Subversion Repositories DashDisplay

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------    
2
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
3
*    
4
* $Date:        19. March 2015
5
* $Revision:    V.1.4.5  
6
*    
7
* Project:          CMSIS DSP Library    
8
* Title:            arm_cfft_radix8_f32.c    
9
*    
10
* Description:  Radix-8 Decimation in Frequency CFFT & CIFFT Floating point processing function        
11
*    
12
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13
*  
14
* Redistribution and use in source and binary forms, with or without
15
* modification, are permitted provided that the following conditions
16
* are met:
17
*   - Redistributions of source code must retain the above copyright
18
*     notice, this list of conditions and the following disclaimer.
19
*   - Redistributions in binary form must reproduce the above copyright
20
*     notice, this list of conditions and the following disclaimer in
21
*     the documentation and/or other materials provided with the
22
*     distribution.
23
*   - Neither the name of ARM LIMITED nor the names of its contributors
24
*     may be used to endorse or promote products derived from this
25
*     software without specific prior written permission.
26
*
27
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38
* POSSIBILITY OF SUCH DAMAGE.      
39
* -------------------------------------------------------------------- */
40
 
41
#include "arm_math.h"
42
 
43
/**    
44
* @ingroup groupTransforms    
45
*/
46
 
47
/**    
48
* @defgroup Radix8_CFFT_CIFFT Radix-8 Complex FFT Functions    
49
*    
50
* \par    
51
* Complex Fast Fourier Transform(CFFT) and Complex Inverse Fast Fourier Transform(CIFFT) is an efficient algorithm to compute Discrete Fourier Transform(DFT) and Inverse Discrete Fourier Transform(IDFT).    
52
* Computational complexity of CFFT reduces drastically when compared to DFT.    
53
* \par    
54
* This set of functions implements CFFT/CIFFT    
55
* for floating-point data types.  The functions operates on in-place buffer which uses same buffer for input and output.    
56
* Complex input is stored in input buffer in an interleaved fashion.    
57
*    
58
* \par    
59
* The functions operate on blocks of input and output data and each call to the function processes    
60
* <code>2*fftLen</code> samples through the transform.  <code>pSrc</code>  points to In-place arrays containing <code>2*fftLen</code> values.    
61
* \par  
62
* The <code>pSrc</code> points to the array of in-place buffer of size <code>2*fftLen</code> and inputs and outputs are stored in an interleaved fashion as shown below.    
63
* <pre> {real[0], imag[0], real[1], imag[1],..} </pre>    
64
*    
65
* \par Lengths supported by the transform:  
66
* \par    
67
* Internally, the function utilize a Radix-8 decimation in frequency(DIF) algorithm    
68
* and the size of the FFT supported are of the lengths [ 64, 512, 4096].  
69
*    
70
*    
71
* \par Algorithm:    
72
*    
73
* <b>Complex Fast Fourier Transform:</b>    
74
* \par    
75
* Input real and imaginary data:    
76
* <pre>    
77
* x(n) = xa + j * ya    
78
* x(n+N/4 ) = xb + j * yb    
79
* x(n+N/2 ) = xc + j * yc    
80
* x(n+3N 4) = xd + j * yd    
81
* </pre>    
82
* where N is length of FFT    
83
* \par    
84
* Output real and imaginary data:    
85
* <pre>    
86
* X(4r) = xa'+ j * ya'    
87
* X(4r+1) = xb'+ j * yb'    
88
* X(4r+2) = xc'+ j * yc'    
89
* X(4r+3) = xd'+ j * yd'    
90
* </pre>    
91
* \par    
92
* Twiddle factors for Radix-8 FFT:    
93
* <pre>    
94
* Wn = co1 + j * (- si1)    
95
* W2n = co2 + j * (- si2)    
96
* W3n = co3 + j * (- si3)    
97
* </pre>    
98
*    
99
* \par    
100
* \image html CFFT.gif "Radix-8 Decimation-in Frequency Complex Fast Fourier Transform"    
101
*    
102
* \par    
103
* Output from Radix-8 CFFT Results in Digit reversal order. Interchange middle two branches of every butterfly results in Bit reversed output.    
104
* \par    
105
* <b> Butterfly CFFT equations:</b>    
106
* <pre>    
107
* xa' = xa + xb + xc + xd    
108
* ya' = ya + yb + yc + yd    
109
* xc' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1)    
110
* yc' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1)    
111
* xb' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2)    
112
* yb' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2)    
113
* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3)    
114
* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3)    
115
* </pre>    
116
*    
117
* \par    
118
* where <code>fftLen</code> length of CFFT/CIFFT; <code>ifftFlag</code> Flag for selection of CFFT or CIFFT(Set ifftFlag to calculate CIFFT otherwise calculates CFFT);    
119
* <code>bitReverseFlag</code> Flag for selection of output order(Set bitReverseFlag to output in normal order otherwise output in bit reversed order);    
120
* <code>pTwiddle</code>points to array of twiddle coefficients; <code>pBitRevTable</code> points to the array of bit reversal table.    
121
* <code>twidCoefModifier</code> modifier for twiddle factor table which supports all FFT lengths with same table;    
122
* <code>pBitRevTable</code> modifier for bit reversal table which supports all FFT lengths with same table.    
123
* <code>onebyfftLen</code> value of 1/fftLen to calculate CIFFT;    
124
*  
125
* \par Fixed-Point Behavior    
126
* Care must be taken when using the fixed-point versions of the CFFT/CIFFT function.    
127
* Refer to the function specific documentation below for usage guidelines.    
128
*/
129
 
