Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Copyright (C) 2010-2015 ARM Limited. All rights reserved. |
||
3 | * |
||
4 | * $Date: 19. March 2015 |
||
5 | * $Revision: V.1.4.5 |
||
6 | * |
||
7 | * Project: CMSIS DSP Library |
||
8 | * Title: arm_math.h |
||
9 | * |
||
10 | * Description: Public header file for CMSIS DSP Library |
||
11 | * |
||
12 | * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0 |
||
13 | * |
||
14 | * Redistribution and use in source and binary forms, with or without |
||
15 | * modification, are permitted provided that the following conditions |
||
16 | * are met: |
||
17 | * - Redistributions of source code must retain the above copyright |
||
18 | * notice, this list of conditions and the following disclaimer. |
||
19 | * - Redistributions in binary form must reproduce the above copyright |
||
20 | * notice, this list of conditions and the following disclaimer in |
||
21 | * the documentation and/or other materials provided with the |
||
22 | * distribution. |
||
23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
24 | * may be used to endorse or promote products derived from this |
||
25 | * software without specific prior written permission. |
||
26 | * |
||
27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
38 | * POSSIBILITY OF SUCH DAMAGE. |
||
39 | * -------------------------------------------------------------------- */ |
||
40 | |||
41 | /** |
||
42 | \mainpage CMSIS DSP Software Library |
||
43 | * |
||
44 | * Introduction |
||
45 | * ------------ |
||
46 | * |
||
47 | * This user manual describes the CMSIS DSP software library, |
||
48 | * a suite of common signal processing functions for use on Cortex-M processor based devices. |
||
49 | * |
||
50 | * The library is divided into a number of functions each covering a specific category: |
||
51 | * - Basic math functions |
||
52 | * - Fast math functions |
||
53 | * - Complex math functions |
||
54 | * - Filters |
||
55 | * - Matrix functions |
||
56 | * - Transforms |
||
57 | * - Motor control functions |
||
58 | * - Statistical functions |
||
59 | * - Support functions |
||
60 | * - Interpolation functions |
||
61 | * |
||
62 | * The library has separate functions for operating on 8-bit integers, 16-bit integers, |
||
63 | * 32-bit integer and 32-bit floating-point values. |
||
64 | * |
||
65 | * Using the Library |
||
66 | * ------------ |
||
67 | * |
||
68 | * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. |
||
69 | * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7) |
||
70 | * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7) |
||
71 | * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7) |
||
72 | * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7) |
||
73 | * - arm_cortexM7l_math.lib (Little endian on Cortex-M7) |
||
74 | * - arm_cortexM7b_math.lib (Big endian on Cortex-M7) |
||
75 | * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) |
||
76 | * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) |
||
77 | * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) |
||
78 | * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) |
||
79 | * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) |
||
80 | * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) |
||
81 | * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+) |
||
82 | * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+) |
||
83 | * |
||
84 | * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. |
||
85 | * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single |
||
86 | * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. |
||
87 | * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or |
||
88 | * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. |
||
89 | * |
||
90 | * Examples |
||
91 | * -------- |
||
92 | * |
||
93 | * The library ships with a number of examples which demonstrate how to use the library functions. |
||
94 | * |
||
95 | * Toolchain Support |
||
96 | * ------------ |
||
97 | * |
||
98 | * The library has been developed and tested with MDK-ARM version 5.14.0.0 |
||
99 | * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. |
||
100 | * |
||
101 | * Building the Library |
||
102 | * ------------ |
||
103 | * |
||
104 | * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder. |
||
105 | * - arm_cortexM_math.uvprojx |
||
106 | * |
||
107 | * |
||
108 | * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above. |
||
109 | * |
||
110 | * Pre-processor Macros |
||
111 | * ------------ |
||
112 | * |
||
113 | * Each library project have differant pre-processor macros. |
||
114 | * |
||
115 | * - UNALIGNED_SUPPORT_DISABLE: |
||
116 | * |
||
117 | * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access |
||
118 | * |
||
119 | * - ARM_MATH_BIG_ENDIAN: |
||
120 | * |
||
121 | * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. |
||
122 | * |
||
123 | * - ARM_MATH_MATRIX_CHECK: |
||
124 | * |
||
125 | * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices |
||
126 | * |
||
127 | * - ARM_MATH_ROUNDING: |
||
128 | * |
||
129 | * Define macro ARM_MATH_ROUNDING for rounding on support functions |
||
130 | * |
||
131 | * - ARM_MATH_CMx: |
||
132 | * |
||
133 | * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target |
||
134 | * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and |
||
135 | * ARM_MATH_CM7 for building the library on cortex-M7. |
||
136 | * |
||
137 | * - __FPU_PRESENT: |
||
138 | * |
||
139 | * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries |
||
140 | * |
||
141 | * <hr> |
||
142 | * CMSIS-DSP in ARM::CMSIS Pack |
||
143 | * ----------------------------- |
||
144 | * |
||
145 | * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: |
||
146 | * |File/Folder |Content | |
||
147 | * |------------------------------|------------------------------------------------------------------------| |
||
148 | * |\b CMSIS\\Documentation\\DSP | This documentation | |
||
149 | * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | |
||
150 | * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | |
||
151 | * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | |
||
152 | * |
||
153 | * <hr> |
||
154 | * Revision History of CMSIS-DSP |
||
155 | * ------------ |
||
156 | * Please refer to \ref ChangeLog_pg. |
||
157 | * |
||
158 | * Copyright Notice |
||
159 | * ------------ |
||
160 | * |
||
161 | * Copyright (C) 2010-2015 ARM Limited. All rights reserved. |
||
162 | */ |
||
163 | |||
164 | |||
165 | /** |
||
166 | * @defgroup groupMath Basic Math Functions |
||
167 | */ |
||
168 | |||
169 | /** |
||
170 | * @defgroup groupFastMath Fast Math Functions |
||
171 | * This set of functions provides a fast approximation to sine, cosine, and square root. |
||
172 | * As compared to most of the other functions in the CMSIS math library, the fast math functions |
||
173 | * operate on individual values and not arrays. |
||
174 | * There are separate functions for Q15, Q31, and floating-point data. |
||
175 | * |
||
176 | */ |
||
177 | |||
178 | /** |
||
179 | * @defgroup groupCmplxMath Complex Math Functions |
||
180 | * This set of functions operates on complex data vectors. |
||
181 | * The data in the complex arrays is stored in an interleaved fashion |
||
182 | * (real, imag, real, imag, ...). |
||
183 | * In the API functions, the number of samples in a complex array refers |
||
184 | * to the number of complex values; the array contains twice this number of |
||
185 | * real values. |
||
186 | */ |
||
187 | |||
188 | /** |
||
189 | * @defgroup groupFilters Filtering Functions |
||
190 | */ |
||
191 | |||
192 | /** |
||
193 | * @defgroup groupMatrix Matrix Functions |
||
194 | * |
||
195 | * This set of functions provides basic matrix math operations. |
||
196 | * The functions operate on matrix data structures. For example, |
||
197 | * the type |
||
198 | * definition for the floating-point matrix structure is shown |
||
199 | * below: |
||
200 | * <pre> |
||
201 | * typedef struct |
||
202 | * { |
||
203 | * uint16_t numRows; // number of rows of the matrix. |
||
204 | * uint16_t numCols; // number of columns of the matrix. |
||
205 | * float32_t *pData; // points to the data of the matrix. |
||
206 | * } arm_matrix_instance_f32; |
||
207 | * </pre> |
||
208 | * There are similar definitions for Q15 and Q31 data types. |
||
209 | * |
||
210 | * The structure specifies the size of the matrix and then points to |
||
211 | * an array of data. The array is of size <code>numRows X numCols</code> |
||
212 | * and the values are arranged in row order. That is, the |
||
213 | * matrix element (i, j) is stored at: |
||
214 | * <pre> |
||
215 | * pData[i*numCols + j] |
||
216 | * </pre> |
||
217 | * |
||
218 | * \par Init Functions |
||
219 | * There is an associated initialization function for each type of matrix |
||
220 | * data structure. |
||
221 | * The initialization function sets the values of the internal structure fields. |
||
222 | * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> |
||
223 | * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. |
||
224 | * |
||
225 | * \par |
||
226 | * Use of the initialization function is optional. However, if initialization function is used |
||
227 | * then the instance structure cannot be placed into a const data section. |
||
228 | * To place the instance structure in a const data |
||
229 | * section, manually initialize the data structure. For example: |
||
230 | * <pre> |
||
231 | * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> |
||
232 | * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> |
||
233 | * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> |
||
234 | * </pre> |
||
235 | * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> |
||
236 | * specifies the number of columns, and <code>pData</code> points to the |
||
237 | * data array. |
||
238 | * |
||
239 | * \par Size Checking |
||
240 | * By default all of the matrix functions perform size checking on the input and |
||
241 | * output matrices. For example, the matrix addition function verifies that the |
||
242 | * two input matrices and the output matrix all have the same number of rows and |
||
243 | * columns. If the size check fails the functions return: |
||
244 | * <pre> |
||
245 | * ARM_MATH_SIZE_MISMATCH |
||
246 | * </pre> |
||
247 | * Otherwise the functions return |
||
248 | * <pre> |
||
249 | * ARM_MATH_SUCCESS |
||
250 | * </pre> |
||
251 | * There is some overhead associated with this matrix size checking. |
||
252 | * The matrix size checking is enabled via the \#define |
||
253 | * <pre> |
||
254 | * ARM_MATH_MATRIX_CHECK |
||
255 | * </pre> |
||
256 | * within the library project settings. By default this macro is defined |
||
257 | * and size checking is enabled. By changing the project settings and |
||
258 | * undefining this macro size checking is eliminated and the functions |
||
259 | * run a bit faster. With size checking disabled the functions always |
||
260 | * return <code>ARM_MATH_SUCCESS</code>. |
||
261 | */ |
||
262 | |||
263 | /** |
||
264 | * @defgroup groupTransforms Transform Functions |
||
265 | */ |
||
266 | |||
267 | /** |
||
268 | * @defgroup groupController Controller Functions |
||
269 | */ |
||
270 | |||
271 | /** |
||
272 | * @defgroup groupStats Statistics Functions |
||
273 | */ |
||
274 | /** |
||
275 | * @defgroup groupSupport Support Functions |
||
276 | */ |
||
277 | |||
278 | /** |
||
279 | * @defgroup groupInterpolation Interpolation Functions |
||
280 | * These functions perform 1- and 2-dimensional interpolation of data. |
||
281 | * Linear interpolation is used for 1-dimensional data and |
||
282 | * bilinear interpolation is used for 2-dimensional data. |
||
283 | */ |
||
284 | |||
285 | /** |
||
286 | * @defgroup groupExamples Examples |
||
287 | */ |
||
288 | #ifndef _ARM_MATH_H |
||
289 | #define _ARM_MATH_H |
||
290 | |||
291 | #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ |
||
292 | |||
293 | #if defined(ARM_MATH_CM7) |
||
294 | #include "core_cm7.h" |
||
295 | #elif defined (ARM_MATH_CM4) |
||
296 | #include "core_cm4.h" |
||
297 | #elif defined (ARM_MATH_CM3) |
||
298 | #include "core_cm3.h" |
||
299 | #elif defined (ARM_MATH_CM0) |
||
300 | #include "core_cm0.h" |
||
301 | #define ARM_MATH_CM0_FAMILY |
||
302 | #elif defined (ARM_MATH_CM0PLUS) |
||
303 | #include "core_cm0plus.h" |
||
304 | #define ARM_MATH_CM0_FAMILY |
||
305 | #else |
||
306 | #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0" |
||
307 | #endif |
||
308 | |||
309 | #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ |
||
310 | #include "string.h" |
||
311 | #include "math.h" |
||
312 | #ifdef __cplusplus |
||
313 | extern "C" |
||
314 | { |
||
315 | #endif |
||
316 | |||
317 | |||
318 | /** |
||
319 | * @brief Macros required for reciprocal calculation in Normalized LMS |
||
320 | */ |
||
321 | |||
322 | #define DELTA_Q31 (0x100) |
||
323 | #define DELTA_Q15 0x5 |
||
324 | #define INDEX_MASK 0x0000003F |
||
325 | #ifndef PI |
||
326 | #define PI 3.14159265358979f |
||
327 | #endif |
||
328 | |||
329 | /** |
||
330 | * @brief Macros required for SINE and COSINE Fast math approximations |
||
331 | */ |
||
332 | |||
333 | #define FAST_MATH_TABLE_SIZE 512 |
||
334 | #define FAST_MATH_Q31_SHIFT (32 - 10) |
||
335 | #define FAST_MATH_Q15_SHIFT (16 - 10) |
||
336 | #define CONTROLLER_Q31_SHIFT (32 - 9) |
||
337 | #define TABLE_SIZE 256 |
||
338 | #define TABLE_SPACING_Q31 0x400000 |
||
339 | #define TABLE_SPACING_Q15 0x80 |
||
340 | |||
341 | /** |
||
342 | * @brief Macros required for SINE and COSINE Controller functions |
||
343 | */ |
||
344 | /* 1.31(q31) Fixed value of 2/360 */ |
||
345 | /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ |
||
346 | #define INPUT_SPACING 0xB60B61 |
||
347 | |||
348 | /** |
||
349 | * @brief Macro for Unaligned Support |
||
350 | */ |
||
351 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
352 | #define ALIGN4 |
||
353 | #else |
||
354 | #if defined (__GNUC__) |
||
355 | #define ALIGN4 __attribute__((aligned(4))) |
||
356 | #else |
||
357 | #define ALIGN4 __align(4) |
||
358 | #endif |
||
359 | #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
||
360 | |||
361 | /** |
||
362 | * @brief Error status returned by some functions in the library. |
||
363 | */ |
||
364 | |||
365 | typedef enum |
||
366 | { |
||
367 | ARM_MATH_SUCCESS = 0, /**< No error */ |
||
368 | ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ |
||
369 | ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ |
||
370 | ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ |
||
371 | ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ |
||
372 | ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ |
||
373 | ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ |
||
374 | } arm_status; |
||
375 | |||
376 | /** |
||
377 | * @brief 8-bit fractional data type in 1.7 format. |
||
378 | */ |
||
379 | typedef int8_t q7_t; |
||
380 | |||
381 | /** |
||
382 | * @brief 16-bit fractional data type in 1.15 format. |
||
383 | */ |
||
384 | typedef int16_t q15_t; |
||
385 | |||
386 | /** |
||
387 | * @brief 32-bit fractional data type in 1.31 format. |
||
388 | */ |
||
389 | typedef int32_t q31_t; |
||
390 | |||
391 | /** |
||
392 | * @brief 64-bit fractional data type in 1.63 format. |
||
393 | */ |
||
394 | typedef int64_t q63_t; |
||
395 | |||
396 | /** |
||
397 | * @brief 32-bit floating-point type definition. |
||
398 | */ |
||
399 | typedef float float32_t; |
||
400 | |||
401 | /** |
||
402 | * @brief 64-bit floating-point type definition. |
||
403 | */ |
||
404 | typedef double float64_t; |
||
405 | |||
406 | /** |
||
407 | * @brief definition to read/write two 16 bit values. |
||
408 | */ |
||
409 | #if defined __CC_ARM |
||
410 | #define __SIMD32_TYPE int32_t __packed |
||
411 | #define CMSIS_UNUSED __attribute__((unused)) |
||
412 | #elif defined __ICCARM__ |
||
413 | #define __SIMD32_TYPE int32_t __packed |
||
414 | #define CMSIS_UNUSED |
||
415 | #elif defined __GNUC__ |
||
416 | #define __SIMD32_TYPE int32_t |
||
417 | #define CMSIS_UNUSED __attribute__((unused)) |
||
418 | #elif defined __CSMC__ /* Cosmic */ |
||
419 | #define __SIMD32_TYPE int32_t |
||
420 | #define CMSIS_UNUSED |
||
421 | #elif defined __TASKING__ |
||
422 | #define __SIMD32_TYPE __unaligned int32_t |
||
423 | #define CMSIS_UNUSED |
||
424 | #else |
||
425 | #error Unknown compiler |
||
426 | #endif |
||
427 | |||
428 | #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) |
||
429 | #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) |
||
430 | |||
431 | #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) |
||
432 | |||
433 | #define __SIMD64(addr) (*(int64_t **) & (addr)) |
||
434 | |||
435 | #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) |
||
436 | /** |
||
437 | * @brief definition to pack two 16 bit values. |
||
438 | */ |
||
439 | #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ |
||
440 | (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) |
||
441 | #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ |
||
442 | (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) |
||
443 | |||
444 | #endif |
||
445 | |||
446 | |||
447 | /** |
||
448 | * @brief definition to pack four 8 bit values. |
||
449 | */ |
||
450 | #ifndef ARM_MATH_BIG_ENDIAN |
||
451 | |||
452 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ |
||
453 | (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ |
||
454 | (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ |
||
455 | (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) |
||
456 | #else |
||
457 | |||
458 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ |
||
459 | (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ |
||
460 | (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ |
||
461 | (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) |
||
462 | |||
463 | #endif |
||
464 | |||
465 | |||
466 | /** |
||
467 | * @brief Clips Q63 to Q31 values. |
||
468 | */ |
||
469 | static __INLINE q31_t clip_q63_to_q31( |
||
470 | q63_t x) |
||
471 | { |
||
472 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
||
473 | ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; |
||
474 | } |
||
475 | |||
476 | /** |
||
477 | * @brief Clips Q63 to Q15 values. |
||
478 | */ |
||
479 | static __INLINE q15_t clip_q63_to_q15( |
||
480 | q63_t x) |
||
481 | { |
||
482 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
||
483 | ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); |
||
484 | } |
||
485 | |||
486 | /** |
||
487 | * @brief Clips Q31 to Q7 values. |
||
488 | */ |
||
489 | static __INLINE q7_t clip_q31_to_q7( |
||
490 | q31_t x) |
||
491 | { |
||
492 | return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? |
||
493 | ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; |
||
494 | } |
||
495 | |||
496 | /** |
||
497 | * @brief Clips Q31 to Q15 values. |
||
498 | */ |
||
499 | static __INLINE q15_t clip_q31_to_q15( |
||
500 | q31_t x) |
||
501 | { |
||
502 | return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? |
||
503 | ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; |
||
504 | } |
||
505 | |||
506 | /** |
||
507 | * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. |
||
508 | */ |
||
509 | |||
510 | static __INLINE q63_t mult32x64( |
||
511 | q63_t x, |
||
512 | q31_t y) |
||
513 | { |
||
514 | return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + |
||
515 | (((q63_t) (x >> 32) * y))); |
||
516 | } |
||
517 | |||
518 | |||
519 | //#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) |
||
520 | //#define __CLZ __clz |
||
521 | //#endif |
||
522 | |||
523 | //note: function can be removed when all toolchain support __CLZ for Cortex-M0 |
||
524 | #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ) |
||
525 | |||
526 | static __INLINE uint32_t __CLZ( |
||
527 | q31_t data); |
||
528 | |||
529 | |||
530 | static __INLINE uint32_t __CLZ( |
||
531 | q31_t data) |
||
532 | { |
||
533 | uint32_t count = 0; |
||
534 | uint32_t mask = 0x80000000; |
||
535 | |||
536 | while((data & mask) == 0) |
||
537 | { |
||
538 | count += 1u; |
||
539 | mask = mask >> 1u; |
||
540 | } |
||
541 | |||
542 | return (count); |
||
543 | |||
544 | } |
||
545 | |||
546 | #endif |
||
547 | |||
548 | /** |
||
549 | * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. |
||
550 | */ |
||
551 | |||
552 | static __INLINE uint32_t arm_recip_q31( |
||
553 | q31_t in, |
||
554 | q31_t * dst, |
||
555 | q31_t * pRecipTable) |
||
556 | { |
||
557 | |||
558 | uint32_t out, tempVal; |
||
559 | uint32_t index, i; |
||
560 | uint32_t signBits; |
||
561 | |||
562 | if(in > 0) |
||
563 | { |
||
564 | signBits = __CLZ(in) - 1; |
||
565 | } |
||
566 | else |
||
567 | { |
||
568 | signBits = __CLZ(-in) - 1; |
||
569 | } |
||
570 | |||
571 | /* Convert input sample to 1.31 format */ |
||
572 | in = in << signBits; |
||
573 | |||
574 | /* calculation of index for initial approximated Val */ |
||
575 | index = (uint32_t) (in >> 24u); |
||
576 | index = (index & INDEX_MASK); |
||
577 | |||
578 | /* 1.31 with exp 1 */ |
||
579 | out = pRecipTable[index]; |
||
580 | |||
581 | /* calculation of reciprocal value */ |
||
582 | /* running approximation for two iterations */ |
||
583 | for (i = 0u; i < 2u; i++) |
||
584 | { |
||
585 | tempVal = (q31_t) (((q63_t) in * out) >> 31u); |
||
586 | tempVal = 0x7FFFFFFF - tempVal; |
||
587 | /* 1.31 with exp 1 */ |
||
588 | //out = (q31_t) (((q63_t) out * tempVal) >> 30u); |
||
589 | out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u); |
||
590 | } |
||
591 | |||
592 | /* write output */ |
||
593 | *dst = out; |
||
594 | |||
595 | /* return num of signbits of out = 1/in value */ |
||
596 | return (signBits + 1u); |
||
597 | |||
598 | } |
||
599 | |||
600 | /** |
||
601 | * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. |
||
602 | */ |
||
603 | static __INLINE uint32_t arm_recip_q15( |
||
604 | q15_t in, |
||
605 | q15_t * dst, |
||
606 | q15_t * pRecipTable) |
||
607 | { |
||
608 | |||
609 | uint32_t out = 0, tempVal = 0; |
||
610 | uint32_t index = 0, i = 0; |
||
611 | uint32_t signBits = 0; |
||
612 | |||
613 | if(in > 0) |
||
614 | { |
||
615 | signBits = __CLZ(in) - 17; |
||
616 | } |
||
617 | else |
||
618 | { |
||
619 | signBits = __CLZ(-in) - 17; |
||
620 | } |
||
621 | |||
622 | /* Convert input sample to 1.15 format */ |
||
623 | in = in << signBits; |
||
624 | |||
625 | /* calculation of index for initial approximated Val */ |
||
626 | index = in >> 8; |
||
627 | index = (index & INDEX_MASK); |
||
628 | |||
629 | /* 1.15 with exp 1 */ |
||
630 | out = pRecipTable[index]; |
||
631 | |||
632 | /* calculation of reciprocal value */ |
||
633 | /* running approximation for two iterations */ |
||
634 | for (i = 0; i < 2; i++) |
||
635 | { |
||
636 | tempVal = (q15_t) (((q31_t) in * out) >> 15); |
||
637 | tempVal = 0x7FFF - tempVal; |
||
638 | /* 1.15 with exp 1 */ |
||
639 | out = (q15_t) (((q31_t) out * tempVal) >> 14); |
||
640 | } |
||
641 | |||
642 | /* write output */ |
||
643 | *dst = out; |
||
644 | |||
645 | /* return num of signbits of out = 1/in value */ |
||
646 | return (signBits + 1); |
||
647 | |||
648 | } |
||
649 | |||
650 | |||
651 | /* |
||
652 | * @brief C custom defined intrinisic function for only M0 processors |
||
653 | */ |
||
654 | #if defined(ARM_MATH_CM0_FAMILY) |
||
655 | |||
656 | static __INLINE q31_t __SSAT( |
||
657 | q31_t x, |
||
658 | uint32_t y) |
||
659 | { |
||
660 | int32_t posMax, negMin; |
||
661 | uint32_t i; |
||
662 | |||
663 | posMax = 1; |
||
664 | for (i = 0; i < (y - 1); i++) |
||
665 | { |
||
666 | posMax = posMax * 2; |
||
667 | } |
||
668 | |||
669 | if(x > 0) |
||
670 | { |
||
671 | posMax = (posMax - 1); |
||
672 | |||
673 | if(x > posMax) |
||
674 | { |
||
675 | x = posMax; |
||
676 | } |
||
677 | } |
||
678 | else |
||
679 | { |
||
680 | negMin = -posMax; |
||
681 | |||
682 | if(x < negMin) |
||
683 | { |
||
684 | x = negMin; |
||
685 | } |
||
686 | } |
||
687 | return (x); |
||
688 | |||
689 | |||
690 | } |
||
691 | |||
692 | #endif /* end of ARM_MATH_CM0_FAMILY */ |
||
693 | |||
694 | |||
695 | |||
696 | /* |
||
697 | * @brief C custom defined intrinsic function for M3 and M0 processors |
||
698 | */ |
||
699 | #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) |
||
700 | |||
701 | /* |
||
702 | * @brief C custom defined QADD8 for M3 and M0 processors |
||
703 | */ |
||
704 | static __INLINE q31_t __QADD8( |
||
705 | q31_t x, |
||
706 | q31_t y) |
||
707 | { |
||
708 | |||
709 | q31_t sum; |
||
710 | q7_t r, s, t, u; |
||
711 | |||
712 | r = (q7_t) x; |
||
713 | s = (q7_t) y; |
||
714 | |||
715 | r = __SSAT((q31_t) (r + s), 8); |
||
716 | s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8); |
||
717 | t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8); |
||
718 | u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8); |
||
719 | |||
720 | sum = |
||
721 | (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) | |
||
722 | (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF); |
||
723 | |||
724 | return sum; |
||
725 | |||
726 | } |
||
727 | |||
728 | /* |
||
729 | * @brief C custom defined QSUB8 for M3 and M0 processors |
||
730 | */ |
||
731 | static __INLINE q31_t __QSUB8( |
||
732 | q31_t x, |
||
733 | q31_t y) |
||
734 | { |
||
735 | |||
736 | q31_t sum; |
||
737 | q31_t r, s, t, u; |
||
738 | |||
739 | r = (q7_t) x; |
||
740 | s = (q7_t) y; |
||
741 | |||
742 | r = __SSAT((r - s), 8); |
||
743 | s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8; |
||
744 | t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16; |
||
745 | u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24; |
||
746 | |||
747 | sum = |
||
748 | (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & |
||
749 | 0x000000FF); |
||
750 | |||
751 | return sum; |
||
752 | } |
||
753 | |||
754 | /* |
||
755 | * @brief C custom defined QADD16 for M3 and M0 processors |
||
756 | */ |
||
757 | |||
758 | /* |
||
759 | * @brief C custom defined QADD16 for M3 and M0 processors |
||
760 | */ |
||
761 | static __INLINE q31_t __QADD16( |
||
762 | q31_t x, |
||
763 | q31_t y) |
||
764 | { |
||
765 | |||
766 | q31_t sum; |
||
767 | q31_t r, s; |
||
768 | |||
769 | r = (q15_t) x; |
||
770 | s = (q15_t) y; |
||
771 | |||
772 | r = __SSAT(r + s, 16); |
||
773 | s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16; |
||
774 | |||
775 | sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); |
||
776 | |||
777 | return sum; |
||
778 | |||
779 | } |
||
780 | |||
781 | /* |
||
782 | * @brief C custom defined SHADD16 for M3 and M0 processors |
||
783 | */ |
||
784 | static __INLINE q31_t __SHADD16( |
||
785 | q31_t x, |
||
786 | q31_t y) |
||
787 | { |
||
788 | |||
789 | q31_t sum; |
||
790 | q31_t r, s; |
||
791 | |||
792 | r = (q15_t) x; |
||
793 | s = (q15_t) y; |
||
794 | |||
795 | r = ((r >> 1) + (s >> 1)); |
||
796 | s = ((q31_t) ((x >> 17) + (y >> 17))) << 16; |
||
797 | |||
798 | sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); |
||
799 | |||
800 | return sum; |
||
801 | |||
802 | } |
||
803 | |||
804 | /* |
||
805 | * @brief C custom defined QSUB16 for M3 and M0 processors |
||
806 | */ |
||
807 | static __INLINE q31_t __QSUB16( |
||
808 | q31_t x, |
||
809 | q31_t y) |
||
810 | { |
||
811 | |||
812 | q31_t sum; |
||
813 | q31_t r, s; |
||
814 | |||
815 | r = (q15_t) x; |
||
816 | s = (q15_t) y; |
||
817 | |||
818 | r = __SSAT(r - s, 16); |
||
819 | s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16; |
||
820 | |||
821 | sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); |
||
822 | |||
823 | return sum; |
||
824 | } |
||
825 | |||
826 | /* |
||
827 | * @brief C custom defined SHSUB16 for M3 and M0 processors |
||
828 | */ |
||
829 | static __INLINE q31_t __SHSUB16( |
||
830 | q31_t x, |
||
831 | q31_t y) |
||
832 | { |
||
833 | |||
834 | q31_t diff; |
||
835 | q31_t r, s; |
||
836 | |||
837 | r = (q15_t) x; |
||
838 | s = (q15_t) y; |
||
839 | |||
840 | r = ((r >> 1) - (s >> 1)); |
||
841 | s = (((x >> 17) - (y >> 17)) << 16); |
||
842 | |||
843 | diff = (s & 0xFFFF0000) | (r & 0x0000FFFF); |
||
844 | |||
845 | return diff; |
||
846 | } |
||
847 | |||
848 | /* |
||
849 | * @brief C custom defined QASX for M3 and M0 processors |
||
850 | */ |
||
851 | static __INLINE q31_t __QASX( |
||
852 | q31_t x, |
||
853 | q31_t y) |
||
854 | { |
||
855 | |||
856 | q31_t sum = 0; |
||
857 | |||
858 | sum = |
||
859 | ((sum + |
||
860 | clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) + |
||
861 | clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16))); |
||
862 | |||
863 | return sum; |
||
864 | } |
||
865 | |||
866 | /* |
||
867 | * @brief C custom defined SHASX for M3 and M0 processors |
||
868 | */ |
||
869 | static __INLINE q31_t __SHASX( |
||
870 | q31_t x, |
||
871 | q31_t y) |
||
872 | { |
||
873 | |||
874 | q31_t sum; |
||
875 | q31_t r, s; |
||
876 | |||
877 | r = (q15_t) x; |
||
878 | s = (q15_t) y; |
||
879 | |||
880 | r = ((r >> 1) - (y >> 17)); |
||
881 | s = (((x >> 17) + (s >> 1)) << 16); |
||
882 | |||
883 | sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); |
||
884 | |||
885 | return sum; |
||
886 | } |
||
887 | |||
888 | |||
889 | /* |
||
890 | * @brief C custom defined QSAX for M3 and M0 processors |
||
891 | */ |
||
892 | static __INLINE q31_t __QSAX( |
||
893 | q31_t x, |
||
894 | q31_t y) |
||
895 | { |
||
896 | |||
897 | q31_t sum = 0; |
||
898 | |||
899 | sum = |
||
900 | ((sum + |
||
901 | clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) + |
||
902 | clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16))); |
||
903 | |||
904 | return sum; |
||
905 | } |
||
906 | |||
907 | /* |
||
908 | * @brief C custom defined SHSAX for M3 and M0 processors |
||
909 | */ |
||
910 | static __INLINE q31_t __SHSAX( |
||
911 | q31_t x, |
||
912 | q31_t y) |
||
913 | { |
||
914 | |||
915 | q31_t sum; |
||
916 | q31_t r, s; |
||
917 | |||
918 | r = (q15_t) x; |
||
919 | s = (q15_t) y; |
||
920 | |||
921 | r = ((r >> 1) + (y >> 17)); |
||
922 | s = (((x >> 17) - (s >> 1)) << 16); |
||
923 | |||
924 | sum = (s & 0xFFFF0000) | (r & 0x0000FFFF); |
||
925 | |||
926 | return sum; |
||
927 | } |
||
928 | |||
929 | /* |
||
930 | * @brief C custom defined SMUSDX for M3 and M0 processors |
||
931 | */ |
||
932 | static __INLINE q31_t __SMUSDX( |
||
933 | q31_t x, |
||
934 | q31_t y) |
||
935 | { |
||
936 | |||
937 | return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) - |
||
938 | ((q15_t) (x >> 16) * (q15_t) y))); |
||
939 | } |
||
940 | |||
941 | /* |
||
942 | * @brief C custom defined SMUADX for M3 and M0 processors |
||
943 | */ |
||
944 | static __INLINE q31_t __SMUADX( |
||
945 | q31_t x, |
||
946 | q31_t y) |
||
947 | { |
||
948 | |||
949 | return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) + |
||
950 | ((q15_t) (x >> 16) * (q15_t) y))); |
||
951 | } |
||
952 | |||
953 | /* |
||
954 | * @brief C custom defined QADD for M3 and M0 processors |
||
955 | */ |
||
956 | static __INLINE q31_t __QADD( |
||
957 | q31_t x, |
||
958 | q31_t y) |
||
959 | { |
||
960 | return clip_q63_to_q31((q63_t) x + y); |
||
961 | } |
||
962 | |||
963 | /* |
||
964 | * @brief C custom defined QSUB for M3 and M0 processors |
||
965 | */ |
||
966 | static __INLINE q31_t __QSUB( |
||
967 | q31_t x, |
||
968 | q31_t y) |
||
969 | { |
||
970 | return clip_q63_to_q31((q63_t) x - y); |
||
971 | } |
||
972 | |||
973 | /* |
||
974 | * @brief C custom defined SMLAD for M3 and M0 processors |
||
975 | */ |
||
976 | static __INLINE q31_t __SMLAD( |
||
977 | q31_t x, |
||
978 | q31_t y, |
||
979 | q31_t sum) |
||
980 | { |
||
981 | |||
982 | return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + |
||
983 | ((q15_t) x * (q15_t) y)); |
||
984 | } |
||
985 | |||
986 | /* |
||
987 | * @brief C custom defined SMLADX for M3 and M0 processors |
||
988 | */ |
||
989 | static __INLINE q31_t __SMLADX( |
||
990 | q31_t x, |
||
991 | q31_t y, |
||
992 | q31_t sum) |
||
993 | { |
||
994 | |||
995 | return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) + |
||
996 | ((q15_t) x * (q15_t) (y >> 16))); |
||
997 | } |
||
998 | |||
999 | /* |
||
1000 | * @brief C custom defined SMLSDX for M3 and M0 processors |
||
1001 | */ |
||
1002 | static __INLINE q31_t __SMLSDX( |
||
1003 | q31_t x, |
||
1004 | q31_t y, |
||
1005 | q31_t sum) |
||
1006 | { |
||
1007 | |||
1008 | return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) + |
||
1009 | ((q15_t) x * (q15_t) (y >> 16))); |
||
1010 | } |
||
1011 | |||
1012 | /* |
||
1013 | * @brief C custom defined SMLALD for M3 and M0 processors |
||
1014 | */ |
||
1015 | static __INLINE q63_t __SMLALD( |
||
1016 | q31_t x, |
||
1017 | q31_t y, |
||
1018 | q63_t sum) |
||
1019 | { |
||
1020 | |||
1021 | return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + |
||
1022 | ((q15_t) x * (q15_t) y)); |
||
1023 | } |
||
1024 | |||
1025 | /* |
||
1026 | * @brief C custom defined SMLALDX for M3 and M0 processors |
||
1027 | */ |
||
1028 | static __INLINE q63_t __SMLALDX( |
||
1029 | q31_t x, |
||
1030 | q31_t y, |
||
1031 | q63_t sum) |
||
1032 | { |
||
1033 | |||
1034 | return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + |
||
1035 | ((q15_t) x * (q15_t) (y >> 16)); |
||
1036 | } |
||
1037 | |||
1038 | /* |
||
1039 | * @brief C custom defined SMUAD for M3 and M0 processors |
||
1040 | */ |
||
1041 | static __INLINE q31_t __SMUAD( |
||
1042 | q31_t x, |
||
1043 | q31_t y) |
||
1044 | { |
||
1045 | |||
1046 | return (((x >> 16) * (y >> 16)) + |
||
1047 | (((x << 16) >> 16) * ((y << 16) >> 16))); |
||
1048 | } |
||
1049 | |||
1050 | /* |
||
1051 | * @brief C custom defined SMUSD for M3 and M0 processors |
||
1052 | */ |
||
1053 | static __INLINE q31_t __SMUSD( |
||
1054 | q31_t x, |
||
1055 | q31_t y) |
||
1056 | { |
||
1057 | |||
1058 | return (-((x >> 16) * (y >> 16)) + |
||
1059 | (((x << 16) >> 16) * ((y << 16) >> 16))); |
||
1060 | } |
||
1061 | |||
1062 | |||
1063 | /* |
||
1064 | * @brief C custom defined SXTB16 for M3 and M0 processors |
||
1065 | */ |
||
1066 | static __INLINE q31_t __SXTB16( |
||
1067 | q31_t x) |
||
1068 | { |
||
1069 | |||
1070 | return ((((x << 24) >> 24) & 0x0000FFFF) | |
||
1071 | (((x << 8) >> 8) & 0xFFFF0000)); |
||
1072 | } |
||
1073 | |||
1074 | |||
1075 | #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ |
||
1076 | |||
1077 | |||
1078 | /** |
||
1079 | * @brief Instance structure for the Q7 FIR filter. |
||
1080 | */ |
||
1081 | typedef struct |
||
1082 | { |
||
1083 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1084 | q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1085 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
1086 | } arm_fir_instance_q7; |
||
1087 | |||
1088 | /** |
||
1089 | * @brief Instance structure for the Q15 FIR filter. |
||
1090 | */ |
||
1091 | typedef struct |
||
1092 | { |
||
1093 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1094 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1095 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
1096 | } arm_fir_instance_q15; |
||
1097 | |||
1098 | /** |
||
1099 | * @brief Instance structure for the Q31 FIR filter. |
||
1100 | */ |
||
