value. |
||
2 | mjames | 6119 | */ |
6120 | void arm_power_f32( |
||
6121 | float32_t * pSrc, |
||
6122 | uint32_t blockSize, |
||
6123 | float32_t * pResult); |
||
6124 | |||
5 | mjames | 6125 | |
2 | mjames | 6126 | /** |
6127 | * @brief Sum of the squares of the elements of a Q15 vector. |
||
5 | mjames | 6128 | * @param[in] pSrc is input pointer |
6129 | * @param[in] blockSize is the number of samples to process |
||
6130 | * @param[out] pResult is output value. |
||
2 | mjames | 6131 | */ |
6132 | void arm_power_q15( |
||
6133 | q15_t * pSrc, |
||
6134 | uint32_t blockSize, |
||
6135 | q63_t * pResult); |
||
6136 | |||
5 | mjames | 6137 | |
2 | mjames | 6138 | /** |
6139 | * @brief Sum of the squares of the elements of a Q7 vector. |
||
5 | mjames | 6140 | * @param[in] pSrc is input pointer |
6141 | * @param[in] blockSize is the number of samples to process |
||
6142 | * @param[out] pResult is output value. |
||
2 | mjames | 6143 | */ |
6144 | void arm_power_q7( |
||
6145 | q7_t * pSrc, |
||
6146 | uint32_t blockSize, |
||
6147 | q31_t * pResult); |
||
6148 | |||
5 | mjames | 6149 | |
2 | mjames | 6150 | /** |
6151 | * @brief Mean value of a Q7 vector. |
||
5 | mjames | 6152 | * @param[in] pSrc is input pointer |
6153 | * @param[in] blockSize is the number of samples to process |
||
6154 | * @param[out] pResult is output value. |
||
2 | mjames | 6155 | */ |
6156 | void arm_mean_q7( |
||
6157 | q7_t * pSrc, |
||
6158 | uint32_t blockSize, |
||
6159 | q7_t * pResult); |
||
6160 | |||
5 | mjames | 6161 | |
2 | mjames | 6162 | /** |
6163 | * @brief Mean value of a Q15 vector. |
||
5 | mjames | 6164 | * @param[in] pSrc is input pointer |
6165 | * @param[in] blockSize is the number of samples to process |
||
6166 | * @param[out] pResult is output value. |
||
2 | mjames | 6167 | */ |
6168 | void arm_mean_q15( |
||
6169 | q15_t * pSrc, |
||
6170 | uint32_t blockSize, |
||
6171 | q15_t * pResult); |
||
6172 | |||
5 | mjames | 6173 | |
2 | mjames | 6174 | /** |
6175 | * @brief Mean value of a Q31 vector. |
||
5 | mjames | 6176 | * @param[in] pSrc is input pointer |
6177 | * @param[in] blockSize is the number of samples to process |
||
6178 | * @param[out] pResult is output value. |
||
2 | mjames | 6179 | */ |
6180 | void arm_mean_q31( |
||
6181 | q31_t * pSrc, |
||
6182 | uint32_t blockSize, |
||
6183 | q31_t * pResult); |
||
6184 | |||
5 | mjames | 6185 | |
2 | mjames | 6186 | /** |
6187 | * @brief Mean value of a floating-point vector. |
||
5 | mjames | 6188 | * @param[in] pSrc is input pointer |
6189 | * @param[in] blockSize is the number of samples to process |
||
6190 | * @param[out] pResult is output value. |
||
2 | mjames | 6191 | */ |
6192 | void arm_mean_f32( |
||
6193 | float32_t * pSrc, |
||
6194 | uint32_t blockSize, |
||
6195 | float32_t * pResult); |
||
6196 | |||
5 | mjames | 6197 | |
2 | mjames | 6198 | /** |
6199 | * @brief Variance of the elements of a floating-point vector. |
||
5 | mjames | 6200 | * @param[in] pSrc is input pointer |
6201 | * @param[in] blockSize is the number of samples to process |
||
6202 | * @param[out] pResult is output value. |
||
2 | mjames | 6203 | */ |
6204 | void arm_var_f32( |
||
6205 | float32_t * pSrc, |
||
6206 | uint32_t blockSize, |
||
6207 | float32_t * pResult); |
||
6208 | |||
5 | mjames | 6209 | |
2 | mjames | 6210 | /** |
6211 | * @brief Variance of the elements of a Q31 vector. |
||
5 | mjames | 6212 | * @param[in] pSrc is input pointer |
6213 | * @param[in] blockSize is the number of samples to process |
||
6214 | * @param[out] pResult is output value. |
||
2 | mjames | 6215 | */ |
6216 | void arm_var_q31( |
||
6217 | q31_t * pSrc, |
||
6218 | uint32_t blockSize, |
||
6219 | q31_t * pResult); |
||
6220 | |||
5 | mjames | 6221 | |
2 | mjames | 6222 | /** |
6223 | * @brief Variance of the elements of a Q15 vector. |
||
5 | mjames | 6224 | * @param[in] pSrc is input pointer |
6225 | * @param[in] blockSize is the number of samples to process |
||
6226 | * @param[out] pResult is output value. |
||
2 | mjames | 6227 | */ |
6228 | void arm_var_q15( |
||
6229 | q15_t * pSrc, |
||
6230 | uint32_t blockSize, |
||
6231 | q15_t * pResult); |
||
6232 | |||
5 | mjames | 6233 | |
2 | mjames | 6234 | /** |
6235 | * @brief Root Mean Square of the elements of a floating-point vector. |
||
5 | mjames | 6236 | * @param[in] pSrc is input pointer |
6237 | * @param[in] blockSize is the number of samples to process |
||
6238 | * @param[out] pResult is output value. |
||
2 | mjames | 6239 | */ |
6240 | void arm_rms_f32( |
||
6241 | float32_t * pSrc, |
||
6242 | uint32_t blockSize, |
||
6243 | float32_t * pResult); |
||
6244 | |||
5 | mjames | 6245 | |
2 | mjames | 6246 | /** |
6247 | * @brief Root Mean Square of the elements of a Q31 vector. |
||
5 | mjames | 6248 | * @param[in] pSrc is input pointer |
6249 | * @param[in] blockSize is the number of samples to process |
||
6250 | * @param[out] pResult is output value. |
||
2 | mjames | 6251 | */ |
6252 | void arm_rms_q31( |
||
6253 | q31_t * pSrc, |
||
6254 | uint32_t blockSize, |
||
6255 | q31_t * pResult); |
||
6256 | |||
5 | mjames | 6257 | |
2 | mjames | 6258 | /** |
6259 | * @brief Root Mean Square of the elements of a Q15 vector. |
||
5 | mjames | 6260 | * @param[in] pSrc is input pointer |