130
 
131
/*    
132
* @brief  Core function for the floating-point CFFT butterfly process.  
133
* @param[in, out] *pSrc            points to the in-place buffer of floating-point data type.  
134
* @param[in]      fftLen           length of the FFT.  
135
* @param[in]      *pCoef           points to the twiddle coefficient buffer.  
136
* @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.  
137
* @return none.  
138
*/
139
 
140
void arm_radix8_butterfly_f32(
141
float32_t * pSrc,
142
uint16_t fftLen,
143
const float32_t * pCoef,
144
uint16_t twidCoefModifier)
145
{
146
   uint32_t ia1, ia2, ia3, ia4, ia5, ia6, ia7;
147
   uint32_t i1, i2, i3, i4, i5, i6, i7, i8;
148
   uint32_t id;
149
   uint32_t n1, n2, j;
150
 
151
   float32_t r1, r2, r3, r4, r5, r6, r7, r8;
152
   float32_t t1, t2;
153
   float32_t s1, s2, s3, s4, s5, s6, s7, s8;
154
   float32_t p1, p2, p3, p4;
155
   float32_t co2, co3, co4, co5, co6, co7, co8;
156
   float32_t si2, si3, si4, si5, si6, si7, si8;
157
   const float32_t C81 = 0.70710678118f;
158
 
159
   n2 = fftLen;
160
 
161
   do
162
   {
163
      n1 = n2;
164
      n2 = n2 >> 3;
165
      i1 = 0;
166
 