1101 | typedef struct |
||
1102 | { |
||
1103 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1104 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1105 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
1106 | } arm_fir_instance_q31; |
||
1107 | |||
1108 | /** |
||
1109 | * @brief Instance structure for the floating-point FIR filter. |
||
1110 | */ |
||
1111 | typedef struct |
||
1112 | { |
||
1113 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1114 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1115 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
1116 | } arm_fir_instance_f32; |
||
1117 | |||
1118 | |||
1119 | /** |
||
1120 | * @brief Processing function for the Q7 FIR filter. |
||
1121 | * @param[in] *S points to an instance of the Q7 FIR filter structure. |
||
1122 | * @param[in] *pSrc points to the block of input data. |
||
1123 | * @param[out] *pDst points to the block of output data. |
||
1124 | * @param[in] blockSize number of samples to process. |
||
1125 | * @return none. |
||
1126 | */ |
||
1127 | void arm_fir_q7( |
||
1128 | const arm_fir_instance_q7 * S, |
||
1129 | q7_t * pSrc, |
||
1130 | q7_t * pDst, |
||
1131 | uint32_t blockSize); |
||
1132 | |||
1133 | |||
1134 | /** |
||
1135 | * @brief Initialization function for the Q7 FIR filter. |
||
1136 | * @param[in,out] *S points to an instance of the Q7 FIR structure. |
||
1137 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
1138 | * @param[in] *pCoeffs points to the filter coefficients. |
||
1139 | * @param[in] *pState points to the state buffer. |
||
1140 | * @param[in] blockSize number of samples that are processed. |
||
1141 | * @return none |
||
1142 | */ |
||
1143 | void arm_fir_init_q7( |
||
1144 | arm_fir_instance_q7 * S, |
||
1145 | uint16_t numTaps, |
||
1146 | q7_t * pCoeffs, |
||
1147 | q7_t * pState, |
||
1148 | uint32_t blockSize); |
||
1149 | |||
1150 | |||
1151 | /** |
||
1152 | * @brief Processing function for the Q15 FIR filter. |
||
1153 | * @param[in] *S points to an instance of the Q15 FIR structure. |
||
1154 | * @param[in] *pSrc points to the block of input data. |
||
1155 | * @param[out] *pDst points to the block of output data. |
||
1156 | * @param[in] blockSize number of samples to process. |
||
1157 | * @return none. |
||
1158 | */ |
||
1159 | void arm_fir_q15( |
||
1160 | const arm_fir_instance_q15 * S, |
||
1161 | q15_t * pSrc, |
||
1162 | q15_t * pDst, |
||
1163 | uint32_t blockSize); |
||
1164 | |||
1165 | /** |
||
1166 | * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. |
||
1167 | * @param[in] *S points to an instance of the Q15 FIR filter structure. |
||
1168 | * @param[in] *pSrc points to the block of input data. |
||
1169 | * @param[out] *pDst points to the block of output data. |
||
1170 | * @param[in] blockSize number of samples to process. |
||
1171 | * @return none. |
||
1172 | */ |
||
1173 | void arm_fir_fast_q15( |
||
1174 | const arm_fir_instance_q15 * S, |
||
1175 | q15_t * pSrc, |
||
1176 | q15_t * pDst, |
||
1177 | uint32_t blockSize); |
||
1178 | |||
1179 | /** |
||
1180 | * @brief Initialization function for the Q15 FIR filter. |
||
1181 | * @param[in,out] *S points to an instance of the Q15 FIR filter structure. |
||
1182 | * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. |
||
1183 | * @param[in] *pCoeffs points to the filter coefficients. |
||
1184 | * @param[in] *pState points to the state buffer. |
||
1185 | * @param[in] blockSize number of samples that are processed at a time. |
||
1186 | * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if |
||
1187 | * <code>numTaps</code> is not a supported value. |
||
1188 | */ |
||
1189 | |||
1190 | arm_status arm_fir_init_q15( |
||
1191 | arm_fir_instance_q15 * S, |
||
1192 | uint16_t numTaps, |
||
1193 | q15_t * pCoeffs, |
||
1194 | q15_t * pState, |
||
1195 | uint32_t blockSize); |
||
1196 | |||
1197 | /** |
||
1198 | * @brief Processing function for the Q31 FIR filter. |
||
1199 | * @param[in] *S points to an instance of the Q31 FIR filter structure. |
||
1200 | * @param[in] *pSrc points to the block of input data. |
||
1201 | * @param[out] *pDst points to the block of output data. |
||
1202 | * @param[in] blockSize number of samples to process. |
||
1203 | * @return none. |
||
1204 | */ |
||
1205 | void arm_fir_q31( |
||
1206 | const arm_fir_instance_q31 * S, |
||
1207 | q31_t * pSrc, |
||
1208 | q31_t * pDst, |
||
1209 | uint32_t blockSize); |
||
1210 | |||
1211 | /** |
||
1212 | * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. |
||
1213 | * @param[in] *S points to an instance of the Q31 FIR structure. |
||
1214 | * @param[in] *pSrc points to the block of input data. |
||
1215 | * @param[out] *pDst points to the block of output data. |
||
1216 | * @param[in] blockSize number of samples to process. |
||
1217 | * @return none. |
||
1218 | */ |
||
1219 | void arm_fir_fast_q31( |
||
1220 | const arm_fir_instance_q31 * S, |
||
1221 | q31_t * pSrc, |
||
1222 | q31_t * pDst, |
||
1223 | uint32_t blockSize); |
||
1224 | |||
1225 | /** |
||
1226 | * @brief Initialization function for the Q31 FIR filter. |
||
1227 | * @param[in,out] *S points to an instance of the Q31 FIR structure. |
||
1228 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
1229 | * @param[in] *pCoeffs points to the filter coefficients. |
||
1230 | * @param[in] *pState points to the state buffer. |
||
1231 | * @param[in] blockSize number of samples that are processed at a time. |
||
1232 | * @return none. |
||
1233 | */ |
||
1234 | void arm_fir_init_q31( |
||
1235 | arm_fir_instance_q31 * S, |
||
1236 | uint16_t numTaps, |
||
1237 | q31_t * pCoeffs, |
||
1238 | q31_t * pState, |
||
1239 | uint32_t blockSize); |
||
1240 | |||
1241 | /** |
||
1242 | * @brief Processing function for the floating-point FIR filter. |
||
1243 | * @param[in] *S points to an instance of the floating-point FIR structure. |
||
1244 | * @param[in] *pSrc points to the block of input data. |
||
1245 | * @param[out] *pDst points to the block of output data. |
||
1246 | * @param[in] blockSize number of samples to process. |
||
1247 | * @return none. |
||
1248 | */ |
||
1249 | void arm_fir_f32( |
||
1250 | const arm_fir_instance_f32 * S, |
||
1251 | float32_t * pSrc, |
||
1252 | float32_t * pDst, |
||
1253 | uint32_t blockSize); |
||
1254 | |||
1255 | /** |
||
1256 | * @brief Initialization function for the floating-point FIR filter. |
||
1257 | * @param[in,out] *S points to an instance of the floating-point FIR filter structure. |
||
1258 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
1259 | * @param[in] *pCoeffs points to the filter coefficients. |
||
1260 | * @param[in] *pState points to the state buffer. |
||
1261 | * @param[in] blockSize number of samples that are processed at a time. |
||
1262 | * @return none. |
||
1263 | */ |
||
1264 | void arm_fir_init_f32( |
||
1265 | arm_fir_instance_f32 * S, |
||
1266 | uint16_t numTaps, |
||
1267 | float32_t * pCoeffs, |
||
1268 | float32_t * pState, |
||
1269 | uint32_t blockSize); |
||
1270 | |||
1271 | |||
1272 | /** |
||
1273 | * @brief Instance structure for the Q15 Biquad cascade filter. |
||
1274 | */ |
||
1275 | typedef struct |
||
1276 | { |
||
1277 | int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
1278 | q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
1279 | q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
1280 | int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
||
1281 | |||
1282 | } arm_biquad_casd_df1_inst_q15; |
||
1283 | |||
1284 | |||
1285 | /** |
||
1286 | * @brief Instance structure for the Q31 Biquad cascade filter. |
||
1287 | */ |
||
1288 | typedef struct |
||
1289 | { |
||
1290 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
1291 | q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
1292 | q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
1293 | uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
||
1294 | |||
1295 | } arm_biquad_casd_df1_inst_q31; |
||
1296 | |||
1297 | /** |
||
1298 | * @brief Instance structure for the floating-point Biquad cascade filter. |
||
1299 | */ |
||
1300 | typedef struct |
||
1301 | { |
||
1302 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
1303 | float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
1304 | float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
1305 | |||
1306 | |||
1307 | } arm_biquad_casd_df1_inst_f32; |
||
1308 | |||
1309 | |||
1310 | |||
1311 | /** |
||
1312 | * @brief Processing function for the Q15 Biquad cascade filter. |
||
1313 | * @param[in] *S points to an instance of the Q15 Biquad cascade structure. |
||
1314 | * @param[in] *pSrc points to the block of input data. |
||
1315 | * @param[out] *pDst points to the block of output data. |
||
1316 | * @param[in] blockSize number of samples to process. |
||
1317 | * @return none. |
||
1318 | */ |
||
1319 | |||
1320 | void arm_biquad_cascade_df1_q15( |
||
1321 | const arm_biquad_casd_df1_inst_q15 * S, |
||
1322 | q15_t * pSrc, |
||
1323 | q15_t * pDst, |
||
1324 | uint32_t blockSize); |
||
1325 | |||
1326 | /** |
||
1327 | * @brief Initialization function for the Q15 Biquad cascade filter. |
||
1328 | * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure. |
||
1329 | * @param[in] numStages number of 2nd order stages in the filter. |
||
1330 | * @param[in] *pCoeffs points to the filter coefficients. |
||
1331 | * @param[in] *pState points to the state buffer. |
||
1332 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
||
1333 | * @return none |
||
1334 | */ |
||
1335 | |||
1336 | void arm_biquad_cascade_df1_init_q15( |
||
1337 | arm_biquad_casd_df1_inst_q15 * S, |
||
1338 | uint8_t numStages, |
||
1339 | q15_t * pCoeffs, |
||
1340 | q15_t * pState, |
||
1341 | int8_t postShift); |
||
1342 | |||
1343 | |||
1344 | /** |
||
1345 | * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
||
1346 | * @param[in] *S points to an instance of the Q15 Biquad cascade structure. |
||
1347 | * @param[in] *pSrc points to the block of input data. |
||
1348 | * @param[out] *pDst points to the block of output data. |
||
1349 | * @param[in] blockSize number of samples to process. |
||
1350 | * @return none. |
||
1351 | */ |
||
1352 | |||
1353 | void arm_biquad_cascade_df1_fast_q15( |
||
1354 | const arm_biquad_casd_df1_inst_q15 * S, |
||
1355 | q15_t * pSrc, |
||
1356 | q15_t * pDst, |
||
1357 | uint32_t blockSize); |
||
1358 | |||
1359 | |||
1360 | /** |
||
1361 | * @brief Processing function for the Q31 Biquad cascade filter |
||
1362 | * @param[in] *S points to an instance of the Q31 Biquad cascade structure. |
||
1363 | * @param[in] *pSrc points to the block of input data. |
||
1364 | * @param[out] *pDst points to the block of output data. |
||
1365 | * @param[in] blockSize number of samples to process. |
||
1366 | * @return none. |
||
1367 | */ |
||
1368 | |||
1369 | void arm_biquad_cascade_df1_q31( |
||
1370 | const arm_biquad_casd_df1_inst_q31 * S, |
||
1371 | q31_t * pSrc, |
||
1372 | q31_t * pDst, |
||
1373 | uint32_t blockSize); |
||
1374 | |||
1375 | /** |
||
1376 | * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
||
1377 | * @param[in] *S points to an instance of the Q31 Biquad cascade structure. |
||
1378 | * @param[in] *pSrc points to the block of input data. |
||
1379 | * @param[out] *pDst points to the block of output data. |
||
1380 | * @param[in] blockSize number of samples to process. |
||
1381 | * @return none. |
||
1382 | */ |
||
1383 | |||
1384 | void arm_biquad_cascade_df1_fast_q31( |
||
1385 | const arm_biquad_casd_df1_inst_q31 * S, |
||
1386 | q31_t * pSrc, |
||
1387 | q31_t * pDst, |
||
1388 | uint32_t blockSize); |
||
1389 | |||
1390 | /** |
||
1391 | * @brief Initialization function for the Q31 Biquad cascade filter. |
||
1392 | * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure. |
||
1393 | * @param[in] numStages number of 2nd order stages in the filter. |
||
1394 | * @param[in] *pCoeffs points to the filter coefficients. |
||
1395 | * @param[in] *pState points to the state buffer. |
||
1396 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
||
1397 | * @return none |
||
1398 | */ |
||
1399 | |||
1400 | void arm_biquad_cascade_df1_init_q31( |
||
1401 | arm_biquad_casd_df1_inst_q31 * S, |
||
1402 | uint8_t numStages, |
||
1403 | q31_t * pCoeffs, |
||
1404 | q31_t * pState, |
||
1405 | int8_t postShift); |
||
1406 | |||
1407 | /** |
||
1408 | * @brief Processing function for the floating-point Biquad cascade filter. |
||
1409 | * @param[in] *S points to an instance of the floating-point Biquad cascade structure. |
||
1410 | * @param[in] *pSrc points to the block of input data. |
||
1411 | * @param[out] *pDst points to the block of output data. |
||
1412 | * @param[in] blockSize number of samples to process. |
||
1413 | * @return none. |
||
1414 | */ |
||
1415 | |||
1416 | void arm_biquad_cascade_df1_f32( |
||
1417 | const arm_biquad_casd_df1_inst_f32 * S, |
||
1418 | float32_t * pSrc, |
||
1419 | float32_t * pDst, |
||
1420 | uint32_t blockSize); |
||
1421 | |||
1422 | /** |
||
1423 | * @brief Initialization function for the floating-point Biquad cascade filter. |
||
1424 | * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure. |
||
1425 | * @param[in] numStages number of 2nd order stages in the filter. |
||
1426 | * @param[in] *pCoeffs points to the filter coefficients. |
||
1427 | * @param[in] *pState points to the state buffer. |
||
1428 | * @return none |
||
1429 | */ |
||
1430 | |||
1431 | void arm_biquad_cascade_df1_init_f32( |
||
1432 | arm_biquad_casd_df1_inst_f32 * S, |
||
1433 | uint8_t numStages, |
||
1434 | float32_t * pCoeffs, |
||
1435 | float32_t * pState); |
||
1436 | |||
1437 | |||
1438 | /** |
||
1439 | * @brief Instance structure for the floating-point matrix structure. |
||
1440 | */ |
||
1441 | |||
1442 | typedef struct |
||
1443 | { |
||
1444 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1445 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1446 | float32_t *pData; /**< points to the data of the matrix. */ |
||
1447 | } arm_matrix_instance_f32; |
||
1448 | |||
1449 | |||
1450 | /** |
||
1451 | * @brief Instance structure for the floating-point matrix structure. |
||
1452 | */ |
||
1453 | |||
1454 | typedef struct |
||
1455 | { |
||
1456 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1457 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1458 | float64_t *pData; /**< points to the data of the matrix. */ |
||
1459 | } arm_matrix_instance_f64; |
||
1460 | |||
1461 | /** |
||
1462 | * @brief Instance structure for the Q15 matrix structure. |
||
1463 | */ |
||
1464 | |||
1465 | typedef struct |
||
1466 | { |
||
1467 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1468 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1469 | q15_t *pData; /**< points to the data of the matrix. */ |
||
1470 | |||
1471 | } arm_matrix_instance_q15; |
||
1472 | |||
1473 | /** |
||
1474 | * @brief Instance structure for the Q31 matrix structure. |
||
1475 | */ |
||
1476 | |||
1477 | typedef struct |
||
1478 | { |
||
1479 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1480 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1481 | q31_t *pData; /**< points to the data of the matrix. */ |
||
1482 | |||
1483 | } arm_matrix_instance_q31; |
||
1484 | |||
1485 | |||
1486 | |||
1487 | /** |
||
1488 | * @brief Floating-point matrix addition. |
||
1489 | * @param[in] *pSrcA points to the first input matrix structure |
||
1490 | * @param[in] *pSrcB points to the second input matrix structure |
||
1491 | * @param[out] *pDst points to output matrix structure |
||
1492 | * @return The function returns either |
||
1493 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1494 | */ |
||
1495 | |||
1496 | arm_status arm_mat_add_f32( |
||
1497 | const arm_matrix_instance_f32 * pSrcA, |
||
1498 | const arm_matrix_instance_f32 * pSrcB, |
||
1499 | arm_matrix_instance_f32 * pDst); |
||
1500 | |||
1501 | /** |
||
1502 | * @brief Q15 matrix addition. |
||
1503 | * @param[in] *pSrcA points to the first input matrix structure |
||
1504 | * @param[in] *pSrcB points to the second input matrix structure |
||
1505 | * @param[out] *pDst points to output matrix structure |
||
1506 | * @return The function returns either |
||
1507 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1508 | */ |
||
1509 | |||
1510 | arm_status arm_mat_add_q15( |
||
1511 | const arm_matrix_instance_q15 * pSrcA, |
||
1512 | const arm_matrix_instance_q15 * pSrcB, |
||
1513 | arm_matrix_instance_q15 * pDst); |
||
1514 | |||
1515 | /** |
||
1516 | * @brief Q31 matrix addition. |
||
1517 | * @param[in] *pSrcA points to the first input matrix structure |
||
1518 | * @param[in] *pSrcB points to the second input matrix structure |
||
1519 | * @param[out] *pDst points to output matrix structure |
||
1520 | * @return The function returns either |
||
1521 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1522 | */ |
||
1523 | |||
1524 | arm_status arm_mat_add_q31( |
||
1525 | const arm_matrix_instance_q31 * pSrcA, |
||
1526 | const arm_matrix_instance_q31 * pSrcB, |
||
1527 | arm_matrix_instance_q31 * pDst); |
||
1528 | |||
1529 | /** |
||
1530 | * @brief Floating-point, complex, matrix multiplication. |
||
1531 | * @param[in] *pSrcA points to the first input matrix structure |
||
1532 | * @param[in] *pSrcB points to the second input matrix structure |
||
1533 | * @param[out] *pDst points to output matrix structure |
||
1534 | * @return The function returns either |
||
1535 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1536 | */ |
||
1537 | |||
1538 | arm_status arm_mat_cmplx_mult_f32( |
||
1539 | const arm_matrix_instance_f32 * pSrcA, |
||
1540 | const arm_matrix_instance_f32 * pSrcB, |
||
1541 | arm_matrix_instance_f32 * pDst); |
||
1542 | |||
1543 | /** |
||
1544 | * @brief Q15, complex, matrix multiplication. |
||
1545 | * @param[in] *pSrcA points to the first input matrix structure |
||
1546 | * @param[in] *pSrcB points to the second input matrix structure |
||
1547 | * @param[out] *pDst points to output matrix structure |
||
1548 | * @return The function returns either |
||
1549 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1550 | */ |
||
1551 | |||
1552 | arm_status arm_mat_cmplx_mult_q15( |
||
1553 | const arm_matrix_instance_q15 * pSrcA, |
||
1554 | const arm_matrix_instance_q15 * pSrcB, |
||
1555 | arm_matrix_instance_q15 * pDst, |
||
1556 | q15_t * pScratch); |
||
1557 | |||
1558 | /** |
||
1559 | * @brief Q31, complex, matrix multiplication. |
||
1560 | * @param[in] *pSrcA points to the first input matrix structure |
||
1561 | * @param[in] *pSrcB points to the second input matrix structure |
||
1562 | * @param[out] *pDst points to output matrix structure |
||
1563 | * @return The function returns either |
||
1564 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1565 | */ |
||
1566 | |||
1567 | arm_status arm_mat_cmplx_mult_q31( |
||
1568 | const arm_matrix_instance_q31 * pSrcA, |
||
1569 | const arm_matrix_instance_q31 * pSrcB, |
||
1570 | arm_matrix_instance_q31 * pDst); |
||
1571 | |||
1572 | |||
1573 | /** |
||
1574 | * @brief Floating-point matrix transpose. |
||
1575 | * @param[in] *pSrc points to the input matrix |
||
1576 | * @param[out] *pDst points to the output matrix |
||
1577 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
1578 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1579 | */ |
||
1580 | |||
1581 | arm_status arm_mat_trans_f32( |
||
1582 | const arm_matrix_instance_f32 * pSrc, |
||
1583 | arm_matrix_instance_f32 * pDst); |
||
1584 | |||
1585 | |||
1586 | /** |
||
1587 | * @brief Q15 matrix transpose. |
||
1588 | * @param[in] *pSrc points to the input matrix |
||
1589 | * @param[out] *pDst points to the output matrix |
||
1590 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
1591 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1592 | */ |
||
1593 | |||
1594 | arm_status arm_mat_trans_q15( |
||
1595 | const arm_matrix_instance_q15 * pSrc, |
||
1596 | arm_matrix_instance_q15 * pDst); |
||
1597 | |||
1598 | /** |
||
1599 | * @brief Q31 matrix transpose. |
||
1600 | * @param[in] *pSrc points to the input matrix |
||
1601 | * @param[out] *pDst points to the output matrix |
||
1602 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
1603 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1604 | */ |
||
1605 | |||
1606 | arm_status arm_mat_trans_q31( |
||
1607 | const arm_matrix_instance_q31 * pSrc, |
||
1608 | arm_matrix_instance_q31 * pDst); |
||
1609 | |||
1610 | |||
1611 | /** |
||
1612 | * @brief Floating-point matrix multiplication |
||
1613 | * @param[in] *pSrcA points to the first input matrix structure |
||
1614 | * @param[in] *pSrcB points to the second input matrix structure |
||
1615 | * @param[out] *pDst points to output matrix structure |
||
1616 | * @return The function returns either |
||
1617 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1618 | */ |
||
1619 | |||
1620 | arm_status arm_mat_mult_f32( |
||
1621 | const arm_matrix_instance_f32 * pSrcA, |
||
1622 | const arm_matrix_instance_f32 * pSrcB, |
||
1623 | arm_matrix_instance_f32 * pDst); |
||
1624 | |||
1625 | /** |
||
1626 | * @brief Q15 matrix multiplication |
||
1627 | * @param[in] *pSrcA points to the first input matrix structure |
||
1628 | * @param[in] *pSrcB points to the second input matrix structure |
||
1629 | * @param[out] *pDst points to output matrix structure |
||
1630 | * @param[in] *pState points to the array for storing intermediate results |
||
1631 | * @return The function returns either |
||
1632 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1633 | */ |
||
1634 | |||
1635 | arm_status arm_mat_mult_q15( |
||
1636 | const arm_matrix_instance_q15 * pSrcA, |
||
1637 | const arm_matrix_instance_q15 * pSrcB, |
||
1638 | arm_matrix_instance_q15 * pDst, |
||
1639 | q15_t * pState); |
||
1640 | |||
1641 | /** |
||
1642 | * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
||
1643 | * @param[in] *pSrcA points to the first input matrix structure |
||
1644 | * @param[in] *pSrcB points to the second input matrix structure |
||
1645 | * @param[out] *pDst points to output matrix structure |
||
1646 | * @param[in] *pState points to the array for storing intermediate results |
||
1647 | * @return The function returns either |
||
1648 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1649 | */ |
||
1650 | |||
1651 | arm_status arm_mat_mult_fast_q15( |
||
1652 | const arm_matrix_instance_q15 * pSrcA, |
||
1653 | const arm_matrix_instance_q15 * pSrcB, |
||
1654 | arm_matrix_instance_q15 * pDst, |
||
1655 | q15_t * pState); |
||
1656 | |||
1657 | /** |
||
1658 | * @brief Q31 matrix multiplication |
||
1659 | * @param[in] *pSrcA points to the first input matrix structure |
||
1660 | * @param[in] *pSrcB points to the second input matrix structure |
||
1661 | * @param[out] *pDst points to output matrix structure |
||
1662 | * @return The function returns either |
||
1663 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1664 | */ |
||
1665 | |||
1666 | arm_status arm_mat_mult_q31( |
||
1667 | const arm_matrix_instance_q31 * pSrcA, |
||
1668 | const arm_matrix_instance_q31 * pSrcB, |
||
1669 | arm_matrix_instance_q31 * pDst); |
||
1670 | |||
1671 | /** |
||
1672 | * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
||
1673 | * @param[in] *pSrcA points to the first input matrix structure |
||
1674 | * @param[in] *pSrcB points to the second input matrix structure |
||
1675 | * @param[out] *pDst points to output matrix structure |
||
1676 | * @return The function returns either |
||
1677 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1678 | */ |
||
1679 | |||
1680 | arm_status arm_mat_mult_fast_q31( |
||
1681 | const arm_matrix_instance_q31 * pSrcA, |
||
1682 | const arm_matrix_instance_q31 * pSrcB, |
||
1683 | arm_matrix_instance_q31 * pDst); |
||
1684 | |||
1685 | |||
1686 | /** |
||
1687 | * @brief Floating-point matrix subtraction |
||
1688 | * @param[in] *pSrcA points to the first input matrix structure |
||
1689 | * @param[in] *pSrcB points to the second input matrix structure |
||
1690 | * @param[out] *pDst points to output matrix structure |
||
1691 | * @return The function returns either |
||
1692 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1693 | */ |
||
1694 | |||
1695 | arm_status arm_mat_sub_f32( |
||
1696 | const arm_matrix_instance_f32 * pSrcA, |
||
1697 | const arm_matrix_instance_f32 * pSrcB, |
||
1698 | arm_matrix_instance_f32 * pDst); |
||
1699 | |||
1700 | /** |
||
1701 | * @brief Q15 matrix subtraction |
||
1702 | * @param[in] *pSrcA points to the first input matrix structure |
||
1703 | * @param[in] *pSrcB points to the second input matrix structure |
||
1704 | * @param[out] *pDst points to output matrix structure |
||
1705 | * @return The function returns either |
||
1706 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1707 | */ |
||
1708 | |||
1709 | arm_status arm_mat_sub_q15( |
||
1710 | const arm_matrix_instance_q15 * pSrcA, |
||
1711 | const arm_matrix_instance_q15 * pSrcB, |
||
1712 | arm_matrix_instance_q15 * pDst); |
||
1713 | |||
1714 | /** |
||
1715 | * @brief Q31 matrix subtraction |
||
1716 | * @param[in] *pSrcA points to the first input matrix structure |
||
1717 | * @param[in] *pSrcB points to the second input matrix structure |
||
1718 | * @param[out] *pDst points to output matrix structure |
||
1719 | * @return The function returns either |
||
1720 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1721 | */ |
||
1722 | |||
1723 | arm_status arm_mat_sub_q31( |
||
1724 | const arm_matrix_instance_q31 * pSrcA, |
||
1725 | const arm_matrix_instance_q31 * pSrcB, |
||
1726 | arm_matrix_instance_q31 * pDst); |
||
1727 | |||
1728 | /** |
||
1729 | * @brief Floating-point matrix scaling. |
||
1730 | * @param[in] *pSrc points to the input matrix |
||
1731 | * @param[in] scale scale factor |
||
1732 | * @param[out] *pDst points to the output matrix |
||
1733 | * @return The function returns either |
||
1734 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1735 | */ |
||
1736 | |||
1737 | arm_status arm_mat_scale_f32( |
||
1738 | const arm_matrix_instance_f32 * pSrc, |
||
1739 | float32_t scale, |
||
1740 | arm_matrix_instance_f32 * pDst); |
||
1741 | |||
1742 | /** |
||
1743 | * @brief Q15 matrix scaling. |
||
1744 | * @param[in] *pSrc points to input matrix |
||
1745 | * @param[in] scaleFract fractional portion of the scale factor |
||
1746 | * @param[in] shift number of bits to shift the result by |
||
1747 | * @param[out] *pDst points to output matrix |
||
1748 | * @return The function returns either |
||
1749 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1750 | */ |
||
1751 | |||
1752 | arm_status arm_mat_scale_q15( |
||
1753 | const arm_matrix_instance_q15 * pSrc, |
||
1754 | q15_t scaleFract, |
||
1755 | int32_t shift, |
||
1756 | arm_matrix_instance_q15 * pDst); |
||
1757 | |||
1758 | /** |
||
1759 | * @brief Q31 matrix scaling. |
||
1760 | * @param[in] *pSrc points to input matrix |
||
1761 | * @param[in] scaleFract fractional portion of the scale factor |
||
1762 | * @param[in] shift number of bits to shift the result by |
||
1763 | * @param[out] *pDst points to output matrix structure |
||
1764 | * @return The function returns either |
||
1765 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1766 | */ |
||
1767 | |||
1768 | arm_status arm_mat_scale_q31( |
||
1769 | const arm_matrix_instance_q31 * pSrc, |
||
1770 | q31_t scaleFract, |
||
1771 | int32_t shift, |
||
1772 | arm_matrix_instance_q31 * pDst); |
||
1773 | |||
1774 | |||
1775 | /** |
||
1776 | * @brief Q31 matrix initialization. |
||
1777 | * @param[in,out] *S points to an instance of the floating-point matrix structure. |
||
1778 | * @param[in] nRows number of rows in the matrix. |
||
1779 | * @param[in] nColumns number of columns in the matrix. |
||
1780 | * @param[in] *pData points to the matrix data array. |
||
1781 | * @return none |
||
1782 | */ |
||
1783 | |||
1784 | void arm_mat_init_q31( |
||
1785 | arm_matrix_instance_q31 * S, |
||
1786 | uint16_t nRows, |
||
1787 | uint16_t nColumns, |
||
1788 | q31_t * pData); |
||
1789 | |||
1790 | /** |
||
1791 | * @brief Q15 matrix initialization. |
||
1792 | * @param[in,out] *S points to an instance of the floating-point matrix structure. |
||
1793 | * @param[in] nRows number of rows in the matrix. |
||
1794 | * @param[in] nColumns number of columns in the matrix. |
||
1795 | * @param[in] *pData points to the matrix data array. |
||
1796 | * @return none |
||
1797 | */ |
||
1798 | |||
1799 | void arm_mat_init_q15( |
||
1800 | arm_matrix_instance_q15 * S, |
||
1801 | uint16_t nRows, |
||
1802 | uint16_t nColumns, |
||
1803 | q15_t * pData); |
||
1804 | |||
1805 | /** |
||
1806 | * @brief Floating-point matrix initialization. |
||
1807 | * @param[in,out] *S points to an instance of the floating-point matrix structure. |
||
1808 | * @param[in] nRows number of rows in the matrix. |
||
1809 | * @param[in] nColumns number of columns in the matrix. |
||
1810 | * @param[in] *pData points to the matrix data array. |
||
1811 | * @return none |
||
1812 | */ |
||
1813 | |||
1814 | void arm_mat_init_f32( |
||
1815 | arm_matrix_instance_f32 * S, |
||
1816 | uint16_t nRows, |
||
1817 | uint16_t nColumns, |
||
1818 | float32_t * pData); |
||
1819 | |||
1820 | |||
1821 | |||
1822 | /** |
||
1823 | * @brief Instance structure for the Q15 PID Control. |
||
1824 | */ |
||
1825 | typedef struct |
||
1826 | { |
||
1827 | q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
||
1828 | #ifdef ARM_MATH_CM0_FAMILY |
||
1829 | q15_t A1; |
||
1830 | q15_t A2; |
||
1831 | #else |
||
1832 | q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ |
||
1833 | #endif |
||
1834 | q15_t state[3]; /**< The state array of length 3. */ |
||
1835 | q15_t Kp; /**< The proportional gain. */ |
||
1836 | q15_t Ki; /**< The integral gain. */ |
||
1837 | q15_t Kd; /**< The derivative gain. */ |
||
1838 | } arm_pid_instance_q15; |
||
1839 | |||
1840 | /** |
||
1841 | * @brief Instance structure for the Q31 PID Control. |
||
1842 | */ |
||
1843 | typedef struct |
||
1844 | { |
||
1845 | q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
||
1846 | q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
||
1847 | q31_t A2; /**< The derived gain, A2 = Kd . */ |
||
1848 | q31_t state[3]; /**< The state array of length 3. */ |
||
1849 | q31_t Kp; /**< The proportional gain. */ |
||
1850 | q31_t Ki; /**< The integral gain. */ |
||
1851 | q31_t Kd; /**< The derivative gain. */ |
||
1852 | |||
1853 | } arm_pid_instance_q31; |
||
1854 | |||
1855 | /** |
||
1856 | * @brief Instance structure for the floating-point PID Control. |
||
1857 | */ |
||
1858 | typedef struct |
||
1859 | { |
||
1860 | float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
||
1861 | float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
||
1862 | float32_t A2; /**< The derived gain, A2 = Kd . */ |
||
1863 | float32_t state[3]; /**< The state array of length 3. */ |
||
1864 | float32_t Kp; /**< The proportional gain. */ |
||
1865 | float32_t Ki; /**< The integral gain. */ |
||
1866 | float32_t Kd; /**< The derivative gain. */ |
||
1867 | } arm_pid_instance_f32; |
||
1868 | |||
1869 | |||
1870 | |||
1871 | /** |
||
1872 | * @brief Initialization function for the floating-point PID Control. |
||
1873 | * @param[in,out] *S points to an instance of the PID structure. |
||
1874 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
||
1875 | * @return none. |
||
1876 | */ |
||
1877 | void arm_pid_init_f32( |
||
1878 | arm_pid_instance_f32 * S, |
||
1879 | int32_t resetStateFlag); |
||
1880 | |||
1881 | /** |
||
1882 | * @brief Reset function for the floating-point PID Control. |
||
1883 | * @param[in,out] *S is an instance of the floating-point PID Control structure |
||
1884 | * @return none |
||
1885 | */ |
||
1886 | void arm_pid_reset_f32( |
||
1887 | arm_pid_instance_f32 * S); |
||
1888 | |||
1889 | |||
1890 | /** |
||
1891 | * @brief Initialization function for the Q31 PID Control. |
||
1892 | * @param[in,out] *S points to an instance of the Q15 PID structure. |
||
1893 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
||
1894 | * @return none. |
||
1895 | */ |
||
1896 | void arm_pid_init_q31( |
||
1897 | arm_pid_instance_q31 * S, |
||
1898 | int32_t resetStateFlag); |
||
1899 | |||
1900 | |||
1901 | /** |
||
1902 | * @brief Reset function for the Q31 PID Control. |
||
1903 | * @param[in,out] *S points to an instance of the Q31 PID Control structure |
||
1904 | * @return none |
||
1905 | */ |
||
1906 | |||
1907 | void arm_pid_reset_q31( |
||
1908 | arm_pid_instance_q31 * S); |
||
1909 | |||
1910 | /** |
||
1911 | * @brief Initialization function for the Q15 PID Control. |
||
1912 | * @param[in,out] *S points to an instance of the Q15 PID structure. |
||
1913 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
||
1914 | * @return none. |
||
1915 | */ |
||
1916 | void arm_pid_init_q15( |
||
1917 | arm_pid_instance_q15 * S, |
||
1918 | int32_t resetStateFlag); |
||
1919 | |||
1920 | /** |
||
1921 | * @brief Reset function for the Q15 PID Control. |
||
1922 | * @param[in,out] *S points to an instance of the q15 PID Control structure |
||
1923 | * @return none |
||
1924 | */ |
||
1925 | void arm_pid_reset_q15( |
||
1926 | arm_pid_instance_q15 * S); |
||
1927 | |||
1928 | |||
1929 | /** |
||
1930 | * @brief Instance structure for the floating-point Linear Interpolate function. |
||
1931 | */ |
||
1932 | typedef struct |
||
1933 | { |
||
1934 | uint32_t nValues; /**< nValues */ |
||
1935 | float32_t x1; /**< x1 */ |
||
1936 | float32_t xSpacing; /**< xSpacing */ |
||
1937 | float32_t *pYData; /**< pointer to the table of Y values */ |
||
1938 | } arm_linear_interp_instance_f32; |
||
1939 | |||
1940 | /** |
||
1941 | * @brief Instance structure for the floating-point bilinear interpolation function. |
||
1942 | */ |
||
1943 | |||
1944 | typedef struct |
||
1945 | { |
||
1946 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1947 | uint16_t numCols; /**< number of columns in the data table. */ |
||
1948 | float32_t *pData; /**< points to the data table. */ |
||
1949 | } arm_bilinear_interp_instance_f32; |
||
1950 | |||
1951 | /** |
||
1952 | * @brief Instance structure for the Q31 bilinear interpolation function. |
||
1953 | */ |
||
1954 | |||
1955 | typedef struct |
||
1956 | { |
||
1957 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1958 | uint16_t numCols; /**< number of columns in the data table. */ |
||
1959 | q31_t *pData; /**< points to the data table. */ |
||
1960 | } arm_bilinear_interp_instance_q31; |
||
1961 | |||
1962 | /** |
||
1963 | * @brief Instance structure for the Q15 bilinear interpolation function. |
||
1964 | */ |
||
1965 | |||
1966 | typedef struct |
||
1967 | { |
||
1968 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1969 | uint16_t numCols; /**< number of columns in the data table. */ |
||
1970 | q15_t *pData; /**< points to the data table. */ |
||
1971 | } arm_bilinear_interp_instance_q15; |
||
1972 | |||
1973 | /** |
||
1974 | * @brief Instance structure for the Q15 bilinear interpolation function. |
||
1975 | */ |
||
1976 | |||
