Subversion Repositories DashDisplay

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------
2
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3
*
4
* $Date:        19. March 2015
5
* $Revision:    V.1.4.5
6
*
7
* Project:          CMSIS DSP Library
8
* Title:            arm_rfft_f32.c
9
*
10
* Description:  RFFT & RIFFT Floating point process function
11
*
12
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13
*
14
* Redistribution and use in source and binary forms, with or without
15
* modification, are permitted provided that the following conditions
16
* are met:
17
*   - Redistributions of source code must retain the above copyright
18
*     notice, this list of conditions and the following disclaimer.
19
*   - Redistributions in binary form must reproduce the above copyright
20
*     notice, this list of conditions and the following disclaimer in
21
*     the documentation and/or other materials provided with the
22
*     distribution.
23
*   - Neither the name of ARM LIMITED nor the names of its contributors
24
*     may be used to endorse or promote products derived from this
25
*     software without specific prior written permission.
26
*
27
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38
* POSSIBILITY OF SUCH DAMAGE.
39
* -------------------------------------------------------------------- */
40
 
41
#include "arm_math.h"
42
 
43
void stage_rfft_f32(
44
  arm_rfft_fast_instance_f32 * S,
45
  float32_t * p, float32_t * pOut)
46
{
47
   uint32_t  k;                                                            /* Loop Counter                     */
48
   float32_t twR, twI;                                             /* RFFT Twiddle coefficients        */
49
   float32_t * pCoeff = S->pTwiddleRFFT;  /* Points to RFFT Twiddle factors   */
50
   float32_t *pA = p;                                              /* increasing pointer               */
51
   float32_t *pB = p;                                              /* decreasing pointer               */
52
   float32_t xAR, xAI, xBR, xBI;                                /* temporary variables              */
53
   float32_t t1a, t1b;                                   /* temporary variables              */
54
   float32_t p0, p1, p2, p3;                               /* temporary variables              */
55
 
56
 
57
   k = (S->Sint).fftLen - 1;                                   
58
 
59
   /* Pack first and last sample of the frequency domain together */
60
 
61
   xBR = pB[0];
62
   xBI = pB[1];
63
   xAR = pA[0];
64
   xAI = pA[1];
65
 
66
   twR = *pCoeff++ ;
67
   twI = *pCoeff++ ;
68
 
69
   // U1 = XA(1) + XB(1); % It is real
70
   t1a = xBR + xAR  ;
71
 
72
   // U2 = XB(1) - XA(1); % It is imaginary
73
   t1b = xBI + xAI  ;
74
 
75
   // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
76
   // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
77
   *pOut++ = 0.5f * ( t1a + t1b );
78
   *pOut++ = 0.5f * ( t1a - t1b );
79
 
80
   // XA(1) = 1/2*( U1 - imag(U2) +  i*( U1 +imag(U2) ));
81
   pB  = p + 2*k;
82
   pA += 2;
83
 
84
   do
85
   {
86
      /*
87
         function X = my_split_rfft(X, ifftFlag)
88
         % X is a series of real numbers
89
         L  = length(X);
90
         XC = X(1:2:end) +i*X(2:2:end);
91
         XA = fft(XC);
92
         XB = conj(XA([1 end:-1:2]));
93
         TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
94
         for l = 2:L/2
95
            XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
96
         end
97
         XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
98
         X = XA;
99
      */
100
 
101
      xBI = pB[1];
102
      xBR = pB[0];
103
      xAR = pA[0];
104
      xAI = pA[1];
105
 
106
      twR = *pCoeff++;
107
      twI = *pCoeff++;
108
 
109
      t1a = xBR - xAR ;
110
      t1b = xBI + xAI ;
111
 
112
      // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
113
      // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
114
      p0 = twR * t1a;
115
      p1 = twI * t1a;
116
      p2 = twR * t1b;
117
      p3 = twI * t1b;
118
 
119
      *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR
120
      *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI
121
 
122
      pA += 2;
123
      pB -= 2;
124
      k--;
125
   } while(k > 0u);
126
}
127
 
