Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
||
3 | * |
||
4 | * $Date: 19. March 2015 |
||
5 | * $Revision: V.1.4.5 |
||
6 | * |
||
7 | * Project: CMSIS DSP Library |
||
8 | * Title: arm_cfft_radix4_q15.c |
||
9 | * |
||
10 | * Description: This file has function definition of Radix-4 FFT & IFFT function and |
||
11 | * In-place bit reversal using bit reversal table |
||
12 | * |
||
13 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
||
14 | * |
||
15 | * Redistribution and use in source and binary forms, with or without |
||
16 | * modification, are permitted provided that the following conditions |
||
17 | * are met: |
||
18 | * - Redistributions of source code must retain the above copyright |
||
19 | * notice, this list of conditions and the following disclaimer. |
||
20 | * - Redistributions in binary form must reproduce the above copyright |
||
21 | * notice, this list of conditions and the following disclaimer in |
||
22 | * the documentation and/or other materials provided with the |
||
23 | * distribution. |
||
24 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
25 | * may be used to endorse or promote products derived from this |
||
26 | * software without specific prior written permission. |
||
27 | * |
||
28 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
29 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
30 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
31 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
32 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
33 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
34 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
35 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
36 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
37 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
38 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
39 | * POSSIBILITY OF SUCH DAMAGE. |
||
40 | * -------------------------------------------------------------------- */ |
||
41 | |||
42 | #include "arm_math.h" |
||
43 | |||
44 | |||
45 | void arm_radix4_butterfly_q15( |
||
46 | q15_t * pSrc16, |
||
47 | uint32_t fftLen, |
||
48 | q15_t * pCoef16, |
||
49 | uint32_t twidCoefModifier); |
||
50 | |||
51 | void arm_radix4_butterfly_inverse_q15( |
||
52 | q15_t * pSrc16, |
||
53 | uint32_t fftLen, |
||
54 | q15_t * pCoef16, |
||
55 | uint32_t twidCoefModifier); |
||
56 | |||
57 | void arm_bitreversal_q15( |
||
58 | q15_t * pSrc, |
||
59 | uint32_t fftLen, |
||
60 | uint16_t bitRevFactor, |
||
61 | uint16_t * pBitRevTab); |
||
62 | |||
63 | /** |
||
64 | * @ingroup groupTransforms |
||
65 | */ |
||
66 | |||
67 | /** |
||
68 | * @addtogroup ComplexFFT |
||
69 | * @{ |
||
70 | */ |
||
71 | |||
72 | |||
73 | /** |
||
74 | * @details |
||
75 | * @brief Processing function for the Q15 CFFT/CIFFT. |
||
76 | * @deprecated Do not use this function. It has been superseded by \ref arm_cfft_q15 and will be removed |
||
77 | * @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure. |
||
78 | * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. |
||
79 | * @return none. |
||
80 | * |
||
81 | * \par Input and output formats: |
||
82 | * \par |
||
83 | * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. |
||
84 | * Hence the output format is different for different FFT sizes. |
||
85 | * The input and output formats for different FFT sizes and number of bits to upscale are mentioned in the tables below for CFFT and CIFFT: |
||
86 | * \par |
||
87 | * \image html CFFTQ15.gif "Input and Output Formats for Q15 CFFT" |
||
88 | * \image html CIFFTQ15.gif "Input and Output Formats for Q15 CIFFT" |
||
89 | */ |
||
90 | |||
91 | void arm_cfft_radix4_q15( |
||
92 | const arm_cfft_radix4_instance_q15 * S, |
||
93 | q15_t * pSrc) |
||
94 | { |
||
95 | if(S->ifftFlag == 1u) |
||
96 | { |
||
97 | /* Complex IFFT radix-4 */ |
||
98 | arm_radix4_butterfly_inverse_q15(pSrc, S->fftLen, S->pTwiddle, |
||
99 | S->twidCoefModifier); |
||
100 | } |
||
101 | else |
||
102 | { |
||
103 | /* Complex FFT radix-4 */ |
||
104 | arm_radix4_butterfly_q15(pSrc, S->fftLen, S->pTwiddle, |
||
105 | S->twidCoefModifier); |
||
106 | } |
||
107 | |||
108 | if(S->bitReverseFlag == 1u) |
||
109 | { |
||
110 | /* Bit Reversal */ |
||
111 | arm_bitreversal_q15(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable); |
||
112 | } |
||
113 | |||
114 | } |
||
115 | |||
116 | /** |
||
117 | * @} end of ComplexFFT group |
||
118 | */ |
||
119 | |||
120 | /* |
||
121 | * Radix-4 FFT algorithm used is : |
||
122 | * |
||
123 | * Input real and imaginary data: |
||
124 | * x(n) = xa + j * ya |
||
125 | * x(n+N/4 ) = xb + j * yb |
||
126 | * x(n+N/2 ) = xc + j * yc |
||
127 | * x(n+3N 4) = xd + j * yd |
||
128 | * |
||
129 | * |
||
130 | * Output real and imaginary data: |
||
131 | * x(4r) = xa'+ j * ya' |
||
132 | * x(4r+1) = xb'+ j * yb' |
||
133 | * x(4r+2) = xc'+ j * yc' |
||
134 | * x(4r+3) = xd'+ j * yd' |
||
135 | * |
||
136 | * |
||
137 | * Twiddle factors for radix-4 FFT: |
||
138 | * Wn = co1 + j * (- si1) |
||
139 | * W2n = co2 + j * (- si2) |
||
140 | * W3n = co3 + j * (- si3) |
||
141 | |||
142 | * The real and imaginary output values for the radix-4 butterfly are |
||
143 | * xa' = xa + xb + xc + xd |
||
144 | * ya' = ya + yb + yc + yd |
||
145 | * xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) |
||
146 | * yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) |
||
147 | * xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) |
||
148 | * yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) |
||
149 | * xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) |
||
150 | * yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) |
||
151 | * |
||
152 | */ |
||
153 | |||
154 | /** |
||
155 | * @brief Core function for the Q15 CFFT butterfly process. |
||
156 | * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. |
||
157 | * @param[in] fftLen length of the FFT. |
||
158 | * @param[in] *pCoef16 points to twiddle coefficient buffer. |
||
159 | * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. |
||
160 | * @return none. |
||
161 | */ |
||
162 | |||
163 | void arm_radix4_butterfly_q15( |
||
164 | q15_t * pSrc16, |
||
165 | uint32_t fftLen, |
||
166 | q15_t * pCoef16, |
||
167 | uint32_t twidCoefModifier) |
||
168 | { |
||
169 | |||
170 | #ifndef ARM_MATH_CM0_FAMILY |
||
171 | |||
172 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
173 | |||
174 | q31_t R, S, T, U; |
||
175 | q31_t C1, C2, C3, out1, out2; |
||
176 | uint32_t n1, n2, ic, i0, j, k; |
||
177 | |||
178 | q15_t *ptr1; |
||
179 | q15_t *pSi0; |
||
180 | q15_t *pSi1; |
||
181 | q15_t *pSi2; |
||
182 | q15_t *pSi3; |
||
183 | |||
184 | q31_t xaya, xbyb, xcyc, xdyd; |
||
185 | |||
186 | /* Total process is divided into three stages */ |
||
187 | |||
188 | /* process first stage, middle stages, & last stage */ |
||
189 | |||
190 | /* Initializations for the first stage */ |
||
191 | n2 = fftLen; |
||
192 | n1 = n2; |
||
193 | |||
194 | /* n2 = fftLen/4 */ |
||
195 | n2 >>= 2u; |
||
196 | |||
197 | /* Index for twiddle coefficient */ |
||
198 | ic = 0u; |
||
199 | |||
200 | /* Index for input read and output write */ |
||
201 | j = n2; |
||
202 | |||
203 | pSi0 = pSrc16; |
||
204 | pSi1 = pSi0 + 2 * n2; |
||
205 | pSi2 = pSi1 + 2 * n2; |
||
206 | pSi3 = pSi2 + 2 * n2; |
||
207 | |||
208 | /* Input is in 1.15(q15) format */ |
||
209 | |||
210 | /* start of first stage process */ |
||
211 | do |
||
212 | { |
||
213 | /* Butterfly implementation */ |
||
214 | |||
215 | /* Reading i0, i0+fftLen/2 inputs */ |
||
216 | /* Read ya (real), xa(imag) input */ |
||
217 | T = _SIMD32_OFFSET(pSi0); |
||
218 | T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1 |
||
219 | T = __SHADD16(T, 0); // it turns out doing this twice is 2 cycles, the alternative takes 3 cycles |
||
220 | //in = ((int16_t) (T & 0xFFFF)) >> 2; // alternative code that takes 3 cycles |