1977 | typedef struct |
||
1978 | { |
||
1979 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1980 | uint16_t numCols; /**< number of columns in the data table. */ |
||
1981 | q7_t *pData; /**< points to the data table. */ |
||
1982 | } arm_bilinear_interp_instance_q7; |
||
1983 | |||
1984 | |||
1985 | /** |
||
1986 | * @brief Q7 vector multiplication. |
||
1987 | * @param[in] *pSrcA points to the first input vector |
||
1988 | * @param[in] *pSrcB points to the second input vector |
||
1989 | * @param[out] *pDst points to the output vector |
||
1990 | * @param[in] blockSize number of samples in each vector |
||
1991 | * @return none. |
||
1992 | */ |
||
1993 | |||
1994 | void arm_mult_q7( |
||
1995 | q7_t * pSrcA, |
||
1996 | q7_t * pSrcB, |
||
1997 | q7_t * pDst, |
||
1998 | uint32_t blockSize); |
||
1999 | |||
2000 | /** |
||
2001 | * @brief Q15 vector multiplication. |
||
2002 | * @param[in] *pSrcA points to the first input vector |
||
2003 | * @param[in] *pSrcB points to the second input vector |
||
2004 | * @param[out] *pDst points to the output vector |
||
2005 | * @param[in] blockSize number of samples in each vector |
||
2006 | * @return none. |
||
2007 | */ |
||
2008 | |||
2009 | void arm_mult_q15( |
||
2010 | q15_t * pSrcA, |
||
2011 | q15_t * pSrcB, |
||
2012 | q15_t * pDst, |
||
2013 | uint32_t blockSize); |
||
2014 | |||
2015 | /** |
||
2016 | * @brief Q31 vector multiplication. |
||
2017 | * @param[in] *pSrcA points to the first input vector |
||
2018 | * @param[in] *pSrcB points to the second input vector |
||
2019 | * @param[out] *pDst points to the output vector |
||
2020 | * @param[in] blockSize number of samples in each vector |
||
2021 | * @return none. |
||
2022 | */ |
||
2023 | |||
2024 | void arm_mult_q31( |
||
2025 | q31_t * pSrcA, |
||
2026 | q31_t * pSrcB, |
||
2027 | q31_t * pDst, |
||
2028 | uint32_t blockSize); |
||
2029 | |||
2030 | /** |
||
2031 | * @brief Floating-point vector multiplication. |
||
2032 | * @param[in] *pSrcA points to the first input vector |
||
2033 | * @param[in] *pSrcB points to the second input vector |
||
2034 | * @param[out] *pDst points to the output vector |
||
2035 | * @param[in] blockSize number of samples in each vector |
||
2036 | * @return none. |
||
2037 | */ |
||
2038 | |||
2039 | void arm_mult_f32( |
||
2040 | float32_t * pSrcA, |
||
2041 | float32_t * pSrcB, |
||
2042 | float32_t * pDst, |
||
2043 | uint32_t blockSize); |
||
2044 | |||
2045 | |||
2046 | |||
2047 | |||
2048 | |||
2049 | |||
2050 | /** |
||
2051 | * @brief Instance structure for the Q15 CFFT/CIFFT function. |
||
2052 | */ |
||
2053 | |||
2054 | typedef struct |
||
2055 | { |
||
2056 | uint16_t fftLen; /**< length of the FFT. */ |
||
2057 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2058 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2059 | q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ |
||
2060 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2061 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2062 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
2063 | } arm_cfft_radix2_instance_q15; |
||
2064 | |||
2065 | /* Deprecated */ |
||
2066 | arm_status arm_cfft_radix2_init_q15( |
||
2067 | arm_cfft_radix2_instance_q15 * S, |
||
2068 | uint16_t fftLen, |
||
2069 | uint8_t ifftFlag, |
||
2070 | uint8_t bitReverseFlag); |
||
2071 | |||
2072 | /* Deprecated */ |
||
2073 | void arm_cfft_radix2_q15( |
||
2074 | const arm_cfft_radix2_instance_q15 * S, |
||
2075 | q15_t * pSrc); |
||
2076 | |||
2077 | |||
2078 | |||
2079 | /** |
||
2080 | * @brief Instance structure for the Q15 CFFT/CIFFT function. |
||
2081 | */ |
||
2082 | |||
2083 | typedef struct |
||
2084 | { |
||
2085 | uint16_t fftLen; /**< length of the FFT. */ |
||
2086 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2087 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2088 | q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2089 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2090 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2091 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
2092 | } arm_cfft_radix4_instance_q15; |
||
2093 | |||
2094 | /* Deprecated */ |
||
2095 | arm_status arm_cfft_radix4_init_q15( |
||
2096 | arm_cfft_radix4_instance_q15 * S, |
||
2097 | uint16_t fftLen, |
||
2098 | uint8_t ifftFlag, |
||
2099 | uint8_t bitReverseFlag); |
||
2100 | |||
2101 | /* Deprecated */ |
||
2102 | void arm_cfft_radix4_q15( |
||
2103 | const arm_cfft_radix4_instance_q15 * S, |
||
2104 | q15_t * pSrc); |
||
2105 | |||
2106 | /** |
||
2107 | * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. |
||
2108 | */ |
||
2109 | |||
2110 | typedef struct |
||
2111 | { |
||
2112 | uint16_t fftLen; /**< length of the FFT. */ |
||
2113 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2114 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2115 | q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2116 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2117 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2118 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
2119 | } arm_cfft_radix2_instance_q31; |
||
2120 | |||
2121 | /* Deprecated */ |
||
2122 | arm_status arm_cfft_radix2_init_q31( |
||
2123 | arm_cfft_radix2_instance_q31 * S, |
||
2124 | uint16_t fftLen, |
||
2125 | uint8_t ifftFlag, |
||
2126 | uint8_t bitReverseFlag); |
||
2127 | |||
2128 | /* Deprecated */ |
||
2129 | void arm_cfft_radix2_q31( |
||
2130 | const arm_cfft_radix2_instance_q31 * S, |
||
2131 | q31_t * pSrc); |
||
2132 | |||
2133 | /** |
||
2134 | * @brief Instance structure for the Q31 CFFT/CIFFT function. |
||
2135 | */ |
||
2136 | |||
2137 | typedef struct |
||
2138 | { |
||
2139 | uint16_t fftLen; /**< length of the FFT. */ |
||
2140 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2141 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2142 | q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2143 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2144 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2145 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
2146 | } arm_cfft_radix4_instance_q31; |
||
2147 | |||
2148 | /* Deprecated */ |
||
2149 | void arm_cfft_radix4_q31( |
||
2150 | const arm_cfft_radix4_instance_q31 * S, |
||
2151 | q31_t * pSrc); |
||
2152 | |||
2153 | /* Deprecated */ |
||
2154 | arm_status arm_cfft_radix4_init_q31( |
||
2155 | arm_cfft_radix4_instance_q31 * S, |
||
2156 | uint16_t fftLen, |
||
2157 | uint8_t ifftFlag, |
||
2158 | uint8_t bitReverseFlag); |
||
2159 | |||
2160 | /** |
||
2161 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
2162 | */ |
||
2163 | |||
2164 | typedef struct |
||
2165 | { |
||
2166 | uint16_t fftLen; /**< length of the FFT. */ |
||
2167 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2168 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2169 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2170 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2171 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2172 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
2173 | float32_t onebyfftLen; /**< value of 1/fftLen. */ |
||
2174 | } arm_cfft_radix2_instance_f32; |
||
2175 | |||
2176 | /* Deprecated */ |
||
2177 | arm_status arm_cfft_radix2_init_f32( |
||
2178 | arm_cfft_radix2_instance_f32 * S, |
||
2179 | uint16_t fftLen, |
||
2180 | uint8_t ifftFlag, |
||
2181 | uint8_t bitReverseFlag); |
||
2182 | |||
2183 | /* Deprecated */ |
||
2184 | void arm_cfft_radix2_f32( |
||
2185 | const arm_cfft_radix2_instance_f32 * S, |
||
2186 | float32_t * pSrc); |
||
2187 | |||
2188 | /** |
||
2189 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
2190 | */ |
||
2191 | |||
2192 | typedef struct |
||
2193 | { |
||
2194 | uint16_t fftLen; /**< length of the FFT. */ |
||
2195 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2196 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2197 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2198 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2199 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2200 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
2201 | float32_t onebyfftLen; /**< value of 1/fftLen. */ |
||
2202 | } arm_cfft_radix4_instance_f32; |
||
2203 | |||
2204 | /* Deprecated */ |
||
2205 | arm_status arm_cfft_radix4_init_f32( |
||
2206 | arm_cfft_radix4_instance_f32 * S, |
||
2207 | uint16_t fftLen, |
||
2208 | uint8_t ifftFlag, |
||
2209 | uint8_t bitReverseFlag); |
||
2210 | |||
2211 | /* Deprecated */ |
||
2212 | void arm_cfft_radix4_f32( |
||
2213 | const arm_cfft_radix4_instance_f32 * S, |
||
2214 | float32_t * pSrc); |
||
2215 | |||
2216 | /** |
||
2217 | * @brief Instance structure for the fixed-point CFFT/CIFFT function. |
||
2218 | */ |
||
2219 | |||
2220 | typedef struct |
||
2221 | { |
||
2222 | uint16_t fftLen; /**< length of the FFT. */ |
||
2223 | const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2224 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2225 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
2226 | } arm_cfft_instance_q15; |
||
2227 | |||
2228 | void arm_cfft_q15( |
||
2229 | const arm_cfft_instance_q15 * S, |
||
2230 | q15_t * p1, |
||
2231 | uint8_t ifftFlag, |
||
2232 | uint8_t bitReverseFlag); |
||
2233 | |||
2234 | /** |
||
2235 | * @brief Instance structure for the fixed-point CFFT/CIFFT function. |
||
2236 | */ |
||
2237 | |||
2238 | typedef struct |
||
2239 | { |
||
2240 | uint16_t fftLen; /**< length of the FFT. */ |
||
2241 | const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2242 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2243 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
2244 | } arm_cfft_instance_q31; |
||
2245 | |||
2246 | void arm_cfft_q31( |
||
2247 | const arm_cfft_instance_q31 * S, |
||
2248 | q31_t * p1, |
||
2249 | uint8_t ifftFlag, |
||
2250 | uint8_t bitReverseFlag); |
||
2251 | |||
2252 | /** |
||
2253 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
2254 | */ |
||
2255 | |||
2256 | typedef struct |
||
2257 | { |
||
2258 | uint16_t fftLen; /**< length of the FFT. */ |
||
2259 | const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2260 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2261 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
2262 | } arm_cfft_instance_f32; |
||
2263 | |||
2264 | void arm_cfft_f32( |
||
2265 | const arm_cfft_instance_f32 * S, |
||
2266 | float32_t * p1, |
||
2267 | uint8_t ifftFlag, |
||
2268 | uint8_t bitReverseFlag); |
||
2269 | |||
2270 | /** |
||
2271 | * @brief Instance structure for the Q15 RFFT/RIFFT function. |
||
2272 | */ |
||
2273 | |||
2274 | typedef struct |
||
2275 | { |
||
2276 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
2277 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
2278 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
2279 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2280 | q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
2281 | q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
2282 | const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
||
2283 | } arm_rfft_instance_q15; |
||
2284 | |||
2285 | arm_status arm_rfft_init_q15( |
||
2286 | arm_rfft_instance_q15 * S, |
||
2287 | uint32_t fftLenReal, |
||
2288 | uint32_t ifftFlagR, |
||
2289 | uint32_t bitReverseFlag); |
||
2290 | |||
2291 | void arm_rfft_q15( |
||
2292 | const arm_rfft_instance_q15 * S, |
||
2293 | q15_t * pSrc, |
||
2294 | q15_t * pDst); |
||
2295 | |||
2296 | /** |
||
2297 | * @brief Instance structure for the Q31 RFFT/RIFFT function. |
||
2298 | */ |
||
2299 | |||
2300 | typedef struct |
||
2301 | { |
||
2302 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
2303 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
2304 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
2305 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2306 | q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
2307 | q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
2308 | const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
||
2309 | } arm_rfft_instance_q31; |
||
2310 | |||
2311 | arm_status arm_rfft_init_q31( |
||
2312 | arm_rfft_instance_q31 * S, |
||
2313 | uint32_t fftLenReal, |
||
2314 | uint32_t ifftFlagR, |
||
2315 | uint32_t bitReverseFlag); |
||
2316 | |||
2317 | void arm_rfft_q31( |
||
2318 | const arm_rfft_instance_q31 * S, |
||
2319 | q31_t * pSrc, |
||
2320 | q31_t * pDst); |
||
2321 | |||
2322 | /** |
||
2323 | * @brief Instance structure for the floating-point RFFT/RIFFT function. |
||
2324 | */ |
||
2325 | |||
2326 | typedef struct |
||
2327 | { |
||
2328 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
2329 | uint16_t fftLenBy2; /**< length of the complex FFT. */ |
||
2330 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
2331 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
2332 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2333 | float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
2334 | float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
2335 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
||
2336 | } arm_rfft_instance_f32; |
||
2337 | |||
2338 | arm_status arm_rfft_init_f32( |
||
2339 | arm_rfft_instance_f32 * S, |
||
2340 | arm_cfft_radix4_instance_f32 * S_CFFT, |
||
2341 | uint32_t fftLenReal, |
||
2342 | uint32_t ifftFlagR, |
||
2343 | uint32_t bitReverseFlag); |
||
2344 | |||
2345 | void arm_rfft_f32( |
||
2346 | const arm_rfft_instance_f32 * S, |
||
2347 | float32_t * pSrc, |
||
2348 | float32_t * pDst); |
||
2349 | |||
2350 | /** |
||
2351 | * @brief Instance structure for the floating-point RFFT/RIFFT function. |
||
2352 | */ |
||
2353 | |||
2354 | typedef struct |
||
2355 | { |
||
2356 | arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ |
||
2357 | uint16_t fftLenRFFT; /**< length of the real sequence */ |
||
2358 | float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ |
||
2359 | } arm_rfft_fast_instance_f32 ; |
||
2360 | |||
2361 | arm_status arm_rfft_fast_init_f32 ( |
||
2362 | arm_rfft_fast_instance_f32 * S, |
||
2363 | uint16_t fftLen); |
||
2364 | |||
2365 | void arm_rfft_fast_f32( |
||
2366 | arm_rfft_fast_instance_f32 * S, |
||
2367 | float32_t * p, float32_t * pOut, |
||
2368 | uint8_t ifftFlag); |
||
2369 | |||
2370 | /** |
||
2371 | * @brief Instance structure for the floating-point DCT4/IDCT4 function. |
||
2372 | */ |
||
2373 | |||
2374 | typedef struct |
||
2375 | { |
||
2376 | uint16_t N; /**< length of the DCT4. */ |
||
2377 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
2378 | float32_t normalize; /**< normalizing factor. */ |
||
2379 | float32_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2380 | float32_t *pCosFactor; /**< points to the cosFactor table. */ |
||
2381 | arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ |
||
2382 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
||
2383 | } arm_dct4_instance_f32; |
||
2384 | |||
2385 | /** |
||
2386 | * @brief Initialization function for the floating-point DCT4/IDCT4. |
||
2387 | * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure. |
||
2388 | * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure. |
||
2389 | * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure. |
||
2390 | * @param[in] N length of the DCT4. |
||
2391 | * @param[in] Nby2 half of the length of the DCT4. |
||
2392 | * @param[in] normalize normalizing factor. |
||
2393 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. |
||
2394 | */ |
||
2395 | |||
2396 | arm_status arm_dct4_init_f32( |
||
2397 | arm_dct4_instance_f32 * S, |
||
2398 | arm_rfft_instance_f32 * S_RFFT, |
||
2399 | arm_cfft_radix4_instance_f32 * S_CFFT, |
||
2400 | uint16_t N, |
||
2401 | uint16_t Nby2, |
||
2402 | float32_t normalize); |
||
2403 | |||
2404 | /** |
||
2405 | * @brief Processing function for the floating-point DCT4/IDCT4. |
||
2406 | * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure. |
||
2407 | * @param[in] *pState points to state buffer. |
||
2408 | * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. |
||
2409 | * @return none. |
||
2410 | */ |
||
2411 | |||
2412 | void arm_dct4_f32( |
||
2413 | const arm_dct4_instance_f32 * S, |
||
2414 | float32_t * pState, |
||
2415 | float32_t * pInlineBuffer); |
||
2416 | |||
2417 | /** |
||
2418 | * @brief Instance structure for the Q31 DCT4/IDCT4 function. |
||
2419 | */ |
||
2420 | |||
2421 | typedef struct |
||
2422 | { |
||
2423 | uint16_t N; /**< length of the DCT4. */ |
||
2424 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
2425 | q31_t normalize; /**< normalizing factor. */ |
||
2426 | q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2427 | q31_t *pCosFactor; /**< points to the cosFactor table. */ |
||
2428 | arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ |
||
2429 | arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
||
2430 | } arm_dct4_instance_q31; |
||
2431 | |||
2432 | /** |
||
2433 | * @brief Initialization function for the Q31 DCT4/IDCT4. |
||
2434 | * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure. |
||
2435 | * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure |
||
2436 | * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure |
||
2437 | * @param[in] N length of the DCT4. |
||
2438 | * @param[in] Nby2 half of the length of the DCT4. |
||
2439 | * @param[in] normalize normalizing factor. |
||
2440 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
||
2441 | */ |
||
2442 | |||
2443 | arm_status arm_dct4_init_q31( |
||
2444 | arm_dct4_instance_q31 * S, |
||
2445 | arm_rfft_instance_q31 * S_RFFT, |
||
2446 | arm_cfft_radix4_instance_q31 * S_CFFT, |
||
2447 | uint16_t N, |
||
2448 | uint16_t Nby2, |
||
2449 | q31_t normalize); |
||
2450 | |||
2451 | /** |
||
2452 | * @brief Processing function for the Q31 DCT4/IDCT4. |
||
2453 | * @param[in] *S points to an instance of the Q31 DCT4 structure. |
||
2454 | * @param[in] *pState points to state buffer. |
||
2455 | * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. |
||
2456 | * @return none. |
||
2457 | */ |
||
2458 | |||
2459 | void arm_dct4_q31( |
||
2460 | const arm_dct4_instance_q31 * S, |
||
2461 | q31_t * pState, |
||
2462 | q31_t * pInlineBuffer); |
||
2463 | |||
2464 | /** |
||
2465 | * @brief Instance structure for the Q15 DCT4/IDCT4 function. |
||
2466 | */ |
||
2467 | |||
2468 | typedef struct |
||
2469 | { |
||
2470 | uint16_t N; /**< length of the DCT4. */ |
||
2471 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
2472 | q15_t normalize; /**< normalizing factor. */ |
||
2473 | q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2474 | q15_t *pCosFactor; /**< points to the cosFactor table. */ |
||
2475 | arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ |
||
2476 | arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
||
2477 | } arm_dct4_instance_q15; |
||
2478 | |||
2479 | /** |
||
2480 | * @brief Initialization function for the Q15 DCT4/IDCT4. |
||
2481 | * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure. |
||
2482 | * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure. |
||
2483 | * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure. |
||
2484 | * @param[in] N length of the DCT4. |
||
2485 | * @param[in] Nby2 half of the length of the DCT4. |
||
2486 | * @param[in] normalize normalizing factor. |
||
2487 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
||
2488 | */ |
||
2489 | |||
2490 | arm_status arm_dct4_init_q15( |
||
2491 | arm_dct4_instance_q15 * S, |
||
2492 | arm_rfft_instance_q15 * S_RFFT, |
||
2493 | arm_cfft_radix4_instance_q15 * S_CFFT, |
||
2494 | uint16_t N, |
||
2495 | uint16_t Nby2, |
||
2496 | q15_t normalize); |
||
2497 | |||
2498 | /** |
||
2499 | * @brief Processing function for the Q15 DCT4/IDCT4. |
||
2500 | * @param[in] *S points to an instance of the Q15 DCT4 structure. |
||
2501 | * @param[in] *pState points to state buffer. |
||
2502 | * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. |
||
2503 | * @return none. |
||
2504 | */ |
||
2505 | |||
2506 | void arm_dct4_q15( |
||
2507 | const arm_dct4_instance_q15 * S, |
||
2508 | q15_t * pState, |
||
2509 | q15_t * pInlineBuffer); |
||
2510 | |||
2511 | /** |
||
2512 | * @brief Floating-point vector addition. |
||
2513 | * @param[in] *pSrcA points to the first input vector |
||
2514 | * @param[in] *pSrcB points to the second input vector |
||
2515 | * @param[out] *pDst points to the output vector |
||
2516 | * @param[in] blockSize number of samples in each vector |
||
2517 | * @return none. |
||
2518 | */ |
||
2519 | |||
2520 | void arm_add_f32( |
||
2521 | float32_t * pSrcA, |
||
2522 | float32_t * pSrcB, |
||
2523 | float32_t * pDst, |
||
2524 | uint32_t blockSize); |
||
2525 | |||
2526 | /** |
||
2527 | * @brief Q7 vector addition. |
||
2528 | * @param[in] *pSrcA points to the first input vector |
||
2529 | * @param[in] *pSrcB points to the second input vector |
||
2530 | * @param[out] *pDst points to the output vector |
||
2531 | * @param[in] blockSize number of samples in each vector |
||
2532 | * @return none. |
||
2533 | */ |
||
2534 | |||
2535 | void arm_add_q7( |
||
2536 | q7_t * pSrcA, |
||
2537 | q7_t * pSrcB, |
||
2538 | q7_t * pDst, |
||
2539 | uint32_t blockSize); |
||
2540 | |||
2541 | /** |
||
2542 | * @brief Q15 vector addition. |
||
2543 | * @param[in] *pSrcA points to the first input vector |
||
2544 | * @param[in] *pSrcB points to the second input vector |
||
2545 | * @param[out] *pDst points to the output vector |
||
2546 | * @param[in] blockSize number of samples in each vector |
||
2547 | * @return none. |
||
2548 | */ |
||
2549 | |||
2550 | void arm_add_q15( |
||
2551 | q15_t * pSrcA, |
||
2552 | q15_t * pSrcB, |
||
2553 | q15_t * pDst, |
||
2554 | uint32_t blockSize); |
||
2555 | |||
2556 | /** |
||
2557 | * @brief Q31 vector addition. |
||
2558 | * @param[in] *pSrcA points to the first input vector |
||
2559 | * @param[in] *pSrcB points to the second input vector |
||
2560 | * @param[out] *pDst points to the output vector |
||
2561 | * @param[in] blockSize number of samples in each vector |
||
2562 | * @return none. |
||
2563 | */ |
||
2564 | |||
2565 | void arm_add_q31( |
||
2566 | q31_t * pSrcA, |
||
2567 | q31_t * pSrcB, |
||
2568 | q31_t * pDst, |
||
2569 | uint32_t blockSize); |
||
2570 | |||
2571 | /** |
||
2572 | * @brief Floating-point vector subtraction. |
||
2573 | * @param[in] *pSrcA points to the first input vector |
||
2574 | * @param[in] *pSrcB points to the second input vector |
||
2575 | * @param[out] *pDst points to the output vector |
||
2576 | * @param[in] blockSize number of samples in each vector |
||
2577 | * @return none. |
||
2578 | */ |
||
2579 | |||
2580 | void arm_sub_f32( |
||
2581 | float32_t * pSrcA, |
||
2582 | float32_t * pSrcB, |
||
2583 | float32_t * pDst, |
||
2584 | uint32_t blockSize); |
||
2585 | |||
2586 | /** |
||
2587 | * @brief Q7 vector subtraction. |
||
2588 | * @param[in] *pSrcA points to the first input vector |
||
2589 | * @param[in] *pSrcB points to the second input vector |
||
2590 | * @param[out] *pDst points to the output vector |
||
2591 | * @param[in] blockSize number of samples in each vector |
||
2592 | * @return none. |
||
2593 | */ |
||
2594 | |||
2595 | void arm_sub_q7( |
||
2596 | q7_t * pSrcA, |
||
2597 | q7_t * pSrcB, |
||
2598 | q7_t * pDst, |
||
2599 | uint32_t blockSize); |
||
2600 | |||
2601 | /** |
||
2602 | * @brief Q15 vector subtraction. |
||
2603 | * @param[in] *pSrcA points to the first input vector |
||
2604 | * @param[in] *pSrcB points to the second input vector |
||
2605 | * @param[out] *pDst points to the output vector |
||
2606 | * @param[in] blockSize number of samples in each vector |
||
2607 | * @return none. |
||
2608 | */ |
||
2609 | |||
2610 | void arm_sub_q15( |
||
2611 | q15_t * pSrcA, |
||
2612 | q15_t * pSrcB, |
||
2613 | q15_t * pDst, |
||
2614 | uint32_t blockSize); |
||
2615 | |||
2616 | /** |
||
2617 | * @brief Q31 vector subtraction. |
||
2618 | * @param[in] *pSrcA points to the first input vector |
||
2619 | * @param[in] *pSrcB points to the second input vector |
||
2620 | * @param[out] *pDst points to the output vector |
||
2621 | * @param[in] blockSize number of samples in each vector |
||
2622 | * @return none. |
||
2623 | */ |
||
2624 | |||
2625 | void arm_sub_q31( |
||
2626 | q31_t * pSrcA, |
||
2627 | q31_t * pSrcB, |
||
2628 | q31_t * pDst, |
||
2629 | uint32_t blockSize); |
||
2630 | |||
2631 | /** |
||
2632 | * @brief Multiplies a floating-point vector by a scalar. |
||
2633 | * @param[in] *pSrc points to the input vector |
||
2634 | * @param[in] scale scale factor to be applied |
||
2635 | * @param[out] *pDst points to the output vector |
||
2636 | * @param[in] blockSize number of samples in the vector |
||
2637 | * @return none. |
||
2638 | */ |
||
2639 | |||
2640 | void arm_scale_f32( |
||
2641 | float32_t * pSrc, |
||
2642 | float32_t scale, |
||
2643 | float32_t * pDst, |
||
2644 | uint32_t blockSize); |
||
2645 | |||
2646 | /** |
||
2647 | * @brief Multiplies a Q7 vector by a scalar. |
||
2648 | * @param[in] *pSrc points to the input vector |
||
2649 | * @param[in] scaleFract fractional portion of the scale value |
||
2650 | * @param[in] shift number of bits to shift the result by |
||
2651 | * @param[out] *pDst points to the output vector |
||
2652 | * @param[in] blockSize number of samples in the vector |
||
2653 | * @return none. |
||
2654 | */ |
||
2655 | |||
2656 | void arm_scale_q7( |
||
2657 | q7_t * pSrc, |
||
2658 | q7_t scaleFract, |
||
2659 | int8_t shift, |
||
2660 | q7_t * pDst, |
||
2661 | uint32_t blockSize); |
||
2662 | |||
2663 | /** |
||
2664 | * @brief Multiplies a Q15 vector by a scalar. |
||
2665 | * @param[in] *pSrc points to the input vector |
||
2666 | * @param[in] scaleFract fractional portion of the scale value |
||
2667 | * @param[in] shift number of bits to shift the result by |
||
2668 | * @param[out] *pDst points to the output vector |
||
2669 | * @param[in] blockSize number of samples in the vector |
||
2670 | * @return none. |
||
2671 | */ |
||
2672 | |||
2673 | void arm_scale_q15( |
||
2674 | q15_t * pSrc, |
||
2675 | q15_t scaleFract, |
||
2676 | int8_t shift, |
||
2677 | q15_t * pDst, |
||
2678 | uint32_t blockSize); |
||
2679 | |||
2680 | /** |
||
2681 | * @brief Multiplies a Q31 vector by a scalar. |
||
2682 | * @param[in] *pSrc points to the input vector |
||
2683 | * @param[in] scaleFract fractional portion of the scale value |
||
2684 | * @param[in] shift number of bits to shift the result by |
||
2685 | * @param[out] *pDst points to the output vector |
||
2686 | * @param[in] blockSize number of samples in the vector |
||
2687 | * @return none. |
||
2688 | */ |
||
2689 | |||
2690 | void arm_scale_q31( |
||
2691 | q31_t * pSrc, |
||
2692 | q31_t scaleFract, |
||
2693 | int8_t shift, |
||
2694 | q31_t * pDst, |
||
2695 | uint32_t blockSize); |
||
2696 | |||
2697 | /** |
||
2698 | * @brief Q7 vector absolute value. |
||
2699 | * @param[in] *pSrc points to the input buffer |
||
2700 | * @param[out] *pDst points to the output buffer |
||
2701 | * @param[in] blockSize number of samples in each vector |
||
2702 | * @return none. |
||
2703 | */ |
||
2704 | |||
2705 | void arm_abs_q7( |
||
2706 | q7_t * pSrc, |
||
2707 | q7_t * pDst, |
||
2708 | uint32_t blockSize); |
||
2709 | |||
2710 | /** |
||
2711 | * @brief Floating-point vector absolute value. |
||
2712 | * @param[in] *pSrc points to the input buffer |
||
2713 | * @param[out] *pDst points to the output buffer |
||
2714 | * @param[in] blockSize number of samples in each vector |
||
2715 | * @return none. |
||
2716 | */ |
||
2717 | |||
2718 | void arm_abs_f32( |
||
2719 | float32_t * pSrc, |
||
2720 | float32_t * pDst, |
||
2721 | uint32_t blockSize); |
||
2722 | |||
2723 | /** |
||
2724 | * @brief Q15 vector absolute value. |
||
2725 | * @param[in] *pSrc points to the input buffer |
||
2726 | * @param[out] *pDst points to the output buffer |
||
2727 | * @param[in] blockSize number of samples in each vector |
||
2728 | * @return none. |
||
2729 | */ |
||
2730 | |||
2731 | void arm_abs_q15( |
||
2732 | q15_t * pSrc, |
||
2733 | q15_t * pDst, |
||
2734 | uint32_t blockSize); |
||
2735 | |||
2736 | /** |
||
2737 | * @brief Q31 vector absolute value. |
||
2738 | * @param[in] *pSrc points to the input buffer |
||
2739 | * @param[out] *pDst points to the output buffer |
||
2740 | * @param[in] blockSize number of samples in each vector |
||
2741 | * @return none. |
||
2742 | */ |
||
2743 | |||
2744 | void arm_abs_q31( |
||
2745 | q31_t * pSrc, |
||
2746 | q31_t * pDst, |
||
2747 | uint32_t blockSize); |
||
2748 | |||
2749 | /** |
||
2750 | * @brief Dot product of floating-point vectors. |
||
2751 | * @param[in] *pSrcA points to the first input vector |
||
2752 | * @param[in] *pSrcB points to the second input vector |
||
2753 | * @param[in] blockSize number of samples in each vector |
||
2754 | * @param[out] *result output result returned here |
||
2755 | * @return none. |
||
2756 | */ |
||
2757 | |||
2758 | void arm_dot_prod_f32( |
||
2759 | float32_t * pSrcA, |
||
2760 | float32_t * pSrcB, |
||
2761 | uint32_t blockSize, |
||
2762 | float32_t * result); |
||
2763 | |||
2764 | /** |
||
2765 | * @brief Dot product of Q7 vectors. |
||
2766 | * @param[in] *pSrcA points to the first input vector |
||
2767 | * @param[in] *pSrcB points to the second input vector |
||
2768 | * @param[in] blockSize number of samples in each vector |
||
2769 | * @param[out] *result output result returned here |
||
2770 | * @return none. |
||
2771 | */ |
||
2772 | |||
2773 | void arm_dot_prod_q7( |
||
2774 | q7_t * pSrcA, |
||
2775 | q7_t * pSrcB, |
||
2776 | uint32_t blockSize, |
||
2777 | q31_t * result); |
||
2778 | |||
2779 | /** |
||
2780 | * @brief Dot product of Q15 vectors. |
||
2781 | * @param[in] *pSrcA points to the first input vector |
||
2782 | * @param[in] *pSrcB points to the second input vector |
||
2783 | * @param[in] blockSize number of samples in each vector |
||
2784 | * @param[out] *result output result returned here |
||
2785 | * @return none. |
||
2786 | */ |
||
2787 | |||
2788 | void arm_dot_prod_q15( |
||
2789 | q15_t * pSrcA, |
||
2790 | q15_t * pSrcB, |
||
2791 | uint32_t blockSize, |
||
2792 | q63_t * result); |
||
2793 | |||
2794 | /** |
||
2795 | * @brief Dot product of Q31 vectors. |
||
2796 | * @param[in] *pSrcA points to the first input vector |
||
2797 | * @param[in] *pSrcB points to the second input vector |
||
2798 | * @param[in] blockSize number of samples in each vector |
||
2799 | * @param[out] *result output result returned here |
||
2800 | * @return none. |
||
2801 | */ |
||
2802 | |||
2803 | void arm_dot_prod_q31( |
||
2804 | q31_t * pSrcA, |
||
2805 | q31_t * pSrcB, |
||
2806 | uint32_t blockSize, |
||
2807 | q63_t * result); |
||
2808 | |||
2809 | /** |
||
2810 | * @brief Shifts the elements of a Q7 vector a specified number of bits. |
||
2811 | * @param[in] *pSrc points to the input vector |
||
2812 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
2813 | * @param[out] *pDst points to the output vector |
||
2814 | * @param[in] blockSize number of samples in the vector |
||
2815 | * @return none. |
||
2816 | */ |
||
2817 | |||
2818 | void arm_shift_q7( |
||
2819 | q7_t * pSrc, |
||
2820 | int8_t shiftBits, |
||
2821 | q7_t * pDst, |
||
2822 | uint32_t blockSize); |
||
2823 | |||
2824 | /** |
||
2825 | * @brief Shifts the elements of a Q15 vector a specified number of bits. |
||
2826 | * @param[in] *pSrc points to the input vector |
||
2827 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
2828 | * @param[out] *pDst points to the output vector |
||
2829 | * @param[in] blockSize number of samples in the vector |
||
2830 | * @return none. |
||
2831 | */ |
||
2832 | |||
2833 | void arm_shift_q15( |
||
2834 | q15_t * pSrc, |
||
2835 | int8_t shiftBits, |
||
2836 | q15_t * pDst, |
||
2837 | uint32_t blockSize); |
||
2838 | |||
2839 | /** |
||
2840 | * @brief Shifts the elements of a Q31 vector a specified number of bits. |
||
2841 | * @param[in] *pSrc points to the input vector |
||
2842 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
2843 | * @param[out] *pDst points to the output vector |
||
2844 | * @param[in] blockSize number of samples in the vector |
||
2845 | * @return none. |
||
2846 | */ |
||
2847 | |||
2848 | void arm_shift_q31( |
||
2849 | q31_t * pSrc, |
||
2850 | int8_t shiftBits, |
||
2851 | q31_t * pDst, |
||
2852 | uint32_t blockSize); |
||
2853 | |||
2854 | /** |
||
2855 | * @brief Adds a constant offset to a floating-point vector. |
||
2856 | * @param[in] *pSrc points to the input vector |
||
2857 | * @param[in] offset is the offset to be added |
||
2858 | * @param[out] *pDst points to the output vector |
||
2859 | * @param[in] blockSize number of samples in the vector |
||
2860 | * @return none. |
||
2861 | */ |
||
2862 | |||
2863 | void arm_offset_f32( |
||
2864 | float32_t * pSrc, |
||
2865 | float32_t offset, |
||
2866 | float32_t * pDst, |
||
2867 | uint32_t blockSize); |
||
2868 | |||
2869 | /** |
||
2870 | * @brief Adds a constant offset to a Q7 vector. |
||
2871 | * @param[in] *pSrc points to the input vector |
||
2872 | * @param[in] offset is the offset to be added |
||
2873 | * @param[out] *pDst points to the output vector |
||
2874 | * @param[in] blockSize number of samples in the vector |
||
2875 | * @return none. |
||
2876 | */ |
||
2877 | |||
2878 | void arm_offset_q7( |
||
2879 | q7_t * pSrc, |
||
2880 | q7_t offset, |
||
2881 | q7_t * pDst, |
||
2882 | uint32_t blockSize); |
||
2883 | |||
2884 | /** |
||
2885 | * @brief Adds a constant offset to a Q15 vector. |
||
2886 | * @param[in] *pSrc points to the input vector |
||
2887 | * @param[in] offset is the offset to be added |
||
2888 | * @param[out] *pDst points to the output vector |
||
2889 | * @param[in] blockSize number of samples in the vector |
||
2890 | * @return none. |
||
2891 | */ |
||
2892 | |||
2893 | void arm_offset_q15( |
||
2894 | q15_t * pSrc, |
||
2895 | q15_t offset, |
||
2896 | q15_t * pDst, |
||
2897 | uint32_t blockSize); |
||
2898 | |||
2899 | /** |
||
2900 | * @brief Adds a constant offset to a Q31 vector. |
||
2901 | * @param[in] *pSrc points to the input vector |
||
2902 | * @param[in] offset is the offset to be added |
||
2903 | * @param[out] *pDst points to the output vector |
||
2904 | * @param[in] blockSize number of samples in the vector |
||
2905 | * @return none. |
||
2906 | */ |
||
2907 | |||
2908 | void arm_offset_q31( |
||
2909 | q31_t * pSrc, |
||
2910 | q31_t offset, |
||
2911 | q31_t * pDst, |
||
2912 | uint32_t blockSize); |
||
2913 | |||
2914 | /** |
||
2915 | * @brief Negates the elements of a floating-point vector. |
||
2916 | * @param[in] *pSrc points to the input vector |
||
2917 | * @param[out] *pDst points to the output vector |
||
2918 | * @param[in] blockSize number of samples in the vector |
||
2919 | * @return none. |
||
2920 | */ |
||
2921 | |||
2922 | void arm_negate_f32( |
||
2923 | float32_t * pSrc, |
||
2924 | float32_t * pDst, |
||
2925 | uint32_t blockSize); |
||
2926 | |||
2927 | /** |
||
2928 | * @brief Negates the elements of a Q7 vector. |
||
2929 | * @param[in] *pSrc points to the input vector |
||
