Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | /* ---------------------------------------------------------------------- |
| 2 | * Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
||
| 3 | * |
||
| 4 | * $Date: 19. March 2015 |
||
| 5 | * $Revision: V.1.4.5 |
||
| 6 | * |
||
| 7 | * Project: CMSIS DSP Library |
||
| 8 | * Title: arm_rfft_f32.c |
||
| 9 | * |
||
| 10 | * Description: RFFT & RIFFT Floating point process function |
||
| 11 | * |
||
| 12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
||
| 13 | * |
||
| 14 | * Redistribution and use in source and binary forms, with or without |
||
| 15 | * modification, are permitted provided that the following conditions |
||
| 16 | * are met: |
||
| 17 | * - Redistributions of source code must retain the above copyright |
||
| 18 | * notice, this list of conditions and the following disclaimer. |
||
| 19 | * - Redistributions in binary form must reproduce the above copyright |
||
| 20 | * notice, this list of conditions and the following disclaimer in |
||
| 21 | * the documentation and/or other materials provided with the |
||
| 22 | * distribution. |
||
| 23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
| 24 | * may be used to endorse or promote products derived from this |
||
| 25 | * software without specific prior written permission. |
||
| 26 | * |
||
| 27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
| 28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
| 29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
| 30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
| 31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
| 33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
| 34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
| 35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
| 36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
| 37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
| 38 | * POSSIBILITY OF SUCH DAMAGE. |
||
| 39 | * -------------------------------------------------------------------- */ |
||
| 40 | |||
| 41 | #include "arm_math.h" |
||
| 42 | |||
| 43 | void stage_rfft_f32( |
||
| 44 | arm_rfft_fast_instance_f32 * S, |
||
| 45 | float32_t * p, float32_t * pOut) |
||
| 46 | { |
||
| 47 | uint32_t k; /* Loop Counter */ |
||
| 48 | float32_t twR, twI; /* RFFT Twiddle coefficients */ |
||
| 49 | float32_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ |
||
| 50 | float32_t *pA = p; /* increasing pointer */ |
||
| 51 | float32_t *pB = p; /* decreasing pointer */ |
||
| 52 | float32_t xAR, xAI, xBR, xBI; /* temporary variables */ |
||
| 53 | float32_t t1a, t1b; /* temporary variables */ |
||
| 54 | float32_t p0, p1, p2, p3; /* temporary variables */ |
||
| 55 | |||
| 56 | |||
| 57 | k = (S->Sint).fftLen - 1; |
||
| 58 | |||
| 59 | /* Pack first and last sample of the frequency domain together */ |
||
| 60 | |||
| 61 | xBR = pB[0]; |
||
| 62 | xBI = pB[1]; |
||
| 63 | xAR = pA[0]; |
||
| 64 | xAI = pA[1]; |
||
| 65 | |||
| 66 | twR = *pCoeff++ ; |
||
| 67 | twI = *pCoeff++ ; |
||
| 68 | |||
| 69 | // U1 = XA(1) + XB(1); % It is real |
||
| 70 | t1a = xBR + xAR ; |
||
| 71 | |||
| 72 | // U2 = XB(1) - XA(1); % It is imaginary |
||
| 73 | t1b = xBI + xAI ; |
||
| 74 | |||
| 75 | // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); |
||
| 76 | // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); |
||
| 77 | *pOut++ = 0.5f * ( t1a + t1b ); |
||
| 78 | *pOut++ = 0.5f * ( t1a - t1b ); |
||
| 79 | |||
| 80 | // XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) )); |
||
| 81 | pB = p + 2*k; |
||
| 82 | pA += 2; |
||
| 83 | |||
| 84 | do |
||
| 85 | { |
||
| 86 | /* |
||
| 87 | function X = my_split_rfft(X, ifftFlag) |
||
| 88 | % X is a series of real numbers |
||