||
221 | //T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF); |
||
222 | |||
223 | /* Read yc (real), xc(imag) input */ |
||
224 | S = _SIMD32_OFFSET(pSi2); |
||
225 | S = __SHADD16(S, 0); |
||
226 | S = __SHADD16(S, 0); |
||
227 | |||
228 | /* R = packed((ya + yc), (xa + xc) ) */ |
||
229 | R = __QADD16(T, S); |
||
230 | |||
231 | /* S = packed((ya - yc), (xa - xc) ) */ |
||
232 | S = __QSUB16(T, S); |
||
233 | |||
234 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
235 | /* Read yb (real), xb(imag) input */ |
||
236 | T = _SIMD32_OFFSET(pSi1); |
||
237 | T = __SHADD16(T, 0); |
||
238 | T = __SHADD16(T, 0); |
||
239 | |||
240 | /* Read yd (real), xd(imag) input */ |
||
241 | U = _SIMD32_OFFSET(pSi3); |
||
242 | U = __SHADD16(U, 0); |
||
243 | U = __SHADD16(U, 0); |
||
244 | |||
245 | /* T = packed((yb + yd), (xb + xd) ) */ |
||
246 | T = __QADD16(T, U); |
||
247 | |||
248 | /* writing the butterfly processed i0 sample */ |
||
249 | /* xa' = xa + xb + xc + xd */ |
||
250 | /* ya' = ya + yb + yc + yd */ |
||
251 | _SIMD32_OFFSET(pSi0) = __SHADD16(R, T); |
||
252 | pSi0 += 2; |
||
253 | |||
254 | /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */ |
||
255 | R = __QSUB16(R, T); |
||
256 | |||
257 | /* co2 & si2 are read from SIMD Coefficient pointer */ |
||
258 | C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic)); |
||
259 | |||
260 | #ifndef ARM_MATH_BIG_ENDIAN |
||
261 | |||
262 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
263 | out1 = __SMUAD(C2, R) >> 16u; |
||
264 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
265 | out2 = __SMUSDX(C2, R); |
||
266 | |||
267 | #else |
||
268 | |||
269 | /* xc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
270 | out1 = __SMUSDX(R, C2) >> 16u; |
||
271 | /* yc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
272 | out2 = __SMUAD(C2, R); |
||
273 | |||
274 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
275 | |||
276 | /* Reading i0+fftLen/4 */ |
||
277 | /* T = packed(yb, xb) */ |
||
278 | T = _SIMD32_OFFSET(pSi1); |
||
279 | T = __SHADD16(T, 0); |
||
280 | T = __SHADD16(T, 0); |
||
281 | |||
282 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
283 | /* writing output(xc', yc') in little endian format */ |
||
284 | _SIMD32_OFFSET(pSi1) = |
||
285 | (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
286 | pSi1 += 2; |
||
287 | |||
288 | /* Butterfly calculations */ |
||
289 | /* U = packed(yd, xd) */ |
||
290 | U = _SIMD32_OFFSET(pSi3); |
||
291 | U = __SHADD16(U, 0); |
||
292 | U = __SHADD16(U, 0); |
||
293 | |||
294 | /* T = packed(yb-yd, xb-xd) */ |
||
295 | T = __QSUB16(T, U); |
||
296 | |||
297 | #ifndef ARM_MATH_BIG_ENDIAN |
||
298 | |||
299 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
300 | R = __QASX(S, T); |
||
301 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
302 | S = __QSAX(S, T); |
||
303 | |||
304 | #else |
||
305 | |||
306 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
307 | R = __QSAX(S, T); |
||
308 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
309 | S = __QASX(S, T); |
||
310 | |||
311 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
312 | |||
313 | /* co1 & si1 are read from SIMD Coefficient pointer */ |
||
314 | C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic)); |
||
315 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
316 | |||
317 | #ifndef ARM_MATH_BIG_ENDIAN |
||
318 | |||
319 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
320 | out1 = __SMUAD(C1, S) >> 16u; |
||
321 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
322 | out2 = __SMUSDX(C1, S); |
||
323 | |||
324 | #else |
||
325 | |||
326 | /* xb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
327 | out1 = __SMUSDX(S, C1) >> 16u; |
||
328 | /* yb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
329 | out2 = __SMUAD(C1, S); |
||
330 | |||
331 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
332 | |||
333 | /* writing output(xb', yb') in little endian format */ |
||
334 | _SIMD32_OFFSET(pSi2) = |
||
335 | ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF); |
||
336 | pSi2 += 2; |
||
337 | |||
338 | |||
339 | /* co3 & si3 are read from SIMD Coefficient pointer */ |
||
340 | C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic)); |
||
341 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
342 | |||
343 | #ifndef ARM_MATH_BIG_ENDIAN |
||
344 | |||
345 | /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
346 | out1 = __SMUAD(C3, R) >> 16u; |
||
347 | /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
348 | out2 = __SMUSDX(C3, R); |
||
349 | |||
350 | #else |
||
351 | |||
352 | /* xd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
353 | out1 = __SMUSDX(R, C3) >> 16u; |
||
354 | /* yd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
355 | out2 = __SMUAD(C3, R); |
||
356 | |||
357 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
358 | |||
359 | /* writing output(xd', yd') in little endian format */ |
||
360 | _SIMD32_OFFSET(pSi3) = |
||
361 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
362 | pSi3 += 2; |
||
363 | |||
364 | /* Twiddle coefficients index modifier */ |
||
365 | ic = ic + twidCoefModifier; |
||
366 | |||
367 | } while(--j); |
||
368 | /* data is in 4.11(q11) format */ |
||
369 | |||
370 | /* end of first stage process */ |
||
371 | |||
372 | |||
373 | /* start of middle stage process */ |
||
374 | |||
375 | /* Twiddle coefficients index modifier */ |
||
376 | twidCoefModifier <<= 2u; |
||
377 | |||
378 | /* Calculation of Middle stage */ |
||
379 | for (k = fftLen / 4u; k > 4u; k >>= 2u) |
||
380 | { |
||
381 | /* Initializations for the middle stage */ |
||
382 | n1 = n2; |
||
383 | n2 >>= 2u; |
||
384 | ic = 0u; |
||
385 | |||
386 | for (j = 0u; j <= (n2 - 1u); j++) |
||
387 | { |
||
388 | /* index calculation for the coefficients */ |
||
389 | C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic)); |
||
390 | C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic)); |
||
391 | C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic)); |
||
392 | |||
393 | /* Twiddle coefficients index modifier */ |
||
394 | ic = ic + twidCoefModifier; |
||
395 | |||
396 | pSi0 = pSrc16 + 2 * j; |
||
397 | pSi1 = pSi0 + 2 * n2; |
||
398 | pSi2 = pSi1 + 2 * n2; |
||
399 | pSi3 = pSi2 + 2 * n2; |
||
400 | |||
401 | /* Butterfly implementation */ |
||
402 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
403 | { |
||
404 | /* Reading i0, i0+fftLen/2 inputs */ |
||
405 | /* Read ya (real), xa(imag) input */ |
||
406 | T = _SIMD32_OFFSET(pSi0); |
||
407 | |||
408 | /* Read yc (real), xc(imag) input */ |
||
409 | S = _SIMD32_OFFSET(pSi2); |
||
410 | |||
411 | /* R = packed( (ya + yc), (xa + xc)) */ |
||
412 | R = __QADD16(T, S); |
||
413 | |||
414 | /* S = packed((ya - yc), (xa - xc)) */ |
||
415 | S = __QSUB16(T, S); |
||
416 | |||
417 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
418 | /* Read yb (real), xb(imag) input */ |
||
419 | T = _SIMD32_OFFSET(pSi1); |
||
420 | |||
421 | /* Read yd (real), xd(imag) input */ |
||
422 | U = _SIMD32_OFFSET(pSi3); |
||
423 | |||
424 | /* T = packed( (yb + yd), (xb + xd)) */ |
||
425 | T = __QADD16(T, U); |
||
426 | |||
427 | /* writing the butterfly processed i0 sample */ |
||
428 | |||
429 | /* xa' = xa + xb + xc + xd */ |
||
430 | /* ya' = ya + yb + yc + yd */ |
||
431 | out1 = __SHADD16(R, T); |
||
432 | out1 = __SHADD16(out1, 0); |
||
433 | _SIMD32_OFFSET(pSi0) = out1; |
||
434 | pSi0 += 2 * n1; |
||
435 | |||
436 | /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */ |
||
437 | R = __SHSUB16(R, T); |
||
438 | |||
439 | #ifndef ARM_MATH_BIG_ENDIAN |
||
440 | |||
441 | /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */ |
||
442 | out1 = __SMUAD(C2, R) >> 16u; |
||
443 | |||
444 | /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
445 | out2 = __SMUSDX(C2, R); |
||