6261 | * @param[in] blockSize is the number of samples to process |
||
6262 | * @param[out] pResult is output value. |
||
2 | mjames | 6263 | */ |
6264 | void arm_rms_q15( |
||
6265 | q15_t * pSrc, |
||
6266 | uint32_t blockSize, |
||
6267 | q15_t * pResult); |
||
6268 | |||
5 | mjames | 6269 | |
2 | mjames | 6270 | /** |
6271 | * @brief Standard deviation of the elements of a floating-point vector. |
||
5 | mjames | 6272 | * @param[in] pSrc is input pointer |
6273 | * @param[in] blockSize is the number of samples to process |
||
6274 | * @param[out] pResult is output value. |
||
2 | mjames | 6275 | */ |
6276 | void arm_std_f32( |
||
6277 | float32_t * pSrc, |
||
6278 | uint32_t blockSize, |
||
6279 | float32_t * pResult); |
||
6280 | |||
5 | mjames | 6281 | |
2 | mjames | 6282 | /** |
6283 | * @brief Standard deviation of the elements of a Q31 vector. |
||
5 | mjames | 6284 | * @param[in] pSrc is input pointer |
6285 | * @param[in] blockSize is the number of samples to process |
||
6286 | * @param[out] pResult is output value. |
||
2 | mjames | 6287 | */ |
6288 | void arm_std_q31( |
||
6289 | q31_t * pSrc, |
||
6290 | uint32_t blockSize, |
||
6291 | q31_t * pResult); |
||
6292 | |||
5 | mjames | 6293 | |
2 | mjames | 6294 | /** |
6295 | * @brief Standard deviation of the elements of a Q15 vector. |
||
5 | mjames | 6296 | * @param[in] pSrc is input pointer |
6297 | * @param[in] blockSize is the number of samples to process |
||
6298 | * @param[out] pResult is output value. |
||
2 | mjames | 6299 | */ |
6300 | void arm_std_q15( |
||
6301 | q15_t * pSrc, |
||
6302 | uint32_t blockSize, |
||
6303 | q15_t * pResult); |
||
6304 | |||
5 | mjames | 6305 | |
2 | mjames | 6306 | /** |
6307 | * @brief Floating-point complex magnitude |
||
5 | mjames | 6308 | * @param[in] pSrc points to the complex input vector |
6309 | * @param[out] pDst points to the real output vector |
||
6310 | * @param[in] numSamples number of complex samples in the input vector |
||
2 | mjames | 6311 | */ |
6312 | void arm_cmplx_mag_f32( |
||
6313 | float32_t * pSrc, |
||
6314 | float32_t * pDst, |
||
6315 | uint32_t numSamples); |
||
6316 | |||
5 | mjames | 6317 | |
2 | mjames | 6318 | /** |
6319 | * @brief Q31 complex magnitude |
||
5 | mjames | 6320 | * @param[in] pSrc points to the complex input vector |
6321 | * @param[out] pDst points to the real output vector |
||
6322 | * @param[in] numSamples number of complex samples in the input vector |
||
2 | mjames | 6323 | */ |
6324 | void arm_cmplx_mag_q31( |
||
6325 | q31_t * pSrc, |
||
6326 | q31_t * pDst, |
||
6327 | uint32_t numSamples); |
||
6328 | |||
5 | mjames | 6329 | |
2 | mjames | 6330 | /** |
6331 | * @brief Q15 complex magnitude |
||
5 | mjames | 6332 | * @param[in] pSrc points to the complex input vector |
6333 | * @param[out] pDst points to the real output vector |
||
6334 | * @param[in] numSamples number of complex samples in the input vector |
||
2 | mjames | 6335 | */ |
6336 | void arm_cmplx_mag_q15( |
||
6337 | q15_t * pSrc, |
||
6338 | q15_t * pDst, |
||
6339 | uint32_t numSamples); |
||
6340 | |||
5 | mjames | 6341 | |
2 | mjames | 6342 | /** |
6343 | * @brief Q15 complex dot product |
||
5 | mjames | 6344 | * @param[in] pSrcA points to the first input vector |
6345 | * @param[in] pSrcB points to the second input vector |
||
6346 | * @param[in] numSamples number of complex samples in each vector |
||
6347 | * @param[out] realResult real part of the result returned here |
||
6348 | * @param[out] imagResult imaginary part of the result returned here |
||
2 | mjames | 6349 | */ |
6350 | void arm_cmplx_dot_prod_q15( |
||
6351 | q15_t * pSrcA, |
||
6352 | q15_t * pSrcB, |
||
6353 | uint32_t numSamples, |
||
6354 | q31_t * realResult, |
||
6355 | q31_t * imagResult); |
||
6356 | |||
5 | mjames | 6357 | |
2 | mjames | 6358 | /** |
6359 | * @brief Q31 complex dot product |
||
5 | mjames | 6360 | * @param[in] pSrcA points to the first input vector |
6361 | * @param[in] pSrcB points to the second input vector |
||
6362 | * @param[in] numSamples number of complex samples in each vector |
||
6363 | * @param[out] realResult real part of the result returned here |
||
6364 | * @param[out] imagResult imaginary part of the result returned here |
||
2 | mjames | 6365 | */ |
6366 | void arm_cmplx_dot_prod_q31( |
||
6367 | q31_t * pSrcA, |
||
6368 | q31_t * pSrcB, |
||
6369 | uint32_t numSamples, |
||
6370 | q63_t * realResult, |
||
6371 | q63_t * imagResult); |
||
6372 | |||
5 | mjames | 6373 | |
2 | mjames | 6374 | /** |
6375 | * @brief Floating-point complex dot product |
||
5 | mjames | 6376 | * @param[in] pSrcA points to the first input vector |
6377 | * @param[in] pSrcB points to the second input vector |
||
6378 | * @param[in] numSamples number of complex samples in each vector |
||
6379 | * @param[out] realResult real part of the result returned here |
||
6380 | * @param[out] imagResult imaginary part of the result returned here |
||
2 | mjames | 6381 | */ |
6382 | void arm_cmplx_dot_prod_f32( |
||
6383 | float32_t * pSrcA, |
||
6384 | float32_t * pSrcB, |
||
6385 | uint32_t numSamples, |
||
6386 | float32_t * realResult, |
||
6387 | float32_t * imagResult); |
||
6388 | |||
5 | mjames | 6389 | |
2 | mjames | 6390 | /** |
6391 | * @brief Q15 complex-by-real multiplication |
||