2930 | * @param[out] *pDst points to the output vector |
||
2931 | * @param[in] blockSize number of samples in the vector |
||
2932 | * @return none. |
||
2933 | */ |
||
2934 | |||
2935 | void arm_negate_q7( |
||
2936 | q7_t * pSrc, |
||
2937 | q7_t * pDst, |
||
2938 | uint32_t blockSize); |
||
2939 | |||
2940 | /** |
||
2941 | * @brief Negates the elements of a Q15 vector. |
||
2942 | * @param[in] *pSrc points to the input vector |
||
2943 | * @param[out] *pDst points to the output vector |
||
2944 | * @param[in] blockSize number of samples in the vector |
||
2945 | * @return none. |
||
2946 | */ |
||
2947 | |||
2948 | void arm_negate_q15( |
||
2949 | q15_t * pSrc, |
||
2950 | q15_t * pDst, |
||
2951 | uint32_t blockSize); |
||
2952 | |||
2953 | /** |
||
2954 | * @brief Negates the elements of a Q31 vector. |
||
2955 | * @param[in] *pSrc points to the input vector |
||
2956 | * @param[out] *pDst points to the output vector |
||
2957 | * @param[in] blockSize number of samples in the vector |
||
2958 | * @return none. |
||
2959 | */ |
||
2960 | |||
2961 | void arm_negate_q31( |
||
2962 | q31_t * pSrc, |
||
2963 | q31_t * pDst, |
||
2964 | uint32_t blockSize); |
||
2965 | /** |
||
2966 | * @brief Copies the elements of a floating-point vector. |
||
2967 | * @param[in] *pSrc input pointer |
||
2968 | * @param[out] *pDst output pointer |
||
2969 | * @param[in] blockSize number of samples to process |
||
2970 | * @return none. |
||
2971 | */ |
||
2972 | void arm_copy_f32( |
||
2973 | float32_t * pSrc, |
||
2974 | float32_t * pDst, |
||
2975 | uint32_t blockSize); |
||
2976 | |||
2977 | /** |
||
2978 | * @brief Copies the elements of a Q7 vector. |
||
2979 | * @param[in] *pSrc input pointer |
||
2980 | * @param[out] *pDst output pointer |
||
2981 | * @param[in] blockSize number of samples to process |
||
2982 | * @return none. |
||
2983 | */ |
||
2984 | void arm_copy_q7( |
||
2985 | q7_t * pSrc, |
||
2986 | q7_t * pDst, |
||
2987 | uint32_t blockSize); |
||
2988 | |||
2989 | /** |
||
2990 | * @brief Copies the elements of a Q15 vector. |
||
2991 | * @param[in] *pSrc input pointer |
||
2992 | * @param[out] *pDst output pointer |
||
2993 | * @param[in] blockSize number of samples to process |
||
2994 | * @return none. |
||
2995 | */ |
||
2996 | void arm_copy_q15( |
||
2997 | q15_t * pSrc, |
||
2998 | q15_t * pDst, |
||
2999 | uint32_t blockSize); |
||
3000 | |||
3001 | /** |
||
3002 | * @brief Copies the elements of a Q31 vector. |
||
3003 | * @param[in] *pSrc input pointer |
||
3004 | * @param[out] *pDst output pointer |
||
3005 | * @param[in] blockSize number of samples to process |
||
3006 | * @return none. |
||
3007 | */ |
||
3008 | void arm_copy_q31( |
||
3009 | q31_t * pSrc, |
||
3010 | q31_t * pDst, |
||
3011 | uint32_t blockSize); |
||
3012 | /** |
||
3013 | * @brief Fills a constant value into a floating-point vector. |
||
3014 | * @param[in] value input value to be filled |
||
3015 | * @param[out] *pDst output pointer |
||
3016 | * @param[in] blockSize number of samples to process |
||
3017 | * @return none. |
||
3018 | */ |
||
3019 | void arm_fill_f32( |
||
3020 | float32_t value, |
||
3021 | float32_t * pDst, |
||
3022 | uint32_t blockSize); |
||
3023 | |||
3024 | /** |
||
3025 | * @brief Fills a constant value into a Q7 vector. |
||
3026 | * @param[in] value input value to be filled |
||
3027 | * @param[out] *pDst output pointer |
||
3028 | * @param[in] blockSize number of samples to process |
||
3029 | * @return none. |
||
3030 | */ |
||
3031 | void arm_fill_q7( |
||
3032 | q7_t value, |
||
3033 | q7_t * pDst, |
||
3034 | uint32_t blockSize); |
||
3035 | |||
3036 | /** |
||
3037 | * @brief Fills a constant value into a Q15 vector. |
||
3038 | * @param[in] value input value to be filled |
||
3039 | * @param[out] *pDst output pointer |
||
3040 | * @param[in] blockSize number of samples to process |
||
3041 | * @return none. |
||
3042 | */ |
||
3043 | void arm_fill_q15( |
||
3044 | q15_t value, |
||
3045 | q15_t * pDst, |
||
3046 | uint32_t blockSize); |
||
3047 | |||
3048 | /** |
||
3049 | * @brief Fills a constant value into a Q31 vector. |
||
3050 | * @param[in] value input value to be filled |
||
3051 | * @param[out] *pDst output pointer |
||
3052 | * @param[in] blockSize number of samples to process |
||
3053 | * @return none. |
||
3054 | */ |
||
3055 | void arm_fill_q31( |
||
3056 | q31_t value, |
||
3057 | q31_t * pDst, |
||
3058 | uint32_t blockSize); |
||
3059 | |||
3060 | /** |
||
3061 | * @brief Convolution of floating-point sequences. |
||
3062 | * @param[in] *pSrcA points to the first input sequence. |
||
3063 | * @param[in] srcALen length of the first input sequence. |
||
3064 | * @param[in] *pSrcB points to the second input sequence. |
||
3065 | * @param[in] srcBLen length of the second input sequence. |
||
3066 | * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
||
3067 | * @return none. |
||
3068 | */ |
||
3069 | |||
3070 | void arm_conv_f32( |
||
3071 | float32_t * pSrcA, |
||
3072 | uint32_t srcALen, |
||
3073 | float32_t * pSrcB, |
||
3074 | uint32_t srcBLen, |
||
3075 | float32_t * pDst); |
||
3076 | |||
3077 | |||
3078 | /** |
||
3079 | * @brief Convolution of Q15 sequences. |
||
3080 | * @param[in] *pSrcA points to the first input sequence. |
||
3081 | * @param[in] srcALen length of the first input sequence. |
||
3082 | * @param[in] *pSrcB points to the second input sequence. |
||
3083 | * @param[in] srcBLen length of the second input sequence. |
||
3084 | * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. |
||
3085 | * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3086 | * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
3087 | * @return none. |
||
3088 | */ |
||
3089 | |||
3090 | |||
3091 | void arm_conv_opt_q15( |
||
3092 | q15_t * pSrcA, |
||
3093 | uint32_t srcALen, |
||
3094 | q15_t * pSrcB, |
||
3095 | uint32_t srcBLen, |
||
3096 | q15_t * pDst, |
||
3097 | q15_t * pScratch1, |
||
3098 | q15_t * pScratch2); |
||
3099 | |||
3100 | |||
3101 | /** |
||
3102 | * @brief Convolution of Q15 sequences. |
||
3103 | * @param[in] *pSrcA points to the first input sequence. |
||
3104 | * @param[in] srcALen length of the first input sequence. |
||
3105 | * @param[in] *pSrcB points to the second input sequence. |
||
3106 | * @param[in] srcBLen length of the second input sequence. |
||
3107 | * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
||
3108 | * @return none. |
||
3109 | */ |
||
3110 | |||
3111 | void arm_conv_q15( |
||
3112 | q15_t * pSrcA, |
||
3113 | uint32_t srcALen, |
||
3114 | q15_t * pSrcB, |
||
3115 | uint32_t srcBLen, |
||
3116 | q15_t * pDst); |
||
3117 | |||
3118 | /** |
||
3119 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
3120 | * @param[in] *pSrcA points to the first input sequence. |
||
3121 | * @param[in] srcALen length of the first input sequence. |
||
3122 | * @param[in] *pSrcB points to the second input sequence. |
||
3123 | * @param[in] srcBLen length of the second input sequence. |
||
3124 | * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. |
||
3125 | * @return none. |
||
3126 | */ |
||
3127 | |||
3128 | void arm_conv_fast_q15( |
||
3129 | q15_t * pSrcA, |
||
3130 | uint32_t srcALen, |
||
3131 | q15_t * pSrcB, |
||
3132 | uint32_t srcBLen, |
||
3133 | q15_t * pDst); |
||
3134 | |||
3135 | /** |
||
3136 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
3137 | * @param[in] *pSrcA points to the first input sequence. |
||
3138 | * @param[in] srcALen length of the first input sequence. |
||
3139 | * @param[in] *pSrcB points to the second input sequence. |
||
3140 | * @param[in] srcBLen length of the second input sequence. |
||
3141 | * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. |
||
3142 | * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3143 | * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
3144 | * @return none. |
||
3145 | */ |
||
3146 | |||
3147 | void arm_conv_fast_opt_q15( |
||
3148 | q15_t * pSrcA, |
||
3149 | uint32_t srcALen, |
||
3150 | q15_t * pSrcB, |
||
3151 | uint32_t srcBLen, |
||
3152 | q15_t * pDst, |
||
3153 | q15_t * pScratch1, |
||
3154 | q15_t * pScratch2); |
||
3155 | |||
3156 | |||
3157 | |||
3158 | /** |
||
3159 | * @brief Convolution of Q31 sequences. |
||
3160 | * @param[in] *pSrcA points to the first input sequence. |
||
3161 | * @param[in] srcALen length of the first input sequence. |
||
3162 | * @param[in] *pSrcB points to the second input sequence. |
||
3163 | * @param[in] srcBLen length of the second input sequence. |
||
3164 | * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. |
||
3165 | * @return none. |
||
3166 | */ |
||
3167 | |||
3168 | void arm_conv_q31( |
||
3169 | q31_t * pSrcA, |
||
3170 | uint32_t srcALen, |
||
3171 | q31_t * pSrcB, |
||
3172 | uint32_t srcBLen, |
||
3173 | q31_t * pDst); |
||
3174 | |||
3175 | /** |
||
3176 | * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
3177 | * @param[in] *pSrcA points to the first input sequence. |
||
3178 | * @param[in] srcALen length of the first input sequence. |
||
3179 | * @param[in] *pSrcB points to the second input sequence. |
||
3180 | * @param[in] srcBLen length of the second input sequence. |
||
3181 | * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. |
||
3182 | * @return none. |
||
3183 | */ |
||
3184 | |||
3185 | void arm_conv_fast_q31( |
||
3186 | q31_t * pSrcA, |
||
3187 | uint32_t srcALen, |
||
3188 | q31_t * pSrcB, |
||
3189 | uint32_t srcBLen, |
||
3190 | q31_t * pDst); |
||
3191 | |||
3192 | |||
3193 | /** |
||
3194 | * @brief Convolution of Q7 sequences. |
||
3195 | * @param[in] *pSrcA points to the first input sequence. |
||
3196 | * @param[in] srcALen length of the first input sequence. |
||
3197 | * @param[in] *pSrcB points to the second input sequence. |
||
3198 | * @param[in] srcBLen length of the second input sequence. |
||
3199 | * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. |
||
3200 | * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3201 | * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
3202 | * @return none. |
||
3203 | */ |
||
3204 | |||
3205 | void arm_conv_opt_q7( |
||
3206 | q7_t * pSrcA, |
||
3207 | uint32_t srcALen, |
||
3208 | q7_t * pSrcB, |
||
3209 | uint32_t srcBLen, |
||
3210 | q7_t * pDst, |
||
3211 | q15_t * pScratch1, |
||
3212 | q15_t * pScratch2); |
||
3213 | |||
3214 | |||
3215 | |||
3216 | /** |
||
3217 | * @brief Convolution of Q7 sequences. |
||
3218 | * @param[in] *pSrcA points to the first input sequence. |
||
3219 | * @param[in] srcALen length of the first input sequence. |
||
3220 | * @param[in] *pSrcB points to the second input sequence. |
||
3221 | * @param[in] srcBLen length of the second input sequence. |
||
3222 | * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1. |
||
3223 | * @return none. |
||
3224 | */ |
||
3225 | |||
3226 | void arm_conv_q7( |
||
3227 | q7_t * pSrcA, |
||
3228 | uint32_t srcALen, |
||
3229 | q7_t * pSrcB, |
||
3230 | uint32_t srcBLen, |
||
3231 | q7_t * pDst); |
||
3232 | |||
3233 | |||
3234 | /** |
||
3235 | * @brief Partial convolution of floating-point sequences. |
||
3236 | * @param[in] *pSrcA points to the first input sequence. |
||
3237 | * @param[in] srcALen length of the first input sequence. |
||
3238 | * @param[in] *pSrcB points to the second input sequence. |
||
3239 | * @param[in] srcBLen length of the second input sequence. |
||
3240 | * @param[out] *pDst points to the block of output data |
||
3241 | * @param[in] firstIndex is the first output sample to start with. |
||
3242 | * @param[in] numPoints is the number of output points to be computed. |
||
3243 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3244 | */ |
||
3245 | |||
3246 | arm_status arm_conv_partial_f32( |
||
3247 | float32_t * pSrcA, |
||
3248 | uint32_t srcALen, |
||
3249 | float32_t * pSrcB, |
||
3250 | uint32_t srcBLen, |
||
3251 | float32_t * pDst, |
||
3252 | uint32_t firstIndex, |
||
3253 | uint32_t numPoints); |
||
3254 | |||
3255 | /** |
||
3256 | * @brief Partial convolution of Q15 sequences. |
||
3257 | * @param[in] *pSrcA points to the first input sequence. |
||
3258 | * @param[in] srcALen length of the first input sequence. |
||
3259 | * @param[in] *pSrcB points to the second input sequence. |
||
3260 | * @param[in] srcBLen length of the second input sequence. |
||
3261 | * @param[out] *pDst points to the block of output data |
||
3262 | * @param[in] firstIndex is the first output sample to start with. |
||
3263 | * @param[in] numPoints is the number of output points to be computed. |
||
3264 | * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3265 | * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
3266 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3267 | */ |
||
3268 | |||
3269 | arm_status arm_conv_partial_opt_q15( |
||
3270 | q15_t * pSrcA, |
||
3271 | uint32_t srcALen, |
||
3272 | q15_t * pSrcB, |
||
3273 | uint32_t srcBLen, |
||
3274 | q15_t * pDst, |
||
3275 | uint32_t firstIndex, |
||
3276 | uint32_t numPoints, |
||
3277 | q15_t * pScratch1, |
||
3278 | q15_t * pScratch2); |
||
3279 | |||
3280 | |||
3281 | /** |
||
3282 | * @brief Partial convolution of Q15 sequences. |
||
3283 | * @param[in] *pSrcA points to the first input sequence. |
||
3284 | * @param[in] srcALen length of the first input sequence. |
||
3285 | * @param[in] *pSrcB points to the second input sequence. |
||
3286 | * @param[in] srcBLen length of the second input sequence. |
||
3287 | * @param[out] *pDst points to the block of output data |
||
3288 | * @param[in] firstIndex is the first output sample to start with. |
||
3289 | * @param[in] numPoints is the number of output points to be computed. |
||
3290 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3291 | */ |
||
3292 | |||
3293 | arm_status arm_conv_partial_q15( |
||
3294 | q15_t * pSrcA, |
||
3295 | uint32_t srcALen, |
||
3296 | q15_t * pSrcB, |
||
3297 | uint32_t srcBLen, |
||
3298 | q15_t * pDst, |
||
3299 | uint32_t firstIndex, |
||
3300 | uint32_t numPoints); |
||
3301 | |||
3302 | /** |
||
3303 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
3304 | * @param[in] *pSrcA points to the first input sequence. |
||
3305 | * @param[in] srcALen length of the first input sequence. |
||
3306 | * @param[in] *pSrcB points to the second input sequence. |
||
3307 | * @param[in] srcBLen length of the second input sequence. |
||
3308 | * @param[out] *pDst points to the block of output data |
||
3309 | * @param[in] firstIndex is the first output sample to start with. |
||
3310 | * @param[in] numPoints is the number of output points to be computed. |
||
3311 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3312 | */ |
||
3313 | |||
3314 | arm_status arm_conv_partial_fast_q15( |
||
3315 | q15_t * pSrcA, |
||
3316 | uint32_t srcALen, |
||
3317 | q15_t * pSrcB, |
||
3318 | uint32_t srcBLen, |
||
3319 | q15_t * pDst, |
||
3320 | uint32_t firstIndex, |
||
3321 | uint32_t numPoints); |
||
3322 | |||
3323 | |||
3324 | /** |
||
3325 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
3326 | * @param[in] *pSrcA points to the first input sequence. |
||
3327 | * @param[in] srcALen length of the first input sequence. |
||
3328 | * @param[in] *pSrcB points to the second input sequence. |
||
3329 | * @param[in] srcBLen length of the second input sequence. |
||
3330 | * @param[out] *pDst points to the block of output data |
||
3331 | * @param[in] firstIndex is the first output sample to start with. |
||
3332 | * @param[in] numPoints is the number of output points to be computed. |
||
3333 | * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3334 | * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
3335 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3336 | */ |
||
3337 | |||
3338 | arm_status arm_conv_partial_fast_opt_q15( |
||
3339 | q15_t * pSrcA, |
||
3340 | uint32_t srcALen, |
||
3341 | q15_t * pSrcB, |
||
3342 | uint32_t srcBLen, |
||
3343 | q15_t * pDst, |
||
3344 | uint32_t firstIndex, |
||
3345 | uint32_t numPoints, |
||
3346 | q15_t * pScratch1, |
||
3347 | q15_t * pScratch2); |
||
3348 | |||
3349 | |||
3350 | /** |
||
3351 | * @brief Partial convolution of Q31 sequences. |
||
3352 | * @param[in] *pSrcA points to the first input sequence. |
||
3353 | * @param[in] srcALen length of the first input sequence. |
||
3354 | * @param[in] *pSrcB points to the second input sequence. |
||
3355 | * @param[in] srcBLen length of the second input sequence. |
||
3356 | * @param[out] *pDst points to the block of output data |
||
3357 | * @param[in] firstIndex is the first output sample to start with. |
||
3358 | * @param[in] numPoints is the number of output points to be computed. |
||
3359 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3360 | */ |
||
3361 | |||
3362 | arm_status arm_conv_partial_q31( |
||
3363 | q31_t * pSrcA, |
||
3364 | uint32_t srcALen, |
||
3365 | q31_t * pSrcB, |
||
3366 | uint32_t srcBLen, |
||
3367 | q31_t * pDst, |
||
3368 | uint32_t firstIndex, |
||
3369 | uint32_t numPoints); |
||
3370 | |||
3371 | |||
3372 | /** |
||
3373 | * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
3374 | * @param[in] *pSrcA points to the first input sequence. |
||
3375 | * @param[in] srcALen length of the first input sequence. |
||
3376 | * @param[in] *pSrcB points to the second input sequence. |
||
3377 | * @param[in] srcBLen length of the second input sequence. |
||
3378 | * @param[out] *pDst points to the block of output data |
||
3379 | * @param[in] firstIndex is the first output sample to start with. |
||
3380 | * @param[in] numPoints is the number of output points to be computed. |
||
3381 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3382 | */ |
||
3383 | |||
3384 | arm_status arm_conv_partial_fast_q31( |
||
3385 | q31_t * pSrcA, |
||
3386 | uint32_t srcALen, |
||
3387 | q31_t * pSrcB, |
||
3388 | uint32_t srcBLen, |
||
3389 | q31_t * pDst, |
||
3390 | uint32_t firstIndex, |
||
3391 | uint32_t numPoints); |
||
3392 | |||
3393 | |||
3394 | /** |
||
3395 | * @brief Partial convolution of Q7 sequences |
||
3396 | * @param[in] *pSrcA points to the first input sequence. |
||
3397 | * @param[in] srcALen length of the first input sequence. |
||
3398 | * @param[in] *pSrcB points to the second input sequence. |
||
3399 | * @param[in] srcBLen length of the second input sequence. |
||
3400 | * @param[out] *pDst points to the block of output data |
||
3401 | * @param[in] firstIndex is the first output sample to start with. |
||
3402 | * @param[in] numPoints is the number of output points to be computed. |
||
3403 | * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3404 | * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
3405 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3406 | */ |
||
3407 | |||
3408 | arm_status arm_conv_partial_opt_q7( |
||
3409 | q7_t * pSrcA, |
||
3410 | uint32_t srcALen, |
||
3411 | q7_t * pSrcB, |
||
3412 | uint32_t srcBLen, |
||
3413 | q7_t * pDst, |
||
3414 | uint32_t firstIndex, |
||
3415 | uint32_t numPoints, |
||
3416 | q15_t * pScratch1, |
||
3417 | q15_t * pScratch2); |
||
3418 | |||
3419 | |||
3420 | /** |
||
3421 | * @brief Partial convolution of Q7 sequences. |
||
3422 | * @param[in] *pSrcA points to the first input sequence. |
||
3423 | * @param[in] srcALen length of the first input sequence. |
||
3424 | * @param[in] *pSrcB points to the second input sequence. |
||
3425 | * @param[in] srcBLen length of the second input sequence. |
||
3426 | * @param[out] *pDst points to the block of output data |
||
3427 | * @param[in] firstIndex is the first output sample to start with. |
||
3428 | * @param[in] numPoints is the number of output points to be computed. |
||
3429 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3430 | */ |
||
3431 | |||
3432 | arm_status arm_conv_partial_q7( |
||
3433 | q7_t * pSrcA, |
||
3434 | uint32_t srcALen, |
||
3435 | q7_t * pSrcB, |
||
3436 | uint32_t srcBLen, |
||
3437 | q7_t * pDst, |
||
3438 | uint32_t firstIndex, |
||
3439 | uint32_t numPoints); |
||
3440 | |||
3441 | |||
3442 | |||
3443 | /** |
||
3444 | * @brief Instance structure for the Q15 FIR decimator. |
||
3445 | */ |
||
3446 | |||
3447 | typedef struct |
||
3448 | { |
||
3449 | uint8_t M; /**< decimation factor. */ |
||
3450 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
3451 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
3452 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
3453 | } arm_fir_decimate_instance_q15; |
||
3454 | |||
3455 | /** |
||
3456 | * @brief Instance structure for the Q31 FIR decimator. |
||
3457 | */ |
||
3458 | |||
3459 | typedef struct |
||
3460 | { |
||
3461 | uint8_t M; /**< decimation factor. */ |
||
3462 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
3463 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
3464 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
3465 | |||
3466 | } arm_fir_decimate_instance_q31; |
||
3467 | |||
3468 | /** |
||
3469 | * @brief Instance structure for the floating-point FIR decimator. |
||
3470 | */ |
||
3471 | |||
3472 | typedef struct |
||
3473 | { |
||
3474 | uint8_t M; /**< decimation factor. */ |
||
3475 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
3476 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
3477 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
3478 | |||
3479 | } arm_fir_decimate_instance_f32; |
||
3480 | |||
3481 | |||
3482 | |||
3483 | /** |
||
3484 | * @brief Processing function for the floating-point FIR decimator. |
||
3485 | * @param[in] *S points to an instance of the floating-point FIR decimator structure. |
||
3486 | * @param[in] *pSrc points to the block of input data. |
||
3487 | * @param[out] *pDst points to the block of output data |
||
3488 | * @param[in] blockSize number of input samples to process per call. |
||
3489 | * @return none |
||
3490 | */ |
||
3491 | |||
3492 | void arm_fir_decimate_f32( |
||
3493 | const arm_fir_decimate_instance_f32 * S, |
||
3494 | float32_t * pSrc, |
||
3495 | float32_t * pDst, |
||
3496 | uint32_t blockSize); |
||
3497 | |||
3498 | |||
3499 | /** |
||
3500 | * @brief Initialization function for the floating-point FIR decimator. |
||
3501 | * @param[in,out] *S points to an instance of the floating-point FIR decimator structure. |
||
3502 | * @param[in] numTaps number of coefficients in the filter. |
||
3503 | * @param[in] M decimation factor. |
||
3504 | * @param[in] *pCoeffs points to the filter coefficients. |
||
3505 | * @param[in] *pState points to the state buffer. |
||
3506 | * @param[in] blockSize number of input samples to process per call. |
||
3507 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3508 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
3509 | */ |
||
3510 | |||
3511 | arm_status arm_fir_decimate_init_f32( |
||
3512 | arm_fir_decimate_instance_f32 * S, |
||
3513 | uint16_t numTaps, |
||
3514 | uint8_t M, |
||
3515 | float32_t * pCoeffs, |
||
3516 | float32_t * pState, |
||
3517 | uint32_t blockSize); |
||
3518 | |||
3519 | /** |
||
3520 | * @brief Processing function for the Q15 FIR decimator. |
||
3521 | * @param[in] *S points to an instance of the Q15 FIR decimator structure. |
||
3522 | * @param[in] *pSrc points to the block of input data. |
||
3523 | * @param[out] *pDst points to the block of output data |
||
3524 | * @param[in] blockSize number of input samples to process per call. |
||
3525 | * @return none |
||
3526 | */ |
||
3527 | |||
3528 | void arm_fir_decimate_q15( |
||
3529 | const arm_fir_decimate_instance_q15 * S, |
||
3530 | q15_t * pSrc, |
||
3531 | q15_t * pDst, |
||
3532 | uint32_t blockSize); |
||
3533 | |||
3534 | /** |
||
3535 | * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
||
3536 | * @param[in] *S points to an instance of the Q15 FIR decimator structure. |
||
3537 | * @param[in] *pSrc points to the block of input data. |
||
3538 | * @param[out] *pDst points to the block of output data |
||
3539 | * @param[in] blockSize number of input samples to process per call. |
||
3540 | * @return none |
||
3541 | */ |
||
3542 | |||
3543 | void arm_fir_decimate_fast_q15( |
||
3544 | const arm_fir_decimate_instance_q15 * S, |
||
3545 | q15_t * pSrc, |
||
3546 | q15_t * pDst, |
||
3547 | uint32_t blockSize); |
||
3548 | |||
3549 | |||
3550 | |||
3551 | /** |
||
3552 | * @brief Initialization function for the Q15 FIR decimator. |
||
3553 | * @param[in,out] *S points to an instance of the Q15 FIR decimator structure. |
||
3554 | * @param[in] numTaps number of coefficients in the filter. |
||
3555 | * @param[in] M decimation factor. |
||
3556 | * @param[in] *pCoeffs points to the filter coefficients. |
||
3557 | * @param[in] *pState points to the state buffer. |
||
3558 | * @param[in] blockSize number of input samples to process per call. |
||
3559 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3560 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
3561 | */ |
||
3562 | |||
3563 | arm_status arm_fir_decimate_init_q15( |
||
3564 | arm_fir_decimate_instance_q15 * S, |
||
3565 | uint16_t numTaps, |
||
3566 | uint8_t M, |
||
3567 | q15_t * pCoeffs, |
||
3568 | q15_t * pState, |
||
3569 | uint32_t blockSize); |
||
3570 | |||
3571 | /** |
||
3572 | * @brief Processing function for the Q31 FIR decimator. |
||
3573 | * @param[in] *S points to an instance of the Q31 FIR decimator structure. |
||
3574 | * @param[in] *pSrc points to the block of input data. |
||
3575 | * @param[out] *pDst points to the block of output data |
||
3576 | * @param[in] blockSize number of input samples to process per call. |
||
3577 | * @return none |
||
3578 | */ |
||
3579 | |||
3580 | void arm_fir_decimate_q31( |
||
3581 | const arm_fir_decimate_instance_q31 * S, |
||
3582 | q31_t * pSrc, |
||
3583 | q31_t * pDst, |
||
3584 | uint32_t blockSize); |
||
3585 | |||
3586 | /** |
||
3587 | * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
||
3588 | * @param[in] *S points to an instance of the Q31 FIR decimator structure. |
||
3589 | * @param[in] *pSrc points to the block of input data. |
||
3590 | * @param[out] *pDst points to the block of output data |
||
3591 | * @param[in] blockSize number of input samples to process per call. |
||
3592 | * @return none |
||
3593 | */ |
||
3594 | |||
3595 | void arm_fir_decimate_fast_q31( |
||
3596 | arm_fir_decimate_instance_q31 * S, |
||
3597 | q31_t * pSrc, |
||
3598 | q31_t * pDst, |
||
3599 | uint32_t blockSize); |
||
3600 | |||
3601 | |||
3602 | /** |
||
3603 | * @brief Initialization function for the Q31 FIR decimator. |
||
3604 | * @param[in,out] *S points to an instance of the Q31 FIR decimator structure. |
||
3605 | * @param[in] numTaps number of coefficients in the filter. |
||
3606 | * @param[in] M decimation factor. |
||
3607 | * @param[in] *pCoeffs points to the filter coefficients. |
||
3608 | * @param[in] *pState points to the state buffer. |
||
3609 | * @param[in] blockSize number of input samples to process per call. |
||
3610 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3611 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
3612 | */ |
||
3613 | |||
3614 | arm_status arm_fir_decimate_init_q31( |
||
3615 | arm_fir_decimate_instance_q31 * S, |
||
3616 | uint16_t numTaps, |
||
3617 | uint8_t M, |
||
3618 | q31_t * pCoeffs, |
||
3619 | q31_t * pState, |
||
3620 | uint32_t blockSize); |
||
3621 | |||
3622 | |||
3623 | |||
3624 | /** |
||
3625 | * @brief Instance structure for the Q15 FIR interpolator. |
||
3626 | */ |
||
3627 | |||
3628 | typedef struct |
||
3629 | { |
||
3630 | uint8_t L; /**< upsample factor. */ |
||
3631 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
3632 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
||
3633 | q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
||
3634 | } arm_fir_interpolate_instance_q15; |
||
3635 | |||
3636 | /** |
||
3637 | * @brief Instance structure for the Q31 FIR interpolator. |
||
3638 | */ |
||
3639 | |||
3640 | typedef struct |
||
3641 | { |
||
3642 | uint8_t L; /**< upsample factor. */ |
||
3643 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
3644 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
||
3645 | q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
||
3646 | } arm_fir_interpolate_instance_q31; |
||
3647 | |||
3648 | /** |
||
3649 | * @brief Instance structure for the floating-point FIR interpolator. |
||
3650 | */ |
||
3651 | |||
3652 | typedef struct |
||
3653 | { |
||
3654 | uint8_t L; /**< upsample factor. */ |
||
3655 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
3656 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
||
3657 | float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ |
||
3658 | } arm_fir_interpolate_instance_f32; |
||
3659 | |||
3660 | |||
3661 | /** |
||
3662 | * @brief Processing function for the Q15 FIR interpolator. |
||
3663 | * @param[in] *S points to an instance of the Q15 FIR interpolator structure. |
||
3664 | * @param[in] *pSrc points to the block of input data. |
||
3665 | * @param[out] *pDst points to the block of output data. |
||
3666 | * @param[in] blockSize number of input samples to process per call. |
||
3667 | * @return none. |
||
3668 | */ |
||
3669 | |||
3670 | void arm_fir_interpolate_q15( |
||
3671 | const arm_fir_interpolate_instance_q15 * S, |
||
3672 | q15_t * pSrc, |
||
3673 | q15_t * pDst, |
||
3674 | uint32_t blockSize); |
||
3675 | |||
3676 | |||
3677 | /** |
||
3678 | * @brief Initialization function for the Q15 FIR interpolator. |
||
3679 | * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure. |
||
3680 | * @param[in] L upsample factor. |
||
3681 | * @param[in] numTaps number of filter coefficients in the filter. |
||
3682 | * @param[in] *pCoeffs points to the filter coefficient buffer. |
||
3683 | * @param[in] *pState points to the state buffer. |
||
3684 | * @param[in] blockSize number of input samples to process per call. |
||
3685 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3686 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
3687 | */ |
||
3688 | |||
3689 | arm_status arm_fir_interpolate_init_q15( |
||
3690 | arm_fir_interpolate_instance_q15 * S, |
||
3691 | uint8_t L, |
||
3692 | uint16_t numTaps, |
||
3693 | q15_t * pCoeffs, |
||
3694 | q15_t * pState, |
||
3695 | uint32_t blockSize); |
||
3696 | |||
3697 | /** |
||
3698 | * @brief Processing function for the Q31 FIR interpolator. |
||
3699 | * @param[in] *S points to an instance of the Q15 FIR interpolator structure. |
||
3700 | * @param[in] *pSrc points to the block of input data. |
||
3701 | * @param[out] *pDst points to the block of output data. |
||
3702 | * @param[in] blockSize number of input samples to process per call. |
||
3703 | * @return none. |
||
3704 | */ |
||
3705 | |||
3706 | void arm_fir_interpolate_q31( |
||
3707 | const arm_fir_interpolate_instance_q31 * S, |
||
3708 | q31_t * pSrc, |
||
3709 | q31_t * pDst, |
||
3710 | uint32_t blockSize); |
||
3711 | |||
3712 | /** |
||
3713 | * @brief Initialization function for the Q31 FIR interpolator. |
||
3714 | * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure. |
||
3715 | * @param[in] L upsample factor. |
||
3716 | * @param[in] numTaps number of filter coefficients in the filter. |
||
3717 | * @param[in] *pCoeffs points to the filter coefficient buffer. |
||
3718 | * @param[in] *pState points to the state buffer. |
||
3719 | * @param[in] blockSize number of input samples to process per call. |
||
3720 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3721 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
3722 | */ |
||
3723 | |||
3724 | arm_status arm_fir_interpolate_init_q31( |
||
3725 | arm_fir_interpolate_instance_q31 * S, |
||
3726 | uint8_t L, |
||
3727 | uint16_t numTaps, |
||
3728 | q31_t * pCoeffs, |
||
3729 | q31_t * pState, |
||
3730 | uint32_t blockSize); |
||
3731 | |||
3732 | |||
3733 | /** |
||
3734 | * @brief Processing function for the floating-point FIR interpolator. |
||
3735 | * @param[in] *S points to an instance of the floating-point FIR interpolator structure. |
||
3736 | * @param[in] *pSrc points to the block of input data. |
||
3737 | * @param[out] *pDst points to the block of output data. |
||
3738 | * @param[in] blockSize number of input samples to process per call. |
||
3739 | * @return none. |
||
3740 | */ |
||
3741 | |||
3742 | void arm_fir_interpolate_f32( |
||
3743 | const arm_fir_interpolate_instance_f32 * S, |
||
3744 | float32_t * pSrc, |
||
3745 | float32_t * pDst, |
||
3746 | uint32_t blockSize); |
||
3747 | |||
3748 | /** |
||
3749 | * @brief Initialization function for the floating-point FIR interpolator. |
||
3750 | * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure. |
||
3751 | * @param[in] L upsample factor. |
||
3752 | * @param[in] numTaps number of filter coefficients in the filter. |
||
3753 | * @param[in] *pCoeffs points to the filter coefficient buffer. |
||
3754 | * @param[in] *pState points to the state buffer. |
||
3755 | * @param[in] blockSize number of input samples to process per call. |
||
3756 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3757 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
3758 | */ |
||
3759 | |||
3760 | arm_status arm_fir_interpolate_init_f32( |
||
3761 | arm_fir_interpolate_instance_f32 * S, |
||
3762 | uint8_t L, |
||
3763 | uint16_t numTaps, |
||
3764 | float32_t * pCoeffs, |
||
3765 | float32_t * pState, |
||
3766 | uint32_t blockSize); |
||
3767 | |||
3768 | /** |
||
3769 | * @brief Instance structure for the high precision Q31 Biquad cascade filter. |
||
3770 | */ |
||
3771 | |||
3772 | typedef struct |
||
3773 | { |
||
3774 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3775 | q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
||
3776 | q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3777 | uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ |
||
3778 | |||
3779 | } arm_biquad_cas_df1_32x64_ins_q31; |
||
3780 | |||
3781 | |||
3782 | /** |
||
3783 | * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure. |
||
3784 | * @param[in] *pSrc points to the block of input data. |
||
3785 | * @param[out] *pDst points to the block of output data |
||
3786 | * @param[in] blockSize number of samples to process. |
||
3787 | * @return none. |
||
3788 | */ |
||
3789 | |||
3790 | void arm_biquad_cas_df1_32x64_q31( |
||
3791 | const arm_biquad_cas_df1_32x64_ins_q31 * S, |
||
3792 | q31_t * pSrc, |
||
3793 | q31_t * pDst, |
||
3794 | uint32_t blockSize); |
||
3795 | |||
3796 | |||
3797 | /** |
||
3798 | * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure. |
||
3799 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3800 | * @param[in] *pCoeffs points to the filter coefficients. |
||
3801 | * @param[in] *pState points to the state buffer. |
||
3802 | * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format |
||
3803 | * @return none |
||
3804 | */ |
||
3805 | |||
3806 | void arm_biquad_cas_df1_32x64_init_q31( |
||
3807 | arm_biquad_cas_df1_32x64_ins_q31 * S, |
||
3808 | uint8_t numStages, |
||
3809 | q31_t * pCoeffs, |
||
3810 | q63_t * pState, |
||
3811 | uint8_t postShift); |
||
3812 | |||
3813 | |||
3814 | |||
3815 | /** |
||
3816 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
3817 | */ |
||
3818 | |||
3819 | typedef struct |
||
3820 | { |
||