446 | |||
447 | #else |
||
448 | |||
449 | /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
450 | out1 = __SMUSDX(R, C2) >> 16u; |
||
451 | |||
452 | /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */ |
||
453 | out2 = __SMUAD(C2, R); |
||
454 | |||
455 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
456 | |||
457 | /* Reading i0+3fftLen/4 */ |
||
458 | /* Read yb (real), xb(imag) input */ |
||
459 | T = _SIMD32_OFFSET(pSi1); |
||
460 | |||
461 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
462 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
463 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
464 | _SIMD32_OFFSET(pSi1) = |
||
465 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
466 | pSi1 += 2 * n1; |
||
467 | |||
468 | /* Butterfly calculations */ |
||
469 | |||
470 | /* Read yd (real), xd(imag) input */ |
||
471 | U = _SIMD32_OFFSET(pSi3); |
||
472 | |||
473 | /* T = packed(yb-yd, xb-xd) */ |
||
474 | T = __QSUB16(T, U); |
||
475 | |||
476 | #ifndef ARM_MATH_BIG_ENDIAN |
||
477 | |||
478 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
479 | R = __SHASX(S, T); |
||
480 | |||
481 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
482 | S = __SHSAX(S, T); |
||
483 | |||
484 | |||
485 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
486 | out1 = __SMUAD(C1, S) >> 16u; |
||
487 | out2 = __SMUSDX(C1, S); |
||
488 | |||
489 | #else |
||
490 | |||
491 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
492 | R = __SHSAX(S, T); |
||
493 | |||
494 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
495 | S = __SHASX(S, T); |
||
496 | |||
497 | |||
498 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
499 | out1 = __SMUSDX(S, C1) >> 16u; |
||
500 | out2 = __SMUAD(C1, S); |
||
501 | |||
502 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
503 | |||
504 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
505 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
506 | _SIMD32_OFFSET(pSi2) = |
||
507 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
508 | pSi2 += 2 * n1; |
||
509 | |||
510 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
511 | |||
512 | #ifndef ARM_MATH_BIG_ENDIAN |
||
513 | |||
514 | out1 = __SMUAD(C3, R) >> 16u; |
||
515 | out2 = __SMUSDX(C3, R); |
||
516 | |||
517 | #else |
||
518 | |||
519 | out1 = __SMUSDX(R, C3) >> 16u; |
||
520 | out2 = __SMUAD(C3, R); |
||
521 | |||
522 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
523 | |||
524 | /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
525 | /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
526 | _SIMD32_OFFSET(pSi3) = |
||
527 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
528 | pSi3 += 2 * n1; |
||
529 | } |
||
530 | } |
||
531 | /* Twiddle coefficients index modifier */ |
||
532 | twidCoefModifier <<= 2u; |
||
533 | } |
||
534 | /* end of middle stage process */ |
||
535 | |||
536 | |||
537 | /* data is in 10.6(q6) format for the 1024 point */ |
||
538 | /* data is in 8.8(q8) format for the 256 point */ |
||
539 | /* data is in 6.10(q10) format for the 64 point */ |
||
540 | /* data is in 4.12(q12) format for the 16 point */ |
||
541 | |||
542 | /* Initializations for the last stage */ |
||
543 | j = fftLen >> 2; |
||
544 | |||
545 | ptr1 = &pSrc16[0]; |
||
546 | |||
547 | /* start of last stage process */ |
||
548 | |||
549 | /* Butterfly implementation */ |
||
550 | do |
||
551 | { |
||
552 | /* Read xa (real), ya(imag) input */ |
||
553 | xaya = *__SIMD32(ptr1)++; |
||
554 | |||
555 | /* Read xb (real), yb(imag) input */ |
||
556 | xbyb = *__SIMD32(ptr1)++; |
||
557 | |||
558 | /* Read xc (real), yc(imag) input */ |
||
559 | xcyc = *__SIMD32(ptr1)++; |
||
560 | |||
561 | /* Read xd (real), yd(imag) input */ |
||
562 | xdyd = *__SIMD32(ptr1)++; |
||
563 | |||
564 | /* R = packed((ya + yc), (xa + xc)) */ |
||
565 | R = __QADD16(xaya, xcyc); |
||
566 | |||
567 | /* T = packed((yb + yd), (xb + xd)) */ |
||
568 | T = __QADD16(xbyb, xdyd); |
||
569 | |||
570 | /* pointer updation for writing */ |
||
571 | ptr1 = ptr1 - 8u; |
||
572 | |||
573 | |||
574 | /* xa' = xa + xb + xc + xd */ |
||
575 | /* ya' = ya + yb + yc + yd */ |
||
576 | *__SIMD32(ptr1)++ = __SHADD16(R, T); |
||
577 | |||
578 | /* T = packed((yb + yd), (xb + xd)) */ |
||
579 | T = __QADD16(xbyb, xdyd); |
||
580 | |||
581 | /* xc' = (xa-xb+xc-xd) */ |
||
582 | /* yc' = (ya-yb+yc-yd) */ |
||
583 | *__SIMD32(ptr1)++ = __SHSUB16(R, T); |
||
584 | |||
585 | /* S = packed((ya - yc), (xa - xc)) */ |
||
586 | S = __QSUB16(xaya, xcyc); |
||
587 | |||
588 | /* Read yd (real), xd(imag) input */ |
||
589 | /* T = packed( (yb - yd), (xb - xd)) */ |
||
590 | U = __QSUB16(xbyb, xdyd); |
||
591 | |||
592 | #ifndef ARM_MATH_BIG_ENDIAN |
||
593 | |||
594 | /* xb' = (xa+yb-xc-yd) */ |
||
595 | /* yb' = (ya-xb-yc+xd) */ |
||
596 | *__SIMD32(ptr1)++ = __SHSAX(S, U); |
||
597 | |||
598 | |||
599 | /* xd' = (xa-yb-xc+yd) */ |
||
600 | /* yd' = (ya+xb-yc-xd) */ |
||
601 | *__SIMD32(ptr1)++ = __SHASX(S, U); |
||
602 | |||
603 | #else |
||
604 | |||
605 | /* xb' = (xa+yb-xc-yd) */ |
||
606 | /* yb' = (ya-xb-yc+xd) */ |
||
607 | *__SIMD32(ptr1)++ = __SHASX(S, U); |
||
608 | |||
609 | |||
610 | /* xd' = (xa-yb-xc+yd) */ |
||
611 | /* yd' = (ya+xb-yc-xd) */ |
||
612 | *__SIMD32(ptr1)++ = __SHSAX(S, U); |
||
613 | |||
614 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
615 | |||
616 | } while(--j); |
||
617 | |||
618 | /* end of last stage process */ |
||
619 | |||
620 | /* output is in 11.5(q5) format for the 1024 point */ |
||
621 | /* output is in 9.7(q7) format for the 256 point */ |
||
622 | /* output is in 7.9(q9) format for the 64 point */ |
||
623 | /* output is in 5.11(q11) format for the 16 point */ |
||
624 | |||
625 | |||
626 | #else |
||
627 | |||
628 | /* Run the below code for Cortex-M0 */ |
||
629 | |||
630 | q15_t R0, R1, S0, S1, T0, T1, U0, U1; |
||
631 | q15_t Co1, Si1, Co2, Si2, Co3, Si3, out1, out2; |
||
632 | uint32_t n1, n2, ic, i0, i1, i2, i3, j, k; |
||
633 | |||
634 | /* Total process is divided into three stages */ |
||
635 | |||
636 | /* process first stage, middle stages, & last stage */ |
||
637 | |||
638 | /* Initializations for the first stage */ |
||
639 | n2 = fftLen; |
||
640 | n1 = n2; |
||
641 | |||
642 | /* n2 = fftLen/4 */ |
||
643 | n2 >>= 2u; |
||
644 | |||
645 | /* Index for twiddle coefficient */ |
||
646 | ic = 0u; |
||
647 | |||
648 | /* Index for input read and output write */ |
||
649 | i0 = 0u; |
||
650 | j = n2; |
||
651 | |||
652 | /* Input is in 1.15(q15) format */ |
||
653 | |||
654 | /* start of first stage process */ |
||
655 | do |
||
656 | { |
||
657 | /* Butterfly implementation */ |
||
658 | |||
659 | /* index calculation for the input as, */ |
||
660 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
661 | i1 = i0 + n2; |
||
662 | i2 = i1 + n2; |
||
663 | i3 = i2 + n2; |
||
664 | |||
665 | /* Reading i0, i0+fftLen/2 inputs */ |
||
666 | |||
667 | /* input is down scale by 4 to avoid overflow */ |
||
668 | /* Read ya (real), xa(imag) input */ |
||
669 | T0 = pSrc16[i0 * 2u] >> 2u; |
||
670 | T1 = pSrc16[(i0 * 2u) + 1u] >> 2u; |
||
671 | |||
672 | /* input is down scale by 4 to avoid overflow */ |
||
673 | /* Read yc (real), xc(imag) input */ |
||
674 | S0 = pSrc16[i2 * 2u] >> 2u; |
||
675 | S1 = pSrc16[(i2 * 2u) + 1u] >> 2u; |
||
676 | |||
677 | /* R0 = (ya + yc) */ |
||
678 | R0 = __SSAT(T0 + S0, 16u); |
||
679 | /* R1 = (xa + xc) */ |
||
680 | R1 = __SSAT(T1 + S1, 16u); |
||
681 | |||
682 | /* S0 = (ya - yc) */ |
||
683 | S0 = __SSAT(T0 - S0, 16); |
||
684 | /* S1 = (xa - xc) */ |
||
685 | S1 = __SSAT(T1 - S1, 16); |
||
686 | |||
687 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
688 | /* input is down scale by 4 to avoid overflow */ |
||
689 | /* Read yb (real), xb(imag) input */ |
||
690 | T0 = pSrc16[i1 * 2u] >> 2u; |
||
691 | T1 = pSrc16[(i1 * 2u) + 1u] >> 2u; |
||
692 | |||