5 | mjames | 6392 | * @param[in] pSrcCmplx points to the complex input vector |
6393 | * @param[in] pSrcReal points to the real input vector |
||
6394 | * @param[out] pCmplxDst points to the complex output vector |
||
6395 | * @param[in] numSamples number of samples in each vector |
||
2 | mjames | 6396 | */ |
6397 | void arm_cmplx_mult_real_q15( |
||
6398 | q15_t * pSrcCmplx, |
||
6399 | q15_t * pSrcReal, |
||
6400 | q15_t * pCmplxDst, |
||
6401 | uint32_t numSamples); |
||
6402 | |||
5 | mjames | 6403 | |
2 | mjames | 6404 | /** |
6405 | * @brief Q31 complex-by-real multiplication |
||
5 | mjames | 6406 | * @param[in] pSrcCmplx points to the complex input vector |
6407 | * @param[in] pSrcReal points to the real input vector |
||
6408 | * @param[out] pCmplxDst points to the complex output vector |
||
6409 | * @param[in] numSamples number of samples in each vector |
||
2 | mjames | 6410 | */ |
6411 | void arm_cmplx_mult_real_q31( |
||
6412 | q31_t * pSrcCmplx, |
||
6413 | q31_t * pSrcReal, |
||
6414 | q31_t * pCmplxDst, |
||
6415 | uint32_t numSamples); |
||
6416 | |||
5 | mjames | 6417 | |
2 | mjames | 6418 | /** |
6419 | * @brief Floating-point complex-by-real multiplication |
||
5 | mjames | 6420 | * @param[in] pSrcCmplx points to the complex input vector |
6421 | * @param[in] pSrcReal points to the real input vector |
||
6422 | * @param[out] pCmplxDst points to the complex output vector |
||
6423 | * @param[in] numSamples number of samples in each vector |
||
2 | mjames | 6424 | */ |
6425 | void arm_cmplx_mult_real_f32( |
||
6426 | float32_t * pSrcCmplx, |
||
6427 | float32_t * pSrcReal, |
||
6428 | float32_t * pCmplxDst, |
||
6429 | uint32_t numSamples); |
||
6430 | |||
5 | mjames | 6431 | |
2 | mjames | 6432 | /** |
6433 | * @brief Minimum value of a Q7 vector. |
||
5 | mjames | 6434 | * @param[in] pSrc is input pointer |
6435 | * @param[in] blockSize is the number of samples to process |
||
6436 | * @param[out] result is output pointer |
||
6437 | * @param[in] index is the array index of the minimum value in the input buffer. |
||
2 | mjames | 6438 | */ |
6439 | void arm_min_q7( |
||
6440 | q7_t * pSrc, |
||
6441 | uint32_t blockSize, |
||
6442 | q7_t * result, |
||
6443 | uint32_t * index); |
||
6444 | |||
5 | mjames | 6445 | |
2 | mjames | 6446 | /** |
6447 | * @brief Minimum value of a Q15 vector. |
||
5 | mjames | 6448 | * @param[in] pSrc is input pointer |
6449 | * @param[in] blockSize is the number of samples to process |
||
6450 | * @param[out] pResult is output pointer |
||
6451 | * @param[in] pIndex is the array index of the minimum value in the input buffer. |
||
2 | mjames | 6452 | */ |
6453 | void arm_min_q15( |
||
6454 | q15_t * pSrc, |
||
6455 | uint32_t blockSize, |
||
6456 | q15_t * pResult, |
||
6457 | uint32_t * pIndex); |
||
6458 | |||
5 | mjames | 6459 | |
2 | mjames | 6460 | /** |
6461 | * @brief Minimum value of a Q31 vector. |
||
5 | mjames | 6462 | * @param[in] pSrc is input pointer |
6463 | * @param[in] blockSize is the number of samples to process |
||
6464 | * @param[out] pResult is output pointer |
||
6465 | * @param[out] pIndex is the array index of the minimum value in the input buffer. |
||
2 | mjames | 6466 | */ |
6467 | void arm_min_q31( |
||
6468 | q31_t * pSrc, |
||
6469 | uint32_t blockSize, |
||
6470 | q31_t * pResult, |
||
6471 | uint32_t * pIndex); |
||
6472 | |||
5 | mjames | 6473 | |
2 | mjames | 6474 | /** |
6475 | * @brief Minimum value of a floating-point vector. |
||
5 | mjames | 6476 | * @param[in] pSrc is input pointer |
6477 | * @param[in] blockSize is the number of samples to process |
||
6478 | * @param[out] pResult is output pointer |
||
6479 | * @param[out] pIndex is the array index of the minimum value in the input buffer. |
||
2 | mjames | 6480 | */ |
6481 | void arm_min_f32( |
||
6482 | float32_t * pSrc, |
||
6483 | uint32_t blockSize, |
||
6484 | float32_t * pResult, |
||
6485 | uint32_t * pIndex); |
||
6486 | |||
5 | mjames | 6487 | |
2 | mjames | 6488 | /** |
6489 | * @brief Maximum value of a Q7 vector. |
||
5 | mjames | 6490 | * @param[in] pSrc points to the input buffer |
6491 | * @param[in] blockSize length of the input vector |
||
6492 | * @param[out] pResult maximum value returned here |
||
6493 | * @param[out] pIndex index of maximum value returned here |
||
2 | mjames | 6494 | */ |
6495 | void arm_max_q7( |
||
6496 | q7_t * pSrc, |
||
6497 | uint32_t blockSize, |
||
6498 | q7_t * pResult, |
||
6499 | uint32_t * pIndex); |
||
6500 | |||
5 | mjames | 6501 | |
2 | mjames | 6502 | /** |
6503 | * @brief Maximum value of a Q15 vector. |
||
5 | mjames | 6504 | * @param[in] pSrc points to the input buffer |
6505 | * @param[in] blockSize length of the input vector |
||
6506 | * @param[out] pResult maximum value returned here |
||
6507 | * @param[out] pIndex index of maximum value returned here |
||
2 | mjames | 6508 | */ |
6509 | void arm_max_q15( |
||
6510 | q15_t * pSrc, |
||
6511 | uint32_t blockSize, |
||
6512 | q15_t * pResult, |
||
6513 | uint32_t * pIndex); |
||
6514 | |||
5 | mjames | 6515 | |
2 | mjames | 6516 | /** |
6517 | * @brief Maximum value of a Q31 vector. |
||
5 | mjames | 6518 | * @param[in] pSrc points to the input buffer |
6519 | * @param[in] blockSize length of the input vector |
||
6520 | * @param[out] pResult maximum value returned here |
||