128
/* Prepares data for inverse cfft */
129
void merge_rfft_f32(
130
arm_rfft_fast_instance_f32 * S,
131
float32_t * p, float32_t * pOut)
132
{
133
   uint32_t  k;                                                         /* Loop Counter                     */
134
   float32_t twR, twI;                                          /* RFFT Twiddle coefficients        */
135
   float32_t *pCoeff = S->pTwiddleRFFT;         /* Points to RFFT Twiddle factors   */
136
   float32_t *pA = p;                                           /* increasing pointer               */
137
   float32_t *pB = p;                                           /* decreasing pointer               */
138
   float32_t xAR, xAI, xBR, xBI;                        /* temporary variables              */
139
   float32_t t1a, t1b, r, s, t, u;                      /* temporary variables              */
140
 
141
   k = (S->Sint).fftLen - 1;                                   
142
 
143
   xAR = pA[0];
144
   xAI = pA[1];
145
 
146
   pCoeff += 2 ;
147
 
148
   *pOut++ = 0.5f * ( xAR + xAI );
149
   *pOut++ = 0.5f * ( xAR - xAI );
150
 
151
   pB  =  p + 2*k ;
152
   pA +=  2        ;
153
 
154
   while(k > 0u)
155
   {
156
      /* G is half of the frequency complex spectrum */
157
      //for k = 2:N
158
      //    Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
159
      xBI =   pB[1]    ;
160
      xBR =   pB[0]    ;
161
      xAR =  pA[0];
162
      xAI =  pA[1];
163
 
164
      twR = *pCoeff++;
165
      twI = *pCoeff++;
166
 
167
      t1a = xAR - xBR ;
168
      t1b = xAI + xBI ;
169
 
170
      r = twR * t1a;
171
      s = twI * t1b;
172
      t = twI * t1a;
173
      u = twR * t1b;
174
 
175
      // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);
176
      // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);
177
      *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR
178
      *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI
179
 