693 | /* input is down scale by 4 to avoid overflow */ |
||
694 | /* Read yd (real), xd(imag) input */ |
||
695 | U0 = pSrc16[i3 * 2u] >> 2u; |
||
696 | U1 = pSrc16[(i3 * 2u) + 1] >> 2u; |
||
697 | |||
698 | /* T0 = (yb + yd) */ |
||
699 | T0 = __SSAT(T0 + U0, 16u); |
||
700 | /* T1 = (xb + xd) */ |
||
701 | T1 = __SSAT(T1 + U1, 16u); |
||
702 | |||
703 | /* writing the butterfly processed i0 sample */ |
||
704 | /* ya' = ya + yb + yc + yd */ |
||
705 | /* xa' = xa + xb + xc + xd */ |
||
706 | pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u); |
||
707 | pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u); |
||
708 | |||
709 | /* R0 = (ya + yc) - (yb + yd) */ |
||
710 | /* R1 = (xa + xc) - (xb + xd) */ |
||
711 | R0 = __SSAT(R0 - T0, 16u); |
||
712 | R1 = __SSAT(R1 - T1, 16u); |
||
713 | |||
714 | /* co2 & si2 are read from Coefficient pointer */ |
||
715 | Co2 = pCoef16[2u * ic * 2u]; |
||
716 | Si2 = pCoef16[(2u * ic * 2u) + 1]; |
||
717 | |||
718 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
719 | out1 = (q15_t) ((Co2 * R0 + Si2 * R1) >> 16u); |
||
720 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
721 | out2 = (q15_t) ((-Si2 * R0 + Co2 * R1) >> 16u); |
||
722 | |||
723 | /* Reading i0+fftLen/4 */ |
||
724 | /* input is down scale by 4 to avoid overflow */ |
||
725 | /* T0 = yb, T1 = xb */ |
||
726 | T0 = pSrc16[i1 * 2u] >> 2; |
||
727 | T1 = pSrc16[(i1 * 2u) + 1] >> 2; |
||
728 | |||
729 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
730 | /* writing output(xc', yc') in little endian format */ |
||
731 | pSrc16[i1 * 2u] = out1; |
||
732 | pSrc16[(i1 * 2u) + 1] = out2; |
||
733 | |||
734 | /* Butterfly calculations */ |
||
735 | /* input is down scale by 4 to avoid overflow */ |
||
736 | /* U0 = yd, U1 = xd */ |
||
737 | U0 = pSrc16[i3 * 2u] >> 2; |
||
738 | U1 = pSrc16[(i3 * 2u) + 1] >> 2; |
||
739 | /* T0 = yb-yd */ |
||
740 | T0 = __SSAT(T0 - U0, 16); |
||
741 | /* T1 = xb-xd */ |
||
742 | T1 = __SSAT(T1 - U1, 16); |
||
743 | |||
744 | /* R1 = (ya-yc) + (xb- xd), R0 = (xa-xc) - (yb-yd)) */ |
||
745 | R0 = (q15_t) __SSAT((q31_t) (S0 - T1), 16); |
||
746 | R1 = (q15_t) __SSAT((q31_t) (S1 + T0), 16); |
||
747 | |||
748 | /* S1 = (ya-yc) - (xb- xd), S0 = (xa-xc) + (yb-yd)) */ |
||
749 | S0 = (q15_t) __SSAT(((q31_t) S0 + T1), 16u); |
||
750 | S1 = (q15_t) __SSAT(((q31_t) S1 - T0), 16u); |
||
751 | |||
752 | /* co1 & si1 are read from Coefficient pointer */ |
||
753 | Co1 = pCoef16[ic * 2u]; |
||
754 | Si1 = pCoef16[(ic * 2u) + 1]; |
||
755 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
756 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
757 | out1 = (q15_t) ((Si1 * S1 + Co1 * S0) >> 16); |
||
758 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
759 | out2 = (q15_t) ((-Si1 * S0 + Co1 * S1) >> 16); |
||
760 | |||
761 | /* writing output(xb', yb') in little endian format */ |
||
762 | pSrc16[i2 * 2u] = out1; |
||
763 | pSrc16[(i2 * 2u) + 1] = out2; |
||
764 | |||
765 | /* Co3 & si3 are read from Coefficient pointer */ |
||
766 | Co3 = pCoef16[3u * (ic * 2u)]; |
||
767 | Si3 = pCoef16[(3u * (ic * 2u)) + 1]; |
||
768 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
769 | /* xd' = (xa-yb-xc+yd)* Co3 + (ya+xb-yc-xd)* (si3) */ |
||
770 | out1 = (q15_t) ((Si3 * R1 + Co3 * R0) >> 16u); |
||
771 | /* yd' = (ya+xb-yc-xd)* Co3 - (xa-yb-xc+yd)* (si3) */ |
||
772 | out2 = (q15_t) ((-Si3 * R0 + Co3 * R1) >> 16u); |
||
773 | /* writing output(xd', yd') in little endian format */ |
||
774 | pSrc16[i3 * 2u] = out1; |
||
775 | pSrc16[(i3 * 2u) + 1] = out2; |
||
776 | |||
777 | /* Twiddle coefficients index modifier */ |
||
778 | ic = ic + twidCoefModifier; |
||
779 | |||
780 | /* Updating input index */ |
||
781 | i0 = i0 + 1u; |
||
782 | |||
783 | } while(--j); |
||
784 | /* data is in 4.11(q11) format */ |
||
785 | |||
786 | /* end of first stage process */ |
||
787 | |||
788 | |||
789 | /* start of middle stage process */ |
||
790 | |||
791 | /* Twiddle coefficients index modifier */ |
||
792 | twidCoefModifier <<= 2u; |
||
793 | |||
794 | /* Calculation of Middle stage */ |
||
795 | for (k = fftLen / 4u; k > 4u; k >>= 2u) |
||
796 | { |
||
797 | /* Initializations for the middle stage */ |
||
798 | n1 = n2; |
||
799 | n2 >>= 2u; |
||
800 | ic = 0u; |
||
801 | |||
802 | for (j = 0u; j <= (n2 - 1u); j++) |
||
803 | { |
||
804 | /* index calculation for the coefficients */ |
||
805 | Co1 = pCoef16[ic * 2u]; |
||
806 | Si1 = pCoef16[(ic * 2u) + 1u]; |
||
807 | Co2 = pCoef16[2u * (ic * 2u)]; |
||
808 | Si2 = pCoef16[(2u * (ic * 2u)) + 1u]; |
||
809 | Co3 = pCoef16[3u * (ic * 2u)]; |
||
810 | Si3 = pCoef16[(3u * (ic * 2u)) + 1u]; |
||
811 | |||
812 | /* Twiddle coefficients index modifier */ |
||
813 | ic = ic + twidCoefModifier; |
||
814 | |||
815 | /* Butterfly implementation */ |
||
816 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
817 | { |
||
818 | /* index calculation for the input as, */ |
||
819 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
820 | i1 = i0 + n2; |
||
821 | i2 = i1 + n2; |
||
822 | i3 = i2 + n2; |
||
823 | |||
824 | /* Reading i0, i0+fftLen/2 inputs */ |
||
825 | /* Read ya (real), xa(imag) input */ |
||
826 | T0 = pSrc16[i0 * 2u]; |
||
827 | T1 = pSrc16[(i0 * 2u) + 1u]; |
||
828 | |||
829 | /* Read yc (real), xc(imag) input */ |
||
830 | S0 = pSrc16[i2 * 2u]; |
||
831 | S1 = pSrc16[(i2 * 2u) + 1u]; |
||
832 | |||
833 | /* R0 = (ya + yc), R1 = (xa + xc) */ |
||
834 | R0 = __SSAT(T0 + S0, 16); |
||
835 | R1 = __SSAT(T1 + S1, 16); |
||
836 | |||
837 | /* S0 = (ya - yc), S1 =(xa - xc) */ |
||
838 | S0 = __SSAT(T0 - S0, 16); |
||
839 | S1 = __SSAT(T1 - S1, 16); |
||
840 | |||
841 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
842 | /* Read yb (real), xb(imag) input */ |
||
843 | T0 = pSrc16[i1 * 2u]; |
||
844 | T1 = pSrc16[(i1 * 2u) + 1u]; |
||
845 | |||
846 | /* Read yd (real), xd(imag) input */ |
||
847 | U0 = pSrc16[i3 * 2u]; |
||
848 | U1 = pSrc16[(i3 * 2u) + 1u]; |
||
849 | |||
850 | |||
851 | /* T0 = (yb + yd), T1 = (xb + xd) */ |
||
852 | T0 = __SSAT(T0 + U0, 16); |
||
853 | T1 = __SSAT(T1 + U1, 16); |
||
854 | |||
855 | /* writing the butterfly processed i0 sample */ |
||
856 | |||
857 | /* xa' = xa + xb + xc + xd */ |
||
858 | /* ya' = ya + yb + yc + yd */ |
||
859 | out1 = ((R0 >> 1u) + (T0 >> 1u)) >> 1u; |
||
860 | out2 = ((R1 >> 1u) + (T1 >> 1u)) >> 1u; |
||
861 | |||
862 | pSrc16[i0 * 2u] = out1; |
||
863 | pSrc16[(2u * i0) + 1u] = out2; |
||
864 | |||
865 | /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */ |
||
866 | R0 = (R0 >> 1u) - (T0 >> 1u); |
||
867 | R1 = (R1 >> 1u) - (T1 >> 1u); |
||
868 | |||
869 | /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */ |
||
870 | out1 = (q15_t) ((Co2 * R0 + Si2 * R1) >> 16u); |
||
871 | |||
872 | /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
873 | out2 = (q15_t) ((-Si2 * R0 + Co2 * R1) >> 16u); |
||
874 | |||
875 | /* Reading i0+3fftLen/4 */ |
||
876 | /* Read yb (real), xb(imag) input */ |
||
877 | T0 = pSrc16[i1 * 2u]; |
||
878 | T1 = pSrc16[(i1 * 2u) + 1u]; |
||
879 | |||
880 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
881 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
882 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
883 | pSrc16[i1 * 2u] = out1; |
||
884 | pSrc16[(i1 * 2u) + 1u] = out2; |
||
885 | |||
886 | /* Butterfly calculations */ |
||
887 | |||
888 | /* Read yd (real), xd(imag) input */ |
||
889 | U0 = pSrc16[i3 * 2u]; |
||
890 | U1 = pSrc16[(i3 * 2u) + 1u]; |
||
891 | |||
892 | /* T0 = yb-yd, T1 = xb-xd */ |
||
893 | T0 = __SSAT(T0 - U0, 16); |
||
894 | T1 = __SSAT(T1 - U1, 16); |
||
895 | |||
896 | /* R0 = (ya-yc) + (xb- xd), R1 = (xa-xc) - (yb-yd)) */ |
||
897 | R0 = (S0 >> 1u) - (T1 >> 1u); |
||
898 | R1 = (S1 >> 1u) + (T0 >> 1u); |
||
899 | |||
900 | /* S0 = (ya-yc) - (xb- xd), S1 = (xa-xc) + (yb-yd)) */ |
||
901 | S0 = (S0 >> 1u) + (T1 >> 1u); |
||