6521 | * @param[out] pIndex index of maximum value returned here |
||
2 | mjames | 6522 | */ |
6523 | void arm_max_q31( |
||
6524 | q31_t * pSrc, |
||
6525 | uint32_t blockSize, |
||
6526 | q31_t * pResult, |
||
6527 | uint32_t * pIndex); |
||
6528 | |||
5 | mjames | 6529 | |
2 | mjames | 6530 | /** |
6531 | * @brief Maximum value of a floating-point vector. |
||
5 | mjames | 6532 | * @param[in] pSrc points to the input buffer |
6533 | * @param[in] blockSize length of the input vector |
||
6534 | * @param[out] pResult maximum value returned here |
||
6535 | * @param[out] pIndex index of maximum value returned here |
||
2 | mjames | 6536 | */ |
6537 | void arm_max_f32( |
||
6538 | float32_t * pSrc, |
||
6539 | uint32_t blockSize, |
||
6540 | float32_t * pResult, |
||
6541 | uint32_t * pIndex); |
||
6542 | |||
5 | mjames | 6543 | |
2 | mjames | 6544 | /** |
6545 | * @brief Q15 complex-by-complex multiplication |
||
5 | mjames | 6546 | * @param[in] pSrcA points to the first input vector |
6547 | * @param[in] pSrcB points to the second input vector |
||
6548 | * @param[out] pDst points to the output vector |
||
6549 | * @param[in] numSamples number of complex samples in each vector |
||
2 | mjames | 6550 | */ |
6551 | void arm_cmplx_mult_cmplx_q15( |
||
6552 | q15_t * pSrcA, |
||
6553 | q15_t * pSrcB, |
||
6554 | q15_t * pDst, |
||
6555 | uint32_t numSamples); |
||
6556 | |||
5 | mjames | 6557 | |
2 | mjames | 6558 | /** |
6559 | * @brief Q31 complex-by-complex multiplication |
||
5 | mjames | 6560 | * @param[in] pSrcA points to the first input vector |
6561 | * @param[in] pSrcB points to the second input vector |
||
6562 | * @param[out] pDst points to the output vector |
||
6563 | * @param[in] numSamples number of complex samples in each vector |
||
2 | mjames | 6564 | */ |
6565 | void arm_cmplx_mult_cmplx_q31( |
||
6566 | q31_t * pSrcA, |
||
6567 | q31_t * pSrcB, |
||
6568 | q31_t * pDst, |
||
6569 | uint32_t numSamples); |
||
6570 | |||
5 | mjames | 6571 | |
2 | mjames | 6572 | /** |
6573 | * @brief Floating-point complex-by-complex multiplication |
||
5 | mjames | 6574 | * @param[in] pSrcA points to the first input vector |
6575 | * @param[in] pSrcB points to the second input vector |
||
6576 | * @param[out] pDst points to the output vector |
||
6577 | * @param[in] numSamples number of complex samples in each vector |
||
2 | mjames | 6578 | */ |
6579 | void arm_cmplx_mult_cmplx_f32( |
||
6580 | float32_t * pSrcA, |
||
6581 | float32_t * pSrcB, |
||
6582 | float32_t * pDst, |
||
6583 | uint32_t numSamples); |
||
6584 | |||
5 | mjames | 6585 | |
2 | mjames | 6586 | /** |
6587 | * @brief Converts the elements of the floating-point vector to Q31 vector. |
||
5 | mjames | 6588 | * @param[in] pSrc points to the floating-point input vector |
6589 | * @param[out] pDst points to the Q31 output vector |
||
6590 | * @param[in] blockSize length of the input vector |
||
2 | mjames | 6591 | */ |
6592 | void arm_float_to_q31( |
||
6593 | float32_t * pSrc, |
||
6594 | q31_t * pDst, |
||
6595 | uint32_t blockSize); |
||
6596 | |||
5 | mjames | 6597 | |
2 | mjames | 6598 | /** |
6599 | * @brief Converts the elements of the floating-point vector to Q15 vector. |
||
5 | mjames | 6600 | * @param[in] pSrc points to the floating-point input vector |
6601 | * @param[out] pDst points to the Q15 output vector |
||
6602 | * @param[in] blockSize length of the input vector |
||
2 | mjames | 6603 | */ |
6604 | void arm_float_to_q15( |
||
6605 | float32_t * pSrc, |
||
6606 | q15_t * pDst, |
||
6607 | uint32_t blockSize); |
||
6608 | |||
5 | mjames | 6609 | |
2 | mjames | 6610 | /** |
6611 | * @brief Converts the elements of the floating-point vector to Q7 vector. |
||
5 | mjames | 6612 | * @param[in] pSrc points to the floating-point input vector |
6613 | * @param[out] pDst points to the Q7 output vector |
||
6614 | * @param[in] blockSize length of the input vector |
||
2 | mjames | 6615 | */ |
6616 | void arm_float_to_q7( |
||
6617 | float32_t * pSrc, |
||
6618 | q7_t * pDst, |
||
6619 | uint32_t blockSize); |
||
6620 | |||
6621 | |||
6622 | /** |
||
6623 | * @brief Converts the elements of the Q31 vector to Q15 vector. |
||
5 | mjames | 6624 | * @param[in] pSrc is input pointer |
6625 | * @param[out] pDst is output pointer |
||
6626 | * @param[in] blockSize is the number of samples to process |
||
2 | mjames | 6627 | */ |
6628 | void arm_q31_to_q15( |
||
6629 | q31_t * pSrc, |
||
6630 | q15_t * pDst, |
||
6631 | uint32_t blockSize); |
||
6632 | |||
5 | mjames | 6633 | |
2 | mjames | 6634 | /** |
6635 | * @brief Converts the elements of the Q31 vector to Q7 vector. |
||
5 | mjames | 6636 | * @param[in] pSrc is input pointer |
6637 | * @param[out] pDst is output pointer |
||
6638 | * @param[in] blockSize is the number of samples to process |
||
2 | mjames | 6639 | */ |
6640 | void arm_q31_to_q7( |
||
6641 | q31_t * pSrc, |
||
6642 | q7_t * pDst, |
||
6643 | uint32_t blockSize); |
||
6644 | |||
5 | mjames | 6645 | |
2 | mjames | 6646 | /** |
6647 | * @brief Converts the elements of the Q15 vector to floating-point vector. |
||
5 | mjames | 6648 | * @param[in] pSrc is input pointer |
6649 | * @param[out] pDst is output pointer |
||
6650 | * @param[in] blockSize is the number of samples to process |
||
2 | mjames | 6651 | */ |