167
      do
168
      {
169
         i2 = i1 + n2;
170
         i3 = i2 + n2;
171
         i4 = i3 + n2;
172
         i5 = i4 + n2;
173
         i6 = i5 + n2;
174
         i7 = i6 + n2;
175
         i8 = i7 + n2;
176
         r1 = pSrc[2 * i1] + pSrc[2 * i5];
177
         r5 = pSrc[2 * i1] - pSrc[2 * i5];
178
         r2 = pSrc[2 * i2] + pSrc[2 * i6];
179
         r6 = pSrc[2 * i2] - pSrc[2 * i6];
180
         r3 = pSrc[2 * i3] + pSrc[2 * i7];
181
         r7 = pSrc[2 * i3] - pSrc[2 * i7];
182
         r4 = pSrc[2 * i4] + pSrc[2 * i8];
183
         r8 = pSrc[2 * i4] - pSrc[2 * i8];
184
         t1 = r1 - r3;
185
         r1 = r1 + r3;
186
         r3 = r2 - r4;
187
         r2 = r2 + r4;
188
         pSrc[2 * i1] = r1 + r2;  
189
         pSrc[2 * i5] = r1 - r2;
190
         r1 = pSrc[2 * i1 + 1] + pSrc[2 * i5 + 1];
191
         s5 = pSrc[2 * i1 + 1] - pSrc[2 * i5 + 1];
192
         r2 = pSrc[2 * i2 + 1] + pSrc[2 * i6 + 1];
193
         s6 = pSrc[2 * i2 + 1] - pSrc[2 * i6 + 1];
194
         s3 = pSrc[2 * i3 + 1] + pSrc[2 * i7 + 1];
195
         s7 = pSrc[2 * i3 + 1] - pSrc[2 * i7 + 1];
196
         r4 = pSrc[2 * i4 + 1] + pSrc[2 * i8 + 1];
197
         s8 = pSrc[2 * i4 + 1] - pSrc[2 * i8 + 1];
198
         t2 = r1 - s3;
199
         r1 = r1 + s3;
200
         s3 = r2 - r4;
201
         r2 = r2 + r4;
202
         pSrc[2 * i1 + 1] = r1 + r2;
203
         pSrc[2 * i5 + 1] = r1 - r2;
204
         pSrc[2 * i3]     = t1 + s3;
205
         pSrc[2 * i7]     = t1 - s3;
206
         pSrc[2 * i3 + 1] = t2 - r3;
207
         pSrc[2 * i7 + 1] = t2 + r3;
208
         r1 = (r6 - r8) * C81;
209
         r6 = (r6 + r8) * C81;
210
         r2 = (s6 - s8) * C81;
211
         s6 = (s6 + s8) * C81;
212
         t1 = r5 - r1;
213
         r5 = r5 + r1;
214
         r8 = r7 - r6;
215
         r7 = r7 + r6;
216
         t2 = s5 - r2;
217
         s5 = s5 + r2;
218
         s8 = s7 - s6;
219
         s7 = s7 + s6;
220
         pSrc[2 * i2]     = r5 + s7;
221
         pSrc[2 * i8]     = r5 - s7;
222
         pSrc[2 * i6]     = t1 + s8;
223
         pSrc[2 * i4]     = t1 - s8;
224
         pSrc[2 * i2 + 1] = s5 - r7;
225
         pSrc[2 * i8 + 1] = s5 + r7;
226
         pSrc[2 * i6 + 1] = t2 - r8;
227
         pSrc[2 * i4 + 1] = t2 + r8;
228
 
229
         i1 += n1;
230
      } while(i1 < fftLen);
231
 
232
      if(n2 < 8)
233
         break;
234
 
235
      ia1 = 0;
236
      j = 1;
237
 
238
      do
239
      {      
240
         /*  index calculation for the coefficients */
241
         id  = ia1 + twidCoefModifier;
242
         ia1 = id;
243
         ia2 = ia1 + id;
244
         ia3 = ia2 + id;
245
         ia4 = ia3 + id;
246
         ia5 = ia4 + id;
247
         ia6 = ia5 + id;
248
         ia7 = ia6 + id;
249
 
250
         co2 = pCoef[2 * ia1];
251
         co3 = pCoef[2 * ia2];
252
         co4 = pCoef[2 * ia3];
253
         co5 = pCoef[2 * ia4];
254
         co6 = pCoef[2 * ia5];
255
         co7 = pCoef[2 * ia6];
256
         co8 = pCoef[2 * ia7];
257
         si2 = pCoef[2 * ia1 + 1];
258
         si3 = pCoef[2 * ia2 + 1];
259
         si4 = pCoef[2 * ia3 + 1];
260
         si5 = pCoef[2 * ia4 + 1];
261
         si6 = pCoef[2 * ia5 + 1];
262
         si7 = pCoef[2 * ia6 + 1];
263
         si8 = pCoef[2 * ia7 + 1];        
264
 