902 | S1 = (S1 >> 1u) - (T0 >> 1u); |
||
903 | |||
904 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
905 | out1 = (q15_t) ((Co1 * S0 + Si1 * S1) >> 16u); |
||
906 | |||
907 | out2 = (q15_t) ((-Si1 * S0 + Co1 * S1) >> 16u); |
||
908 | |||
909 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
910 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
911 | pSrc16[i2 * 2u] = out1; |
||
912 | pSrc16[(i2 * 2u) + 1u] = out2; |
||
913 | |||
914 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
915 | out1 = (q15_t) ((Si3 * R1 + Co3 * R0) >> 16u); |
||
916 | |||
917 | out2 = (q15_t) ((-Si3 * R0 + Co3 * R1) >> 16u); |
||
918 | /* xd' = (xa-yb-xc+yd)* Co3 + (ya+xb-yc-xd)* (si3) */ |
||
919 | /* yd' = (ya+xb-yc-xd)* Co3 - (xa-yb-xc+yd)* (si3) */ |
||
920 | pSrc16[i3 * 2u] = out1; |
||
921 | pSrc16[(i3 * 2u) + 1u] = out2; |
||
922 | } |
||
923 | } |
||
924 | /* Twiddle coefficients index modifier */ |
||
925 | twidCoefModifier <<= 2u; |
||
926 | } |
||
927 | /* end of middle stage process */ |
||
928 | |||
929 | |||
930 | /* data is in 10.6(q6) format for the 1024 point */ |
||
931 | /* data is in 8.8(q8) format for the 256 point */ |
||
932 | /* data is in 6.10(q10) format for the 64 point */ |
||
933 | /* data is in 4.12(q12) format for the 16 point */ |
||
934 | |||
935 | /* Initializations for the last stage */ |
||
936 | n1 = n2; |
||
937 | n2 >>= 2u; |
||
938 | |||
939 | /* start of last stage process */ |
||
940 | |||
941 | /* Butterfly implementation */ |
||
942 | for (i0 = 0u; i0 <= (fftLen - n1); i0 += n1) |
||
943 | { |
||
944 | /* index calculation for the input as, */ |
||
945 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
946 | i1 = i0 + n2; |
||
947 | i2 = i1 + n2; |
||
948 | i3 = i2 + n2; |
||
949 | |||
950 | /* Reading i0, i0+fftLen/2 inputs */ |
||
951 | /* Read ya (real), xa(imag) input */ |
||
952 | T0 = pSrc16[i0 * 2u]; |
||
953 | T1 = pSrc16[(i0 * 2u) + 1u]; |
||
954 | |||
955 | /* Read yc (real), xc(imag) input */ |
||
956 | S0 = pSrc16[i2 * 2u]; |
||
957 | S1 = pSrc16[(i2 * 2u) + 1u]; |
||
958 | |||
959 | /* R0 = (ya + yc), R1 = (xa + xc) */ |
||
960 | R0 = __SSAT(T0 + S0, 16u); |
||
961 | R1 = __SSAT(T1 + S1, 16u); |
||
962 | |||
963 | /* S0 = (ya - yc), S1 = (xa - xc) */ |
||
964 | S0 = __SSAT(T0 - S0, 16u); |
||
965 | S1 = __SSAT(T1 - S1, 16u); |
||
966 | |||
967 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
968 | /* Read yb (real), xb(imag) input */ |
||
969 | T0 = pSrc16[i1 * 2u]; |
||
970 | T1 = pSrc16[(i1 * 2u) + 1u]; |
||
971 | /* Read yd (real), xd(imag) input */ |
||
972 | U0 = pSrc16[i3 * 2u]; |
||
973 | U1 = pSrc16[(i3 * 2u) + 1u]; |
||
974 | |||
975 | /* T0 = (yb + yd), T1 = (xb + xd)) */ |
||
976 | T0 = __SSAT(T0 + U0, 16u); |
||
977 | T1 = __SSAT(T1 + U1, 16u); |
||
978 | |||
979 | /* writing the butterfly processed i0 sample */ |
||
980 | /* xa' = xa + xb + xc + xd */ |
||
981 | /* ya' = ya + yb + yc + yd */ |
||
982 | pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u); |
||
983 | pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u); |
||
984 | |||
985 | /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */ |
||
986 | R0 = (R0 >> 1u) - (T0 >> 1u); |
||
987 | R1 = (R1 >> 1u) - (T1 >> 1u); |
||
988 | /* Read yb (real), xb(imag) input */ |
||
989 | T0 = pSrc16[i1 * 2u]; |
||
990 | T1 = pSrc16[(i1 * 2u) + 1u]; |
||
991 | |||
992 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
993 | /* xc' = (xa-xb+xc-xd) */ |
||
994 | /* yc' = (ya-yb+yc-yd) */ |
||
995 | pSrc16[i1 * 2u] = R0; |
||
996 | pSrc16[(i1 * 2u) + 1u] = R1; |
||
997 | |||
998 | /* Read yd (real), xd(imag) input */ |
||
999 | U0 = pSrc16[i3 * 2u]; |
||
1000 | U1 = pSrc16[(i3 * 2u) + 1u]; |
||
1001 | /* T0 = (yb - yd), T1 = (xb - xd) */ |
||
1002 | T0 = __SSAT(T0 - U0, 16u); |
||
1003 | T1 = __SSAT(T1 - U1, 16u); |
||
1004 | |||
1005 | /* writing the butterfly processed i0 + fftLen/2 sample */ |
||
1006 | /* xb' = (xa+yb-xc-yd) */ |
||
1007 | /* yb' = (ya-xb-yc+xd) */ |
||
1008 | pSrc16[i2 * 2u] = (S0 >> 1u) + (T1 >> 1u); |
||
1009 | pSrc16[(i2 * 2u) + 1u] = (S1 >> 1u) - (T0 >> 1u); |
||
1010 | |||
1011 | /* writing the butterfly processed i0 + 3fftLen/4 sample */ |
||
1012 | /* xd' = (xa-yb-xc+yd) */ |
||
1013 | /* yd' = (ya+xb-yc-xd) */ |
||
1014 | pSrc16[i3 * 2u] = (S0 >> 1u) - (T1 >> 1u); |
||
1015 | pSrc16[(i3 * 2u) + 1u] = (S1 >> 1u) + (T0 >> 1u); |
||
1016 | |||
1017 | } |
||
1018 | |||
1019 | /* end of last stage process */ |
||
1020 | |||
1021 | /* output is in 11.5(q5) format for the 1024 point */ |
||
1022 | /* output is in 9.7(q7) format for the 256 point */ |
||
1023 | /* output is in 7.9(q9) format for the 64 point */ |
||
1024 | /* output is in 5.11(q11) format for the 16 point */ |
||
1025 | |||
1026 | #endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
||
1027 | |||
1028 | } |
||
1029 | |||
1030 | |||
1031 | /** |
||
1032 | * @brief Core function for the Q15 CIFFT butterfly process. |
||
1033 | * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. |
||
1034 | * @param[in] fftLen length of the FFT. |
||
1035 | * @param[in] *pCoef16 points to twiddle coefficient buffer. |
||
1036 | * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. |
||
1037 | * @return none. |
||
1038 | */ |
||
1039 | |||
1040 | /* |
||
1041 | * Radix-4 IFFT algorithm used is : |
||
1042 | * |
||
1043 | * CIFFT uses same twiddle coefficients as CFFT function |
||
1044 | * x[k] = x[n] + (j)k * x[n + fftLen/4] + (-1)k * x[n+fftLen/2] + (-j)k * x[n+3*fftLen/4] |
||
1045 | * |
||
1046 | * |
||
1047 | * IFFT is implemented with following changes in equations from FFT |
||
1048 | * |
||
1049 | * Input real and imaginary data: |
||
1050 | * x(n) = xa + j * ya |
||
1051 | * x(n+N/4 ) = xb + j * yb |
||
1052 | * x(n+N/2 ) = xc + j * yc |
||
1053 | * x(n+3N 4) = xd + j * yd |
||
1054 | * |
||
1055 | * |
||
1056 | * Output real and imaginary data: |
||
1057 | * x(4r) = xa'+ j * ya' |
||
1058 | * x(4r+1) = xb'+ j * yb' |
||
1059 | * x(4r+2) = xc'+ j * yc' |
||
1060 | * x(4r+3) = xd'+ j * yd' |
||
1061 | * |
||
1062 | * |
||
1063 | * Twiddle factors for radix-4 IFFT: |
||
1064 | * Wn = co1 + j * (si1) |
||
1065 | * W2n = co2 + j * (si2) |
||
1066 | * W3n = co3 + j * (si3) |
||
1067 | |||
1068 | * The real and imaginary output values for the radix-4 butterfly are |
||
1069 | * xa' = xa + xb + xc + xd |
||
1070 | * ya' = ya + yb + yc + yd |
||
1071 | * xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) |
||
1072 | * yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) |
||
1073 | * xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) |
||
1074 | * yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) |
||
1075 | * xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3) |
||
1076 | * yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3) |
||
1077 | * |
||
1078 | */ |
||
1079 | |||
1080 | void arm_radix4_butterfly_inverse_q15( |
||
1081 | q15_t * pSrc16, |
||
1082 | uint32_t fftLen, |
||
1083 | q15_t * pCoef16, |
||
1084 | uint32_t twidCoefModifier) |
||
1085 | { |
||
1086 | |||
1087 | #ifndef ARM_MATH_CM0_FAMILY |
||
1088 | |||
1089 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
1090 | |||
1091 | q31_t R, S, T, U; |
||
1092 | q31_t C1, C2, C3, out1, out2; |
||
1093 | uint32_t n1, n2, ic, i0, j, k; |
||
1094 | |||
1095 | q15_t *ptr1; |
||
1096 | q15_t *pSi0; |
||
1097 | q15_t *pSi1; |
||
1098 | q15_t *pSi2; |
||
1099 | q15_t *pSi3; |
||
1100 | |||
1101 | q31_t xaya, xbyb, xcyc, xdyd; |
||
1102 | |||
1103 | /* Total process is divided into three stages */ |
||
1104 | |||
1105 | /* process first stage, middle stages, & last stage */ |
||
1106 | |||
1107 | /* Initializations for the first stage */ |
||
1108 | n2 = fftLen; |
||
1109 | n1 = n2; |
||
1110 | |||
1111 | /* n2 = fftLen/4 */ |
||
1112 | n2 >>= 2u; |
||
1113 | |||
1114 | /* Index for twiddle coefficient */ |
||
1115 | ic = 0u; |
||
1116 | |||
1117 | /* Index for input read and output write */ |