6652 | void arm_q15_to_float( |
||
6653 | q15_t * pSrc, |
||
6654 | float32_t * pDst, |
||
6655 | uint32_t blockSize); |
||
6656 | |||
6657 | |||
6658 | /** |
||
6659 | * @brief Converts the elements of the Q15 vector to Q31 vector. |
||
5 | mjames | 6660 | * @param[in] pSrc is input pointer |
6661 | * @param[out] pDst is output pointer |
||
6662 | * @param[in] blockSize is the number of samples to process |
||
2 | mjames | 6663 | */ |
6664 | void arm_q15_to_q31( |
||
6665 | q15_t * pSrc, |
||
6666 | q31_t * pDst, |
||
6667 | uint32_t blockSize); |
||
6668 | |||
6669 | |||
6670 | /** |
||
6671 | * @brief Converts the elements of the Q15 vector to Q7 vector. |
||
5 | mjames | 6672 | * @param[in] pSrc is input pointer |
6673 | * @param[out] pDst is output pointer |
||
6674 | * @param[in] blockSize is the number of samples to process |
||
2 | mjames | 6675 | */ |
6676 | void arm_q15_to_q7( |
||
6677 | q15_t * pSrc, |
||
6678 | q7_t * pDst, |
||
6679 | uint32_t blockSize); |
||
6680 | |||
6681 | |||
6682 | /** |
||
6683 | * @ingroup groupInterpolation |
||
6684 | */ |
||
6685 | |||
6686 | /** |
||
6687 | * @defgroup BilinearInterpolate Bilinear Interpolation |
||
6688 | * |
||
6689 | * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. |
||
6690 | * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process |
||
6691 | * determines values between the grid points. |
||
6692 | * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. |
||
6693 | * Bilinear interpolation is often used in image processing to rescale images. |
||
6694 | * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. |
||
6695 | * |
||
6696 | * <b>Algorithm</b> |
||
6697 | * \par |
||
6698 | * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. |
||
6699 | * For floating-point, the instance structure is defined as: |
||
6700 | * <pre> |
||
6701 | * typedef struct |
||
6702 | * { |
||
6703 | * uint16_t numRows; |
||
6704 | * uint16_t numCols; |
||
6705 | * float32_t *pData; |
||
6706 | * } arm_bilinear_interp_instance_f32; |
||
6707 | * </pre> |
||
6708 | * |
||
6709 | * \par |
||
6710 | * where <code>numRows</code> specifies the number of rows in the table; |
||
6711 | * <code>numCols</code> specifies the number of columns in the table; |
||
6712 | * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. |
||
6713 | * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. |
||
6714 | * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. |
||
6715 | * |
||
6716 | * \par |
||
6717 | * Let <code>(x, y)</code> specify the desired interpolation point. Then define: |
||
6718 | * <pre> |
||
6719 | * XF = floor(x) |
||
6720 | * YF = floor(y) |
||
6721 | * </pre> |
||
6722 | * \par |
||
6723 | * The interpolated output point is computed as: |
||
6724 | * <pre> |
||
6725 | * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) |
||
6726 | * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) |
||
6727 | * + f(XF, YF+1) * (1-(x-XF))*(y-YF) |
||
6728 | * + f(XF+1, YF+1) * (x-XF)*(y-YF) |
||
6729 | * </pre> |
||
6730 | * Note that the coordinates (x, y) contain integer and fractional components. |
||
6731 | * The integer components specify which portion of the table to use while the |
||
6732 | * fractional components control the interpolation processor. |
||
6733 | * |
||
6734 | * \par |
||
6735 | * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. |
||
6736 | */ |
||
6737 | |||
6738 | /** |
||
6739 | * @addtogroup BilinearInterpolate |
||
6740 | * @{ |
||
6741 | */ |
||
6742 | |||
5 | mjames | 6743 | |
2 | mjames | 6744 | /** |
6745 | * |
||
6746 | * @brief Floating-point bilinear interpolation. |
||
5 | mjames | 6747 | * @param[in,out] S points to an instance of the interpolation structure. |
6748 | * @param[in] X interpolation coordinate. |
||
6749 | * @param[in] Y interpolation coordinate. |
||
2 | mjames | 6750 | * @return out interpolated value. |
6751 | */ |
||
6752 | static __INLINE float32_t arm_bilinear_interp_f32( |
||
6753 | const arm_bilinear_interp_instance_f32 * S, |
||
6754 | float32_t X, |
||
6755 | float32_t Y) |
||
6756 | { |
||
6757 | float32_t out; |
||
6758 | float32_t f00, f01, f10, f11; |
||
6759 | float32_t *pData = S->pData; |
||
6760 | int32_t xIndex, yIndex, index; |
||
6761 | float32_t xdiff, ydiff; |
||
6762 | float32_t b1, b2, b3, b4; |
||
6763 | |||
6764 | xIndex = (int32_t) X; |
||
6765 | yIndex = (int32_t) Y; |
||
6766 | |||
6767 | /* Care taken for table outside boundary */ |
||
6768 | /* Returns zero output when values are outside table boundary */ |
||
5 | mjames | 6769 | if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) |
2 | mjames | 6770 | { |
6771 | return (0); |
||
6772 | } |
||
6773 | |||
6774 | /* Calculation of index for two nearest points in X-direction */ |
||
6775 | index = (xIndex - 1) + (yIndex - 1) * S->numCols; |
||
6776 | |||
6777 | |||
6778 | /* Read two nearest points in X-direction */ |
||
6779 | f00 = pData[index]; |
||
6780 | f01 = pData[index + 1]; |
||
6781 | |||
6782 | /* Calculation of index for two nearest points in Y-direction */ |
||
6783 | index = (xIndex - 1) + (yIndex) * S->numCols; |
||
6784 | |||
6785 | |||
6786 | /* Read two nearest points in Y-direction */ |
||
6787 | f10 = pData[index]; |
||
6788 | f11 = pData[index + 1]; |
||
6789 | |||
6790 | /* Calculation of intermediate values */ |