3821 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3822 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
||
3823 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3824 | } arm_biquad_cascade_df2T_instance_f32; |
||
3825 | |||
3826 | |||
3827 | |||
3828 | /** |
||
3829 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
3830 | */ |
||
3831 | |||
3832 | typedef struct |
||
3833 | { |
||
3834 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3835 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
||
3836 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3837 | } arm_biquad_cascade_stereo_df2T_instance_f32; |
||
3838 | |||
3839 | |||
3840 | |||
3841 | /** |
||
3842 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
3843 | */ |
||
3844 | |||
3845 | typedef struct |
||
3846 | { |
||
3847 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3848 | float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
||
3849 | float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3850 | } arm_biquad_cascade_df2T_instance_f64; |
||
3851 | |||
3852 | |||
3853 | /** |
||
3854 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
||
3855 | * @param[in] *S points to an instance of the filter data structure. |
||
3856 | * @param[in] *pSrc points to the block of input data. |
||
3857 | * @param[out] *pDst points to the block of output data |
||
3858 | * @param[in] blockSize number of samples to process. |
||
3859 | * @return none. |
||
3860 | */ |
||
3861 | |||
3862 | void arm_biquad_cascade_df2T_f32( |
||
3863 | const arm_biquad_cascade_df2T_instance_f32 * S, |
||
3864 | float32_t * pSrc, |
||
3865 | float32_t * pDst, |
||
3866 | uint32_t blockSize); |
||
3867 | |||
3868 | |||
3869 | /** |
||
3870 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels |
||
3871 | * @param[in] *S points to an instance of the filter data structure. |
||
3872 | * @param[in] *pSrc points to the block of input data. |
||
3873 | * @param[out] *pDst points to the block of output data |
||
3874 | * @param[in] blockSize number of samples to process. |
||
3875 | * @return none. |
||
3876 | */ |
||
3877 | |||
3878 | void arm_biquad_cascade_stereo_df2T_f32( |
||
3879 | const arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
||
3880 | float32_t * pSrc, |
||
3881 | float32_t * pDst, |
||
3882 | uint32_t blockSize); |
||
3883 | |||
3884 | /** |
||
3885 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
||
3886 | * @param[in] *S points to an instance of the filter data structure. |
||
3887 | * @param[in] *pSrc points to the block of input data. |
||
3888 | * @param[out] *pDst points to the block of output data |
||
3889 | * @param[in] blockSize number of samples to process. |
||
3890 | * @return none. |
||
3891 | */ |
||
3892 | |||
3893 | void arm_biquad_cascade_df2T_f64( |
||
3894 | const arm_biquad_cascade_df2T_instance_f64 * S, |
||
3895 | float64_t * pSrc, |
||
3896 | float64_t * pDst, |
||
3897 | uint32_t blockSize); |
||
3898 | |||
3899 | |||
3900 | /** |
||
3901 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
3902 | * @param[in,out] *S points to an instance of the filter data structure. |
||
3903 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3904 | * @param[in] *pCoeffs points to the filter coefficients. |
||
3905 | * @param[in] *pState points to the state buffer. |
||
3906 | * @return none |
||
3907 | */ |
||
3908 | |||
3909 | void arm_biquad_cascade_df2T_init_f32( |
||
3910 | arm_biquad_cascade_df2T_instance_f32 * S, |
||
3911 | uint8_t numStages, |
||
3912 | float32_t * pCoeffs, |
||
3913 | float32_t * pState); |
||
3914 | |||
3915 | |||
3916 | /** |
||
3917 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
3918 | * @param[in,out] *S points to an instance of the filter data structure. |
||
3919 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3920 | * @param[in] *pCoeffs points to the filter coefficients. |
||
3921 | * @param[in] *pState points to the state buffer. |
||
3922 | * @return none |
||
3923 | */ |
||
3924 | |||
3925 | void arm_biquad_cascade_stereo_df2T_init_f32( |
||
3926 | arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
||
3927 | uint8_t numStages, |
||
3928 | float32_t * pCoeffs, |
||
3929 | float32_t * pState); |
||
3930 | |||
3931 | |||
3932 | /** |
||
3933 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
3934 | * @param[in,out] *S points to an instance of the filter data structure. |
||
3935 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3936 | * @param[in] *pCoeffs points to the filter coefficients. |
||
3937 | * @param[in] *pState points to the state buffer. |
||
3938 | * @return none |
||
3939 | */ |
||
3940 | |||
3941 | void arm_biquad_cascade_df2T_init_f64( |
||
3942 | arm_biquad_cascade_df2T_instance_f64 * S, |
||
3943 | uint8_t numStages, |
||
3944 | float64_t * pCoeffs, |
||
3945 | float64_t * pState); |
||
3946 | |||
3947 | |||
3948 | |||
3949 | /** |
||
3950 | * @brief Instance structure for the Q15 FIR lattice filter. |
||
3951 | */ |
||
3952 | |||
3953 | typedef struct |
||
3954 | { |
||
3955 | uint16_t numStages; /**< number of filter stages. */ |
||
3956 | q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
3957 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
3958 | } arm_fir_lattice_instance_q15; |
||
3959 | |||
3960 | /** |
||
3961 | * @brief Instance structure for the Q31 FIR lattice filter. |
||
3962 | */ |
||
3963 | |||
3964 | typedef struct |
||
3965 | { |
||
3966 | uint16_t numStages; /**< number of filter stages. */ |
||
3967 | q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
3968 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
3969 | } arm_fir_lattice_instance_q31; |
||
3970 | |||
3971 | /** |
||
3972 | * @brief Instance structure for the floating-point FIR lattice filter. |
||
3973 | */ |
||
3974 | |||
3975 | typedef struct |
||
3976 | { |
||
3977 | uint16_t numStages; /**< number of filter stages. */ |
||
3978 | float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
3979 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
3980 | } arm_fir_lattice_instance_f32; |
||
3981 | |||
3982 | /** |
||
3983 | * @brief Initialization function for the Q15 FIR lattice filter. |
||
3984 | * @param[in] *S points to an instance of the Q15 FIR lattice structure. |
||
3985 | * @param[in] numStages number of filter stages. |
||
3986 | * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. |
||
3987 | * @param[in] *pState points to the state buffer. The array is of length numStages. |
||
3988 | * @return none. |
||
3989 | */ |
||
3990 | |||
3991 | void arm_fir_lattice_init_q15( |
||
3992 | arm_fir_lattice_instance_q15 * S, |
||
3993 | uint16_t numStages, |
||
3994 | q15_t * pCoeffs, |
||
3995 | q15_t * pState); |
||
3996 | |||
3997 | |||
3998 | /** |
||
3999 | * @brief Processing function for the Q15 FIR lattice filter. |
||
4000 | * @param[in] *S points to an instance of the Q15 FIR lattice structure. |
||
4001 | * @param[in] *pSrc points to the block of input data. |
||
4002 | * @param[out] *pDst points to the block of output data. |
||
4003 | * @param[in] blockSize number of samples to process. |
||
4004 | * @return none. |
||
4005 | */ |
||
4006 | void arm_fir_lattice_q15( |
||
4007 | const arm_fir_lattice_instance_q15 * S, |
||
4008 | q15_t * pSrc, |
||
4009 | q15_t * pDst, |
||
4010 | uint32_t blockSize); |
||
4011 | |||
4012 | /** |
||
4013 | * @brief Initialization function for the Q31 FIR lattice filter. |
||
4014 | * @param[in] *S points to an instance of the Q31 FIR lattice structure. |
||
4015 | * @param[in] numStages number of filter stages. |
||
4016 | * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. |
||
4017 | * @param[in] *pState points to the state buffer. The array is of length numStages. |
||
4018 | * @return none. |
||
4019 | */ |
||
4020 | |||
4021 | void arm_fir_lattice_init_q31( |
||
4022 | arm_fir_lattice_instance_q31 * S, |
||
4023 | uint16_t numStages, |
||
4024 | q31_t * pCoeffs, |
||
4025 | q31_t * pState); |
||
4026 | |||
4027 | |||
4028 | /** |
||
4029 | * @brief Processing function for the Q31 FIR lattice filter. |
||
4030 | * @param[in] *S points to an instance of the Q31 FIR lattice structure. |
||
4031 | * @param[in] *pSrc points to the block of input data. |
||
4032 | * @param[out] *pDst points to the block of output data |
||
4033 | * @param[in] blockSize number of samples to process. |
||
4034 | * @return none. |
||
4035 | */ |
||
4036 | |||
4037 | void arm_fir_lattice_q31( |
||
4038 | const arm_fir_lattice_instance_q31 * S, |
||
4039 | q31_t * pSrc, |
||
4040 | q31_t * pDst, |
||
4041 | uint32_t blockSize); |
||
4042 | |||
4043 | /** |
||
4044 | * @brief Initialization function for the floating-point FIR lattice filter. |
||
4045 | * @param[in] *S points to an instance of the floating-point FIR lattice structure. |
||
4046 | * @param[in] numStages number of filter stages. |
||
4047 | * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages. |
||
4048 | * @param[in] *pState points to the state buffer. The array is of length numStages. |
||
4049 | * @return none. |
||
4050 | */ |
||
4051 | |||
4052 | void arm_fir_lattice_init_f32( |
||
4053 | arm_fir_lattice_instance_f32 * S, |
||
4054 | uint16_t numStages, |
||
4055 | float32_t * pCoeffs, |
||
4056 | float32_t * pState); |
||
4057 | |||
4058 | /** |
||
4059 | * @brief Processing function for the floating-point FIR lattice filter. |
||
4060 | * @param[in] *S points to an instance of the floating-point FIR lattice structure. |
||
4061 | * @param[in] *pSrc points to the block of input data. |
||
4062 | * @param[out] *pDst points to the block of output data |
||
4063 | * @param[in] blockSize number of samples to process. |
||
4064 | * @return none. |
||
4065 | */ |
||
4066 | |||
4067 | void arm_fir_lattice_f32( |
||
4068 | const arm_fir_lattice_instance_f32 * S, |
||
4069 | float32_t * pSrc, |
||
4070 | float32_t * pDst, |
||
4071 | uint32_t blockSize); |
||
4072 | |||
4073 | /** |
||
4074 | * @brief Instance structure for the Q15 IIR lattice filter. |
||
4075 | */ |
||
4076 | typedef struct |
||
4077 | { |
||
4078 | uint16_t numStages; /**< number of stages in the filter. */ |
||
4079 | q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
4080 | q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
4081 | q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
4082 | } arm_iir_lattice_instance_q15; |
||
4083 | |||
4084 | /** |
||
4085 | * @brief Instance structure for the Q31 IIR lattice filter. |
||
4086 | */ |
||
4087 | typedef struct |
||
4088 | { |
||
4089 | uint16_t numStages; /**< number of stages in the filter. */ |
||
4090 | q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
4091 | q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
4092 | q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
4093 | } arm_iir_lattice_instance_q31; |
||
4094 | |||
4095 | /** |
||
4096 | * @brief Instance structure for the floating-point IIR lattice filter. |
||
4097 | */ |
||
4098 | typedef struct |
||
4099 | { |
||
4100 | uint16_t numStages; /**< number of stages in the filter. */ |
||
4101 | float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
4102 | float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
4103 | float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
4104 | } arm_iir_lattice_instance_f32; |
||
4105 | |||
4106 | /** |
||
4107 | * @brief Processing function for the floating-point IIR lattice filter. |
||
4108 | * @param[in] *S points to an instance of the floating-point IIR lattice structure. |
||
4109 | * @param[in] *pSrc points to the block of input data. |
||
4110 | * @param[out] *pDst points to the block of output data. |
||
4111 | * @param[in] blockSize number of samples to process. |
||
4112 | * @return none. |
||
4113 | */ |
||
4114 | |||
4115 | void arm_iir_lattice_f32( |
||
4116 | const arm_iir_lattice_instance_f32 * S, |
||
4117 | float32_t * pSrc, |
||
4118 | float32_t * pDst, |
||
4119 | uint32_t blockSize); |
||
4120 | |||
4121 | /** |
||
4122 | * @brief Initialization function for the floating-point IIR lattice filter. |
||
4123 | * @param[in] *S points to an instance of the floating-point IIR lattice structure. |
||
4124 | * @param[in] numStages number of stages in the filter. |
||
4125 | * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
||
4126 | * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
||
4127 | * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1. |
||
4128 | * @param[in] blockSize number of samples to process. |
||
4129 | * @return none. |
||
4130 | */ |
||
4131 | |||
4132 | void arm_iir_lattice_init_f32( |
||
4133 | arm_iir_lattice_instance_f32 * S, |
||
4134 | uint16_t numStages, |
||
4135 | float32_t * pkCoeffs, |
||
4136 | float32_t * pvCoeffs, |
||
4137 | float32_t * pState, |
||
4138 | uint32_t blockSize); |
||
4139 | |||
4140 | |||
4141 | /** |
||
4142 | * @brief Processing function for the Q31 IIR lattice filter. |
||
4143 | * @param[in] *S points to an instance of the Q31 IIR lattice structure. |
||
4144 | * @param[in] *pSrc points to the block of input data. |
||
4145 | * @param[out] *pDst points to the block of output data. |
||
4146 | * @param[in] blockSize number of samples to process. |
||
4147 | * @return none. |
||
4148 | */ |
||
4149 | |||
4150 | void arm_iir_lattice_q31( |
||
4151 | const arm_iir_lattice_instance_q31 * S, |
||
4152 | q31_t * pSrc, |
||
4153 | q31_t * pDst, |
||
4154 | uint32_t blockSize); |
||
4155 | |||
4156 | |||
4157 | /** |
||
4158 | * @brief Initialization function for the Q31 IIR lattice filter. |
||
4159 | * @param[in] *S points to an instance of the Q31 IIR lattice structure. |
||
4160 | * @param[in] numStages number of stages in the filter. |
||
4161 | * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
||
4162 | * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
||
4163 | * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize. |
||
4164 | * @param[in] blockSize number of samples to process. |
||
4165 | * @return none. |
||
4166 | */ |
||
4167 | |||
4168 | void arm_iir_lattice_init_q31( |
||
4169 | arm_iir_lattice_instance_q31 * S, |
||
4170 | uint16_t numStages, |
||
4171 | q31_t * pkCoeffs, |
||
4172 | q31_t * pvCoeffs, |
||
4173 | q31_t * pState, |
||
4174 | uint32_t blockSize); |
||
4175 | |||
4176 | |||
4177 | /** |
||
4178 | * @brief Processing function for the Q15 IIR lattice filter. |
||
4179 | * @param[in] *S points to an instance of the Q15 IIR lattice structure. |
||
4180 | * @param[in] *pSrc points to the block of input data. |
||
4181 | * @param[out] *pDst points to the block of output data. |
||
4182 | * @param[in] blockSize number of samples to process. |
||
4183 | * @return none. |
||
4184 | */ |
||
4185 | |||
4186 | void arm_iir_lattice_q15( |
||
4187 | const arm_iir_lattice_instance_q15 * S, |
||
4188 | q15_t * pSrc, |
||
4189 | q15_t * pDst, |
||
4190 | uint32_t blockSize); |
||
4191 | |||
4192 | |||
4193 | /** |
||
4194 | * @brief Initialization function for the Q15 IIR lattice filter. |
||
4195 | * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure. |
||
4196 | * @param[in] numStages number of stages in the filter. |
||
4197 | * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages. |
||
4198 | * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. |
||
4199 | * @param[in] *pState points to state buffer. The array is of length numStages+blockSize. |
||
4200 | * @param[in] blockSize number of samples to process per call. |
||
4201 | * @return none. |
||
4202 | */ |
||
4203 | |||
4204 | void arm_iir_lattice_init_q15( |
||
4205 | arm_iir_lattice_instance_q15 * S, |
||
4206 | uint16_t numStages, |
||
4207 | q15_t * pkCoeffs, |
||
4208 | q15_t * pvCoeffs, |
||
4209 | q15_t * pState, |
||
4210 | uint32_t blockSize); |
||
4211 | |||
4212 | /** |
||
4213 | * @brief Instance structure for the floating-point LMS filter. |
||
4214 | */ |
||
4215 | |||
4216 | typedef struct |
||
4217 | { |
||
4218 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4219 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4220 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4221 | float32_t mu; /**< step size that controls filter coefficient updates. */ |
||
4222 | } arm_lms_instance_f32; |
||
4223 | |||
4224 | /** |
||
4225 | * @brief Processing function for floating-point LMS filter. |
||
4226 | * @param[in] *S points to an instance of the floating-point LMS filter structure. |
||
4227 | * @param[in] *pSrc points to the block of input data. |
||
4228 | * @param[in] *pRef points to the block of reference data. |
||
4229 | * @param[out] *pOut points to the block of output data. |
||
4230 | * @param[out] *pErr points to the block of error data. |
||
4231 | * @param[in] blockSize number of samples to process. |
||
4232 | * @return none. |
||
4233 | */ |
||
4234 | |||
4235 | void arm_lms_f32( |
||
4236 | const arm_lms_instance_f32 * S, |
||
4237 | float32_t * pSrc, |
||
4238 | float32_t * pRef, |
||
4239 | float32_t * pOut, |
||
4240 | float32_t * pErr, |
||
4241 | uint32_t blockSize); |
||
4242 | |||
4243 | /** |
||
4244 | * @brief Initialization function for floating-point LMS filter. |
||
4245 | * @param[in] *S points to an instance of the floating-point LMS filter structure. |
||
4246 | * @param[in] numTaps number of filter coefficients. |
||
4247 | * @param[in] *pCoeffs points to the coefficient buffer. |
||
4248 | * @param[in] *pState points to state buffer. |
||
4249 | * @param[in] mu step size that controls filter coefficient updates. |
||
4250 | * @param[in] blockSize number of samples to process. |
||
4251 | * @return none. |
||
4252 | */ |
||
4253 | |||
4254 | void arm_lms_init_f32( |
||
4255 | arm_lms_instance_f32 * S, |
||
4256 | uint16_t numTaps, |
||
4257 | float32_t * pCoeffs, |
||
4258 | float32_t * pState, |
||
4259 | float32_t mu, |
||
4260 | uint32_t blockSize); |
||
4261 | |||
4262 | /** |
||
4263 | * @brief Instance structure for the Q15 LMS filter. |
||
4264 | */ |
||
4265 | |||
4266 | typedef struct |
||
4267 | { |
||
4268 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4269 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4270 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4271 | q15_t mu; /**< step size that controls filter coefficient updates. */ |
||
4272 | uint32_t postShift; /**< bit shift applied to coefficients. */ |
||
4273 | } arm_lms_instance_q15; |
||
4274 | |||
4275 | |||
4276 | /** |
||
4277 | * @brief Initialization function for the Q15 LMS filter. |
||
4278 | * @param[in] *S points to an instance of the Q15 LMS filter structure. |
||
4279 | * @param[in] numTaps number of filter coefficients. |
||
4280 | * @param[in] *pCoeffs points to the coefficient buffer. |
||
4281 | * @param[in] *pState points to the state buffer. |
||
4282 | * @param[in] mu step size that controls filter coefficient updates. |
||
4283 | * @param[in] blockSize number of samples to process. |
||
4284 | * @param[in] postShift bit shift applied to coefficients. |
||
4285 | * @return none. |
||
4286 | */ |
||
4287 | |||
4288 | void arm_lms_init_q15( |
||
4289 | arm_lms_instance_q15 * S, |
||
4290 | uint16_t numTaps, |
||
4291 | q15_t * pCoeffs, |
||
4292 | q15_t * pState, |
||
4293 | q15_t mu, |
||
4294 | uint32_t blockSize, |
||
4295 | uint32_t postShift); |
||
4296 | |||
4297 | /** |
||
4298 | * @brief Processing function for Q15 LMS filter. |
||
4299 | * @param[in] *S points to an instance of the Q15 LMS filter structure. |
||
4300 | * @param[in] *pSrc points to the block of input data. |
||
4301 | * @param[in] *pRef points to the block of reference data. |
||
4302 | * @param[out] *pOut points to the block of output data. |
||
4303 | * @param[out] *pErr points to the block of error data. |
||
4304 | * @param[in] blockSize number of samples to process. |
||
4305 | * @return none. |
||
4306 | */ |
||
4307 | |||
4308 | void arm_lms_q15( |
||
4309 | const arm_lms_instance_q15 * S, |
||
4310 | q15_t * pSrc, |
||
4311 | q15_t * pRef, |
||
4312 | q15_t * pOut, |
||
4313 | q15_t * pErr, |
||
4314 | uint32_t blockSize); |
||
4315 | |||
4316 | |||
4317 | /** |
||
4318 | * @brief Instance structure for the Q31 LMS filter. |
||
4319 | */ |
||
4320 | |||
4321 | typedef struct |
||
4322 | { |
||
4323 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4324 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4325 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4326 | q31_t mu; /**< step size that controls filter coefficient updates. */ |
||
4327 | uint32_t postShift; /**< bit shift applied to coefficients. */ |
||
4328 | |||
4329 | } arm_lms_instance_q31; |
||
4330 | |||
4331 | /** |
||
4332 | * @brief Processing function for Q31 LMS filter. |
||
4333 | * @param[in] *S points to an instance of the Q15 LMS filter structure. |
||
4334 | * @param[in] *pSrc points to the block of input data. |
||
4335 | * @param[in] *pRef points to the block of reference data. |
||
4336 | * @param[out] *pOut points to the block of output data. |
||
4337 | * @param[out] *pErr points to the block of error data. |
||
4338 | * @param[in] blockSize number of samples to process. |
||
4339 | * @return none. |
||
4340 | */ |
||
4341 | |||
4342 | void arm_lms_q31( |
||
4343 | const arm_lms_instance_q31 * S, |
||
4344 | q31_t * pSrc, |
||
4345 | q31_t * pRef, |
||
4346 | q31_t * pOut, |
||
4347 | q31_t * pErr, |
||
4348 | uint32_t blockSize); |
||
4349 | |||
4350 | /** |
||
4351 | * @brief Initialization function for Q31 LMS filter. |
||
4352 | * @param[in] *S points to an instance of the Q31 LMS filter structure. |
||
4353 | * @param[in] numTaps number of filter coefficients. |
||
4354 | * @param[in] *pCoeffs points to coefficient buffer. |
||
4355 | * @param[in] *pState points to state buffer. |
||
4356 | * @param[in] mu step size that controls filter coefficient updates. |
||
4357 | * @param[in] blockSize number of samples to process. |
||
4358 | * @param[in] postShift bit shift applied to coefficients. |
||
4359 | * @return none. |
||
4360 | */ |
||
4361 | |||
4362 | void arm_lms_init_q31( |
||
4363 | arm_lms_instance_q31 * S, |
||
4364 | uint16_t numTaps, |
||
4365 | q31_t * pCoeffs, |
||
4366 | q31_t * pState, |
||
4367 | q31_t mu, |
||
4368 | uint32_t blockSize, |
||
4369 | uint32_t postShift); |
||
4370 | |||
4371 | /** |
||
4372 | * @brief Instance structure for the floating-point normalized LMS filter. |
||
4373 | */ |
||
4374 | |||
4375 | typedef struct |
||
4376 | { |
||
4377 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4378 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4379 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4380 | float32_t mu; /**< step size that control filter coefficient updates. */ |
||
4381 | float32_t energy; /**< saves previous frame energy. */ |
||
4382 | float32_t x0; /**< saves previous input sample. */ |
||
4383 | } arm_lms_norm_instance_f32; |
||
4384 | |||
4385 | /** |
||
4386 | * @brief Processing function for floating-point normalized LMS filter. |
||
4387 | * @param[in] *S points to an instance of the floating-point normalized LMS filter structure. |
||
4388 | * @param[in] *pSrc points to the block of input data. |
||
4389 | * @param[in] *pRef points to the block of reference data. |
||
4390 | * @param[out] *pOut points to the block of output data. |
||
4391 | * @param[out] *pErr points to the block of error data. |
||
4392 | * @param[in] blockSize number of samples to process. |
||
4393 | * @return none. |
||
4394 | */ |
||
4395 | |||
4396 | void arm_lms_norm_f32( |
||
4397 | arm_lms_norm_instance_f32 * S, |
||
4398 | float32_t * pSrc, |
||
4399 | float32_t * pRef, |
||
4400 | float32_t * pOut, |
||
4401 | float32_t * pErr, |
||
4402 | uint32_t blockSize); |
||
4403 | |||
4404 | /** |
||
4405 | * @brief Initialization function for floating-point normalized LMS filter. |
||
4406 | * @param[in] *S points to an instance of the floating-point LMS filter structure. |
||
4407 | * @param[in] numTaps number of filter coefficients. |
||
4408 | * @param[in] *pCoeffs points to coefficient buffer. |
||
4409 | * @param[in] *pState points to state buffer. |
||
4410 | * @param[in] mu step size that controls filter coefficient updates. |
||
4411 | * @param[in] blockSize number of samples to process. |
||
4412 | * @return none. |
||
4413 | */ |
||
4414 | |||
4415 | void arm_lms_norm_init_f32( |
||
4416 | arm_lms_norm_instance_f32 * S, |
||
4417 | uint16_t numTaps, |
||
4418 | float32_t * pCoeffs, |
||
4419 | float32_t * pState, |
||
4420 | float32_t mu, |
||
4421 | uint32_t blockSize); |
||
4422 | |||
4423 | |||
4424 | /** |
||
4425 | * @brief Instance structure for the Q31 normalized LMS filter. |
||
4426 | */ |
||
4427 | typedef struct |
||
4428 | { |
||
4429 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4430 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4431 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4432 | q31_t mu; /**< step size that controls filter coefficient updates. */ |
||
4433 | uint8_t postShift; /**< bit shift applied to coefficients. */ |
||
4434 | q31_t *recipTable; /**< points to the reciprocal initial value table. */ |
||
4435 | q31_t energy; /**< saves previous frame energy. */ |
||
4436 | q31_t x0; /**< saves previous input sample. */ |
||
4437 | } arm_lms_norm_instance_q31; |
||
4438 | |||
4439 | /** |
||
4440 | * @brief Processing function for Q31 normalized LMS filter. |
||
4441 | * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. |
||
4442 | * @param[in] *pSrc points to the block of input data. |
||
4443 | * @param[in] *pRef points to the block of reference data. |
||
4444 | * @param[out] *pOut points to the block of output data. |
||
4445 | * @param[out] *pErr points to the block of error data. |
||
4446 | * @param[in] blockSize number of samples to process. |
||
4447 | * @return none. |
||
4448 | */ |
||
4449 | |||
4450 | void arm_lms_norm_q31( |
||
4451 | arm_lms_norm_instance_q31 * S, |
||
4452 | q31_t * pSrc, |
||
4453 | q31_t * pRef, |
||
4454 | q31_t * pOut, |
||
4455 | q31_t * pErr, |
||
4456 | uint32_t blockSize); |
||
4457 | |||
4458 | /** |
||
4459 | * @brief Initialization function for Q31 normalized LMS filter. |
||
4460 | * @param[in] *S points to an instance of the Q31 normalized LMS filter structure. |
||
4461 | * @param[in] numTaps number of filter coefficients. |
||
4462 | * @param[in] *pCoeffs points to coefficient buffer. |
||
4463 | * @param[in] *pState points to state buffer. |
||
4464 | * @param[in] mu step size that controls filter coefficient updates. |
||
4465 | * @param[in] blockSize number of samples to process. |
||
4466 | * @param[in] postShift bit shift applied to coefficients. |
||
4467 | * @return none. |
||
4468 | */ |
||
4469 | |||
4470 | void arm_lms_norm_init_q31( |
||
4471 | arm_lms_norm_instance_q31 * S, |
||
4472 | uint16_t numTaps, |
||
4473 | q31_t * pCoeffs, |
||
4474 | q31_t * pState, |
||
4475 | q31_t mu, |
||
4476 | uint32_t blockSize, |
||
4477 | uint8_t postShift); |
||
4478 | |||
4479 | /** |
||
4480 | * @brief Instance structure for the Q15 normalized LMS filter. |
||
4481 | */ |
||
4482 | |||
4483 | typedef struct |
||
4484 | { |
||
4485 | uint16_t numTaps; /**< Number of coefficients in the filter. */ |
||
4486 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4487 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4488 | q15_t mu; /**< step size that controls filter coefficient updates. */ |
||
4489 | uint8_t postShift; /**< bit shift applied to coefficients. */ |
||
4490 | q15_t *recipTable; /**< Points to the reciprocal initial value table. */ |
||
4491 | q15_t energy; /**< saves previous frame energy. */ |
||
4492 | q15_t x0; /**< saves previous input sample. */ |
||
4493 | } arm_lms_norm_instance_q15; |
||
4494 | |||
4495 | /** |
||
4496 | * @brief Processing function for Q15 normalized LMS filter. |
||
4497 | * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. |
||
4498 | * @param[in] *pSrc points to the block of input data. |
||
4499 | * @param[in] *pRef points to the block of reference data. |
||
4500 | * @param[out] *pOut points to the block of output data. |
||
4501 | * @param[out] *pErr points to the block of error data. |
||
4502 | * @param[in] blockSize number of samples to process. |
||
4503 | * @return none. |
||
4504 | */ |
||
4505 | |||
4506 | void arm_lms_norm_q15( |
||
4507 | arm_lms_norm_instance_q15 * S, |
||
4508 | q15_t * pSrc, |
||
4509 | q15_t * pRef, |
||
4510 | q15_t * pOut, |
||
4511 | q15_t * pErr, |
||
4512 | uint32_t blockSize); |
||
4513 | |||
4514 | |||
4515 | /** |
||
4516 | * @brief Initialization function for Q15 normalized LMS filter. |
||
4517 | * @param[in] *S points to an instance of the Q15 normalized LMS filter structure. |
||
4518 | * @param[in] numTaps number of filter coefficients. |
||
4519 | * @param[in] *pCoeffs points to coefficient buffer. |
||
4520 | * @param[in] *pState points to state buffer. |
||
4521 | * @param[in] mu step size that controls filter coefficient updates. |
||
4522 | * @param[in] blockSize number of samples to process. |
||
4523 | * @param[in] postShift bit shift applied to coefficients. |
||
4524 | * @return none. |
||
4525 | */ |
||
4526 | |||
4527 | void arm_lms_norm_init_q15( |
||
4528 | arm_lms_norm_instance_q15 * S, |
||
4529 | uint16_t numTaps, |
||
4530 | q15_t * pCoeffs, |
||
4531 | q15_t * pState, |
||
4532 | q15_t mu, |
||
4533 | uint32_t blockSize, |
||
4534 | uint8_t postShift); |
||
4535 | |||
4536 | /** |
||
4537 | * @brief Correlation of floating-point sequences. |
||
4538 | * @param[in] *pSrcA points to the first input sequence. |
||
4539 | * @param[in] srcALen length of the first input sequence. |
||
4540 | * @param[in] *pSrcB points to the second input sequence. |
||
4541 | * @param[in] srcBLen length of the second input sequence. |
||
4542 | * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4543 | * @return none. |
||
4544 | */ |
||
4545 | |||
4546 | void arm_correlate_f32( |
||
4547 | float32_t * pSrcA, |
||
4548 | uint32_t srcALen, |
||
4549 | float32_t * pSrcB, |
||
4550 | uint32_t srcBLen, |
||
4551 | float32_t * pDst); |
||
4552 | |||
4553 | |||
4554 | /** |
||
4555 | * @brief Correlation of Q15 sequences |
||
4556 | * @param[in] *pSrcA points to the first input sequence. |
||
4557 | * @param[in] srcALen length of the first input sequence. |
||
4558 | * @param[in] *pSrcB points to the second input sequence. |
||
4559 | * @param[in] srcBLen length of the second input sequence. |
||
4560 | * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4561 | * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
4562 | * @return none. |
||
4563 | */ |
||
4564 | void arm_correlate_opt_q15( |
||
4565 | q15_t * pSrcA, |
||
4566 | uint32_t srcALen, |
||
4567 | q15_t * pSrcB, |
||
4568 | uint32_t srcBLen, |
||
4569 | q15_t * pDst, |
||
4570 | q15_t * pScratch); |
||
4571 | |||
4572 | |||
4573 | /** |
||
4574 | * @brief Correlation of Q15 sequences. |
||
4575 | * @param[in] *pSrcA points to the first input sequence. |
||
4576 | * @param[in] srcALen length of the first input sequence. |
||
4577 | * @param[in] *pSrcB points to the second input sequence. |
||
4578 | * @param[in] srcBLen length of the second input sequence. |
||
4579 | * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4580 | * @return none. |
||
4581 | */ |
||
4582 | |||
4583 | void arm_correlate_q15( |
||
4584 | q15_t * pSrcA, |
||
4585 | uint32_t srcALen, |
||
4586 | q15_t * pSrcB, |
||
4587 | uint32_t srcBLen, |
||
4588 | q15_t * pDst); |
||
4589 | |||
4590 | /** |
||
4591 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
||
4592 | * @param[in] *pSrcA points to the first input sequence. |
||
4593 | * @param[in] srcALen length of the first input sequence. |
||
4594 | * @param[in] *pSrcB points to the second input sequence. |
||
4595 | * @param[in] srcBLen length of the second input sequence. |
||
4596 | * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4597 | * @return none. |
||
4598 | */ |
||
4599 | |||
4600 | void arm_correlate_fast_q15( |
||
4601 | q15_t * pSrcA, |
||
4602 | uint32_t srcALen, |
||
4603 | q15_t * pSrcB, |
||
4604 | uint32_t srcBLen, |
||
4605 | q15_t * pDst); |
||
4606 | |||
4607 | |||
4608 | |||
4609 | /** |
||
4610 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
||
4611 | * @param[in] *pSrcA points to the first input sequence. |
||
4612 | * @param[in] srcALen length of the first input sequence. |
||
4613 | * @param[in] *pSrcB points to the second input sequence. |
||
4614 | * @param[in] srcBLen length of the second input sequence. |
||
4615 | * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4616 | * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
4617 | * @return none. |
||
4618 | */ |
||
4619 | |||
4620 | void arm_correlate_fast_opt_q15( |
||
4621 | q15_t * pSrcA, |
||
4622 | uint32_t srcALen, |
||
4623 | q15_t * pSrcB, |
||
4624 | uint32_t srcBLen, |
||
4625 | q15_t * pDst, |
||
4626 | q15_t * pScratch); |
||
4627 | |||
4628 | /** |
||
4629 | * @brief Correlation of Q31 sequences. |
||
4630 | * @param[in] *pSrcA points to the first input sequence. |
||
4631 | * @param[in] srcALen length of the first input sequence. |
||
4632 | * @param[in] *pSrcB points to the second input sequence. |
||
4633 | * @param[in] srcBLen length of the second input sequence. |
||
4634 | * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4635 | * @return none. |
||
4636 | */ |
||
4637 | |||
4638 | void arm_correlate_q31( |
||
4639 | q31_t * pSrcA, |
||
4640 | uint32_t srcALen, |
||
4641 | q31_t * pSrcB, |
||
4642 | uint32_t srcBLen, |
||
4643 | q31_t * pDst); |
||
4644 | |||
4645 | /** |
||
4646 | * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
4647 | * @param[in] *pSrcA points to the first input sequence. |
||
4648 | * @param[in] srcALen length of the first input sequence. |
||
4649 | * @param[in] *pSrcB points to the second input sequence. |
||
4650 | * @param[in] srcBLen length of the second input sequence. |
||
4651 | * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4652 | * @return none. |
||
4653 | */ |
||
4654 | |||
4655 | void arm_correlate_fast_q31( |
||
4656 | q31_t * pSrcA, |
||
4657 | uint32_t srcALen, |
||
4658 | q31_t * pSrcB, |
||
4659 | uint32_t srcBLen, |
||
4660 | q31_t * pDst); |
||
4661 | |||
4662 | |||
4663 | |||
4664 | /** |
||
4665 | * @brief Correlation of Q7 sequences. |
||
4666 | * @param[in] *pSrcA points to the first input sequence. |
||
4667 | * @param[in] srcALen length of the first input sequence. |
||
4668 | * @param[in] *pSrcB points to the second input sequence. |
||
4669 | * @param[in] srcBLen length of the second input sequence. |
||
4670 | * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4671 | * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
4672 | * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
4673 | * @return none. |
||
4674 | */ |
||
4675 | |||
4676 | void arm_correlate_opt_q7( |
||
4677 | q7_t * pSrcA, |
||
4678 | uint32_t srcALen, |
||
4679 | q7_t * pSrcB, |
||
4680 | uint32_t srcBLen, |
||
4681 | q7_t * pDst, |
||
4682 | q15_t * pScratch1, |
||
4683 | q15_t * pScratch2); |
||
4684 | |||
4685 | |||
4686 | /** |
||
4687 | * @brief Correlation of Q7 sequences. |
||
4688 | * @param[in] *pSrcA points to the first input sequence. |
||
4689 | * @param[in] srcALen length of the first input sequence. |