||
1118 | j = n2; |
||
1119 | |||
1120 | pSi0 = pSrc16; |
||
1121 | pSi1 = pSi0 + 2 * n2; |
||
1122 | pSi2 = pSi1 + 2 * n2; |
||
1123 | pSi3 = pSi2 + 2 * n2; |
||
1124 | |||
1125 | /* Input is in 1.15(q15) format */ |
||
1126 | |||
1127 | /* start of first stage process */ |
||
1128 | do |
||
1129 | { |
||
1130 | /* Butterfly implementation */ |
||
1131 | |||
1132 | /* Reading i0, i0+fftLen/2 inputs */ |
||
1133 | /* Read ya (real), xa(imag) input */ |
||
1134 | T = _SIMD32_OFFSET(pSi0); |
||
1135 | T = __SHADD16(T, 0); |
||
1136 | T = __SHADD16(T, 0); |
||
1137 | |||
1138 | /* Read yc (real), xc(imag) input */ |
||
1139 | S = _SIMD32_OFFSET(pSi2); |
||
1140 | S = __SHADD16(S, 0); |
||
1141 | S = __SHADD16(S, 0); |
||
1142 | |||
1143 | /* R = packed((ya + yc), (xa + xc) ) */ |
||
1144 | R = __QADD16(T, S); |
||
1145 | |||
1146 | /* S = packed((ya - yc), (xa - xc) ) */ |
||
1147 | S = __QSUB16(T, S); |
||
1148 | |||
1149 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
1150 | /* Read yb (real), xb(imag) input */ |
||
1151 | T = _SIMD32_OFFSET(pSi1); |
||
1152 | T = __SHADD16(T, 0); |
||
1153 | T = __SHADD16(T, 0); |
||
1154 | |||
1155 | /* Read yd (real), xd(imag) input */ |
||
1156 | U = _SIMD32_OFFSET(pSi3); |
||
1157 | U = __SHADD16(U, 0); |
||
1158 | U = __SHADD16(U, 0); |
||
1159 | |||
1160 | /* T = packed((yb + yd), (xb + xd) ) */ |
||
1161 | T = __QADD16(T, U); |
||
1162 | |||
1163 | /* writing the butterfly processed i0 sample */ |
||
1164 | /* xa' = xa + xb + xc + xd */ |
||
1165 | /* ya' = ya + yb + yc + yd */ |
||
1166 | _SIMD32_OFFSET(pSi0) = __SHADD16(R, T); |
||
1167 | pSi0 += 2; |
||
1168 | |||
1169 | /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */ |
||
1170 | R = __QSUB16(R, T); |
||
1171 | |||
1172 | /* co2 & si2 are read from SIMD Coefficient pointer */ |
||
1173 | C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic)); |
||
1174 | |||
1175 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1176 | |||
1177 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
1178 | out1 = __SMUSD(C2, R) >> 16u; |
||
1179 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
1180 | out2 = __SMUADX(C2, R); |
||
1181 | |||
1182 | #else |
||
1183 | |||
1184 | /* xc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
1185 | out1 = __SMUADX(C2, R) >> 16u; |
||
1186 | /* yc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
1187 | out2 = __SMUSD(__QSUB16(0, C2), R); |
||
1188 | |||
1189 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1190 | |||
1191 | /* Reading i0+fftLen/4 */ |
||
1192 | /* T = packed(yb, xb) */ |
||
1193 | T = _SIMD32_OFFSET(pSi1); |
||
1194 | T = __SHADD16(T, 0); |
||
1195 | T = __SHADD16(T, 0); |
||
1196 | |||
1197 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
1198 | /* writing output(xc', yc') in little endian format */ |
||
1199 | _SIMD32_OFFSET(pSi1) = |
||
1200 | (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
1201 | pSi1 += 2; |
||
1202 | |||
1203 | /* Butterfly calculations */ |
||
1204 | /* U = packed(yd, xd) */ |
||
1205 | U = _SIMD32_OFFSET(pSi3); |
||
1206 | U = __SHADD16(U, 0); |
||
1207 | U = __SHADD16(U, 0); |
||
1208 | |||
1209 | /* T = packed(yb-yd, xb-xd) */ |
||
1210 | T = __QSUB16(T, U); |
||
1211 | |||
1212 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1213 | |||
1214 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
1215 | R = __QSAX(S, T); |
||
1216 | /* S = packed((ya-yc) + (xb- xd), (xa-xc) - (yb-yd)) */ |
||
1217 | S = __QASX(S, T); |
||
1218 | |||
1219 | #else |
||
1220 | |||
1221 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
1222 | R = __QASX(S, T); |
||
1223 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
1224 | S = __QSAX(S, T); |
||
1225 | |||
1226 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1227 | |||
1228 | /* co1 & si1 are read from SIMD Coefficient pointer */ |
||
1229 | C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic)); |
||
1230 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
1231 | |||
1232 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1233 | |||
1234 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
1235 | out1 = __SMUSD(C1, S) >> 16u; |
||
1236 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
1237 | out2 = __SMUADX(C1, S); |
||
1238 | |||
1239 | #else |
||
1240 | |||
1241 | /* xb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
1242 | out1 = __SMUADX(C1, S) >> 16u; |
||
1243 | /* yb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
1244 | out2 = __SMUSD(__QSUB16(0, C1), S); |
||
1245 | |||
1246 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1247 | |||
1248 | /* writing output(xb', yb') in little endian format */ |
||
1249 | _SIMD32_OFFSET(pSi2) = |
||
1250 | ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF); |
||
1251 | pSi2 += 2; |
||
1252 | |||
1253 | |||
1254 | /* co3 & si3 are read from SIMD Coefficient pointer */ |
||
1255 | C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic)); |
||
1256 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
1257 | |||
1258 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1259 | |||
1260 | /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
1261 | out1 = __SMUSD(C3, R) >> 16u; |
||
1262 | /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
1263 | out2 = __SMUADX(C3, R); |
||
1264 | |||
1265 | #else |
||
1266 | |||
1267 | /* xd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
1268 | out1 = __SMUADX(C3, R) >> 16u; |
||
1269 | /* yd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
1270 | out2 = __SMUSD(__QSUB16(0, C3), R); |
||
1271 | |||
1272 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1273 | |||
1274 | /* writing output(xd', yd') in little endian format */ |
||
1275 | _SIMD32_OFFSET(pSi3) = |
||
1276 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
1277 | pSi3 += 2; |
||
1278 | |||
1279 | /* Twiddle coefficients index modifier */ |
||
1280 | ic = ic + twidCoefModifier; |
||
1281 | |||
1282 | } while(--j); |
||
1283 | /* data is in 4.11(q11) format */ |
||
1284 | |||
1285 | /* end of first stage process */ |
||
1286 | |||
1287 | |||
1288 | /* start of middle stage process */ |
||
1289 | |||
1290 | /* Twiddle coefficients index modifier */ |
||
1291 | twidCoefModifier <<= 2u; |
||
1292 | |||
1293 | /* Calculation of Middle stage */ |
||
1294 | for (k = fftLen / 4u; k > 4u; k >>= 2u) |
||
1295 | { |
||
1296 | /* Initializations for the middle stage */ |
||
1297 | n1 = n2; |
||
1298 | n2 >>= 2u; |
||
1299 | ic = 0u; |
||
1300 | |||
1301 | for (j = 0u; j <= (n2 - 1u); j++) |
||
1302 | { |
||
1303 | /* index calculation for the coefficients */ |
||
1304 | C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic)); |
||
1305 | C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic)); |
||
1306 | C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic)); |
||
1307 | |||
1308 | /* Twiddle coefficients index modifier */ |
||
1309 | ic = ic + twidCoefModifier; |
||
1310 | |||
1311 | pSi0 = pSrc16 + 2 * j; |
||
1312 | pSi1 = pSi0 + 2 * n2; |
||
1313 | pSi2 = pSi1 + 2 * n2; |
||
1314 | pSi3 = pSi2 + 2 * n2; |
||
1315 | |||
1316 | /* Butterfly implementation */ |
||
1317 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
1318 | { |
||
1319 | /* Reading i0, i0+fftLen/2 inputs */ |
||
1320 | /* Read ya (real), xa(imag) input */ |
||
1321 | T = _SIMD32_OFFSET(pSi0); |
||
1322 | |||
1323 | /* Read yc (real), xc(imag) input */ |
||
1324 | S = _SIMD32_OFFSET(pSi2); |
||
1325 | |||
1326 | /* R = packed( (ya + yc), (xa + xc)) */ |
||
1327 | R = __QADD16(T, S); |
||
1328 | |||
1329 | /* S = packed((ya - yc), (xa - xc)) */ |
||
1330 | S = __QSUB16(T, S); |
||
1331 | |||
1332 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
1333 | /* Read yb (real), xb(imag) input */ |
||
1334 | T = _SIMD32_OFFSET(pSi1); |
||
1335 | |||
1336 | /* Read yd (real), xd(imag) input */ |
||
1337 | U = _SIMD32_OFFSET(pSi3); |