||
6791 | b1 = f00; |
||
6792 | b2 = f01 - f00; |
||
6793 | b3 = f10 - f00; |
||
6794 | b4 = f00 - f01 - f10 + f11; |
||
6795 | |||
6796 | /* Calculation of fractional part in X */ |
||
6797 | xdiff = X - xIndex; |
||
6798 | |||
6799 | /* Calculation of fractional part in Y */ |
||
6800 | ydiff = Y - yIndex; |
||
6801 | |||
6802 | /* Calculation of bi-linear interpolated output */ |
||
6803 | out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; |
||
6804 | |||
6805 | /* return to application */ |
||
6806 | return (out); |
||
6807 | } |
||
6808 | |||
5 | mjames | 6809 | |
2 | mjames | 6810 | /** |
6811 | * |
||
6812 | * @brief Q31 bilinear interpolation. |
||
5 | mjames | 6813 | * @param[in,out] S points to an instance of the interpolation structure. |
6814 | * @param[in] X interpolation coordinate in 12.20 format. |
||
6815 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
2 | mjames | 6816 | * @return out interpolated value. |
6817 | */ |
||
6818 | static __INLINE q31_t arm_bilinear_interp_q31( |
||
6819 | arm_bilinear_interp_instance_q31 * S, |
||
6820 | q31_t X, |
||
6821 | q31_t Y) |
||
6822 | { |
||
6823 | q31_t out; /* Temporary output */ |
||
6824 | q31_t acc = 0; /* output */ |
||
6825 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
6826 | q31_t x1, x2, y1, y2; /* Nearest output values */ |
||
6827 | int32_t rI, cI; /* Row and column indices */ |
||
6828 | q31_t *pYData = S->pData; /* pointer to output table values */ |
||
6829 | uint32_t nCols = S->numCols; /* num of rows */ |
||
6830 | |||
6831 | /* Input is in 12.20 format */ |
||
6832 | /* 12 bits for the table index */ |
||
6833 | /* Index value calculation */ |
||
5 | mjames | 6834 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
2 | mjames | 6835 | |
6836 | /* Input is in 12.20 format */ |
||
6837 | /* 12 bits for the table index */ |
||
6838 | /* Index value calculation */ |
||
5 | mjames | 6839 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
2 | mjames | 6840 | |
6841 | /* Care taken for table outside boundary */ |
||
6842 | /* Returns zero output when values are outside table boundary */ |
||
6843 | if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
6844 | { |
||
6845 | return (0); |
||
6846 | } |
||
6847 | |||
6848 | /* 20 bits for the fractional part */ |
||
6849 | /* shift left xfract by 11 to keep 1.31 format */ |
||
6850 | xfract = (X & 0x000FFFFF) << 11u; |
||
6851 | |||
6852 | /* Read two nearest output values from the index */ |
||
5 | mjames | 6853 | x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; |
6854 | x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; |
||
2 | mjames | 6855 | |
6856 | /* 20 bits for the fractional part */ |
||
6857 | /* shift left yfract by 11 to keep 1.31 format */ |
||
6858 | yfract = (Y & 0x000FFFFF) << 11u; |
||
6859 | |||
6860 | /* Read two nearest output values from the index */ |
||
5 | mjames | 6861 | y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; |
6862 | y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; |
||
2 | mjames | 6863 | |
6864 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ |
||
5 | mjames | 6865 | out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); |
2 | mjames | 6866 | acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); |
6867 | |||
6868 | /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ |
||
6869 | out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); |
||
6870 | acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); |
||
6871 | |||
6872 | /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ |
||
6873 | out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); |
||
6874 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
||
6875 | |||
6876 | /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ |
||
6877 | out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); |
||
6878 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
||
6879 | |||
6880 | /* Convert acc to 1.31(q31) format */ |
||
5 | mjames | 6881 | return ((q31_t)(acc << 2)); |
2 | mjames | 6882 | } |
6883 | |||
5 | mjames | 6884 | |
2 | mjames | 6885 | /** |
6886 | * @brief Q15 bilinear interpolation. |
||
5 | mjames | 6887 | * @param[in,out] S points to an instance of the interpolation structure. |
6888 | * @param[in] X interpolation coordinate in 12.20 format. |
||
6889 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
2 | mjames | 6890 | * @return out interpolated value. |
6891 | */ |
||
6892 | static __INLINE q15_t arm_bilinear_interp_q15( |
||
6893 | arm_bilinear_interp_instance_q15 * S, |
||
6894 | q31_t X, |
||
6895 | q31_t Y) |
||
6896 | { |
||
6897 | q63_t acc = 0; /* output */ |
||
6898 | q31_t out; /* Temporary output */ |
||
6899 | q15_t x1, x2, y1, y2; /* Nearest output values */ |
||
6900 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
6901 | int32_t rI, cI; /* Row and column indices */ |
||
6902 | q15_t *pYData = S->pData; /* pointer to output table values */ |
||
6903 | uint32_t nCols = S->numCols; /* num of rows */ |
||
6904 | |||
6905 | /* Input is in 12.20 format */ |
||
6906 | /* 12 bits for the table index */ |
||
6907 | /* Index value calculation */ |
||
5 | mjames | 6908 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
2 | mjames | 6909 | |
6910 | /* Input is in 12.20 format */ |