||
4690 | * @param[in] *pSrcB points to the second input sequence. |
||
4691 | * @param[in] srcBLen length of the second input sequence. |
||
4692 | * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4693 | * @return none. |
||
4694 | */ |
||
4695 | |||
4696 | void arm_correlate_q7( |
||
4697 | q7_t * pSrcA, |
||
4698 | uint32_t srcALen, |
||
4699 | q7_t * pSrcB, |
||
4700 | uint32_t srcBLen, |
||
4701 | q7_t * pDst); |
||
4702 | |||
4703 | |||
4704 | /** |
||
4705 | * @brief Instance structure for the floating-point sparse FIR filter. |
||
4706 | */ |
||
4707 | typedef struct |
||
4708 | { |
||
4709 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4710 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4711 | float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4712 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4713 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4714 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4715 | } arm_fir_sparse_instance_f32; |
||
4716 | |||
4717 | /** |
||
4718 | * @brief Instance structure for the Q31 sparse FIR filter. |
||
4719 | */ |
||
4720 | |||
4721 | typedef struct |
||
4722 | { |
||
4723 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4724 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4725 | q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4726 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4727 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4728 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4729 | } arm_fir_sparse_instance_q31; |
||
4730 | |||
4731 | /** |
||
4732 | * @brief Instance structure for the Q15 sparse FIR filter. |
||
4733 | */ |
||
4734 | |||
4735 | typedef struct |
||
4736 | { |
||
4737 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4738 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4739 | q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4740 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4741 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4742 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4743 | } arm_fir_sparse_instance_q15; |
||
4744 | |||
4745 | /** |
||
4746 | * @brief Instance structure for the Q7 sparse FIR filter. |
||
4747 | */ |
||
4748 | |||
4749 | typedef struct |
||
4750 | { |
||
4751 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4752 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4753 | q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4754 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4755 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4756 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4757 | } arm_fir_sparse_instance_q7; |
||
4758 | |||
4759 | /** |
||
4760 | * @brief Processing function for the floating-point sparse FIR filter. |
||
4761 | * @param[in] *S points to an instance of the floating-point sparse FIR structure. |
||
4762 | * @param[in] *pSrc points to the block of input data. |
||
4763 | * @param[out] *pDst points to the block of output data |
||
4764 | * @param[in] *pScratchIn points to a temporary buffer of size blockSize. |
||
4765 | * @param[in] blockSize number of input samples to process per call. |
||
4766 | * @return none. |
||
4767 | */ |
||
4768 | |||
4769 | void arm_fir_sparse_f32( |
||
4770 | arm_fir_sparse_instance_f32 * S, |
||
4771 | float32_t * pSrc, |
||
4772 | float32_t * pDst, |
||
4773 | float32_t * pScratchIn, |
||
4774 | uint32_t blockSize); |
||
4775 | |||
4776 | /** |
||
4777 | * @brief Initialization function for the floating-point sparse FIR filter. |
||
4778 | * @param[in,out] *S points to an instance of the floating-point sparse FIR structure. |
||
4779 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
4780 | * @param[in] *pCoeffs points to the array of filter coefficients. |
||
4781 | * @param[in] *pState points to the state buffer. |
||
4782 | * @param[in] *pTapDelay points to the array of offset times. |
||
4783 | * @param[in] maxDelay maximum offset time supported. |
||
4784 | * @param[in] blockSize number of samples that will be processed per block. |
||
4785 | * @return none |
||
4786 | */ |
||
4787 | |||
4788 | void arm_fir_sparse_init_f32( |
||
4789 | arm_fir_sparse_instance_f32 * S, |
||
4790 | uint16_t numTaps, |
||
4791 | float32_t * pCoeffs, |
||
4792 | float32_t * pState, |
||
4793 | int32_t * pTapDelay, |
||
4794 | uint16_t maxDelay, |
||
4795 | uint32_t blockSize); |
||
4796 | |||
4797 | /** |
||
4798 | * @brief Processing function for the Q31 sparse FIR filter. |
||
4799 | * @param[in] *S points to an instance of the Q31 sparse FIR structure. |
||
4800 | * @param[in] *pSrc points to the block of input data. |
||
4801 | * @param[out] *pDst points to the block of output data |
||
4802 | * @param[in] *pScratchIn points to a temporary buffer of size blockSize. |
||
4803 | * @param[in] blockSize number of input samples to process per call. |
||
4804 | * @return none. |
||
4805 | */ |
||
4806 | |||
4807 | void arm_fir_sparse_q31( |
||
4808 | arm_fir_sparse_instance_q31 * S, |
||
4809 | q31_t * pSrc, |
||
4810 | q31_t * pDst, |
||
4811 | q31_t * pScratchIn, |
||
4812 | uint32_t blockSize); |
||
4813 | |||
4814 | /** |
||
4815 | * @brief Initialization function for the Q31 sparse FIR filter. |
||
4816 | * @param[in,out] *S points to an instance of the Q31 sparse FIR structure. |
||
4817 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
4818 | * @param[in] *pCoeffs points to the array of filter coefficients. |
||
4819 | * @param[in] *pState points to the state buffer. |
||
4820 | * @param[in] *pTapDelay points to the array of offset times. |
||
4821 | * @param[in] maxDelay maximum offset time supported. |
||
4822 | * @param[in] blockSize number of samples that will be processed per block. |
||
4823 | * @return none |
||
4824 | */ |
||
4825 | |||
4826 | void arm_fir_sparse_init_q31( |
||
4827 | arm_fir_sparse_instance_q31 * S, |
||
4828 | uint16_t numTaps, |
||
4829 | q31_t * pCoeffs, |
||
4830 | q31_t * pState, |
||
4831 | int32_t * pTapDelay, |
||
4832 | uint16_t maxDelay, |
||
4833 | uint32_t blockSize); |
||
4834 | |||
4835 | /** |
||
4836 | * @brief Processing function for the Q15 sparse FIR filter. |
||
4837 | * @param[in] *S points to an instance of the Q15 sparse FIR structure. |
||
4838 | * @param[in] *pSrc points to the block of input data. |
||
4839 | * @param[out] *pDst points to the block of output data |
||
4840 | * @param[in] *pScratchIn points to a temporary buffer of size blockSize. |
||
4841 | * @param[in] *pScratchOut points to a temporary buffer of size blockSize. |
||
4842 | * @param[in] blockSize number of input samples to process per call. |
||
4843 | * @return none. |
||
4844 | */ |
||
4845 | |||
4846 | void arm_fir_sparse_q15( |
||
4847 | arm_fir_sparse_instance_q15 * S, |
||
4848 | q15_t * pSrc, |
||
4849 | q15_t * pDst, |
||
4850 | q15_t * pScratchIn, |
||
4851 | q31_t * pScratchOut, |
||
4852 | uint32_t blockSize); |
||
4853 | |||
4854 | |||
4855 | /** |
||
4856 | * @brief Initialization function for the Q15 sparse FIR filter. |
||
4857 | * @param[in,out] *S points to an instance of the Q15 sparse FIR structure. |
||
4858 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
4859 | * @param[in] *pCoeffs points to the array of filter coefficients. |
||
4860 | * @param[in] *pState points to the state buffer. |
||
4861 | * @param[in] *pTapDelay points to the array of offset times. |
||
4862 | * @param[in] maxDelay maximum offset time supported. |
||
4863 | * @param[in] blockSize number of samples that will be processed per block. |
||
4864 | * @return none |
||
4865 | */ |
||
4866 | |||
4867 | void arm_fir_sparse_init_q15( |
||
4868 | arm_fir_sparse_instance_q15 * S, |
||
4869 | uint16_t numTaps, |
||
4870 | q15_t * pCoeffs, |
||
4871 | q15_t * pState, |
||
4872 | int32_t * pTapDelay, |
||
4873 | uint16_t maxDelay, |
||
4874 | uint32_t blockSize); |
||
4875 | |||
4876 | /** |
||
4877 | * @brief Processing function for the Q7 sparse FIR filter. |
||
4878 | * @param[in] *S points to an instance of the Q7 sparse FIR structure. |
||
4879 | * @param[in] *pSrc points to the block of input data. |
||
4880 | * @param[out] *pDst points to the block of output data |
||
4881 | * @param[in] *pScratchIn points to a temporary buffer of size blockSize. |
||
4882 | * @param[in] *pScratchOut points to a temporary buffer of size blockSize. |
||
4883 | * @param[in] blockSize number of input samples to process per call. |
||
4884 | * @return none. |
||
4885 | */ |
||
4886 | |||
4887 | void arm_fir_sparse_q7( |
||
4888 | arm_fir_sparse_instance_q7 * S, |
||
4889 | q7_t * pSrc, |
||
4890 | q7_t * pDst, |
||
4891 | q7_t * pScratchIn, |
||
4892 | q31_t * pScratchOut, |
||
4893 | uint32_t blockSize); |
||
4894 | |||
4895 | /** |
||
4896 | * @brief Initialization function for the Q7 sparse FIR filter. |
||
4897 | * @param[in,out] *S points to an instance of the Q7 sparse FIR structure. |
||
4898 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
4899 | * @param[in] *pCoeffs points to the array of filter coefficients. |
||
4900 | * @param[in] *pState points to the state buffer. |
||
4901 | * @param[in] *pTapDelay points to the array of offset times. |
||
4902 | * @param[in] maxDelay maximum offset time supported. |
||
4903 | * @param[in] blockSize number of samples that will be processed per block. |
||
4904 | * @return none |
||
4905 | */ |
||
4906 | |||
4907 | void arm_fir_sparse_init_q7( |
||
4908 | arm_fir_sparse_instance_q7 * S, |
||
4909 | uint16_t numTaps, |
||
4910 | q7_t * pCoeffs, |
||
4911 | q7_t * pState, |
||
4912 | int32_t * pTapDelay, |
||
4913 | uint16_t maxDelay, |
||
4914 | uint32_t blockSize); |
||
4915 | |||
4916 | |||
4917 | /* |
||
4918 | * @brief Floating-point sin_cos function. |
||
4919 | * @param[in] theta input value in degrees |
||
4920 | * @param[out] *pSinVal points to the processed sine output. |
||
4921 | * @param[out] *pCosVal points to the processed cos output. |
||
4922 | * @return none. |
||
4923 | */ |
||
4924 | |||
4925 | void arm_sin_cos_f32( |
||
4926 | float32_t theta, |
||
4927 | float32_t * pSinVal, |
||
4928 | float32_t * pCcosVal); |
||
4929 | |||
4930 | /* |
||
4931 | * @brief Q31 sin_cos function. |
||
4932 | * @param[in] theta scaled input value in degrees |
||
4933 | * @param[out] *pSinVal points to the processed sine output. |
||
4934 | * @param[out] *pCosVal points to the processed cosine output. |
||
4935 | * @return none. |
||
4936 | */ |
||
4937 | |||
4938 | void arm_sin_cos_q31( |
||
4939 | q31_t theta, |
||
4940 | q31_t * pSinVal, |
||
4941 | q31_t * pCosVal); |
||
4942 | |||
4943 | |||
4944 | /** |
||
4945 | * @brief Floating-point complex conjugate. |
||
4946 | * @param[in] *pSrc points to the input vector |
||
4947 | * @param[out] *pDst points to the output vector |
||
4948 | * @param[in] numSamples number of complex samples in each vector |
||
4949 | * @return none. |
||
4950 | */ |
||
4951 | |||
4952 | void arm_cmplx_conj_f32( |
||
4953 | float32_t * pSrc, |
||
4954 | float32_t * pDst, |
||
4955 | uint32_t numSamples); |
||
4956 | |||
4957 | /** |
||
4958 | * @brief Q31 complex conjugate. |
||
4959 | * @param[in] *pSrc points to the input vector |
||
4960 | * @param[out] *pDst points to the output vector |
||
4961 | * @param[in] numSamples number of complex samples in each vector |
||
4962 | * @return none. |
||
4963 | */ |
||
4964 | |||
4965 | void arm_cmplx_conj_q31( |
||
4966 | q31_t * pSrc, |
||
4967 | q31_t * pDst, |
||
4968 | uint32_t numSamples); |
||
4969 | |||
4970 | /** |
||
4971 | * @brief Q15 complex conjugate. |
||
4972 | * @param[in] *pSrc points to the input vector |
||
4973 | * @param[out] *pDst points to the output vector |
||
4974 | * @param[in] numSamples number of complex samples in each vector |
||
4975 | * @return none. |
||
4976 | */ |
||
4977 | |||
4978 | void arm_cmplx_conj_q15( |
||
4979 | q15_t * pSrc, |
||
4980 | q15_t * pDst, |
||
4981 | uint32_t numSamples); |
||
4982 | |||
4983 | |||
4984 | |||
4985 | /** |
||
4986 | * @brief Floating-point complex magnitude squared |
||
4987 | * @param[in] *pSrc points to the complex input vector |
||
4988 | * @param[out] *pDst points to the real output vector |
||
4989 | * @param[in] numSamples number of complex samples in the input vector |
||
4990 | * @return none. |
||
4991 | */ |
||
4992 | |||
4993 | void arm_cmplx_mag_squared_f32( |
||
4994 | float32_t * pSrc, |
||
4995 | float32_t * pDst, |
||
4996 | uint32_t numSamples); |
||
4997 | |||
4998 | /** |
||
4999 | * @brief Q31 complex magnitude squared |
||
5000 | * @param[in] *pSrc points to the complex input vector |
||
5001 | * @param[out] *pDst points to the real output vector |
||
5002 | * @param[in] numSamples number of complex samples in the input vector |
||
5003 | * @return none. |
||
5004 | */ |
||
5005 | |||
5006 | void arm_cmplx_mag_squared_q31( |
||
5007 | q31_t * pSrc, |
||
5008 | q31_t * pDst, |
||
5009 | uint32_t numSamples); |
||
5010 | |||
5011 | /** |
||
5012 | * @brief Q15 complex magnitude squared |
||
5013 | * @param[in] *pSrc points to the complex input vector |
||
5014 | * @param[out] *pDst points to the real output vector |
||
5015 | * @param[in] numSamples number of complex samples in the input vector |
||
5016 | * @return none. |
||
5017 | */ |
||
5018 | |||
5019 | void arm_cmplx_mag_squared_q15( |
||
5020 | q15_t * pSrc, |
||
5021 | q15_t * pDst, |
||
5022 | uint32_t numSamples); |
||
5023 | |||
5024 | |||
5025 | /** |
||
5026 | * @ingroup groupController |
||
5027 | */ |
||
5028 | |||
5029 | /** |
||
5030 | * @defgroup PID PID Motor Control |
||
5031 | * |
||
5032 | * A Proportional Integral Derivative (PID) controller is a generic feedback control |
||
5033 | * loop mechanism widely used in industrial control systems. |
||
5034 | * A PID controller is the most commonly used type of feedback controller. |
||
5035 | * |
||
5036 | * This set of functions implements (PID) controllers |
||
5037 | * for Q15, Q31, and floating-point data types. The functions operate on a single sample |
||
5038 | * of data and each call to the function returns a single processed value. |
||
5039 | * <code>S</code> points to an instance of the PID control data structure. <code>in</code> |
||
5040 | * is the input sample value. The functions return the output value. |
||
5041 | * |
||
5042 | * \par Algorithm: |
||
5043 | * <pre> |
||
5044 | * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] |
||
5045 | * A0 = Kp + Ki + Kd |
||
5046 | * A1 = (-Kp ) - (2 * Kd ) |
||
5047 | * A2 = Kd </pre> |
||
5048 | * |
||
5049 | * \par |
||
5050 | * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant |
||
5051 | * |
||
5052 | * \par |
||
5053 | * \image html PID.gif "Proportional Integral Derivative Controller" |
||
5054 | * |
||
5055 | * \par |
||
5056 | * The PID controller calculates an "error" value as the difference between |
||
5057 | * the measured output and the reference input. |
||
5058 | * The controller attempts to minimize the error by adjusting the process control inputs. |
||
5059 | * The proportional value determines the reaction to the current error, |
||
5060 | * the integral value determines the reaction based on the sum of recent errors, |
||
5061 | * and the derivative value determines the reaction based on the rate at which the error has been changing. |
||
5062 | * |
||
5063 | * \par Instance Structure |
||
5064 | * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. |
||
5065 | * A separate instance structure must be defined for each PID Controller. |
||
5066 | * There are separate instance structure declarations for each of the 3 supported data types. |
||
5067 | * |
||
5068 | * \par Reset Functions |
||
5069 | * There is also an associated reset function for each data type which clears the state array. |
||
5070 | * |
||
5071 | * \par Initialization Functions |
||
5072 | * There is also an associated initialization function for each data type. |
||
5073 | * The initialization function performs the following operations: |
||
5074 | * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. |
||
5075 | * - Zeros out the values in the state buffer. |
||
5076 | * |
||
5077 | * \par |
||
5078 | * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. |
||
5079 | * |
||
5080 | * \par Fixed-Point Behavior |
||
5081 | * Care must be taken when using the fixed-point versions of the PID Controller functions. |
||
5082 | * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. |
||
5083 | * Refer to the function specific documentation below for usage guidelines. |
||
5084 | */ |
||
5085 | |||
5086 | /** |
||
5087 | * @addtogroup PID |
||
5088 | * @{ |
||
5089 | */ |
||
5090 | |||
5091 | /** |
||
5092 | * @brief Process function for the floating-point PID Control. |
||
5093 | * @param[in,out] *S is an instance of the floating-point PID Control structure |
||
5094 | * @param[in] in input sample to process |
||
5095 | * @return out processed output sample. |
||
5096 | */ |
||
5097 | |||
5098 | |||
5099 | static __INLINE float32_t arm_pid_f32( |
||
5100 | arm_pid_instance_f32 * S, |
||
5101 | float32_t in) |
||
5102 | { |
||
5103 | float32_t out; |
||
5104 | |||
5105 | /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ |
||
5106 | out = (S->A0 * in) + |
||
5107 | (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); |
||
5108 | |||
5109 | /* Update state */ |
||
5110 | S->state[1] = S->state[0]; |
||
5111 | S->state[0] = in; |
||
5112 | S->state[2] = out; |
||
5113 | |||
5114 | /* return to application */ |
||
5115 | return (out); |
||
5116 | |||
5117 | } |
||
5118 | |||
5119 | /** |
||
5120 | * @brief Process function for the Q31 PID Control. |
||
5121 | * @param[in,out] *S points to an instance of the Q31 PID Control structure |
||
5122 | * @param[in] in input sample to process |
||
5123 | * @return out processed output sample. |
||
5124 | * |
||
5125 | * <b>Scaling and Overflow Behavior:</b> |
||
5126 | * \par |
||
5127 | * The function is implemented using an internal 64-bit accumulator. |
||
5128 | * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. |
||
5129 | * Thus, if the accumulator result overflows it wraps around rather than clip. |
||
5130 | * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. |
||
5131 | * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. |
||
5132 | */ |
||
5133 | |||
5134 | static __INLINE q31_t arm_pid_q31( |
||
5135 | arm_pid_instance_q31 * S, |
||
5136 | q31_t in) |
||
5137 | { |
||
5138 | q63_t acc; |
||
5139 | q31_t out; |
||
5140 | |||
5141 | /* acc = A0 * x[n] */ |
||
5142 | acc = (q63_t) S->A0 * in; |
||
5143 | |||
5144 | /* acc += A1 * x[n-1] */ |
||
5145 | acc += (q63_t) S->A1 * S->state[0]; |
||
5146 | |||
5147 | /* acc += A2 * x[n-2] */ |
||
5148 | acc += (q63_t) S->A2 * S->state[1]; |
||
5149 | |||
5150 | /* convert output to 1.31 format to add y[n-1] */ |
||
5151 | out = (q31_t) (acc >> 31u); |
||
5152 | |||
5153 | /* out += y[n-1] */ |
||
5154 | out += S->state[2]; |
||
5155 | |||
5156 | /* Update state */ |
||
5157 | S->state[1] = S->state[0]; |
||
5158 | S->state[0] = in; |
||
5159 | S->state[2] = out; |
||
5160 | |||
5161 | /* return to application */ |
||
5162 | return (out); |
||
5163 | |||
5164 | } |
||
5165 | |||
5166 | /** |
||
5167 | * @brief Process function for the Q15 PID Control. |
||
5168 | * @param[in,out] *S points to an instance of the Q15 PID Control structure |
||
5169 | * @param[in] in input sample to process |
||
5170 | * @return out processed output sample. |
||
5171 | * |
||
5172 | * <b>Scaling and Overflow Behavior:</b> |
||
5173 | * \par |
||
5174 | * The function is implemented using a 64-bit internal accumulator. |
||
5175 | * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. |
||
5176 | * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. |
||
5177 | * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. |
||
5178 | * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. |
||
5179 | * Lastly, the accumulator is saturated to yield a result in 1.15 format. |
||
5180 | */ |
||
5181 | |||
5182 | static __INLINE q15_t arm_pid_q15( |
||
5183 | arm_pid_instance_q15 * S, |
||
5184 | q15_t in) |
||
5185 | { |
||
5186 | q63_t acc; |
||
5187 | q15_t out; |
||
5188 | |||
5189 | #ifndef ARM_MATH_CM0_FAMILY |
||
5190 | __SIMD32_TYPE *vstate; |
||
5191 | |||
5192 | /* Implementation of PID controller */ |
||
5193 | |||
5194 | /* acc = A0 * x[n] */ |
||
5195 | acc = (q31_t) __SMUAD(S->A0, in); |
||
5196 | |||
5197 | /* acc += A1 * x[n-1] + A2 * x[n-2] */ |
||
5198 | vstate = __SIMD32_CONST(S->state); |
||
5199 | acc = __SMLALD(S->A1, (q31_t) *vstate, acc); |
||
5200 | |||
5201 | #else |
||
5202 | /* acc = A0 * x[n] */ |
||
5203 | acc = ((q31_t) S->A0) * in; |
||
5204 | |||
5205 | /* acc += A1 * x[n-1] + A2 * x[n-2] */ |
||
5206 | acc += (q31_t) S->A1 * S->state[0]; |
||
5207 | acc += (q31_t) S->A2 * S->state[1]; |
||
5208 | |||
5209 | #endif |
||
5210 | |||
5211 | /* acc += y[n-1] */ |
||
5212 | acc += (q31_t) S->state[2] << 15; |
||
5213 | |||
5214 | /* saturate the output */ |
||
5215 | out = (q15_t) (__SSAT((acc >> 15), 16)); |
||
5216 | |||
5217 | /* Update state */ |
||
5218 | S->state[1] = S->state[0]; |
||
5219 | S->state[0] = in; |
||
5220 | S->state[2] = out; |
||
5221 | |||
5222 | /* return to application */ |
||
5223 | return (out); |
||
5224 | |||
5225 | } |
||
5226 | |||
5227 | /** |
||
5228 | * @} end of PID group |
||
5229 | */ |
||
5230 | |||
5231 | |||
5232 | /** |
||
5233 | * @brief Floating-point matrix inverse. |
||
5234 | * @param[in] *src points to the instance of the input floating-point matrix structure. |
||
5235 | * @param[out] *dst points to the instance of the output floating-point matrix structure. |
||
5236 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
||
5237 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
||
5238 | */ |
||
5239 | |||
5240 | arm_status arm_mat_inverse_f32( |
||
5241 | const arm_matrix_instance_f32 * src, |
||
5242 | arm_matrix_instance_f32 * dst); |
||
5243 | |||
5244 | |||
5245 | /** |
||
5246 | * @brief Floating-point matrix inverse. |
||
5247 | * @param[in] *src points to the instance of the input floating-point matrix structure. |
||
5248 | * @param[out] *dst points to the instance of the output floating-point matrix structure. |
||
5249 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
||
5250 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
||
5251 | */ |
||
5252 | |||
5253 | arm_status arm_mat_inverse_f64( |
||
5254 | const arm_matrix_instance_f64 * src, |
||
5255 | arm_matrix_instance_f64 * dst); |
||
5256 | |||
5257 | |||
5258 | |||
5259 | /** |
||
5260 | * @ingroup groupController |
||
5261 | */ |
||
5262 | |||
5263 | |||
5264 | /** |
||
5265 | * @defgroup clarke Vector Clarke Transform |
||
5266 | * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. |
||
5267 | * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents |
||
5268 | * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. |
||
5269 | * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below |
||
5270 | * \image html clarke.gif Stator current space vector and its components in (a,b). |
||
5271 | * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> |
||
5272 | * can be calculated using only <code>Ia</code> and <code>Ib</code>. |
||
5273 | * |
||
5274 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
5275 | * The library provides separate functions for Q31 and floating-point data types. |
||
5276 | * \par Algorithm |
||
5277 | * \image html clarkeFormula.gif |
||
5278 | * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and |
||
5279 | * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. |
||
5280 | * \par Fixed-Point Behavior |
||
5281 | * Care must be taken when using the Q31 version of the Clarke transform. |
||
5282 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
5283 | * Refer to the function specific documentation below for usage guidelines. |
||
5284 | */ |
||
5285 | |||
5286 | /** |
||
5287 | * @addtogroup clarke |
||
5288 | * @{ |
||
5289 | */ |
||
5290 | |||
5291 | /** |
||
5292 | * |
||
5293 | * @brief Floating-point Clarke transform |
||
5294 | * @param[in] Ia input three-phase coordinate <code>a</code> |
||
5295 | * @param[in] Ib input three-phase coordinate <code>b</code> |
||
5296 | * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha |
||
5297 | * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta |
||
5298 | * @return none. |
||
5299 | */ |
||
5300 | |||
5301 | static __INLINE void arm_clarke_f32( |
||
5302 | float32_t Ia, |
||
5303 | float32_t Ib, |
||
5304 | float32_t * pIalpha, |
||
5305 | float32_t * pIbeta) |
||
5306 | { |
||
5307 | /* Calculate pIalpha using the equation, pIalpha = Ia */ |
||
5308 | *pIalpha = Ia; |
||
5309 | |||
5310 | /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ |
||
5311 | *pIbeta = |
||
5312 | ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); |
||
5313 | |||
5314 | } |
||
5315 | |||
5316 | /** |
||
5317 | * @brief Clarke transform for Q31 version |
||
5318 | * @param[in] Ia input three-phase coordinate <code>a</code> |
||
5319 | * @param[in] Ib input three-phase coordinate <code>b</code> |
||
5320 | * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha |
||
5321 | * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta |
||
5322 | * @return none. |
||
5323 | * |
||
5324 | * <b>Scaling and Overflow Behavior:</b> |
||
5325 | * \par |
||
5326 | * The function is implemented using an internal 32-bit accumulator. |
||
5327 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
5328 | * There is saturation on the addition, hence there is no risk of overflow. |
||
5329 | */ |
||
5330 | |||
5331 | static __INLINE void arm_clarke_q31( |
||
5332 | q31_t Ia, |
||
5333 | q31_t Ib, |
||
5334 | q31_t * pIalpha, |
||
5335 | q31_t * pIbeta) |
||
5336 | { |
||
5337 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5338 | |||
5339 | /* Calculating pIalpha from Ia by equation pIalpha = Ia */ |
||
5340 | *pIalpha = Ia; |
||
5341 | |||
5342 | /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ |
||
5343 | product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); |
||
5344 | |||
5345 | /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ |
||
5346 | product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); |
||
5347 | |||
5348 | /* pIbeta is calculated by adding the intermediate products */ |
||
5349 | *pIbeta = __QADD(product1, product2); |
||
5350 | } |
||
5351 | |||
5352 | /** |
||
5353 | * @} end of clarke group |
||
5354 | */ |
||
5355 | |||
5356 | /** |
||
5357 | * @brief Converts the elements of the Q7 vector to Q31 vector. |
||
5358 | * @param[in] *pSrc input pointer |
||
5359 | * @param[out] *pDst output pointer |
||
5360 | * @param[in] blockSize number of samples to process |
||
5361 | * @return none. |
||
5362 | */ |
||
5363 | void arm_q7_to_q31( |
||
5364 | q7_t * pSrc, |
||
5365 | q31_t * pDst, |
||
5366 | uint32_t blockSize); |
||
5367 | |||
5368 | |||
5369 | |||
5370 | |||
5371 | /** |
||
5372 | * @ingroup groupController |
||
5373 | */ |
||
5374 | |||
5375 | /** |
||
5376 | * @defgroup inv_clarke Vector Inverse Clarke Transform |
||
5377 | * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. |
||
5378 | * |
||
5379 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
5380 | * The library provides separate functions for Q31 and floating-point data types. |
||
5381 | * \par Algorithm |
||
5382 | * \image html clarkeInvFormula.gif |
||
5383 | * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and |
||
5384 | * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. |
||
5385 | * \par Fixed-Point Behavior |
||
5386 | * Care must be taken when using the Q31 version of the Clarke transform. |
||
5387 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
5388 | * Refer to the function specific documentation below for usage guidelines. |
||
5389 | */ |
||
5390 | |||
5391 | /** |
||
5392 | * @addtogroup inv_clarke |
||
5393 | * @{ |
||
5394 | */ |
||
5395 | |||
5396 | /** |
||
5397 | * @brief Floating-point Inverse Clarke transform |
||
5398 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha |
||
5399 | * @param[in] Ibeta input two-phase orthogonal vector axis beta |
||
5400 | * @param[out] *pIa points to output three-phase coordinate <code>a</code> |
||
5401 | * @param[out] *pIb points to output three-phase coordinate <code>b</code> |
||
5402 | * @return none. |
||
5403 | */ |
||
5404 | |||
5405 | |||
5406 | static __INLINE void arm_inv_clarke_f32( |
||
5407 | float32_t Ialpha, |
||
5408 | float32_t Ibeta, |
||
5409 | float32_t * pIa, |
||
5410 | float32_t * pIb) |
||
5411 | { |
||
5412 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
||
5413 | *pIa = Ialpha; |
||
5414 | |||
5415 | /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ |
||
5416 | *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta; |
||
5417 | |||
5418 | } |
||
5419 | |||
5420 | /** |
||
5421 | * @brief Inverse Clarke transform for Q31 version |
||
5422 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha |
||
5423 | * @param[in] Ibeta input two-phase orthogonal vector axis beta |
||
5424 | * @param[out] *pIa points to output three-phase coordinate <code>a</code> |
||
5425 | * @param[out] *pIb points to output three-phase coordinate <code>b</code> |
||
5426 | * @return none. |
||
5427 | * |
||
5428 | * <b>Scaling and Overflow Behavior:</b> |
||
5429 | * \par |
||
5430 | * The function is implemented using an internal 32-bit accumulator. |
||
5431 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
5432 | * There is saturation on the subtraction, hence there is no risk of overflow. |
||
5433 | */ |
||
5434 | |||
5435 | static __INLINE void arm_inv_clarke_q31( |
||
5436 | q31_t Ialpha, |
||
5437 | q31_t Ibeta, |
||
5438 | q31_t * pIa, |
||
5439 | q31_t * pIb) |
||
5440 | { |
||
5441 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5442 | |||
5443 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
||
5444 | *pIa = Ialpha; |
||
5445 | |||
5446 | /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ |
||
5447 | product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); |
||
5448 | |||
5449 | /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ |
||
5450 | product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); |
||
5451 | |||
5452 | /* pIb is calculated by subtracting the products */ |
||
5453 | *pIb = __QSUB(product2, product1); |
||
5454 | |||
5455 | } |
||
5456 | |||
5457 | /** |
||
5458 | * @} end of inv_clarke group |
||
5459 | */ |
||
5460 | |||
5461 | /** |
||
5462 | * @brief Converts the elements of the Q7 vector to Q15 vector. |
||
5463 | * @param[in] *pSrc input pointer |
||
5464 | * @param[out] *pDst output pointer |
||
5465 | * @param[in] blockSize number of samples to process |
||
5466 | * @return none. |
||
5467 | */ |
||
5468 | void arm_q7_to_q15( |
||
5469 | q7_t * pSrc, |
||
5470 | q15_t * pDst, |
||
5471 | uint32_t blockSize); |
||
5472 | |||
5473 | |||
5474 | |||
5475 | /** |
||
5476 | * @ingroup groupController |
||
5477 | */ |
||
5478 | |||
5479 | /** |
||
5480 | * @defgroup park Vector Park Transform |
||
5481 | * |
||
5482 | * Forward Park transform converts the input two-coordinate vector to flux and torque components. |
||
5483 | * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents |
||
5484 | * from the stationary to the moving reference frame and control the spatial relationship between |
||
5485 | * the stator vector current and rotor flux vector. |
||
5486 | * If we consider the d axis aligned with the rotor flux, the diagram below shows the |
||
5487 | * current vector and the relationship from the two reference frames: |
||
5488 | * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" |
||
5489 | * |
||
5490 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
5491 | * The library provides separate functions for Q31 and floating-point data types. |
||
5492 | * \par Algorithm |
||
5493 | * \image html parkFormula.gif |
||
5494 | * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, |
||
5495 | * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
||
5496 | * cosine and sine values of theta (rotor flux position). |
||
5497 | * \par Fixed-Point Behavior |
||
5498 | * Care must be taken when using the Q31 version of the Park transform. |
||
5499 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
5500 | * Refer to the function specific documentation below for usage guidelines. |
||
5501 | */ |
||
5502 | |||
5503 | /** |
||
5504 | * @addtogroup park |
||
5505 | * @{ |
||
5506 | */ |
||
5507 | |||
5508 | /** |
||
5509 | * @brief Floating-point Park transform |
||
5510 | * @param[in] Ialpha input two-phase vector coordinate alpha |
||
5511 | * @param[in] Ibeta input two-phase vector coordinate beta |
||
5512 | * @param[out] *pId points to output rotor reference frame d |
||
5513 | * @param[out] *pIq points to output rotor reference frame q |
||
5514 | * @param[in] sinVal sine value of rotation angle theta |
||
5515 | * @param[in] cosVal cosine value of rotation angle theta |
||
5516 | * @return none. |
||
5517 | * |
||
5518 | * The function implements the forward Park transform. |
||
5519 | * |
||
5520 | */ |
||
5521 | |||
5522 | static __INLINE void arm_park_f32( |
||
5523 | float32_t Ialpha, |
||
5524 | float32_t Ibeta, |
||
5525 | float32_t * pId, |
||
5526 | float32_t * pIq, |
||
5527 | float32_t sinVal, |
||
5528 | float32_t cosVal) |
||
5529 | { |
||
5530 | /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ |
||
5531 | *pId = Ialpha * cosVal + Ibeta * sinVal; |
||
5532 | |||
5533 | /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ |
||
5534 | *pIq = -Ialpha * sinVal + Ibeta * cosVal; |
||
5535 | |||
5536 | } |
||
5537 | |||
5538 | /** |
||
5539 | * @brief Park transform for Q31 version |
||
5540 | * @param[in] Ialpha input two-phase vector coordinate alpha |
||
5541 | * @param[in] Ibeta input two-phase vector coordinate beta |
||
5542 | * @param[out] *pId points to output rotor reference frame d |
||
5543 | * @param[out] *pIq points to output rotor reference frame q |
||
5544 | * @param[in] sinVal sine value of rotation angle theta |
||
5545 | * @param[in] cosVal cosine value of rotation angle theta |
||
5546 | * @return none. |
||
5547 | * |
||
5548 | * <b>Scaling and Overflow Behavior:</b> |
||
5549 | * \par |
||
5550 | * The function is implemented using an internal 32-bit accumulator. |
||
5551 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
5552 | * There is saturation on the addition and subtraction, hence there is no risk of overflow. |
||
5553 | */ |
||
5554 | |||
5555 | |||
5556 | static __INLINE void arm_park_q31( |
||
5557 | q31_t Ialpha, |
||
5558 | q31_t Ibeta, |
||
5559 | q31_t * pId, |
||
5560 | q31_t * pIq, |
||
5561 | q31_t sinVal, |
||
5562 | q31_t cosVal) |
||
5563 | { |
||
5564 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5565 | q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
||
5566 | |||
5567 | /* Intermediate product is calculated by (Ialpha * cosVal) */ |
||
5568 | product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); |
||
5569 | |||
5570 | /* Intermediate product is calculated by (Ibeta * sinVal) */ |
||