| 89 | L = length(X); |
||
| 90 | XC = X(1:2:end) +i*X(2:2:end); |
||
| 91 | XA = fft(XC); |
||
| 92 | XB = conj(XA([1 end:-1:2])); |
||
| 93 | TW = i*exp(-2*pi*i*[0:L/2-1]/L).'; |
||
| 94 | for l = 2:L/2 |
||
| 95 | XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l))); |
||
| 96 | end |
||
| 97 | XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1)))); |
||
| 98 | X = XA; |
||
| 99 | */ |
||
| 100 | |||
| 101 | xBI = pB[1]; |
||
| 102 | xBR = pB[0]; |
||
| 103 | xAR = pA[0]; |
||
| 104 | xAI = pA[1]; |
||
| 105 | |||
| 106 | twR = *pCoeff++; |
||
| 107 | twI = *pCoeff++; |
||
| 108 | |||
| 109 | t1a = xBR - xAR ; |
||
| 110 | t1b = xBI + xAI ; |
||
| 111 | |||
| 112 | // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); |
||
| 113 | // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); |
||
| 114 | p0 = twR * t1a; |
||
| 115 | p1 = twI * t1a; |
||
| 116 | p2 = twR * t1b; |
||
| 117 | p3 = twI * t1b; |
||
| 118 | |||
| 119 | *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR |
||
| 120 | *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI |
||
| 121 | |||
| 122 | pA += 2; |
||
| 123 | pB -= 2; |
||
| 124 | k--; |
||
| 125 | } while(k > 0u); |
||
| 126 | } |
||
| 127 | |||
| 128 | /* Prepares data for inverse cfft */ |
||
| 129 | void merge_rfft_f32( |
||
| 130 | arm_rfft_fast_instance_f32 * S, |
||
| 131 | float32_t * p, float32_t * pOut) |
||
| 132 | { |
||
| 133 | uint32_t k; /* Loop Counter */ |
||
| 134 | float32_t twR, twI; /* RFFT Twiddle coefficients */ |
||
| 135 | float32_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ |
||
| 136 | float32_t *pA = p; /* increasing pointer */ |
||
| 137 | float32_t *pB = p; /* decreasing pointer */ |
||
| 138 | float32_t xAR, xAI, xBR, xBI; /* temporary variables */ |
||
| 139 | float32_t t1a, t1b, r, s, t, u; /* temporary variables */ |
||
| 140 | |||
| 141 | k = (S->Sint).fftLen - 1; |
||
| 142 | |||
| 143 | xAR = pA[0]; |
||
| 144 | xAI = pA[1]; |
||
| 145 | |||
| 146 | pCoeff += 2 ; |
||
| 147 | |||
| 148 | *pOut++ = 0.5f * ( xAR + xAI ); |
||
| 149 | *pOut++ = 0.5f * ( xAR - xAI ); |
||
| 150 | |||
| 151 | pB = p + 2*k ; |
||
| 152 | pA += 2 ; |
||
| 153 | |||
| 154 | while(k > 0u) |
||
| 155 | { |
||
| 156 | /* G is half of the frequency complex spectrum */ |
||
| 157 | //for k = 2:N |
||
| 158 | // Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2)))); |
||
| 159 | xBI = pB[1] ; |
||
| 160 | xBR = pB[0] ; |
||
| 161 | xAR = pA[0]; |
||
| 162 | xAI = pA[1]; |
||
| 163 | |||
| 164 | twR = *pCoeff++; |
||
| 165 | twI = *pCoeff++; |
||
| 166 | |||
| 167 | t1a = xAR - xBR ; |
||
| 168 | t1b = xAI + xBI ; |
||
| 169 | |||
| 170 | r = twR * t1a; |
||
| 171 | s = twI * t1b; |
||
| 172 | t = twI * t1a; |
||
| 173 | u = twR * t1b; |
||
| 174 | |||
| 175 | // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI); |
||
| 176 | // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI); |
||
| 177 | *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR |
||
| 178 | *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI |
||
| 179 | |||
| 180 | pA += 2; |
||
| 181 | pB -= 2; |
||
| 182 | k--; |
||
| 183 | } |
||
| 184 | |||
| 185 | } |
||
| 186 | |||
| 187 | /** |
||
| 188 | * @ingroup groupTransforms |
||
| 189 | */ |
||
| 190 | |||
| 191 | /** |
||
| 192 | * @defgroup Fast Real FFT Functions |
||
| 193 | * |
||
| 194 | * \par |
||
| 195 | * The CMSIS DSP library includes specialized algorithms for computing the |
||
| 196 | * FFT of real data sequences. The FFT is defined over complex data but |
||
| 197 | * in many applications the input is real. Real FFT algorithms take advantage |
||
| 198 | * of the symmetry properties of the FFT and have a speed advantage over complex |
||
| 199 | * algorithms of the same length. |
||
| 200 | * \par |
||