||
6911 | /* 12 bits for the table index */ |
||
6912 | /* Index value calculation */ |
||
5 | mjames | 6913 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
2 | mjames | 6914 | |
6915 | /* Care taken for table outside boundary */ |
||
6916 | /* Returns zero output when values are outside table boundary */ |
||
6917 | if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
6918 | { |
||
6919 | return (0); |
||
6920 | } |
||
6921 | |||
6922 | /* 20 bits for the fractional part */ |
||
6923 | /* xfract should be in 12.20 format */ |
||
6924 | xfract = (X & 0x000FFFFF); |
||
6925 | |||
6926 | /* Read two nearest output values from the index */ |
||
5 | mjames | 6927 | x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; |
6928 | x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; |
||
2 | mjames | 6929 | |
6930 | /* 20 bits for the fractional part */ |
||
6931 | /* yfract should be in 12.20 format */ |
||
6932 | yfract = (Y & 0x000FFFFF); |
||
6933 | |||
6934 | /* Read two nearest output values from the index */ |
||
5 | mjames | 6935 | y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; |
6936 | y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; |
||
2 | mjames | 6937 | |
6938 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ |
||
6939 | |||
6940 | /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ |
||
6941 | /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ |
||
6942 | out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); |
||
6943 | acc = ((q63_t) out * (0xFFFFF - yfract)); |
||
6944 | |||
6945 | /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ |
||
6946 | out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); |
||
6947 | acc += ((q63_t) out * (xfract)); |
||
6948 | |||
6949 | /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ |
||
6950 | out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); |
||
6951 | acc += ((q63_t) out * (yfract)); |
||
6952 | |||
6953 | /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ |
||
6954 | out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); |
||
6955 | acc += ((q63_t) out * (yfract)); |
||
6956 | |||
6957 | /* acc is in 13.51 format and down shift acc by 36 times */ |
||
6958 | /* Convert out to 1.15 format */ |
||
5 | mjames | 6959 | return ((q15_t)(acc >> 36)); |
2 | mjames | 6960 | } |
6961 | |||
5 | mjames | 6962 | |
2 | mjames | 6963 | /** |
6964 | * @brief Q7 bilinear interpolation. |
||
5 | mjames | 6965 | * @param[in,out] S points to an instance of the interpolation structure. |
6966 | * @param[in] X interpolation coordinate in 12.20 format. |
||
6967 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
2 | mjames | 6968 | * @return out interpolated value. |
6969 | */ |
||
6970 | static __INLINE q7_t arm_bilinear_interp_q7( |
||
6971 | arm_bilinear_interp_instance_q7 * S, |
||
6972 | q31_t X, |
||
6973 | q31_t Y) |
||
6974 | { |
||
6975 | q63_t acc = 0; /* output */ |
||
6976 | q31_t out; /* Temporary output */ |
||
6977 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
6978 | q7_t x1, x2, y1, y2; /* Nearest output values */ |
||
6979 | int32_t rI, cI; /* Row and column indices */ |
||
6980 | q7_t *pYData = S->pData; /* pointer to output table values */ |
||
6981 | uint32_t nCols = S->numCols; /* num of rows */ |
||
6982 | |||
6983 | /* Input is in 12.20 format */ |
||
6984 | /* 12 bits for the table index */ |
||
6985 | /* Index value calculation */ |
||
5 | mjames | 6986 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
2 | mjames | 6987 | |
6988 | /* Input is in 12.20 format */ |
||
6989 | /* 12 bits for the table index */ |
||
6990 | /* Index value calculation */ |
||
5 | mjames | 6991 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
2 | mjames | 6992 | |
6993 | /* Care taken for table outside boundary */ |
||
6994 | /* Returns zero output when values are outside table boundary */ |
||
6995 | if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
6996 | { |
||
6997 | return (0); |
||
6998 | } |
||
6999 | |||
7000 | /* 20 bits for the fractional part */ |
||
7001 | /* xfract should be in 12.20 format */ |
||
5 | mjames | 7002 | xfract = (X & (q31_t)0x000FFFFF); |
2 | mjames | 7003 | |
7004 | /* Read two nearest output values from the index */ |
||
5 | mjames | 7005 | x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; |
7006 | x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; |
||
2 | mjames | 7007 | |
7008 | /* 20 bits for the fractional part */ |
||
7009 | /* yfract should be in 12.20 format */ |
||
5 | mjames | 7010 | yfract = (Y & (q31_t)0x000FFFFF); |
2 | mjames | 7011 | |
7012 | /* Read two nearest output values from the index */ |
||
5 | mjames | 7013 | y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; |
7014 | y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; |
||
2 | mjames | 7015 | |
7016 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ |
||
7017 | out = ((x1 * (0xFFFFF - xfract))); |
||
7018 | acc = (((q63_t) out * (0xFFFFF - yfract))); |
||
7019 | |||
7020 | /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ |
||
7021 | out = ((x2 * (0xFFFFF - yfract))); |
||
7022 | acc += (((q63_t) out * (xfract))); |
||
7023 | |||
7024 | /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ |
||
7025 | out = ((y1 * (0xFFFFF - xfract))); |