5571 | product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); |
||
5572 | |||
5573 | |||
5574 | /* Intermediate product is calculated by (Ialpha * sinVal) */ |
||
5575 | product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); |
||
5576 | |||
5577 | /* Intermediate product is calculated by (Ibeta * cosVal) */ |
||
5578 | product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); |
||
5579 | |||
5580 | /* Calculate pId by adding the two intermediate products 1 and 2 */ |
||
5581 | *pId = __QADD(product1, product2); |
||
5582 | |||
5583 | /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ |
||
5584 | *pIq = __QSUB(product4, product3); |
||
5585 | } |
||
5586 | |||
5587 | /** |
||
5588 | * @} end of park group |
||
5589 | */ |
||
5590 | |||
5591 | /** |
||
5592 | * @brief Converts the elements of the Q7 vector to floating-point vector. |
||
5593 | * @param[in] *pSrc is input pointer |
||
5594 | * @param[out] *pDst is output pointer |
||
5595 | * @param[in] blockSize is the number of samples to process |
||
5596 | * @return none. |
||
5597 | */ |
||
5598 | void arm_q7_to_float( |
||
5599 | q7_t * pSrc, |
||
5600 | float32_t * pDst, |
||
5601 | uint32_t blockSize); |
||
5602 | |||
5603 | |||
5604 | /** |
||
5605 | * @ingroup groupController |
||
5606 | */ |
||
5607 | |||
5608 | /** |
||
5609 | * @defgroup inv_park Vector Inverse Park transform |
||
5610 | * Inverse Park transform converts the input flux and torque components to two-coordinate vector. |
||
5611 | * |
||
5612 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
5613 | * The library provides separate functions for Q31 and floating-point data types. |
||
5614 | * \par Algorithm |
||
5615 | * \image html parkInvFormula.gif |
||
5616 | * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, |
||
5617 | * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
||
5618 | * cosine and sine values of theta (rotor flux position). |
||
5619 | * \par Fixed-Point Behavior |
||
5620 | * Care must be taken when using the Q31 version of the Park transform. |
||
5621 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
5622 | * Refer to the function specific documentation below for usage guidelines. |
||
5623 | */ |
||
5624 | |||
5625 | /** |
||
5626 | * @addtogroup inv_park |
||
5627 | * @{ |
||
5628 | */ |
||
5629 | |||
5630 | /** |
||
5631 | * @brief Floating-point Inverse Park transform |
||
5632 | * @param[in] Id input coordinate of rotor reference frame d |
||
5633 | * @param[in] Iq input coordinate of rotor reference frame q |
||
5634 | * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha |
||
5635 | * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta |
||
5636 | * @param[in] sinVal sine value of rotation angle theta |
||
5637 | * @param[in] cosVal cosine value of rotation angle theta |
||
5638 | * @return none. |
||
5639 | */ |
||
5640 | |||
5641 | static __INLINE void arm_inv_park_f32( |
||
5642 | float32_t Id, |
||
5643 | float32_t Iq, |
||
5644 | float32_t * pIalpha, |
||
5645 | float32_t * pIbeta, |
||
5646 | float32_t sinVal, |
||
5647 | float32_t cosVal) |
||
5648 | { |
||
5649 | /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ |
||
5650 | *pIalpha = Id * cosVal - Iq * sinVal; |
||
5651 | |||
5652 | /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ |
||
5653 | *pIbeta = Id * sinVal + Iq * cosVal; |
||
5654 | |||
5655 | } |
||
5656 | |||
5657 | |||
5658 | /** |
||
5659 | * @brief Inverse Park transform for Q31 version |
||
5660 | * @param[in] Id input coordinate of rotor reference frame d |
||
5661 | * @param[in] Iq input coordinate of rotor reference frame q |
||
5662 | * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha |
||
5663 | * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta |
||
5664 | * @param[in] sinVal sine value of rotation angle theta |
||
5665 | * @param[in] cosVal cosine value of rotation angle theta |
||
5666 | * @return none. |
||
5667 | * |
||
5668 | * <b>Scaling and Overflow Behavior:</b> |
||
5669 | * \par |
||
5670 | * The function is implemented using an internal 32-bit accumulator. |
||
5671 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
5672 | * There is saturation on the addition, hence there is no risk of overflow. |
||
5673 | */ |
||
5674 | |||
5675 | |||
5676 | static __INLINE void arm_inv_park_q31( |
||
5677 | q31_t Id, |
||
5678 | q31_t Iq, |
||
5679 | q31_t * pIalpha, |
||
5680 | q31_t * pIbeta, |
||
5681 | q31_t sinVal, |
||
5682 | q31_t cosVal) |
||
5683 | { |
||
5684 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5685 | q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
||
5686 | |||
5687 | /* Intermediate product is calculated by (Id * cosVal) */ |
||
5688 | product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); |
||
5689 | |||
5690 | /* Intermediate product is calculated by (Iq * sinVal) */ |
||
5691 | product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); |
||
5692 | |||
5693 | |||
5694 | /* Intermediate product is calculated by (Id * sinVal) */ |
||
5695 | product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); |
||
5696 | |||
5697 | /* Intermediate product is calculated by (Iq * cosVal) */ |
||
5698 | product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); |
||
5699 | |||
5700 | /* Calculate pIalpha by using the two intermediate products 1 and 2 */ |
||
5701 | *pIalpha = __QSUB(product1, product2); |
||
5702 | |||
5703 | /* Calculate pIbeta by using the two intermediate products 3 and 4 */ |
||
5704 | *pIbeta = __QADD(product4, product3); |
||
5705 | |||
5706 | } |
||
5707 | |||
5708 | /** |
||
5709 | * @} end of Inverse park group |
||
5710 | */ |
||
5711 | |||
5712 | |||
5713 | /** |
||
5714 | * @brief Converts the elements of the Q31 vector to floating-point vector. |
||
5715 | * @param[in] *pSrc is input pointer |
||
5716 | * @param[out] *pDst is output pointer |
||
5717 | * @param[in] blockSize is the number of samples to process |
||
5718 | * @return none. |
||
5719 | */ |
||
5720 | void arm_q31_to_float( |
||
5721 | q31_t * pSrc, |
||
5722 | float32_t * pDst, |
||
5723 | uint32_t blockSize); |
||
5724 | |||
5725 | /** |
||
5726 | * @ingroup groupInterpolation |
||
5727 | */ |
||
5728 | |||
5729 | /** |
||
5730 | * @defgroup LinearInterpolate Linear Interpolation |
||
5731 | * |
||
5732 | * Linear interpolation is a method of curve fitting using linear polynomials. |
||
5733 | * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line |
||
5734 | * |
||
5735 | * \par |
||
5736 | * \image html LinearInterp.gif "Linear interpolation" |
||
5737 | * |
||
5738 | * \par |
||
5739 | * A Linear Interpolate function calculates an output value(y), for the input(x) |
||
5740 | * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) |
||
5741 | * |
||
5742 | * \par Algorithm: |
||
5743 | * <pre> |
||
5744 | * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) |
||
5745 | * where x0, x1 are nearest values of input x |
||
5746 | * y0, y1 are nearest values to output y |
||
5747 | * </pre> |
||
5748 | * |
||
5749 | * \par |
||
5750 | * This set of functions implements Linear interpolation process |
||
5751 | * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single |
||
5752 | * sample of data and each call to the function returns a single processed value. |
||
5753 | * <code>S</code> points to an instance of the Linear Interpolate function data structure. |
||
5754 | * <code>x</code> is the input sample value. The functions returns the output value. |
||
5755 | * |
||
5756 | * \par |
||
5757 | * if x is outside of the table boundary, Linear interpolation returns first value of the table |
||
5758 | * if x is below input range and returns last value of table if x is above range. |
||
5759 | */ |
||
5760 | |||
5761 | /** |
||
5762 | * @addtogroup LinearInterpolate |
||
5763 | * @{ |
||
5764 | */ |
||
5765 | |||
5766 | /** |
||
5767 | * @brief Process function for the floating-point Linear Interpolation Function. |
||
5768 | * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure |
||
5769 | * @param[in] x input sample to process |
||
5770 | * @return y processed output sample. |
||
5771 | * |
||
5772 | */ |
||
5773 | |||
5774 | static __INLINE float32_t arm_linear_interp_f32( |
||
5775 | arm_linear_interp_instance_f32 * S, |
||
5776 | float32_t x) |
||
5777 | { |
||
5778 | |||
5779 | float32_t y; |
||
5780 | float32_t x0, x1; /* Nearest input values */ |
||
5781 | float32_t y0, y1; /* Nearest output values */ |
||
5782 | float32_t xSpacing = S->xSpacing; /* spacing between input values */ |
||
5783 | int32_t i; /* Index variable */ |
||
5784 | float32_t *pYData = S->pYData; /* pointer to output table */ |
||
5785 | |||
5786 | /* Calculation of index */ |
||
5787 | i = (int32_t) ((x - S->x1) / xSpacing); |
||
5788 | |||
5789 | if(i < 0) |
||
5790 | { |
||
5791 | /* Iniatilize output for below specified range as least output value of table */ |
||
5792 | y = pYData[0]; |
||
5793 | } |
||
5794 | else if((uint32_t)i >= S->nValues) |
||
5795 | { |
||
5796 | /* Iniatilize output for above specified range as last output value of table */ |
||
5797 | y = pYData[S->nValues - 1]; |
||
5798 | } |
||
5799 | else |
||
5800 | { |
||
5801 | /* Calculation of nearest input values */ |
||
5802 | x0 = S->x1 + i * xSpacing; |
||
5803 | x1 = S->x1 + (i + 1) * xSpacing; |
||
5804 | |||
5805 | /* Read of nearest output values */ |
||
5806 | y0 = pYData[i]; |
||
5807 | y1 = pYData[i + 1]; |
||
5808 | |||
5809 | /* Calculation of output */ |
||
5810 | y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); |
||
5811 | |||
5812 | } |
||
5813 | |||
5814 | /* returns output value */ |
||
5815 | return (y); |
||
5816 | } |
||
5817 | |||
5818 | /** |
||
5819 | * |
||
5820 | * @brief Process function for the Q31 Linear Interpolation Function. |
||
5821 | * @param[in] *pYData pointer to Q31 Linear Interpolation table |
||
5822 | * @param[in] x input sample to process |
||
5823 | * @param[in] nValues number of table values |
||
5824 | * @return y processed output sample. |
||
5825 | * |
||
5826 | * \par |
||
5827 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
5828 | * This function can support maximum of table size 2^12. |
||
5829 | * |
||
5830 | */ |
||
5831 | |||
5832 | |||
5833 | static __INLINE q31_t arm_linear_interp_q31( |
||
5834 | q31_t * pYData, |
||
5835 | q31_t x, |
||
5836 | uint32_t nValues) |
||
5837 | { |
||
5838 | q31_t y; /* output */ |
||
5839 | q31_t y0, y1; /* Nearest output values */ |
||
5840 | q31_t fract; /* fractional part */ |
||
5841 | int32_t index; /* Index to read nearest output values */ |
||
5842 | |||
5843 | /* Input is in 12.20 format */ |
||
5844 | /* 12 bits for the table index */ |
||
5845 | /* Index value calculation */ |
||
5846 | index = ((x & 0xFFF00000) >> 20); |
||
5847 | |||
5848 | if(index >= (int32_t)(nValues - 1)) |
||
5849 | { |
||
5850 | return (pYData[nValues - 1]); |
||
5851 | } |
||
5852 | else if(index < 0) |
||
5853 | { |
||
5854 | return (pYData[0]); |
||
5855 | } |
||
5856 | else |
||
5857 | { |
||
5858 | |||
5859 | /* 20 bits for the fractional part */ |
||
5860 | /* shift left by 11 to keep fract in 1.31 format */ |
||
5861 | fract = (x & 0x000FFFFF) << 11; |
||
5862 | |||
5863 | /* Read two nearest output values from the index in 1.31(q31) format */ |
||
5864 | y0 = pYData[index]; |
||
5865 | y1 = pYData[index + 1u]; |
||
5866 | |||
5867 | /* Calculation of y0 * (1-fract) and y is in 2.30 format */ |
||
5868 | y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); |
||
5869 | |||
5870 | /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ |
||
5871 | y += ((q31_t) (((q63_t) y1 * fract) >> 32)); |
||
5872 | |||
5873 | /* Convert y to 1.31 format */ |
||
5874 | return (y << 1u); |
||
5875 | |||
5876 | } |
||
5877 | |||
5878 | } |
||
5879 | |||
5880 | /** |
||
5881 | * |
||
5882 | * @brief Process function for the Q15 Linear Interpolation Function. |
||
5883 | * @param[in] *pYData pointer to Q15 Linear Interpolation table |
||
5884 | * @param[in] x input sample to process |
||
5885 | * @param[in] nValues number of table values |
||
5886 | * @return y processed output sample. |
||
5887 | * |
||
5888 | * \par |
||
5889 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
5890 | * This function can support maximum of table size 2^12. |
||
5891 | * |
||
5892 | */ |
||
5893 | |||
5894 | |||
5895 | static __INLINE q15_t arm_linear_interp_q15( |
||
5896 | q15_t * pYData, |
||
5897 | q31_t x, |
||
5898 | uint32_t nValues) |
||
5899 | { |
||
5900 | q63_t y; /* output */ |
||
5901 | q15_t y0, y1; /* Nearest output values */ |
||
5902 | q31_t fract; /* fractional part */ |
||
5903 | int32_t index; /* Index to read nearest output values */ |
||
5904 | |||
5905 | /* Input is in 12.20 format */ |
||
5906 | /* 12 bits for the table index */ |
||
5907 | /* Index value calculation */ |
||
5908 | index = ((x & 0xFFF00000) >> 20u); |
||
5909 | |||
5910 | if(index >= (int32_t)(nValues - 1)) |
||
5911 | { |
||
5912 | return (pYData[nValues - 1]); |
||
5913 | } |
||
5914 | else if(index < 0) |
||
5915 | { |
||
5916 | return (pYData[0]); |
||
5917 | } |
||
5918 | else |
||
5919 | { |
||
5920 | /* 20 bits for the fractional part */ |
||
5921 | /* fract is in 12.20 format */ |
||
5922 | fract = (x & 0x000FFFFF); |
||
5923 | |||
5924 | /* Read two nearest output values from the index */ |
||
5925 | y0 = pYData[index]; |
||
5926 | y1 = pYData[index + 1u]; |
||
5927 | |||
5928 | /* Calculation of y0 * (1-fract) and y is in 13.35 format */ |
||
5929 | y = ((q63_t) y0 * (0xFFFFF - fract)); |
||
5930 | |||
5931 | /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ |
||
5932 | y += ((q63_t) y1 * (fract)); |
||
5933 | |||
5934 | /* convert y to 1.15 format */ |
||
5935 | return (y >> 20); |
||
5936 | } |
||
5937 | |||
5938 | |||
5939 | } |
||
5940 | |||
5941 | /** |
||
5942 | * |
||
5943 | * @brief Process function for the Q7 Linear Interpolation Function. |
||
5944 | * @param[in] *pYData pointer to Q7 Linear Interpolation table |
||
5945 | * @param[in] x input sample to process |
||
5946 | * @param[in] nValues number of table values |
||
5947 | * @return y processed output sample. |
||
5948 | * |
||
5949 | * \par |
||
5950 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
5951 | * This function can support maximum of table size 2^12. |
||
5952 | */ |
||
5953 | |||
5954 | |||
5955 | static __INLINE q7_t arm_linear_interp_q7( |
||
5956 | q7_t * pYData, |
||
5957 | q31_t x, |
||
5958 | uint32_t nValues) |
||
5959 | { |
||
5960 | q31_t y; /* output */ |
||
5961 | q7_t y0, y1; /* Nearest output values */ |
||
5962 | q31_t fract; /* fractional part */ |
||
5963 | uint32_t index; /* Index to read nearest output values */ |
||
5964 | |||
5965 | /* Input is in 12.20 format */ |
||
5966 | /* 12 bits for the table index */ |
||
5967 | /* Index value calculation */ |
||
5968 | if (x < 0) |
||
5969 | { |
||
5970 | return (pYData[0]); |
||
5971 | } |
||
5972 | index = (x >> 20) & 0xfff; |
||
5973 | |||
5974 | |||
5975 | if(index >= (nValues - 1)) |
||
5976 | { |
||
5977 | return (pYData[nValues - 1]); |
||
5978 | } |
||
5979 | else |
||
5980 | { |
||
5981 | |||
5982 | /* 20 bits for the fractional part */ |
||
5983 | /* fract is in 12.20 format */ |
||
5984 | fract = (x & 0x000FFFFF); |
||
5985 | |||
5986 | /* Read two nearest output values from the index and are in 1.7(q7) format */ |
||
5987 | y0 = pYData[index]; |
||
5988 | y1 = pYData[index + 1u]; |
||
5989 | |||
5990 | /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ |
||
5991 | y = ((y0 * (0xFFFFF - fract))); |
||
5992 | |||
5993 | /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ |
||
5994 | y += (y1 * fract); |
||
5995 | |||
5996 | /* convert y to 1.7(q7) format */ |
||
5997 | return (y >> 20u); |
||
5998 | |||
5999 | } |
||
6000 | |||
6001 | } |
||
6002 | /** |
||
6003 | * @} end of LinearInterpolate group |
||
6004 | */ |
||
6005 | |||
6006 | /** |
||
6007 | * @brief Fast approximation to the trigonometric sine function for floating-point data. |
||
6008 | * @param[in] x input value in radians. |
||
6009 | * @return sin(x). |
||
6010 | */ |
||
6011 | |||
6012 | float32_t arm_sin_f32( |
||
6013 | float32_t x); |
||
6014 | |||
6015 | /** |
||
6016 | * @brief Fast approximation to the trigonometric sine function for Q31 data. |
||
6017 | * @param[in] x Scaled input value in radians. |
||
6018 | * @return sin(x). |
||
6019 | */ |
||
6020 | |||
6021 | q31_t arm_sin_q31( |
||
6022 | q31_t x); |
||
6023 | |||
6024 | /** |
||
6025 | * @brief Fast approximation to the trigonometric sine function for Q15 data. |
||
6026 | * @param[in] x Scaled input value in radians. |
||
6027 | * @return sin(x). |
||
6028 | */ |
||
6029 | |||
6030 | q15_t arm_sin_q15( |
||
6031 | q15_t x); |
||
6032 | |||
6033 | /** |
||
6034 | * @brief Fast approximation to the trigonometric cosine function for floating-point data. |
||
6035 | * @param[in] x input value in radians. |
||
6036 | * @return cos(x). |
||
6037 | */ |
||
6038 | |||
6039 | float32_t arm_cos_f32( |
||
6040 | float32_t x); |
||
6041 | |||
6042 | /** |
||
6043 | * @brief Fast approximation to the trigonometric cosine function for Q31 data. |
||
6044 | * @param[in] x Scaled input value in radians. |
||
6045 | * @return cos(x). |
||
6046 | */ |
||
6047 | |||
6048 | q31_t arm_cos_q31( |
||
6049 | q31_t x); |
||
6050 | |||
6051 | /** |
||
6052 | * @brief Fast approximation to the trigonometric cosine function for Q15 data. |
||
6053 | * @param[in] x Scaled input value in radians. |
||
6054 | * @return cos(x). |
||
6055 | */ |
||
6056 | |||
6057 | q15_t arm_cos_q15( |
||
6058 | q15_t x); |
||
6059 | |||
6060 | |||
6061 | /** |
||
6062 | * @ingroup groupFastMath |
||
6063 | */ |
||
6064 | |||
6065 | |||
6066 | /** |
||
6067 | * @defgroup SQRT Square Root |
||
6068 | * |
||
6069 | * Computes the square root of a number. |
||
6070 | * There are separate functions for Q15, Q31, and floating-point data types. |
||
6071 | * The square root function is computed using the Newton-Raphson algorithm. |
||
6072 | * This is an iterative algorithm of the form: |
||
6073 | * <pre> |
||
6074 | * x1 = x0 - f(x0)/f'(x0) |
||
6075 | * </pre> |
||
6076 | * where <code>x1</code> is the current estimate, |
||
6077 | * <code>x0</code> is the previous estimate, and |
||
6078 | * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. |
||
6079 | * For the square root function, the algorithm reduces to: |
||
6080 | * <pre> |
||
6081 | * x0 = in/2 [initial guess] |
||
6082 | * x1 = 1/2 * ( x0 + in / x0) [each iteration] |
||
6083 | * </pre> |
||
6084 | */ |
||
6085 | |||
6086 | |||
6087 | /** |
||
6088 | * @addtogroup SQRT |
||
6089 | * @{ |
||
6090 | */ |
||
6091 | |||
6092 | /** |
||
6093 | * @brief Floating-point square root function. |
||
6094 | * @param[in] in input value. |
||
6095 | * @param[out] *pOut square root of input value. |
||
6096 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
||
6097 | * <code>in</code> is negative value and returns zero output for negative values. |
||
6098 | */ |
||
6099 | |||
6100 | static __INLINE arm_status arm_sqrt_f32( |
||
6101 | float32_t in, |
||
6102 | float32_t * pOut) |
||
6103 | { |
||
6104 | if(in >= 0.0f) |
||
6105 | { |
||
6106 | |||
6107 | // #if __FPU_USED |
||
6108 | #if (__FPU_USED == 1) && defined ( __CC_ARM ) |
||
6109 | *pOut = __sqrtf(in); |
||
6110 | #else |
||
6111 | *pOut = sqrtf(in); |
||
6112 | #endif |
||
6113 | |||
6114 | return (ARM_MATH_SUCCESS); |
||
6115 | } |
||
6116 | else |
||
6117 | { |
||
6118 | *pOut = 0.0f; |
||
6119 | return (ARM_MATH_ARGUMENT_ERROR); |
||
6120 | } |
||
6121 | |||
6122 | } |
||
6123 | |||
6124 | |||
6125 | /** |
||
6126 | * @brief Q31 square root function. |
||
6127 | * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. |
||
6128 | * @param[out] *pOut square root of input value. |
||
6129 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
||
6130 | * <code>in</code> is negative value and returns zero output for negative values. |
||
6131 | */ |
||
6132 | arm_status arm_sqrt_q31( |
||
6133 | q31_t in, |
||
6134 | q31_t * pOut); |
||
6135 | |||
6136 | /** |
||
6137 | * @brief Q15 square root function. |
||
6138 | * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. |
||
6139 | * @param[out] *pOut square root of input value. |
||
6140 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
||
6141 | * <code>in</code> is negative value and returns zero output for negative values. |
||
6142 | */ |
||
6143 | arm_status arm_sqrt_q15( |
||
6144 | q15_t in, |
||
6145 | q15_t * pOut); |
||
6146 | |||
6147 | /** |
||
6148 | * @} end of SQRT group |
||
6149 | */ |
||
6150 | |||
6151 | |||
6152 | |||
6153 | |||
6154 | |||
6155 | |||
6156 | /** |
||
6157 | * @brief floating-point Circular write function. |
||
6158 | */ |
||
6159 | |||
6160 | static __INLINE void arm_circularWrite_f32( |
||
6161 | int32_t * circBuffer, |
||
6162 | int32_t L, |
||
6163 | uint16_t * writeOffset, |
||
6164 | int32_t bufferInc, |
||
6165 | const int32_t * src, |
||
6166 | int32_t srcInc, |
||
6167 | uint32_t blockSize) |
||
6168 | { |
||
6169 | uint32_t i = 0u; |
||
6170 | int32_t wOffset; |
||
6171 | |||
6172 | /* Copy the value of Index pointer that points |
||
6173 | * to the current location where the input samples to be copied */ |
||
6174 | wOffset = *writeOffset; |
||
6175 | |||
6176 | /* Loop over the blockSize */ |
||
6177 | i = blockSize; |
||
6178 | |||
6179 | while(i > 0u) |
||
6180 | { |
||
6181 | /* copy the input sample to the circular buffer */ |
||
6182 | circBuffer[wOffset] = *src; |
||
6183 | |||
6184 | /* Update the input pointer */ |
||
6185 | src += srcInc; |
||
6186 | |||
6187 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
6188 | wOffset += bufferInc; |
||
6189 | if(wOffset >= L) |
||
6190 | wOffset -= L; |
||
6191 | |||
6192 | /* Decrement the loop counter */ |
||
6193 | i--; |
||
6194 | } |
||
6195 | |||
6196 | /* Update the index pointer */ |
||
6197 | *writeOffset = wOffset; |
||
6198 | } |
||
6199 | |||
6200 | |||
6201 | |||
6202 | /** |
||
6203 | * @brief floating-point Circular Read function. |
||
6204 | */ |
||
6205 | static __INLINE void arm_circularRead_f32( |
||
6206 | int32_t * circBuffer, |
||
6207 | int32_t L, |
||
6208 | int32_t * readOffset, |
||
6209 | int32_t bufferInc, |
||
6210 | int32_t * dst, |
||
6211 | int32_t * dst_base, |
||
6212 | int32_t dst_length, |
||
6213 | int32_t dstInc, |
||
6214 | uint32_t blockSize) |
||
6215 | { |
||
6216 | uint32_t i = 0u; |
||
6217 | int32_t rOffset, dst_end; |
||
6218 | |||
6219 | /* Copy the value of Index pointer that points |
||
6220 | * to the current location from where the input samples to be read */ |
||
6221 | rOffset = *readOffset; |
||
6222 | dst_end = (int32_t) (dst_base + dst_length); |
||
6223 | |||
6224 | /* Loop over the blockSize */ |
||
6225 | i = blockSize; |
||
6226 | |||
6227 | while(i > 0u) |
||
6228 | { |
||
6229 | /* copy the sample from the circular buffer to the destination buffer */ |
||
6230 | *dst = circBuffer[rOffset]; |
||
6231 | |||
6232 | /* Update the input pointer */ |
||
6233 | dst += dstInc; |
||
6234 | |||
6235 | if(dst == (int32_t *) dst_end) |
||
6236 | { |
||
6237 | dst = dst_base; |
||
6238 | } |
||
6239 | |||
6240 | /* Circularly update rOffset. Watch out for positive and negative value */ |
||
6241 | rOffset += bufferInc; |
||
6242 | |||
6243 | if(rOffset >= L) |
||
6244 | { |
||
6245 | rOffset -= L; |
||
6246 | } |
||
6247 | |||
6248 | /* Decrement the loop counter */ |
||
6249 | i--; |
||
6250 | } |
||
6251 | |||
6252 | /* Update the index pointer */ |
||
6253 | *readOffset = rOffset; |
||
6254 | } |
||
6255 | |||
6256 | /** |
||
6257 | * @brief Q15 Circular write function. |
||
6258 | */ |
||
6259 | |||
6260 | static __INLINE void arm_circularWrite_q15( |
||
6261 | q15_t * circBuffer, |
||
6262 | int32_t L, |
||
6263 | uint16_t * writeOffset, |
||
6264 | int32_t bufferInc, |
||
6265 | const q15_t * src, |
||
6266 | int32_t srcInc, |
||
6267 | uint32_t blockSize) |
||
6268 | { |
||
6269 | uint32_t i = 0u; |
||
6270 | int32_t wOffset; |
||
6271 | |||
6272 | /* Copy the value of Index pointer that points |
||
6273 | * to the current location where the input samples to be copied */ |
||
6274 | wOffset = *writeOffset; |
||
6275 | |||
6276 | /* Loop over the blockSize */ |
||
6277 | i = blockSize; |
||
6278 | |||
6279 | while(i > 0u) |
||
6280 | { |
||
6281 | /* copy the input sample to the circular buffer */ |
||
6282 | circBuffer[wOffset] = *src; |
||
6283 | |||
6284 | /* Update the input pointer */ |
||
6285 | src += srcInc; |
||
6286 | |||
6287 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
6288 | wOffset += bufferInc; |
||
6289 | if(wOffset >= L) |
||
6290 | wOffset -= L; |
||
6291 | |||
6292 | /* Decrement the loop counter */ |
||
6293 | i--; |
||
6294 | } |
||
6295 | |||
6296 | /* Update the index pointer */ |
||
6297 | *writeOffset = wOffset; |
||
6298 | } |
||
6299 | |||
6300 | |||
6301 | |||
6302 | /** |
||
6303 | * @brief Q15 Circular Read function. |
||
6304 | */ |
||
6305 | static __INLINE void arm_circularRead_q15( |
||
6306 | q15_t * circBuffer, |
||
6307 | int32_t L, |
||
6308 | int32_t * readOffset, |
||
6309 | int32_t bufferInc, |
||
6310 | q15_t * dst, |
||
6311 | q15_t * dst_base, |
||
6312 | int32_t dst_length, |
||
6313 | int32_t dstInc, |
||
6314 | uint32_t blockSize) |
||
6315 | { |
||
6316 | uint32_t i = 0; |
||
6317 | int32_t rOffset, dst_end; |
||
6318 | |||
6319 | /* Copy the value of Index pointer that points |
||
6320 | * to the current location from where the input samples to be read */ |
||
6321 | rOffset = *readOffset; |
||
6322 | |||
6323 | dst_end = (int32_t) (dst_base + dst_length); |
||
6324 | |||
6325 | /* Loop over the blockSize */ |
||
6326 | i = blockSize; |
||
6327 | |||
6328 | while(i > 0u) |
||
6329 | { |
||
6330 | /* copy the sample from the circular buffer to the destination buffer */ |
||
6331 | *dst = circBuffer[rOffset]; |
||
6332 | |||
6333 | /* Update the input pointer */ |
||
6334 | dst += dstInc; |
||
6335 | |||
6336 | if(dst == (q15_t *) dst_end) |
||
6337 | { |
||
6338 | dst = dst_base; |
||
6339 | } |
||
6340 | |||
6341 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
6342 | rOffset += bufferInc; |
||
6343 | |||
6344 | if(rOffset >= L) |
||
6345 | { |
||
6346 | rOffset -= L; |
||
6347 | } |
||
6348 | |||
6349 | /* Decrement the loop counter */ |
||
6350 | i--; |
||
6351 | } |
||
6352 | |||
6353 | /* Update the index pointer */ |
||
6354 | *readOffset = rOffset; |
||
6355 | } |
||
6356 | |||
6357 | |||
6358 | /** |
||
6359 | * @brief Q7 Circular write function. |
||
6360 | */ |
||
6361 | |||
6362 | static __INLINE void arm_circularWrite_q7( |
||
6363 | q7_t * circBuffer, |
||
6364 | int32_t L, |
||
6365 | uint16_t * writeOffset, |
||
6366 | int32_t bufferInc, |
||
6367 | const q7_t * src, |
||
6368 | int32_t srcInc, |
||
6369 | uint32_t blockSize) |
||
6370 | { |
||
6371 | uint32_t i = 0u; |
||
6372 | int32_t wOffset; |
||
6373 | |||
6374 | /* Copy the value of Index pointer that points |
||
6375 | * to the current location where the input samples to be copied */ |
||
6376 | wOffset = *writeOffset; |
||
6377 | |||
6378 | /* Loop over the blockSize */ |
||
6379 | i = blockSize; |
||
6380 | |||
6381 | while(i > 0u) |
||
6382 | { |
||
6383 | /* copy the input sample to the circular buffer */ |
||
6384 | circBuffer[wOffset] = *src; |
||
6385 | |||
6386 | /* Update the input pointer */ |
||
6387 | src += srcInc; |
||
6388 | |||
6389 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
6390 | wOffset += bufferInc; |
||
6391 | if(wOffset >= L) |
||
6392 | wOffset -= L; |
||
6393 | |||
6394 | /* Decrement the loop counter */ |
||
6395 | i--; |
||
6396 | } |
||
6397 | |||
6398 | /* Update the index pointer */ |
||
6399 | *writeOffset = wOffset; |
||
6400 | } |
||
6401 | |||
6402 | |||
6403 | |||
6404 | /** |
||
6405 | * @brief Q7 Circular Read function. |
||
6406 | */ |
||
6407 | static __INLINE void arm_circularRead_q7( |
||
6408 | q7_t * circBuffer, |
||
6409 | int32_t L, |
||
6410 | int32_t * readOffset, |
||
6411 | int32_t bufferInc, |
||
6412 | q7_t * dst, |
||
6413 | q7_t * dst_base, |
||
6414 | int32_t dst_length, |
||
6415 | int32_t dstInc, |
||
6416 | uint32_t blockSize) |
||
6417 | { |
||
6418 | uint32_t i = 0; |
||
6419 | int32_t rOffset, dst_end; |
||
6420 | |||
6421 | /* Copy the value of Index pointer that points |
||
6422 | * to the current location from where the input samples to be read */ |
||
6423 | rOffset = *readOffset; |
||
6424 | |||
6425 | dst_end = (int32_t) (dst_base + dst_length); |
||
6426 | |||
6427 | /* Loop over the blockSize */ |
||
6428 | i = blockSize; |
||
6429 | |||
6430 | while(i > 0u) |
||
6431 | { |
||
6432 | /* copy the sample from the circular buffer to the destination buffer */ |
||
6433 | *dst = circBuffer[rOffset]; |
||
6434 | |||
6435 | /* Update the input pointer */ |
||
6436 | dst += dstInc; |
||
6437 | |||
6438 | if(dst == (q7_t *) dst_end) |
||
6439 | { |
||
6440 | dst = dst_base; |
||
6441 | } |
||
6442 | |||
6443 | /* Circularly update rOffset. Watch out for positive and negative value */ |
||
6444 | rOffset += bufferInc; |
||
6445 | |||
6446 | if(rOffset >= L) |
||
6447 | { |
||
6448 | rOffset -= L; |
||
6449 | } |
||
6450 | |||
6451 | /* Decrement the loop counter */ |
||
6452 | i--; |
||
6453 | } |
||
6454 | |||
6455 | /* Update the index pointer */ |
||
6456 | *readOffset = rOffset; |
||
6457 | } |
||
6458 | |||
6459 | |||
6460 | /** |
||
6461 | * @brief Sum of the squares of the elements of a Q31 vector. |
||
6462 | * @param[in] *pSrc is input pointer |
||
6463 | * @param[in] blockSize is the number of samples to process |
||
6464 | * @param[out] *pResult is output value. |
||
6465 | * @return none. |
||
6466 | */ |
||
6467 | |||
6468 | void arm_power_q31( |
||
6469 | q31_t * pSrc, |
||
6470 | uint32_t blockSize, |
||
6471 | q63_t * pResult); |
||
6472 | |||
6473 | /** |
||
6474 | * @brief Sum of the squares of the elements of a floating-point vector. |
||
6475 | * @param[in] *pSrc is input pointer |
||
6476 | * @param[in] blockSize is the number of samples to process |
||
6477 | * @param[out] *pResult is output value. |
||
6478 | * @return none. |
||
6479 | */ |
||
6480 | |||
6481 | void arm_power_f32( |
||
6482 | float32_t * pSrc, |
||
6483 | uint32_t blockSize, |
||
6484 | float32_t * pResult); |
||
6485 | |||
6486 | /** |
||
6487 | * @brief Sum of the squares of the elements of a Q15 vector. |
||
6488 | * @param[in] *pSrc is input pointer |
||
6489 | * @param[in] blockSize is the number of samples to process |
||
6490 | * @param[out] *pResult is output value. |
||
6491 | * @return none. |
||
6492 | */ |
||
6493 | |||
6494 | void arm_power_q15( |
||
6495 | q15_t * pSrc, |
||
6496 | uint32_t blockSize, |
||
6497 | q63_t * pResult); |
||
6498 | |||
6499 | /** |
||
6500 | * @brief Sum of the squares of the elements of a Q7 vector. |
||
6501 | * @param[in] *pSrc is input pointer |
||
6502 | * @param[in] blockSize is the number of samples to process |
||
6503 | * @param[out] *pResult is output value. |
||
6504 | * @return none. |
||
6505 | */ |
||
6506 | |||
6507 | void arm_power_q7( |
||
6508 | q7_t * pSrc, |
||
6509 | uint32_t blockSize, |
||
6510 | q31_t * pResult); |
||
6511 | |||
6512 | /** |
||
6513 | * @brief Mean value of a Q7 vector. |
||
6514 | * @param[in] *pSrc is input pointer |
||
6515 | * @param[in] blockSize is the number of samples to process |
||
6516 | * @param[out] *pResult is output value. |
||
6517 | * @return none. |
||
6518 | */ |
||
6519 | |||
6520 | void arm_mean_q7( |
||
6521 | q7_t * pSrc, |
||
6522 | uint32_t blockSize, |
||
6523 | q7_t * pResult); |
||
6524 | |||
6525 | /** |
||
6526 | * @brief Mean value of a Q15 vector. |
||
6527 | * @param[in] *pSrc is input pointer |
||
6528 | * @param[in] blockSize is the number of samples to process |
||
6529 | * @param[out] *pResult is output value. |
||
6530 | * @return none. |
||
6531 | */ |
||
6532 | void arm_mean_q15( |
||
6533 | q15_t * pSrc, |
||
6534 | uint32_t blockSize, |
||
6535 | q15_t * pResult); |
||
6536 | |||
6537 | /** |
||
6538 | * @brief Mean value of a Q31 vector. |
||
6539 | * @param[in] *pSrc is input pointer |
||
6540 | * @param[in] blockSize is the number of samples to process |
||
6541 | * @param[out] *pResult is output value. |
||
6542 | * @return none. |
||
6543 | */ |
||
6544 | void arm_mean_q31( |
||
6545 | q31_t * pSrc, |
||
6546 | uint32_t blockSize, |
||
6547 | q31_t * pResult); |
||
6548 | |||
6549 | /** |
||
6550 | * @brief Mean value of a floating-point vector. |
||
6551 | * @param[in] *pSrc is input pointer |
||
6552 | * @param[in] blockSize is the number of samples to process |
||
6553 | * @param[out] *pResult is output value. |
||
6554 | * @return none. |
||
6555 | */ |
||
6556 | void arm_mean_f32( |
||
6557 | float32_t * pSrc, |
||
6558 | uint32_t blockSize, |
||
6559 | float32_t * pResult); |
||
6560 | |||
6561 | /** |
||
6562 | * @brief Variance of the elements of a floating-point vector. |
||
6563 | * @param[in] *pSrc is input pointer |
||
6564 | * @param[in] blockSize is the number of samples to process |
||
6565 | * @param[out] *pResult is output value. |
||
6566 | * @return none. |
||
6567 | */ |
||
6568 | |||
6569 | void arm_var_f32( |
||
6570 | float32_t * pSrc, |
||
6571 | uint32_t blockSize, |
||
6572 | float32_t * pResult); |
||
6573 | |||
6574 | /** |
||
6575 | * @brief Variance of the elements of a Q31 vector. |
||
6576 | * @param[in] *pSrc is input pointer |
||
6577 | * @param[in] blockSize is the number of samples to process |
||
6578 | * @param[out] *pResult is output value. |
||
6579 | * @return none. |
||
6580 | */ |
||
6581 | |||
6582 | void arm_var_q31( |
||
6583 | q31_t * pSrc, |
||
6584 | uint32_t blockSize, |
||
6585 | q31_t * pResult); |
||
6586 | |||
6587 | /** |
||
6588 | * @brief Variance of the elements of a Q15 vector. |
||
6589 | * @param[in] *pSrc is input pointer |
||
6590 | * @param[in] blockSize is the number of samples to process |
||
6591 | * @param[out] *pResult is output value. |
||
6592 | * @return none. |
||
6593 | */ |
||
6594 | |||
6595 | void arm_var_q15( |
||
6596 | q15_t * pSrc, |
||
6597 | uint32_t blockSize, |
||
6598 | q15_t * pResult); |
||
6599 | |||
6600 | /** |
||
6601 | * @brief Root Mean Square of the elements of a floating-point vector. |
||
6602 | * @param[in] *pSrc is input pointer |
||
6603 | * @param[in] blockSize is the number of samples to process |
||
6604 | * @param[out] *pResult is output value. |
||
6605 | * @return none. |
||
6606 | */ |
||
6607 | |||
6608 | void arm_rms_f32( |
||
6609 | float32_t * pSrc, |
||
6610 | uint32_t blockSize, |
||
6611 | float32_t * pResult); |
||
6612 | |||
6613 | /** |
||
6614 | * @brief Root Mean Square of the elements of a Q31 vector. |
||
6615 | * @param[in] *pSrc is input pointer |
||
6616 | * @param[in] blockSize is the number of samples to process |
||
6617 | * @param[out] *pResult is output value. |
||
6618 | * @return none. |
||
6619 | */ |
||
6620 | |||
6621 | void arm_rms_q31( |
||
6622 | q31_t * pSrc, |
||
6623 | uint32_t blockSize, |
||
6624 | q31_t * pResult); |
||
6625 | |||
6626 | /** |
||
6627 | * @brief Root Mean Square of the elements of a Q15 vector. |
||