| 201 | * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage. |
||
| 202 | * \par |
||
| 203 | * The real length N forward FFT of a sequence is computed using the steps shown below. |
||
| 204 | * \par |
||
| 205 | * \image html RFFT.gif "Real Fast Fourier Transform" |
||
| 206 | * \par |
||
| 207 | * The real sequence is initially treated as if it were complex to perform a CFFT. |
||
| 208 | * Later, a processing stage reshapes the data to obtain half of the frequency spectrum |
||
| 209 | * in complex format. Except the first complex number that contains the two real numbers |
||
| 210 | * X[0] and X[N/2] all the data is complex. In other words, the first complex sample |
||
| 211 | * contains two real values packed. |
||
| 212 | * \par |
||
| 213 | * The input for the inverse RFFT should keep the same format as the output of the |
||
| 214 | * forward RFFT. A first processing stage pre-process the data to later perform an |
||
| 215 | * inverse CFFT. |
||
| 216 | * \par |
||
| 217 | * \image html RIFFT.gif "Real Inverse Fast Fourier Transform" |
||
| 218 | * \par |
||
| 219 | * The algorithms for floating-point, Q15, and Q31 data are slightly different |
||
| 220 | * and we describe each algorithm in turn. |
||
| 221 | * \par Floating-point |
||
| 222 | * The main functions are <code>arm_rfft_fast_f32()</code> |
||
| 223 | * and <code>arm_rfft_fast_init_f32()</code>. The older functions |
||
| 224 | * <code>arm_rfft_f32()</code> and <code>arm_rfft_init_f32()</code> have been |
||
| 225 | * deprecated but are still documented. |
||
| 226 | * \par |
||
| 227 | * The FFT of a real N-point sequence has even symmetry in the frequency |
||
| 228 | * domain. The second half of the data equals the conjugate of the first half |
||
| 229 | * flipped in frequency: |
||
| 230 | * <pre> |
||
| 231 | *X[0] - real data |
||
| 232 | *X[1] - complex data |
||
| 233 | *X[2] - complex data |
||
| 234 | *... |
||
| 235 | *X[fftLen/2-1] - complex data |
||
| 236 | *X[fftLen/2] - real data |
||
| 237 | *X[fftLen/2+1] - conjugate of X[fftLen/2-1] |
||
| 238 | *X[fftLen/2+2] - conjugate of X[fftLen/2-2] |
||
| 239 | *... |
||
| 240 | *X[fftLen-1] - conjugate of X[1] |
||
| 241 | * </pre> |
||
| 242 | * Looking at the data, we see that we can uniquely represent the FFT using only |
||
| 243 | * <pre> |
||
| 244 | *N/2+1 samples: |
||
| 245 | *X[0] - real data |
||
| 246 | *X[1] - complex data |
||
| 247 | *X[2] - complex data |
||
| 248 | *... |
||
| 249 | *X[fftLen/2-1] - complex data |
||
| 250 | *X[fftLen/2] - real data |
||
| 251 | * </pre> |
||
| 252 | * Looking more closely we see that the first and last samples are real valued. |
||
| 253 | * They can be packed together and we can thus represent the FFT of an N-point |
||
| 254 | * real sequence by N/2 complex values: |
||
| 255 | * <pre> |
||
| 256 | *X[0],X[N/2] - packed real data: X[0] + jX[N/2] |
||
| 257 | *X[1] - complex data |
||
| 258 | *X[2] - complex data |
||
| 259 | *... |
||
| 260 | *X[fftLen/2-1] - complex data |
||
| 261 | * </pre> |
||
| 262 | * The real FFT functions pack the frequency domain data in this fashion. The |
||
| 263 | * forward transform outputs the data in this form and the inverse transform |
||
| 264 | * expects input data in this form. The function always performs the needed |
||
| 265 | * bitreversal so that the input and output data is always in normal order. The |
||
| 266 | * functions support lengths of [32, 64, 128, ..., 4096] samples. |
||
| 267 | * \par |
||
| 268 | * The forward and inverse real FFT functions apply the standard FFT scaling; no |
||
| 269 | * scaling on the forward transform and 1/fftLen scaling on the inverse |
||
| 270 | * transform. |
||
| 271 | * \par Q15 and Q31 |
||
| 272 | * The real algorithms are defined in a similar manner and utilize N/2 complex |