||
7026 | acc += (((q63_t) out * (yfract))); |
||
7027 | |||
7028 | /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ |
||
7029 | out = ((y2 * (yfract))); |
||
7030 | acc += (((q63_t) out * (xfract))); |
||
7031 | |||
7032 | /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ |
||
5 | mjames | 7033 | return ((q7_t)(acc >> 40)); |
2 | mjames | 7034 | } |
7035 | |||
7036 | /** |
||
7037 | * @} end of BilinearInterpolate group |
||
7038 | */ |
||
7039 | |||
5 | mjames | 7040 | |
7041 | /* SMMLAR */ |
||
2 | mjames | 7042 | #define multAcc_32x32_keep32_R(a, x, y) \ |
7043 | a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) |
||
7044 | |||
5 | mjames | 7045 | /* SMMLSR */ |
2 | mjames | 7046 | #define multSub_32x32_keep32_R(a, x, y) \ |
7047 | a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) |
||
7048 | |||
5 | mjames | 7049 | /* SMMULR */ |
2 | mjames | 7050 | #define mult_32x32_keep32_R(a, x, y) \ |
7051 | a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) |
||
7052 | |||
5 | mjames | 7053 | /* SMMLA */ |
2 | mjames | 7054 | #define multAcc_32x32_keep32(a, x, y) \ |
7055 | a += (q31_t) (((q63_t) x * y) >> 32) |
||
7056 | |||
5 | mjames | 7057 | /* SMMLS */ |
2 | mjames | 7058 | #define multSub_32x32_keep32(a, x, y) \ |
7059 | a -= (q31_t) (((q63_t) x * y) >> 32) |
||
7060 | |||
5 | mjames | 7061 | /* SMMUL */ |
2 | mjames | 7062 | #define mult_32x32_keep32(a, x, y) \ |
7063 | a = (q31_t) (((q63_t) x * y ) >> 32) |
||
7064 | |||
7065 | |||
5 | mjames | 7066 | #if defined ( __CC_ARM ) |
7067 | /* Enter low optimization region - place directly above function definition */ |
||
7068 | #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
||
7069 | #define LOW_OPTIMIZATION_ENTER \ |
||
7070 | _Pragma ("push") \ |
||
7071 | _Pragma ("O1") |
||
7072 | #else |
||
7073 | #define LOW_OPTIMIZATION_ENTER |
||
7074 | #endif |
||
2 | mjames | 7075 | |
5 | mjames | 7076 | /* Exit low optimization region - place directly after end of function definition */ |
7077 | #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
||
7078 | #define LOW_OPTIMIZATION_EXIT \ |
||
7079 | _Pragma ("pop") |
||
7080 | #else |
||
7081 | #define LOW_OPTIMIZATION_EXIT |
||
7082 | #endif |
||
2 | mjames | 7083 | |
5 | mjames | 7084 | /* Enter low optimization region - place directly above function definition */ |
2 | mjames | 7085 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
7086 | |||
5 | mjames | 7087 | /* Exit low optimization region - place directly after end of function definition */ |
2 | mjames | 7088 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
7089 | |||
5 | mjames | 7090 | #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) |
7091 | #define LOW_OPTIMIZATION_ENTER |
||
2 | mjames | 7092 | #define LOW_OPTIMIZATION_EXIT |
5 | mjames | 7093 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
2 | mjames | 7094 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
7095 | |||
7096 | #elif defined(__GNUC__) |
||
7097 | #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) |
||
5 | mjames | 7098 | #define LOW_OPTIMIZATION_EXIT |
7099 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7100 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
2 | mjames | 7101 | |
5 | mjames | 7102 | #elif defined(__ICCARM__) |
7103 | /* Enter low optimization region - place directly above function definition */ |
||
7104 | #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
||
7105 | #define LOW_OPTIMIZATION_ENTER \ |
||
7106 | _Pragma ("optimize=low") |
||
7107 | #else |
||
7108 | #define LOW_OPTIMIZATION_ENTER |
||
7109 | #endif |
||
7110 | |||
7111 | /* Exit low optimization region - place directly after end of function definition */ |
||
2 | mjames | 7112 | #define LOW_OPTIMIZATION_EXIT |
7113 | |||
5 | mjames | 7114 | /* Enter low optimization region - place directly above function definition */ |
7115 | #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
||
7116 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ |
||
7117 | _Pragma ("optimize=low") |
||
7118 | #else |
||
7119 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7120 | #endif |
||
2 | mjames | 7121 | |
5 | mjames | 7122 | /* Exit low optimization region - place directly after end of function definition */ |
2 | mjames | 7123 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
7124 | |||
5 | mjames | 7125 | #elif defined(__CSMC__) |
7126 | #define LOW_OPTIMIZATION_ENTER |
||
7127 | #define LOW_OPTIMIZATION_EXIT |
||
7128 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7129 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
2 | mjames | 7130 | |
5 | mjames | 7131 | #elif defined(__TASKING__) |
7132 | #define LOW_OPTIMIZATION_ENTER |
||
7133 | #define LOW_OPTIMIZATION_EXIT |
||
7134 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7135 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
2 | mjames | 7136 | |
5 | mjames | 7137 | #endif |
2 | mjames | 7138 | |
7139 | |||
5 | mjames | 7140 | #ifdef __cplusplus |
7141 | } |
||
2 | mjames | 7142 | #endif |
7143 | |||
7144 | |||
5 | mjames | 7145 | #if defined ( __GNUC__ ) |
7146 | #pragma GCC diagnostic pop |
||
2 | mjames | 7147 | #endif |
7148 | |||
7149 | #endif /* _ARM_MATH_H */ |
||
7150 | |||
7151 | /** |
||
7152 | * |
||
7153 | * End of file. |
||
7154 | */ |