||
1338 | |||
1339 | /* T = packed( (yb + yd), (xb + xd)) */ |
||
1340 | T = __QADD16(T, U); |
||
1341 | |||
1342 | /* writing the butterfly processed i0 sample */ |
||
1343 | |||
1344 | /* xa' = xa + xb + xc + xd */ |
||
1345 | /* ya' = ya + yb + yc + yd */ |
||
1346 | out1 = __SHADD16(R, T); |
||
1347 | out1 = __SHADD16(out1, 0); |
||
1348 | _SIMD32_OFFSET(pSi0) = out1; |
||
1349 | pSi0 += 2 * n1; |
||
1350 | |||
1351 | /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */ |
||
1352 | R = __SHSUB16(R, T); |
||
1353 | |||
1354 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1355 | |||
1356 | /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */ |
||
1357 | out1 = __SMUSD(C2, R) >> 16u; |
||
1358 | |||
1359 | /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
1360 | out2 = __SMUADX(C2, R); |
||
1361 | |||
1362 | #else |
||
1363 | |||
1364 | /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
1365 | out1 = __SMUADX(R, C2) >> 16u; |
||
1366 | |||
1367 | /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */ |
||
1368 | out2 = __SMUSD(__QSUB16(0, C2), R); |
||
1369 | |||
1370 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1371 | |||
1372 | /* Reading i0+3fftLen/4 */ |
||
1373 | /* Read yb (real), xb(imag) input */ |
||
1374 | T = _SIMD32_OFFSET(pSi1); |
||
1375 | |||
1376 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
1377 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
1378 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
1379 | _SIMD32_OFFSET(pSi1) = |
||
1380 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
1381 | pSi1 += 2 * n1; |
||
1382 | |||
1383 | /* Butterfly calculations */ |
||
1384 | |||
1385 | /* Read yd (real), xd(imag) input */ |
||
1386 | U = _SIMD32_OFFSET(pSi3); |
||
1387 | |||
1388 | /* T = packed(yb-yd, xb-xd) */ |
||
1389 | T = __QSUB16(T, U); |
||
1390 | |||
1391 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1392 | |||
1393 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
1394 | R = __SHSAX(S, T); |
||
1395 | |||
1396 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
1397 | S = __SHASX(S, T); |
||
1398 | |||
1399 | |||
1400 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
1401 | out1 = __SMUSD(C1, S) >> 16u; |
||
1402 | out2 = __SMUADX(C1, S); |
||
1403 | |||
1404 | #else |
||
1405 | |||
1406 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
1407 | R = __SHASX(S, T); |
||
1408 | |||
1409 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
1410 | S = __SHSAX(S, T); |
||
1411 | |||
1412 | |||
1413 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
1414 | out1 = __SMUADX(S, C1) >> 16u; |
||
1415 | out2 = __SMUSD(__QSUB16(0, C1), S); |
||
1416 | |||
1417 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1418 | |||
1419 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
1420 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
1421 | _SIMD32_OFFSET(pSi2) = |
||
1422 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
1423 | pSi2 += 2 * n1; |
||
1424 | |||
1425 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
1426 | |||
1427 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1428 | |||
1429 | out1 = __SMUSD(C3, R) >> 16u; |
||
1430 | out2 = __SMUADX(C3, R); |
||
1431 | |||
1432 | #else |
||
1433 | |||
1434 | out1 = __SMUADX(C3, R) >> 16u; |
||
1435 | out2 = __SMUSD(__QSUB16(0, C3), R); |
||
1436 | |||
1437 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1438 | |||
1439 | /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
1440 | /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
1441 | _SIMD32_OFFSET(pSi3) = |
||
1442 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
1443 | pSi3 += 2 * n1; |
||
1444 | } |
||
1445 | } |
||
1446 | /* Twiddle coefficients index modifier */ |
||
1447 | twidCoefModifier <<= 2u; |
||
1448 | } |
||
1449 | /* end of middle stage process */ |
||
1450 | |||
1451 | /* data is in 10.6(q6) format for the 1024 point */ |
||
1452 | /* data is in 8.8(q8) format for the 256 point */ |
||
1453 | /* data is in 6.10(q10) format for the 64 point */ |
||
1454 | /* data is in 4.12(q12) format for the 16 point */ |
||
1455 | |||
1456 | /* Initializations for the last stage */ |
||
1457 | j = fftLen >> 2; |
||
1458 | |||
1459 | ptr1 = &pSrc16[0]; |
||
1460 | |||
1461 | /* start of last stage process */ |
||
1462 | |||
1463 | /* Butterfly implementation */ |
||
1464 | do |
||
1465 | { |
||
1466 | /* Read xa (real), ya(imag) input */ |
||
1467 | xaya = *__SIMD32(ptr1)++; |
||
1468 | |||
1469 | /* Read xb (real), yb(imag) input */ |
||
1470 | xbyb = *__SIMD32(ptr1)++; |
||
1471 | |||
1472 | /* Read xc (real), yc(imag) input */ |
||
1473 | xcyc = *__SIMD32(ptr1)++; |
||
1474 | |||
1475 | /* Read xd (real), yd(imag) input */ |
||
1476 | xdyd = *__SIMD32(ptr1)++; |
||
1477 | |||
1478 | /* R = packed((ya + yc), (xa + xc)) */ |
||
1479 | R = __QADD16(xaya, xcyc); |
||
1480 | |||
1481 | /* T = packed((yb + yd), (xb + xd)) */ |
||
1482 | T = __QADD16(xbyb, xdyd); |
||
1483 | |||
1484 | /* pointer updation for writing */ |
||
1485 | ptr1 = ptr1 - 8u; |
||
1486 | |||
1487 | |||
1488 | /* xa' = xa + xb + xc + xd */ |
||
1489 | /* ya' = ya + yb + yc + yd */ |
||
1490 | *__SIMD32(ptr1)++ = __SHADD16(R, T); |
||
1491 | |||
1492 | /* T = packed((yb + yd), (xb + xd)) */ |
||
1493 | T = __QADD16(xbyb, xdyd); |
||
1494 | |||
1495 | /* xc' = (xa-xb+xc-xd) */ |
||
1496 | /* yc' = (ya-yb+yc-yd) */ |
||
1497 | *__SIMD32(ptr1)++ = __SHSUB16(R, T); |
||
1498 | |||
1499 | /* S = packed((ya - yc), (xa - xc)) */ |
||
1500 | S = __QSUB16(xaya, xcyc); |
||
1501 | |||
1502 | /* Read yd (real), xd(imag) input */ |
||
1503 | /* T = packed( (yb - yd), (xb - xd)) */ |
||
1504 | U = __QSUB16(xbyb, xdyd); |
||
1505 | |||
1506 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1507 | |||
1508 | /* xb' = (xa+yb-xc-yd) */ |
||
1509 | /* yb' = (ya-xb-yc+xd) */ |
||
1510 | *__SIMD32(ptr1)++ = __SHASX(S, U); |
||
1511 | |||
1512 | |||
1513 | /* xd' = (xa-yb-xc+yd) */ |
||
1514 | /* yd' = (ya+xb-yc-xd) */ |
||
1515 | *__SIMD32(ptr1)++ = __SHSAX(S, U); |
||
1516 | |||
1517 | #else |
||
1518 | |||
1519 | /* xb' = (xa+yb-xc-yd) */ |
||
1520 | /* yb' = (ya-xb-yc+xd) */ |
||
1521 | *__SIMD32(ptr1)++ = __SHSAX(S, U); |
||
1522 | |||
1523 | |||
1524 | /* xd' = (xa-yb-xc+yd) */ |
||
1525 | /* yd' = (ya+xb-yc-xd) */ |
||
1526 | *__SIMD32(ptr1)++ = __SHASX(S, U); |
||
1527 | |||
1528 | |||
1529 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1530 | |||
1531 | } while(--j); |
||
1532 | |||
1533 | /* end of last stage process */ |
||
1534 | |||
1535 | /* output is in 11.5(q5) format for the 1024 point */ |
||
1536 | /* output is in 9.7(q7) format for the 256 point */ |
||
1537 | /* output is in 7.9(q9) format for the 64 point */ |
||
1538 | /* output is in 5.11(q11) format for the 16 point */ |
||
1539 | |||
1540 | |||
1541 | #else |
||
1542 | |||
1543 | /* Run the below code for Cortex-M0 */ |
||
1544 | |||
1545 | q15_t R0, R1, S0, S1, T0, T1, U0, U1; |
||
1546 | q15_t Co1, Si1, Co2, Si2, Co3, Si3, out1, out2; |
||
1547 | uint32_t n1, n2, ic, i0, i1, i2, i3, j, k; |
||
1548 | |||
1549 | /* Total process is divided into three stages */ |
||
1550 | |||
1551 | /* process first stage, middle stages, & last stage */ |
||
1552 | |||
1553 | /* Initializations for the first stage */ |
||
1554 | n2 = fftLen; |
||
1555 | n1 = n2; |
||
1556 | |||
1557 | /* n2 = fftLen/4 */ |
||
1558 | n2 >>= 2u; |
||
1559 | |||
1560 | /* Index for twiddle coefficient */ |
||
1561 | ic = 0u; |
||
1562 | |||
1563 | /* Index for input read and output write */ |
||
1564 | i0 = 0u; |
||
1565 | |||
1566 | j = n2; |
||
1567 | |||
1568 | /* Input is in 1.15(q15) format */ |
||
1569 | |||
1570 | /* Start of first stage process */ |
||
1571 | do |
||
1572 | { |
||
1573 | /* Butterfly implementation */ |
||
1574 | |||
1575 | /* index calculation for the input as, */ |
||