6628 | * @param[in] *pSrc is input pointer |
||
6629 | * @param[in] blockSize is the number of samples to process |
||
6630 | * @param[out] *pResult is output value. |
||
6631 | * @return none. |
||
6632 | */ |
||
6633 | |||
6634 | void arm_rms_q15( |
||
6635 | q15_t * pSrc, |
||
6636 | uint32_t blockSize, |
||
6637 | q15_t * pResult); |
||
6638 | |||
6639 | /** |
||
6640 | * @brief Standard deviation of the elements of a floating-point vector. |
||
6641 | * @param[in] *pSrc is input pointer |
||
6642 | * @param[in] blockSize is the number of samples to process |
||
6643 | * @param[out] *pResult is output value. |
||
6644 | * @return none. |
||
6645 | */ |
||
6646 | |||
6647 | void arm_std_f32( |
||
6648 | float32_t * pSrc, |
||
6649 | uint32_t blockSize, |
||
6650 | float32_t * pResult); |
||
6651 | |||
6652 | /** |
||
6653 | * @brief Standard deviation of the elements of a Q31 vector. |
||
6654 | * @param[in] *pSrc is input pointer |
||
6655 | * @param[in] blockSize is the number of samples to process |
||
6656 | * @param[out] *pResult is output value. |
||
6657 | * @return none. |
||
6658 | */ |
||
6659 | |||
6660 | void arm_std_q31( |
||
6661 | q31_t * pSrc, |
||
6662 | uint32_t blockSize, |
||
6663 | q31_t * pResult); |
||
6664 | |||
6665 | /** |
||
6666 | * @brief Standard deviation of the elements of a Q15 vector. |
||
6667 | * @param[in] *pSrc is input pointer |
||
6668 | * @param[in] blockSize is the number of samples to process |
||
6669 | * @param[out] *pResult is output value. |
||
6670 | * @return none. |
||
6671 | */ |
||
6672 | |||
6673 | void arm_std_q15( |
||
6674 | q15_t * pSrc, |
||
6675 | uint32_t blockSize, |
||
6676 | q15_t * pResult); |
||
6677 | |||
6678 | /** |
||
6679 | * @brief Floating-point complex magnitude |
||
6680 | * @param[in] *pSrc points to the complex input vector |
||
6681 | * @param[out] *pDst points to the real output vector |
||
6682 | * @param[in] numSamples number of complex samples in the input vector |
||
6683 | * @return none. |
||
6684 | */ |
||
6685 | |||
6686 | void arm_cmplx_mag_f32( |
||
6687 | float32_t * pSrc, |
||
6688 | float32_t * pDst, |
||
6689 | uint32_t numSamples); |
||
6690 | |||
6691 | /** |
||
6692 | * @brief Q31 complex magnitude |
||
6693 | * @param[in] *pSrc points to the complex input vector |
||
6694 | * @param[out] *pDst points to the real output vector |
||
6695 | * @param[in] numSamples number of complex samples in the input vector |
||
6696 | * @return none. |
||
6697 | */ |
||
6698 | |||
6699 | void arm_cmplx_mag_q31( |
||
6700 | q31_t * pSrc, |
||
6701 | q31_t * pDst, |
||
6702 | uint32_t numSamples); |
||
6703 | |||
6704 | /** |
||
6705 | * @brief Q15 complex magnitude |
||
6706 | * @param[in] *pSrc points to the complex input vector |
||
6707 | * @param[out] *pDst points to the real output vector |
||
6708 | * @param[in] numSamples number of complex samples in the input vector |
||
6709 | * @return none. |
||
6710 | */ |
||
6711 | |||
6712 | void arm_cmplx_mag_q15( |
||
6713 | q15_t * pSrc, |
||
6714 | q15_t * pDst, |
||
6715 | uint32_t numSamples); |
||
6716 | |||
6717 | /** |
||
6718 | * @brief Q15 complex dot product |
||
6719 | * @param[in] *pSrcA points to the first input vector |
||
6720 | * @param[in] *pSrcB points to the second input vector |
||
6721 | * @param[in] numSamples number of complex samples in each vector |
||
6722 | * @param[out] *realResult real part of the result returned here |
||
6723 | * @param[out] *imagResult imaginary part of the result returned here |
||
6724 | * @return none. |
||
6725 | */ |
||
6726 | |||
6727 | void arm_cmplx_dot_prod_q15( |
||
6728 | q15_t * pSrcA, |
||
6729 | q15_t * pSrcB, |
||
6730 | uint32_t numSamples, |
||
6731 | q31_t * realResult, |
||
6732 | q31_t * imagResult); |
||
6733 | |||
6734 | /** |
||
6735 | * @brief Q31 complex dot product |
||
6736 | * @param[in] *pSrcA points to the first input vector |
||
6737 | * @param[in] *pSrcB points to the second input vector |
||
6738 | * @param[in] numSamples number of complex samples in each vector |
||
6739 | * @param[out] *realResult real part of the result returned here |
||
6740 | * @param[out] *imagResult imaginary part of the result returned here |
||
6741 | * @return none. |
||
6742 | */ |
||
6743 | |||
6744 | void arm_cmplx_dot_prod_q31( |
||
6745 | q31_t * pSrcA, |
||
6746 | q31_t * pSrcB, |
||
6747 | uint32_t numSamples, |
||
6748 | q63_t * realResult, |
||
6749 | q63_t * imagResult); |
||
6750 | |||
6751 | /** |
||
6752 | * @brief Floating-point complex dot product |
||
6753 | * @param[in] *pSrcA points to the first input vector |
||
6754 | * @param[in] *pSrcB points to the second input vector |
||
6755 | * @param[in] numSamples number of complex samples in each vector |
||
6756 | * @param[out] *realResult real part of the result returned here |
||
6757 | * @param[out] *imagResult imaginary part of the result returned here |
||
6758 | * @return none. |
||
6759 | */ |
||
6760 | |||
6761 | void arm_cmplx_dot_prod_f32( |
||
6762 | float32_t * pSrcA, |
||
6763 | float32_t * pSrcB, |
||
6764 | uint32_t numSamples, |
||
6765 | float32_t * realResult, |
||
6766 | float32_t * imagResult); |
||
6767 | |||
6768 | /** |
||
6769 | * @brief Q15 complex-by-real multiplication |
||
6770 | * @param[in] *pSrcCmplx points to the complex input vector |
||
6771 | * @param[in] *pSrcReal points to the real input vector |
||
6772 | * @param[out] *pCmplxDst points to the complex output vector |
||
6773 | * @param[in] numSamples number of samples in each vector |
||
6774 | * @return none. |
||
6775 | */ |
||
6776 | |||
6777 | void arm_cmplx_mult_real_q15( |
||
6778 | q15_t * pSrcCmplx, |
||
6779 | q15_t * pSrcReal, |
||
6780 | q15_t * pCmplxDst, |
||
6781 | uint32_t numSamples); |
||
6782 | |||
6783 | /** |
||
6784 | * @brief Q31 complex-by-real multiplication |
||
6785 | * @param[in] *pSrcCmplx points to the complex input vector |
||
6786 | * @param[in] *pSrcReal points to the real input vector |
||
6787 | * @param[out] *pCmplxDst points to the complex output vector |
||
6788 | * @param[in] numSamples number of samples in each vector |
||
6789 | * @return none. |
||
6790 | */ |
||
6791 | |||
6792 | void arm_cmplx_mult_real_q31( |
||
6793 | q31_t * pSrcCmplx, |
||
6794 | q31_t * pSrcReal, |
||
6795 | q31_t * pCmplxDst, |
||
6796 | uint32_t numSamples); |
||
6797 | |||
6798 | /** |
||
6799 | * @brief Floating-point complex-by-real multiplication |
||
6800 | * @param[in] *pSrcCmplx points to the complex input vector |
||
6801 | * @param[in] *pSrcReal points to the real input vector |
||
6802 | * @param[out] *pCmplxDst points to the complex output vector |
||
6803 | * @param[in] numSamples number of samples in each vector |
||
6804 | * @return none. |
||
6805 | */ |
||
6806 | |||
6807 | void arm_cmplx_mult_real_f32( |
||
6808 | float32_t * pSrcCmplx, |
||
6809 | float32_t * pSrcReal, |
||
6810 | float32_t * pCmplxDst, |
||
6811 | uint32_t numSamples); |
||
6812 | |||
6813 | /** |
||
6814 | * @brief Minimum value of a Q7 vector. |
||
6815 | * @param[in] *pSrc is input pointer |
||
6816 | * @param[in] blockSize is the number of samples to process |
||
6817 | * @param[out] *result is output pointer |
||
6818 | * @param[in] index is the array index of the minimum value in the input buffer. |
||
6819 | * @return none. |
||
6820 | */ |
||
6821 | |||
6822 | void arm_min_q7( |
||
6823 | q7_t * pSrc, |
||
6824 | uint32_t blockSize, |
||
6825 | q7_t * result, |
||
6826 | uint32_t * index); |
||
6827 | |||
6828 | /** |
||
6829 | * @brief Minimum value of a Q15 vector. |
||
6830 | * @param[in] *pSrc is input pointer |
||
6831 | * @param[in] blockSize is the number of samples to process |
||
6832 | * @param[out] *pResult is output pointer |
||
6833 | * @param[in] *pIndex is the array index of the minimum value in the input buffer. |
||
6834 | * @return none. |
||
6835 | */ |
||
6836 | |||
6837 | void arm_min_q15( |
||
6838 | q15_t * pSrc, |
||
6839 | uint32_t blockSize, |
||
6840 | q15_t * pResult, |
||
6841 | uint32_t * pIndex); |
||
6842 | |||
6843 | /** |
||
6844 | * @brief Minimum value of a Q31 vector. |
||
6845 | * @param[in] *pSrc is input pointer |
||
6846 | * @param[in] blockSize is the number of samples to process |
||
6847 | * @param[out] *pResult is output pointer |
||
6848 | * @param[out] *pIndex is the array index of the minimum value in the input buffer. |
||
6849 | * @return none. |
||
6850 | */ |
||
6851 | void arm_min_q31( |
||
6852 | q31_t * pSrc, |
||
6853 | uint32_t blockSize, |
||
6854 | q31_t * pResult, |
||
6855 | uint32_t * pIndex); |
||
6856 | |||
6857 | /** |
||
6858 | * @brief Minimum value of a floating-point vector. |
||
6859 | * @param[in] *pSrc is input pointer |
||
6860 | * @param[in] blockSize is the number of samples to process |
||
6861 | * @param[out] *pResult is output pointer |
||
6862 | * @param[out] *pIndex is the array index of the minimum value in the input buffer. |
||
6863 | * @return none. |
||
6864 | */ |
||
6865 | |||
6866 | void arm_min_f32( |
||
6867 | float32_t * pSrc, |
||
6868 | uint32_t blockSize, |
||
6869 | float32_t * pResult, |
||
6870 | uint32_t * pIndex); |
||
6871 | |||
6872 | /** |
||
6873 | * @brief Maximum value of a Q7 vector. |
||
6874 | * @param[in] *pSrc points to the input buffer |
||
6875 | * @param[in] blockSize length of the input vector |
||
6876 | * @param[out] *pResult maximum value returned here |
||
6877 | * @param[out] *pIndex index of maximum value returned here |
||
6878 | * @return none. |
||
6879 | */ |
||
6880 | |||
6881 | void arm_max_q7( |
||
6882 | q7_t * pSrc, |
||
6883 | uint32_t blockSize, |
||
6884 | q7_t * pResult, |
||
6885 | uint32_t * pIndex); |
||
6886 | |||
6887 | /** |
||
6888 | * @brief Maximum value of a Q15 vector. |
||
6889 | * @param[in] *pSrc points to the input buffer |
||
6890 | * @param[in] blockSize length of the input vector |
||
6891 | * @param[out] *pResult maximum value returned here |
||
6892 | * @param[out] *pIndex index of maximum value returned here |
||
6893 | * @return none. |
||
6894 | */ |
||
6895 | |||
6896 | void arm_max_q15( |
||
6897 | q15_t * pSrc, |
||
6898 | uint32_t blockSize, |
||
6899 | q15_t * pResult, |
||
6900 | uint32_t * pIndex); |
||
6901 | |||
6902 | /** |
||
6903 | * @brief Maximum value of a Q31 vector. |
||
6904 | * @param[in] *pSrc points to the input buffer |
||
6905 | * @param[in] blockSize length of the input vector |
||
6906 | * @param[out] *pResult maximum value returned here |
||
6907 | * @param[out] *pIndex index of maximum value returned here |
||
6908 | * @return none. |
||
6909 | */ |
||
6910 | |||
6911 | void arm_max_q31( |
||
6912 | q31_t * pSrc, |
||
6913 | uint32_t blockSize, |
||
6914 | q31_t * pResult, |
||
6915 | uint32_t * pIndex); |
||
6916 | |||
6917 | /** |
||
6918 | * @brief Maximum value of a floating-point vector. |
||
6919 | * @param[in] *pSrc points to the input buffer |
||
6920 | * @param[in] blockSize length of the input vector |
||
6921 | * @param[out] *pResult maximum value returned here |
||
6922 | * @param[out] *pIndex index of maximum value returned here |
||
6923 | * @return none. |
||
6924 | */ |
||
6925 | |||
6926 | void arm_max_f32( |
||
6927 | float32_t * pSrc, |
||
6928 | uint32_t blockSize, |
||
6929 | float32_t * pResult, |
||
6930 | uint32_t * pIndex); |
||
6931 | |||
6932 | /** |
||
6933 | * @brief Q15 complex-by-complex multiplication |
||
6934 | * @param[in] *pSrcA points to the first input vector |
||
6935 | * @param[in] *pSrcB points to the second input vector |
||
6936 | * @param[out] *pDst points to the output vector |
||
6937 | * @param[in] numSamples number of complex samples in each vector |
||
6938 | * @return none. |
||
6939 | */ |
||
6940 | |||
6941 | void arm_cmplx_mult_cmplx_q15( |
||
6942 | q15_t * pSrcA, |
||
6943 | q15_t * pSrcB, |
||
6944 | q15_t * pDst, |
||
6945 | uint32_t numSamples); |
||
6946 | |||
6947 | /** |
||
6948 | * @brief Q31 complex-by-complex multiplication |
||
6949 | * @param[in] *pSrcA points to the first input vector |
||
6950 | * @param[in] *pSrcB points to the second input vector |
||
6951 | * @param[out] *pDst points to the output vector |
||
6952 | * @param[in] numSamples number of complex samples in each vector |
||
6953 | * @return none. |
||
6954 | */ |
||
6955 | |||
6956 | void arm_cmplx_mult_cmplx_q31( |
||
6957 | q31_t * pSrcA, |
||
6958 | q31_t * pSrcB, |
||
6959 | q31_t * pDst, |
||
6960 | uint32_t numSamples); |
||
6961 | |||
6962 | /** |
||
6963 | * @brief Floating-point complex-by-complex multiplication |
||
6964 | * @param[in] *pSrcA points to the first input vector |
||
6965 | * @param[in] *pSrcB points to the second input vector |
||
6966 | * @param[out] *pDst points to the output vector |
||
6967 | * @param[in] numSamples number of complex samples in each vector |
||
6968 | * @return none. |
||
6969 | */ |
||
6970 | |||
6971 | void arm_cmplx_mult_cmplx_f32( |
||
6972 | float32_t * pSrcA, |
||
6973 | float32_t * pSrcB, |
||
6974 | float32_t * pDst, |
||
6975 | uint32_t numSamples); |
||
6976 | |||
6977 | /** |
||
6978 | * @brief Converts the elements of the floating-point vector to Q31 vector. |
||
6979 | * @param[in] *pSrc points to the floating-point input vector |
||
6980 | * @param[out] *pDst points to the Q31 output vector |
||
6981 | * @param[in] blockSize length of the input vector |
||
6982 | * @return none. |
||
6983 | */ |
||
6984 | void arm_float_to_q31( |
||
6985 | float32_t * pSrc, |
||
6986 | q31_t * pDst, |
||
6987 | uint32_t blockSize); |
||
6988 | |||
6989 | /** |
||
6990 | * @brief Converts the elements of the floating-point vector to Q15 vector. |
||
6991 | * @param[in] *pSrc points to the floating-point input vector |
||
6992 | * @param[out] *pDst points to the Q15 output vector |
||
6993 | * @param[in] blockSize length of the input vector |
||
6994 | * @return none |
||
6995 | */ |
||
6996 | void arm_float_to_q15( |
||
6997 | float32_t * pSrc, |
||
6998 | q15_t * pDst, |
||
6999 | uint32_t blockSize); |
||
7000 | |||
7001 | /** |
||
7002 | * @brief Converts the elements of the floating-point vector to Q7 vector. |
||
7003 | * @param[in] *pSrc points to the floating-point input vector |
||
7004 | * @param[out] *pDst points to the Q7 output vector |
||
7005 | * @param[in] blockSize length of the input vector |
||
7006 | * @return none |
||
7007 | */ |
||
7008 | void arm_float_to_q7( |
||
7009 | float32_t * pSrc, |
||
7010 | q7_t * pDst, |
||
7011 | uint32_t blockSize); |
||
7012 | |||
7013 | |||
7014 | /** |
||
7015 | * @brief Converts the elements of the Q31 vector to Q15 vector. |
||
7016 | * @param[in] *pSrc is input pointer |
||
7017 | * @param[out] *pDst is output pointer |
||
7018 | * @param[in] blockSize is the number of samples to process |
||
7019 | * @return none. |
||
7020 | */ |
||
7021 | void arm_q31_to_q15( |
||
7022 | q31_t * pSrc, |
||
7023 | q15_t * pDst, |
||
7024 | uint32_t blockSize); |
||
7025 | |||
7026 | /** |
||
7027 | * @brief Converts the elements of the Q31 vector to Q7 vector. |
||
7028 | * @param[in] *pSrc is input pointer |
||
7029 | * @param[out] *pDst is output pointer |
||
7030 | * @param[in] blockSize is the number of samples to process |
||
7031 | * @return none. |
||
7032 | */ |
||
7033 | void arm_q31_to_q7( |
||
7034 | q31_t * pSrc, |
||
7035 | q7_t * pDst, |
||
7036 | uint32_t blockSize); |
||
7037 | |||
7038 | /** |
||
7039 | * @brief Converts the elements of the Q15 vector to floating-point vector. |
||
7040 | * @param[in] *pSrc is input pointer |
||
7041 | * @param[out] *pDst is output pointer |
||
7042 | * @param[in] blockSize is the number of samples to process |
||
7043 | * @return none. |
||
7044 | */ |
||
7045 | void arm_q15_to_float( |
||
7046 | q15_t * pSrc, |
||
7047 | float32_t * pDst, |
||
7048 | uint32_t blockSize); |
||
7049 | |||
7050 | |||
7051 | /** |
||
7052 | * @brief Converts the elements of the Q15 vector to Q31 vector. |
||
7053 | * @param[in] *pSrc is input pointer |
||
7054 | * @param[out] *pDst is output pointer |
||
7055 | * @param[in] blockSize is the number of samples to process |
||
7056 | * @return none. |
||
7057 | */ |
||
7058 | void arm_q15_to_q31( |
||
7059 | q15_t * pSrc, |
||
7060 | q31_t * pDst, |
||
7061 | uint32_t blockSize); |
||
7062 | |||
7063 | |||
7064 | /** |
||
7065 | * @brief Converts the elements of the Q15 vector to Q7 vector. |
||
7066 | * @param[in] *pSrc is input pointer |
||
7067 | * @param[out] *pDst is output pointer |
||
7068 | * @param[in] blockSize is the number of samples to process |
||
7069 | * @return none. |
||
7070 | */ |
||
7071 | void arm_q15_to_q7( |
||
7072 | q15_t * pSrc, |
||
7073 | q7_t * pDst, |
||
7074 | uint32_t blockSize); |
||
7075 | |||
7076 | |||
7077 | /** |
||
7078 | * @ingroup groupInterpolation |
||
7079 | */ |
||
7080 | |||
7081 | /** |
||
7082 | * @defgroup BilinearInterpolate Bilinear Interpolation |
||
7083 | * |
||
7084 | * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. |
||
7085 | * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process |
||
7086 | * determines values between the grid points. |
||
7087 | * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. |
||
7088 | * Bilinear interpolation is often used in image processing to rescale images. |
||
7089 | * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. |
||
7090 | * |
||
7091 | * <b>Algorithm</b> |
||
7092 | * \par |
||
7093 | * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. |
||
7094 | * For floating-point, the instance structure is defined as: |
||
7095 | * <pre> |
||
7096 | * typedef struct |
||
7097 | * { |
||
7098 | * uint16_t numRows; |
||
7099 | * uint16_t numCols; |
||
7100 | * float32_t *pData; |
||
7101 | * } arm_bilinear_interp_instance_f32; |
||
7102 | * </pre> |
||
7103 | * |
||
7104 | * \par |
||
7105 | * where <code>numRows</code> specifies the number of rows in the table; |
||
7106 | * <code>numCols</code> specifies the number of columns in the table; |
||
7107 | * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. |
||
7108 | * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. |
||
7109 | * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. |
||
7110 | * |
||
7111 | * \par |
||
7112 | * Let <code>(x, y)</code> specify the desired interpolation point. Then define: |
||
7113 | * <pre> |
||
7114 | * XF = floor(x) |
||
7115 | * YF = floor(y) |
||
7116 | * </pre> |
||
7117 | * \par |
||
7118 | * The interpolated output point is computed as: |
||
7119 | * <pre> |
||
7120 | * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) |
||
7121 | * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) |
||
7122 | * + f(XF, YF+1) * (1-(x-XF))*(y-YF) |
||
7123 | * + f(XF+1, YF+1) * (x-XF)*(y-YF) |
||
7124 | * </pre> |
||
7125 | * Note that the coordinates (x, y) contain integer and fractional components. |
||
7126 | * The integer components specify which portion of the table to use while the |
||
7127 | * fractional components control the interpolation processor. |
||
7128 | * |
||
7129 | * \par |
||
7130 | * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. |
||
7131 | */ |
||
7132 | |||
7133 | /** |
||
7134 | * @addtogroup BilinearInterpolate |
||
7135 | * @{ |
||
7136 | */ |
||
7137 | |||
7138 | /** |
||
7139 | * |
||
7140 | * @brief Floating-point bilinear interpolation. |
||
7141 | * @param[in,out] *S points to an instance of the interpolation structure. |
||
7142 | * @param[in] X interpolation coordinate. |
||
7143 | * @param[in] Y interpolation coordinate. |
||
7144 | * @return out interpolated value. |
||
7145 | */ |
||
7146 | |||
7147 | |||
7148 | static __INLINE float32_t arm_bilinear_interp_f32( |
||
7149 | const arm_bilinear_interp_instance_f32 * S, |
||
7150 | float32_t X, |
||
7151 | float32_t Y) |
||
7152 | { |
||
7153 | float32_t out; |
||
7154 | float32_t f00, f01, f10, f11; |
||
7155 | float32_t *pData = S->pData; |
||
7156 | int32_t xIndex, yIndex, index; |
||
7157 | float32_t xdiff, ydiff; |
||
7158 | float32_t b1, b2, b3, b4; |
||
7159 | |||
7160 | xIndex = (int32_t) X; |
||
7161 | yIndex = (int32_t) Y; |
||
7162 | |||
7163 | /* Care taken for table outside boundary */ |
||
7164 | /* Returns zero output when values are outside table boundary */ |
||
7165 | if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 |
||
7166 | || yIndex > (S->numCols - 1)) |
||
7167 | { |
||
7168 | return (0); |
||
7169 | } |
||
7170 | |||
7171 | /* Calculation of index for two nearest points in X-direction */ |
||
7172 | index = (xIndex - 1) + (yIndex - 1) * S->numCols; |
||
7173 | |||
7174 | |||
7175 | /* Read two nearest points in X-direction */ |
||
7176 | f00 = pData[index]; |
||
7177 | f01 = pData[index + 1]; |
||
7178 | |||
7179 | /* Calculation of index for two nearest points in Y-direction */ |
||
7180 | index = (xIndex - 1) + (yIndex) * S->numCols; |
||
7181 | |||
7182 | |||
7183 | /* Read two nearest points in Y-direction */ |
||
7184 | f10 = pData[index]; |
||
7185 | f11 = pData[index + 1]; |
||
7186 | |||
7187 | /* Calculation of intermediate values */ |
||
7188 | b1 = f00; |
||
7189 | b2 = f01 - f00; |
||
7190 | b3 = f10 - f00; |
||
7191 | b4 = f00 - f01 - f10 + f11; |
||
7192 | |||
7193 | /* Calculation of fractional part in X */ |
||
7194 | xdiff = X - xIndex; |
||
7195 | |||
7196 | /* Calculation of fractional part in Y */ |
||
7197 | ydiff = Y - yIndex; |
||
7198 | |||
7199 | /* Calculation of bi-linear interpolated output */ |
||
7200 | out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; |
||
7201 | |||
7202 | /* return to application */ |
||
7203 | return (out); |
||
7204 | |||
7205 | } |
||
7206 | |||
7207 | /** |
||
7208 | * |
||
7209 | * @brief Q31 bilinear interpolation. |
||
7210 | * @param[in,out] *S points to an instance of the interpolation structure. |
||
7211 | * @param[in] X interpolation coordinate in 12.20 format. |
||
7212 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
7213 | * @return out interpolated value. |
||
7214 | */ |
||
7215 | |||
7216 | static __INLINE q31_t arm_bilinear_interp_q31( |
||
7217 | arm_bilinear_interp_instance_q31 * S, |
||
7218 | q31_t X, |
||
7219 | q31_t Y) |
||
7220 | { |
||
7221 | q31_t out; /* Temporary output */ |
||
7222 | q31_t acc = 0; /* output */ |
||
7223 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
7224 | q31_t x1, x2, y1, y2; /* Nearest output values */ |
||
7225 | int32_t rI, cI; /* Row and column indices */ |
||
7226 | q31_t *pYData = S->pData; /* pointer to output table values */ |
||
7227 | uint32_t nCols = S->numCols; /* num of rows */ |
||
7228 | |||
7229 | |||
7230 | /* Input is in 12.20 format */ |
||
7231 | /* 12 bits for the table index */ |
||
7232 | /* Index value calculation */ |
||
7233 | rI = ((X & 0xFFF00000) >> 20u); |
||
7234 | |||
7235 | /* Input is in 12.20 format */ |
||
7236 | /* 12 bits for the table index */ |
||
7237 | /* Index value calculation */ |
||
7238 | cI = ((Y & 0xFFF00000) >> 20u); |
||
7239 | |||
7240 | /* Care taken for table outside boundary */ |
||
7241 | /* Returns zero output when values are outside table boundary */ |
||
7242 | if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
7243 | { |
||
7244 | return (0); |
||
7245 | } |
||
7246 | |||
7247 | /* 20 bits for the fractional part */ |
||
7248 | /* shift left xfract by 11 to keep 1.31 format */ |
||
7249 | xfract = (X & 0x000FFFFF) << 11u; |
||
7250 | |||
7251 | /* Read two nearest output values from the index */ |
||
7252 | x1 = pYData[(rI) + nCols * (cI)]; |
||
7253 | x2 = pYData[(rI) + nCols * (cI) + 1u]; |
||
7254 | |||
7255 | /* 20 bits for the fractional part */ |
||
7256 | /* shift left yfract by 11 to keep 1.31 format */ |
||
7257 | yfract = (Y & 0x000FFFFF) << 11u; |
||
7258 | |||
7259 | /* Read two nearest output values from the index */ |
||
7260 | y1 = pYData[(rI) + nCols * (cI + 1)]; |
||
7261 | y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; |
||
7262 | |||
7263 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ |
||
7264 | out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); |
||
7265 | acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); |
||
7266 | |||
7267 | /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ |
||
7268 | out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); |
||
7269 | acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); |
||
7270 | |||
7271 | /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ |
||
7272 | out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); |
||
7273 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
||
7274 | |||
7275 | /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ |
||
7276 | out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); |
||
7277 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
||
7278 | |||
7279 | /* Convert acc to 1.31(q31) format */ |
||
7280 | return (acc << 2u); |
||
7281 | |||
7282 | } |
||
7283 | |||
7284 | /** |
||
7285 | * @brief Q15 bilinear interpolation. |
||
7286 | * @param[in,out] *S points to an instance of the interpolation structure. |
||
7287 | * @param[in] X interpolation coordinate in 12.20 format. |
||
7288 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
7289 | * @return out interpolated value. |
||
7290 | */ |
||
7291 | |||
7292 | static __INLINE q15_t arm_bilinear_interp_q15( |
||
7293 | arm_bilinear_interp_instance_q15 * S, |
||
7294 | q31_t X, |
||
7295 | q31_t Y) |
||
7296 | { |
||
7297 | q63_t acc = 0; /* output */ |
||
7298 | q31_t out; /* Temporary output */ |
||
7299 | q15_t x1, x2, y1, y2; /* Nearest output values */ |
||
7300 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
7301 | int32_t rI, cI; /* Row and column indices */ |
||
7302 | q15_t *pYData = S->pData; /* pointer to output table values */ |
||
7303 | uint32_t nCols = S->numCols; /* num of rows */ |
||
7304 | |||
7305 | /* Input is in 12.20 format */ |
||
7306 | /* 12 bits for the table index */ |
||
7307 | /* Index value calculation */ |
||
7308 | rI = ((X & 0xFFF00000) >> 20); |
||
7309 | |||
7310 | /* Input is in 12.20 format */ |
||
7311 | /* 12 bits for the table index */ |
||
7312 | /* Index value calculation */ |
||
7313 | cI = ((Y & 0xFFF00000) >> 20); |
||
7314 | |||
7315 | /* Care taken for table outside boundary */ |
||
7316 | /* Returns zero output when values are outside table boundary */ |
||
7317 | if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
7318 | { |
||
7319 | return (0); |
||
7320 | } |
||
7321 | |||
7322 | /* 20 bits for the fractional part */ |
||
7323 | /* xfract should be in 12.20 format */ |
||
7324 | xfract = (X & 0x000FFFFF); |
||
7325 | |||
7326 | /* Read two nearest output values from the index */ |
||
7327 | x1 = pYData[(rI) + nCols * (cI)]; |
||
7328 | x2 = pYData[(rI) + nCols * (cI) + 1u]; |
||
7329 | |||
7330 | |||
7331 | /* 20 bits for the fractional part */ |
||
7332 | /* yfract should be in 12.20 format */ |
||
7333 | yfract = (Y & 0x000FFFFF); |
||
7334 | |||
7335 | /* Read two nearest output values from the index */ |
||
7336 | y1 = pYData[(rI) + nCols * (cI + 1)]; |
||
7337 | y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; |
||
7338 | |||
7339 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ |
||
7340 | |||
7341 | /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ |
||
7342 | /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ |
||
7343 | out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); |
||
7344 | acc = ((q63_t) out * (0xFFFFF - yfract)); |
||
7345 | |||
7346 | /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ |
||
7347 | out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); |
||
7348 | acc += ((q63_t) out * (xfract)); |
||
7349 | |||
7350 | /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ |
||
7351 | out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); |
||
7352 | acc += ((q63_t) out * (yfract)); |
||
7353 | |||
7354 | /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ |
||
7355 | out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); |
||
7356 | acc += ((q63_t) out * (yfract)); |
||
7357 | |||
7358 | /* acc is in 13.51 format and down shift acc by 36 times */ |
||
7359 | /* Convert out to 1.15 format */ |
||
7360 | return (acc >> 36); |
||
7361 | |||
7362 | } |
||
7363 | |||
7364 | /** |
||
7365 | * @brief Q7 bilinear interpolation. |
||
7366 | * @param[in,out] *S points to an instance of the interpolation structure. |
||
7367 | * @param[in] X interpolation coordinate in 12.20 format. |
||
7368 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
7369 | * @return out interpolated value. |
||
7370 | */ |
||
7371 | |||
7372 | static __INLINE q7_t arm_bilinear_interp_q7( |
||
7373 | arm_bilinear_interp_instance_q7 * S, |
||
7374 | q31_t X, |
||
7375 | q31_t Y) |
||
7376 | { |
||
7377 | q63_t acc = 0; /* output */ |
||
7378 | q31_t out; /* Temporary output */ |
||
7379 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
7380 | q7_t x1, x2, y1, y2; /* Nearest output values */ |
||
7381 | int32_t rI, cI; /* Row and column indices */ |
||
7382 | q7_t *pYData = S->pData; /* pointer to output table values */ |
||
7383 | uint32_t nCols = S->numCols; /* num of rows */ |
||
7384 | |||
7385 | /* Input is in 12.20 format */ |
||
7386 | /* 12 bits for the table index */ |
||
7387 | /* Index value calculation */ |
||
7388 | rI = ((X & 0xFFF00000) >> 20); |
||
7389 | |||
7390 | /* Input is in 12.20 format */ |
||
7391 | /* 12 bits for the table index */ |
||
7392 | /* Index value calculation */ |
||
7393 | cI = ((Y & 0xFFF00000) >> 20); |
||
7394 | |||
7395 | /* Care taken for table outside boundary */ |
||
7396 | /* Returns zero output when values are outside table boundary */ |
||
7397 | if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
7398 | { |
||
7399 | return (0); |
||
7400 | } |
||
7401 | |||
7402 | /* 20 bits for the fractional part */ |
||
7403 | /* xfract should be in 12.20 format */ |
||
7404 | xfract = (X & 0x000FFFFF); |
||
7405 | |||
7406 | /* Read two nearest output values from the index */ |
||
7407 | x1 = pYData[(rI) + nCols * (cI)]; |
||
7408 | x2 = pYData[(rI) + nCols * (cI) + 1u]; |
||
7409 | |||
7410 | |||
7411 | /* 20 bits for the fractional part */ |
||
7412 | /* yfract should be in 12.20 format */ |
||
7413 | yfract = (Y & 0x000FFFFF); |
||
7414 | |||
7415 | /* Read two nearest output values from the index */ |
||
7416 | y1 = pYData[(rI) + nCols * (cI + 1)]; |
||
7417 | y2 = pYData[(rI) + nCols * (cI + 1) + 1u]; |
||
7418 | |||
7419 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ |
||
7420 | out = ((x1 * (0xFFFFF - xfract))); |
||
7421 | acc = (((q63_t) out * (0xFFFFF - yfract))); |
||
7422 | |||
7423 | /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ |
||
7424 | out = ((x2 * (0xFFFFF - yfract))); |
||
7425 | acc += (((q63_t) out * (xfract))); |
||
7426 | |||
7427 | /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ |
||
7428 | out = ((y1 * (0xFFFFF - xfract))); |
||
7429 | acc += (((q63_t) out * (yfract))); |
||
7430 | |||
7431 | /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ |
||
7432 | out = ((y2 * (yfract))); |
||
7433 | acc += (((q63_t) out * (xfract))); |
||
7434 | |||
7435 | /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ |
||
7436 | return (acc >> 40); |
||
7437 | |||
7438 | } |
||
7439 | |||
7440 | /** |
||
7441 | * @} end of BilinearInterpolate group |
||
7442 | */ |
||
7443 | |||
7444 | |||
7445 | //SMMLAR |
||
7446 | #define multAcc_32x32_keep32_R(a, x, y) \ |
||
7447 | a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) |
||
7448 | |||
7449 | //SMMLSR |
||
7450 | #define multSub_32x32_keep32_R(a, x, y) \ |
||
7451 | a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) |
||
7452 | |||
7453 | //SMMULR |
||
7454 | #define mult_32x32_keep32_R(a, x, y) \ |
||
7455 | a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) |
||
7456 | |||
7457 | //SMMLA |
||
7458 | #define multAcc_32x32_keep32(a, x, y) \ |
||
7459 | a += (q31_t) (((q63_t) x * y) >> 32) |
||
7460 | |||
7461 | //SMMLS |
||
7462 | #define multSub_32x32_keep32(a, x, y) \ |
||
7463 | a -= (q31_t) (((q63_t) x * y) >> 32) |
||
7464 | |||
7465 | //SMMUL |
||
7466 | #define mult_32x32_keep32(a, x, y) \ |
||
7467 | a = (q31_t) (((q63_t) x * y ) >> 32) |
||
7468 | |||
7469 | |||
7470 | #if defined ( __CC_ARM ) //Keil |
||
7471 | |||
7472 | //Enter low optimization region - place directly above function definition |
||
7473 | #ifdef ARM_MATH_CM4 |
||
7474 | #define LOW_OPTIMIZATION_ENTER \ |
||
7475 | _Pragma ("push") \ |
||
7476 | _Pragma ("O1") |
||
7477 | #else |
||
7478 | #define LOW_OPTIMIZATION_ENTER |
||
7479 | #endif |
||
7480 | |||
7481 | //Exit low optimization region - place directly after end of function definition |
||
7482 | #ifdef ARM_MATH_CM4 |
||
7483 | #define LOW_OPTIMIZATION_EXIT \ |
||
7484 | _Pragma ("pop") |
||
7485 | #else |
||
7486 | #define LOW_OPTIMIZATION_EXIT |
||
7487 | #endif |
||
7488 | |||
7489 | //Enter low optimization region - place directly above function definition |
||
7490 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7491 | |||
7492 | //Exit low optimization region - place directly after end of function definition |
||
7493 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7494 | |||
7495 | #elif defined(__ICCARM__) //IAR |
||
7496 | |||
7497 | //Enter low optimization region - place directly above function definition |
||
7498 | #ifdef ARM_MATH_CM4 |
||
7499 | #define LOW_OPTIMIZATION_ENTER \ |
||
7500 | _Pragma ("optimize=low") |
||
7501 | #else |
||
7502 | #define LOW_OPTIMIZATION_ENTER |
||
7503 | #endif |
||
7504 | |||
7505 | //Exit low optimization region - place directly after end of function definition |
||
7506 | #define LOW_OPTIMIZATION_EXIT |
||
7507 | |||
7508 | //Enter low optimization region - place directly above function definition |
||
7509 | #ifdef ARM_MATH_CM4 |
||
7510 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ |
||
7511 | _Pragma ("optimize=low") |
||
7512 | #else |
||
7513 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7514 | #endif |
||
7515 | |||
7516 | //Exit low optimization region - place directly after end of function definition |
||
7517 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7518 | |||
7519 | #elif defined(__GNUC__) |
||
7520 | |||
7521 | #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) |
||
7522 | |||
7523 | #define LOW_OPTIMIZATION_EXIT |
||
7524 | |||
7525 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7526 | |||
7527 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7528 | |||
7529 | #elif defined(__CSMC__) // Cosmic |
||
7530 | |||
7531 | #define LOW_OPTIMIZATION_ENTER |
||
7532 | #define LOW_OPTIMIZATION_EXIT |
||
7533 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7534 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7535 | |||
7536 | #elif defined(__TASKING__) // TASKING |
||
7537 | |||
7538 | #define LOW_OPTIMIZATION_ENTER |
||
7539 | #define LOW_OPTIMIZATION_EXIT |
||
7540 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7541 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7542 | |||
7543 | #endif |
||
7544 | |||
7545 | |||
7546 | #ifdef __cplusplus |
||
7547 | } |
||
7548 | #endif |
||
7549 | |||
7550 | |||
7551 | #endif /* _ARM_MATH_H */ |
||
7552 | |||
7553 | /** |
||
7554 | * |
||
7555 | * End of file. |
||
7556 | */ |