180
      pA += 2;
181
      pB -= 2;
182
      k--;
183
   }
184
 
185
}
186
 
187
/**
188
* @ingroup groupTransforms
189
*/
190
 
191
/**
192
 * @defgroup Fast Real FFT Functions
193
 *
194
 * \par
195
 * The CMSIS DSP library includes specialized algorithms for computing the
196
 * FFT of real data sequences.  The FFT is defined over complex data but
197
 * in many applications the input is real.  Real FFT algorithms take advantage
198
 * of the symmetry properties of the FFT and have a speed advantage over complex
199
 * algorithms of the same length.
200
 * \par
201
 * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage.
202
 * \par
203
 * The real length N forward FFT of a sequence is computed using the steps shown below.
204
 * \par
205
 * \image html RFFT.gif "Real Fast Fourier Transform"
206
 * \par
207
 * The real sequence is initially treated as if it were complex to perform a CFFT.
208
 * Later, a processing stage reshapes the data to obtain half of the frequency spectrum
209
 * in complex format. Except the first complex number that contains the two real numbers
210
 * X[0] and X[N/2] all the data is complex. In other words, the first complex sample
211
 * contains two real values packed.
212
 * \par
213
 * The input for the inverse RFFT should keep the same format as the output of the
214
 * forward RFFT. A first processing stage pre-process the data to later perform an
215
 * inverse CFFT.
216
 * \par    
217
 * \image html RIFFT.gif "Real Inverse Fast Fourier Transform"    
218
 * \par    
219
 * The algorithms for floating-point, Q15, and Q31 data are slightly different
220
 * and we describe each algorithm in turn.
221
 * \par Floating-point
222
 * The main functions are <code>arm_rfft_fast_f32()</code>
223
 * and <code>arm_rfft_fast_init_f32()</code>.  The older functions
224
 * <code>arm_rfft_f32()</code> and <code>arm_rfft_init_f32()</code> have been
225
 * deprecated but are still documented.
226
 * \par
227
 * The FFT of a real N-point sequence has even symmetry in the frequency
228
 * domain.  The second half of the data equals the conjugate of the first half
229
 * flipped in frequency:
230
 * <pre>
231
 *X[0] - real data
232
 *X[1] - complex data
233
 *X[2] - complex data
234
 *...
235
 *X[fftLen/2-1] - complex data
236
 *X[fftLen/2] - real data
237
 *X[fftLen/2+1] - conjugate of X[fftLen/2-1]
238
 *X[fftLen/2+2] - conjugate of X[fftLen/2-2]
239
 *...
240
 *X[fftLen-1] - conjugate of X[1]
241
 * </pre>
242
 * Looking at the data, we see that we can uniquely represent the FFT using only
243
 * <pre>
244
 *N/2+1 samples:
245
 *X[0] - real data
246
 *X[1] - complex data
247
 *X[2] - complex data
248
 *...
249
 *X[fftLen/2-1] - complex data
250
 *X[fftLen/2] - real data
251
 * </pre>
252
 * Looking more closely we see that the first and last samples are real valued.
253
 * They can be packed together and we can thus represent the FFT of an N-point
254
 * real sequence by N/2 complex values:
255
 * <pre>
256
 *X[0],X[N/2] - packed real data: X[0] + jX[N/2]
257
 *X[1] - complex data
258
 *X[2] - complex data
259
 *...
260
 *X[fftLen/2-1] - complex data
261
 * </pre>
262
 * The real FFT functions pack the frequency domain data in this fashion.  The
263
 * forward transform outputs the data in this form and the inverse transform
264
 * expects input data in this form.  The function always performs the needed
265
 * bitreversal so that the input and output data is always in normal order.  The
266
 * functions support lengths of [32, 64, 128, ..., 4096] samples.
267
 * \par
268
 * The forward and inverse real FFT functions apply the standard FFT scaling; no
269
 * scaling on the forward transform and 1/fftLen scaling on the inverse
270
 * transform.
271
 * \par Q15 and Q31
272
 * The real algorithms are defined in a similar manner and utilize N/2 complex
273
 * transforms behind the scenes.  
274
 * \par
275
 * The complex transforms used internally include scaling to prevent fixed-point
276
 * overflows.  The overall scaling equals 1/(fftLen/2).
277
 * \par
278
 * A separate instance structure must be defined for each transform used but
279
 * twiddle factor and bit reversal tables can be reused.
280
 * \par
281
 * There is also an associated initialization function for each data type.
282
 * The initialization function performs the following operations:
283
 * - Sets the values of the internal structure fields.  
284
 * - Initializes twiddle factor table and bit reversal table pointers.
285
 * - Initializes the internal complex FFT data structure.
286
 * \par  
287
 * Use of the initialization function is optional.  
288
 * However, if the initialization function is used, then the instance structure
289
 * cannot be placed into a const data section. To place an instance structure
290
 * into a const data section, the instance structure should be manually
291
 * initialized as follows:
292
 * <pre>
293
 *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};    
294
 *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};    
295
 * </pre>
296
 * where <code>fftLenReal</code> is the length of the real transform;
297
 * <code>fftLenBy2</code> length of  the internal complex transform.
298
 * <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform.
299
 * <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order
300
 * output (=1).
301
 * <code>twidCoefRModifier</code> stride modifier for the twiddle factor table.
302
 * The value is based on the FFT length;
303
 * <code>pTwiddleAReal</code>points to the A array of twiddle coefficients;
304
 * <code>pTwiddleBReal</code>points to the B array of twiddle coefficients;    
305
 * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure
306
 * must also be initialized.  Refer to arm_cfft_radix4_f32() for details regarding    
307
 * static initialization of the complex FFT instance structure.    
308
 */
309
 
310
/**
311
* @addtogroup RealFFT
312
* @{
313
*/
314
 
315
/**
316
* @brief Processing function for the floating-point real FFT.
317
* @param[in]  *S              points to an arm_rfft_fast_instance_f32 structure.
318
* @param[in]  *p              points to the input buffer.
319
* @param[in]  *pOut           points to the output buffer.
320
* @param[in]  ifftFlag        RFFT if flag is 0, RIFFT if flag is 1
321
* @return none.
322
*/
323
 
324
void arm_rfft_fast_f32(
325
arm_rfft_fast_instance_f32 * S,
326
float32_t * p, float32_t * pOut,
327
uint8_t ifftFlag)
328
{
329
   arm_cfft_instance_f32 * Sint = &(S->Sint);
330
   Sint->fftLen = S->fftLenRFFT / 2;
331
 
332
   /* Calculation of Real FFT */
333
   if(ifftFlag)
334
   {
335
      /*  Real FFT compression */
336
      merge_rfft_f32(S, p, pOut);
337
 
338
      /* Complex radix-4 IFFT process */
339
      arm_cfft_f32( Sint, pOut, ifftFlag, 1);
340
   }
341
   else
342
   {
343
      /* Calculation of RFFT of input */
344
      arm_cfft_f32( Sint, p, ifftFlag, 1);
345
 
346
      /*  Real FFT extraction */
347
      stage_rfft_f32(S, p, pOut);
348
   }
349
}
350
 
351
/**    
352
* @} end of RealFFT group    
353
*/