||
| 273 | * transforms behind the scenes. |
||
| 274 | * \par |
||
| 275 | * The complex transforms used internally include scaling to prevent fixed-point |
||
| 276 | * overflows. The overall scaling equals 1/(fftLen/2). |
||
| 277 | * \par |
||
| 278 | * A separate instance structure must be defined for each transform used but |
||
| 279 | * twiddle factor and bit reversal tables can be reused. |
||
| 280 | * \par |
||
| 281 | * There is also an associated initialization function for each data type. |
||
| 282 | * The initialization function performs the following operations: |
||
| 283 | * - Sets the values of the internal structure fields. |
||
| 284 | * - Initializes twiddle factor table and bit reversal table pointers. |
||
| 285 | * - Initializes the internal complex FFT data structure. |
||
| 286 | * \par |
||
| 287 | * Use of the initialization function is optional. |
||
| 288 | * However, if the initialization function is used, then the instance structure |
||
| 289 | * cannot be placed into a const data section. To place an instance structure |
||
| 290 | * into a const data section, the instance structure should be manually |
||
| 291 | * initialized as follows: |
||
| 292 | * <pre> |
||
| 293 | *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; |
||
| 294 | *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; |
||
| 295 | * </pre> |
||
| 296 | * where <code>fftLenReal</code> is the length of the real transform; |
||
| 297 | * <code>fftLenBy2</code> length of the internal complex transform. |
||
| 298 | * <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform. |
||
| 299 | * <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order |
||
| 300 | * output (=1). |
||
| 301 | * <code>twidCoefRModifier</code> stride modifier for the twiddle factor table. |
||
| 302 | * The value is based on the FFT length; |
||
| 303 | * <code>pTwiddleAReal</code>points to the A array of twiddle coefficients; |
||
| 304 | * <code>pTwiddleBReal</code>points to the B array of twiddle coefficients; |
||
| 305 | * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure |
||
| 306 | * must also be initialized. Refer to arm_cfft_radix4_f32() for details regarding |
||
| 307 | * static initialization of the complex FFT instance structure. |
||
| 308 | */ |
||
| 309 | |||
| 310 | /** |
||
| 311 | * @addtogroup RealFFT |
||
| 312 | * @{ |
||
| 313 | */ |
||
| 314 | |||
| 315 | /** |
||
| 316 | * @brief Processing function for the floating-point real FFT. |
||
| 317 | * @param[in] *S points to an arm_rfft_fast_instance_f32 structure. |
||
| 318 | * @param[in] *p points to the input buffer. |
||
| 319 | * @param[in] *pOut points to the output buffer. |
||
| 320 | * @param[in] ifftFlag RFFT if flag is 0, RIFFT if flag is 1 |
||
| 321 | * @return none. |
||
| 322 | */ |
||
| 323 | |||
| 324 | void arm_rfft_fast_f32( |
||
| 325 | arm_rfft_fast_instance_f32 * S, |
||
| 326 | float32_t * p, float32_t * pOut, |
||
| 327 | uint8_t ifftFlag) |
||
| 328 | { |
||
| 329 | arm_cfft_instance_f32 * Sint = &(S->Sint); |
||
| 330 | Sint->fftLen = S->fftLenRFFT / 2; |
||
| 331 | |||
| 332 | /* Calculation of Real FFT */ |
||
| 333 | if(ifftFlag) |
||
| 334 | { |
||
| 335 | /* Real FFT compression */ |
||
| 336 | merge_rfft_f32(S, p, pOut); |
||
| 337 | |||
| 338 | /* Complex radix-4 IFFT process */ |
||
| 339 | arm_cfft_f32( Sint, pOut, ifftFlag, 1); |
||
| 340 | } |
||
| 341 | else |
||
| 342 | { |
||
| 343 | /* Calculation of RFFT of input */ |
||
| 344 | arm_cfft_f32( Sint, p, ifftFlag, 1); |
||
| 345 | |||
| 346 | /* Real FFT extraction */ |
||
| 347 | stage_rfft_f32(S, p, pOut); |
||
| 348 | } |
||
| 349 | } |
||
| 350 | |||
| 351 | /** |
||
| 352 | * @} end of RealFFT group |
||
| 353 | */ |