265
         i1 = j;
266
 
267
         do
268
         {
269
            /*  index calculation for the input */
270
            i2 = i1 + n2;
271
            i3 = i2 + n2;
272
            i4 = i3 + n2;
273
            i5 = i4 + n2;
274
            i6 = i5 + n2;
275
            i7 = i6 + n2;
276
            i8 = i7 + n2;
277
            r1 = pSrc[2 * i1] + pSrc[2 * i5];
278
            r5 = pSrc[2 * i1] - pSrc[2 * i5];
279
            r2 = pSrc[2 * i2] + pSrc[2 * i6];
280
            r6 = pSrc[2 * i2] - pSrc[2 * i6];
281
            r3 = pSrc[2 * i3] + pSrc[2 * i7];
282
            r7 = pSrc[2 * i3] - pSrc[2 * i7];
283
            r4 = pSrc[2 * i4] + pSrc[2 * i8];
284
            r8 = pSrc[2 * i4] - pSrc[2 * i8];
285
            t1 = r1 - r3;
286
            r1 = r1 + r3;
287
            r3 = r2 - r4;
288
            r2 = r2 + r4;
289
            pSrc[2 * i1] = r1 + r2;
290
            r2 = r1 - r2;
291
            s1 = pSrc[2 * i1 + 1] + pSrc[2 * i5 + 1];
292
            s5 = pSrc[2 * i1 + 1] - pSrc[2 * i5 + 1];
293
            s2 = pSrc[2 * i2 + 1] + pSrc[2 * i6 + 1];
294
            s6 = pSrc[2 * i2 + 1] - pSrc[2 * i6 + 1];
295
            s3 = pSrc[2 * i3 + 1] + pSrc[2 * i7 + 1];
296
            s7 = pSrc[2 * i3 + 1] - pSrc[2 * i7 + 1];
297
            s4 = pSrc[2 * i4 + 1] + pSrc[2 * i8 + 1];
298
            s8 = pSrc[2 * i4 + 1] - pSrc[2 * i8 + 1];
299
            t2 = s1 - s3;
300
            s1 = s1 + s3;
301
            s3 = s2 - s4;
302
            s2 = s2 + s4;
303
            r1 = t1 + s3;
304
            t1 = t1 - s3;
305
            pSrc[2 * i1 + 1] = s1 + s2;
306
            s2 = s1 - s2;
307
            s1 = t2 - r3;
308
            t2 = t2 + r3;
309
            p1 = co5 * r2;
310
            p2 = si5 * s2;
311
            p3 = co5 * s2;
312
            p4 = si5 * r2;
313
            pSrc[2 * i5]     = p1 + p2;
314
            pSrc[2 * i5 + 1] = p3 - p4;
315
            p1 = co3 * r1;
316
            p2 = si3 * s1;
317
            p3 = co3 * s1;
318
            p4 = si3 * r1;
319
            pSrc[2 * i3]     = p1 + p2;
320
            pSrc[2 * i3 + 1] = p3 - p4;
321
            p1 = co7 * t1;
322
            p2 = si7 * t2;
323
            p3 = co7 * t2;
324
            p4 = si7 * t1;
325
            pSrc[2 * i7]     = p1 + p2;
326
            pSrc[2 * i7 + 1] = p3 - p4;
327
            r1 = (r6 - r8) * C81;
328
            r6 = (r6 + r8) * C81;
329
            s1 = (s6 - s8) * C81;
330
            s6 = (s6 + s8) * C81;
331
            t1 = r5 - r1;
332
            r5 = r5 + r1;
333
            r8 = r7 - r6;
334
            r7 = r7 + r6;
335
            t2 = s5 - s1;
336
            s5 = s5 + s1;
337
            s8 = s7 - s6;
338
            s7 = s7 + s6;
339
            r1 = r5 + s7;
340
            r5 = r5 - s7;
341
            r6 = t1 + s8;
342
            t1 = t1 - s8;
343
            s1 = s5 - r7;
344
            s5 = s5 + r7;
345
            s6 = t2 - r8;
346
            t2 = t2 + r8;
347
            p1 = co2 * r1;
348
            p2 = si2 * s1;
349
            p3 = co2 * s1;
350
            p4 = si2 * r1;
351
            pSrc[2 * i2]     = p1 + p2;
352
            pSrc[2 * i2 + 1] = p3 - p4;
353
            p1 = co8 * r5;
354
            p2 = si8 * s5;
355
            p3 = co8 * s5;
356
            p4 = si8 * r5;
357
            pSrc[2 * i8]     = p1 + p2;
358
            pSrc[2 * i8 + 1] = p3 - p4;
359
            p1 = co6 * r6;
360
            p2 = si6 * s6;
361
            p3 = co6 * s6;
362
            p4 = si6 * r6;
363
            pSrc[2 * i6]     = p1 + p2;
364
            pSrc[2 * i6 + 1] = p3 - p4;
365
            p1 = co4 * t1;
366
            p2 = si4 * t2;
367
            p3 = co4 * t2;
368
            p4 = si4 * t1;
369
            pSrc[2 * i4]     = p1 + p2;
370
            pSrc[2 * i4 + 1] = p3 - p4;
371
 
372
            i1 += n1;
373
         } while(i1 < fftLen);
374
 
375
         j++;
376
      } while(j < n2);
377
 
378
      twidCoefModifier <<= 3;
379
   } while(n2 > 7);  
380
}
381
 
382
/**    
383
* @} end of Radix8_CFFT_CIFFT group    
384
*/