1576 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
1577 | i1 = i0 + n2; |
||
1578 | i2 = i1 + n2; |
||
1579 | i3 = i2 + n2; |
||
1580 | |||
1581 | /* Reading i0, i0+fftLen/2 inputs */ |
||
1582 | /* input is down scale by 4 to avoid overflow */ |
||
1583 | /* Read ya (real), xa(imag) input */ |
||
1584 | T0 = pSrc16[i0 * 2u] >> 2u; |
||
1585 | T1 = pSrc16[(i0 * 2u) + 1u] >> 2u; |
||
1586 | /* input is down scale by 4 to avoid overflow */ |
||
1587 | /* Read yc (real), xc(imag) input */ |
||
1588 | S0 = pSrc16[i2 * 2u] >> 2u; |
||
1589 | S1 = pSrc16[(i2 * 2u) + 1u] >> 2u; |
||
1590 | |||
1591 | /* R0 = (ya + yc), R1 = (xa + xc) */ |
||
1592 | R0 = __SSAT(T0 + S0, 16u); |
||
1593 | R1 = __SSAT(T1 + S1, 16u); |
||
1594 | /* S0 = (ya - yc), S1 = (xa - xc) */ |
||
1595 | S0 = __SSAT(T0 - S0, 16u); |
||
1596 | S1 = __SSAT(T1 - S1, 16u); |
||
1597 | |||
1598 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
1599 | /* input is down scale by 4 to avoid overflow */ |
||
1600 | /* Read yb (real), xb(imag) input */ |
||
1601 | T0 = pSrc16[i1 * 2u] >> 2u; |
||
1602 | T1 = pSrc16[(i1 * 2u) + 1u] >> 2u; |
||
1603 | /* Read yd (real), xd(imag) input */ |
||
1604 | /* input is down scale by 4 to avoid overflow */ |
||
1605 | U0 = pSrc16[i3 * 2u] >> 2u; |
||
1606 | U1 = pSrc16[(i3 * 2u) + 1u] >> 2u; |
||
1607 | |||
1608 | /* T0 = (yb + yd), T1 = (xb + xd) */ |
||
1609 | T0 = __SSAT(T0 + U0, 16u); |
||
1610 | T1 = __SSAT(T1 + U1, 16u); |
||
1611 | |||
1612 | /* writing the butterfly processed i0 sample */ |
||
1613 | /* xa' = xa + xb + xc + xd */ |
||
1614 | /* ya' = ya + yb + yc + yd */ |
||
1615 | pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u); |
||
1616 | pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u); |
||
1617 | |||
1618 | /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc)- (xb + xd) */ |
||
1619 | R0 = __SSAT(R0 - T0, 16u); |
||
1620 | R1 = __SSAT(R1 - T1, 16u); |
||
1621 | /* co2 & si2 are read from Coefficient pointer */ |
||
1622 | Co2 = pCoef16[2u * ic * 2u]; |
||
1623 | Si2 = pCoef16[(2u * ic * 2u) + 1u]; |
||
1624 | /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */ |
||
1625 | out1 = (q15_t) ((Co2 * R0 - Si2 * R1) >> 16u); |
||
1626 | /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */ |
||
1627 | out2 = (q15_t) ((Si2 * R0 + Co2 * R1) >> 16u); |
||
1628 | |||
1629 | /* Reading i0+fftLen/4 */ |
||
1630 | /* input is down scale by 4 to avoid overflow */ |
||
1631 | /* T0 = yb, T1 = xb */ |
||
1632 | T0 = pSrc16[i1 * 2u] >> 2u; |
||
1633 | T1 = pSrc16[(i1 * 2u) + 1u] >> 2u; |
||
1634 | |||
1635 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
1636 | /* writing output(xc', yc') in little endian format */ |
||
1637 | pSrc16[i1 * 2u] = out1; |
||
1638 | pSrc16[(i1 * 2u) + 1u] = out2; |
||
1639 | |||
1640 | /* Butterfly calculations */ |
||
1641 | /* input is down scale by 4 to avoid overflow */ |
||
1642 | /* U0 = yd, U1 = xd) */ |
||
1643 | U0 = pSrc16[i3 * 2u] >> 2u; |
||
1644 | U1 = pSrc16[(i3 * 2u) + 1u] >> 2u; |
||
1645 | |||
1646 | /* T0 = yb-yd, T1 = xb-xd) */ |
||
1647 | T0 = __SSAT(T0 - U0, 16u); |
||
1648 | T1 = __SSAT(T1 - U1, 16u); |
||
1649 | /* R0 = (ya-yc) - (xb- xd) , R1 = (xa-xc) + (yb-yd) */ |
||
1650 | R0 = (q15_t) __SSAT((q31_t) (S0 + T1), 16); |
||
1651 | R1 = (q15_t) __SSAT((q31_t) (S1 - T0), 16); |
||
1652 | /* S = (ya-yc) + (xb- xd), S1 = (xa-xc) - (yb-yd) */ |
||
1653 | S0 = (q15_t) __SSAT((q31_t) (S0 - T1), 16); |
||
1654 | S1 = (q15_t) __SSAT((q31_t) (S1 + T0), 16); |
||
1655 | |||
1656 | /* co1 & si1 are read from Coefficient pointer */ |
||
1657 | Co1 = pCoef16[ic * 2u]; |
||
1658 | Si1 = pCoef16[(ic * 2u) + 1u]; |
||
1659 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
1660 | /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */ |
||
1661 | out1 = (q15_t) ((Co1 * S0 - Si1 * S1) >> 16u); |
||
1662 | /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */ |
||
1663 | out2 = (q15_t) ((Si1 * S0 + Co1 * S1) >> 16u); |
||
1664 | /* writing output(xb', yb') in little endian format */ |
||
1665 | pSrc16[i2 * 2u] = out1; |
||
1666 | pSrc16[(i2 * 2u) + 1u] = out2; |
||
1667 | |||
1668 | /* Co3 & si3 are read from Coefficient pointer */ |
||
1669 | Co3 = pCoef16[3u * ic * 2u]; |
||
1670 | Si3 = pCoef16[(3u * ic * 2u) + 1u]; |
||
1671 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
1672 | /* xd' = (xa+yb-xc-yd)* Co3 - (ya-xb-yc+xd)* (si3) */ |
||
1673 | out1 = (q15_t) ((Co3 * R0 - Si3 * R1) >> 16u); |
||
1674 | /* yd' = (ya-xb-yc+xd)* Co3 + (xa+yb-xc-yd)* (si3) */ |
||
1675 | out2 = (q15_t) ((Si3 * R0 + Co3 * R1) >> 16u); |
||
1676 | /* writing output(xd', yd') in little endian format */ |
||
1677 | pSrc16[i3 * 2u] = out1; |
||
1678 | pSrc16[(i3 * 2u) + 1u] = out2; |
||
1679 | |||
1680 | /* Twiddle coefficients index modifier */ |
||
1681 | ic = ic + twidCoefModifier; |
||
1682 | |||
1683 | /* Updating input index */ |
||
1684 | i0 = i0 + 1u; |
||
1685 | |||
1686 | } while(--j); |
||
1687 | |||
1688 | /* End of first stage process */ |
||
1689 | |||
1690 | /* data is in 4.11(q11) format */ |
||
1691 | |||
1692 | |||
1693 | /* Start of Middle stage process */ |
||
1694 | |||
1695 | /* Twiddle coefficients index modifier */ |
||
1696 | twidCoefModifier <<= 2u; |
||
1697 | |||
1698 | /* Calculation of Middle stage */ |
||
1699 | for (k = fftLen / 4u; k > 4u; k >>= 2u) |
||
1700 | { |
||
1701 | /* Initializations for the middle stage */ |
||
1702 | n1 = n2; |
||
1703 | n2 >>= 2u; |
||
1704 | ic = 0u; |
||
1705 | |||
1706 | for (j = 0u; j <= (n2 - 1u); j++) |
||
1707 | { |
||
1708 | /* index calculation for the coefficients */ |
||
1709 | Co1 = pCoef16[ic * 2u]; |
||
1710 | Si1 = pCoef16[(ic * 2u) + 1u]; |
||
1711 | Co2 = pCoef16[2u * ic * 2u]; |
||
1712 | Si2 = pCoef16[2u * ic * 2u + 1u]; |
||
1713 | Co3 = pCoef16[3u * ic * 2u]; |
||
1714 | Si3 = pCoef16[(3u * ic * 2u) + 1u]; |
||
1715 | |||
1716 | /* Twiddle coefficients index modifier */ |
||
1717 | ic = ic + twidCoefModifier; |
||
1718 | |||
1719 | /* Butterfly implementation */ |
||
1720 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
1721 | { |
||
1722 | /* index calculation for the input as, */ |
||
1723 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
1724 | i1 = i0 + n2; |
||
1725 | i2 = i1 + n2; |
||
1726 | i3 = i2 + n2; |
||
1727 | |||
1728 | /* Reading i0, i0+fftLen/2 inputs */ |
||
1729 | /* Read ya (real), xa(imag) input */ |
||
1730 | T0 = pSrc16[i0 * 2u]; |
||
1731 | T1 = pSrc16[(i0 * 2u) + 1u]; |
||
1732 | |||
1733 | /* Read yc (real), xc(imag) input */ |
||
1734 | S0 = pSrc16[i2 * 2u]; |
||
1735 | S1 = pSrc16[(i2 * 2u) + 1u]; |
||
1736 | |||
1737 | |||
1738 | /* R0 = (ya + yc), R1 = (xa + xc) */ |
||
1739 | R0 = __SSAT(T0 + S0, 16u); |
||
1740 | R1 = __SSAT(T1 + S1, 16u); |
||
1741 | /* S0 = (ya - yc), S1 = (xa - xc) */ |
||
1742 | S0 = __SSAT(T0 - S0, 16u); |
||
1743 | S1 = __SSAT(T1 - S1, 16u); |
||
1744 | |||
1745 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
1746 | /* Read yb (real), xb(imag) input */ |
||
1747 | T0 = pSrc16[i1 * 2u]; |
||
1748 | T1 = pSrc16[(i1 * 2u) + 1u]; |
||
1749 | |||
1750 | /* Read yd (real), xd(imag) input */ |
||
1751 | U0 = pSrc16[i3 * 2u]; |
||
1752 | U1 = pSrc16[(i3 * 2u) + 1u]; |
||
1753 | |||
1754 | /* T0 = (yb + yd), T1 = (xb + xd) */ |
||
1755 | T0 = __SSAT(T0 + U0, 16u); |
||
1756 | T1 = __SSAT(T1 + U1, 16u); |
||
1757 | |||
1758 | /* writing the butterfly processed i0 sample */ |
||
1759 | /* xa' = xa + xb + xc + xd */ |
||
1760 | /* ya' = ya + yb + yc + yd */ |
||
1761 | pSrc16[i0 * 2u] = ((R0 >> 1u) + (T0 >> 1u)) >> 1u; |
||
1762 | pSrc16[(i0 * 2u) + 1u] = ((R1 >> 1u) + (T1 >> 1u)) >> 1u; |
||
1763 | |||
1764 | /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */ |
||
1765 | R0 = (R0 >> 1u) - (T0 >> 1u); |
||
1766 | R1 = (R1 >> 1u) - (T1 >> 1u); |
||
1767 | |||
1768 | /* (ya-yb+yc-yd)* (si2) - (xa-xb+xc-xd)* co2 */ |
||
1769 | out1 = (q15_t) ((Co2 * R0 - Si2 * R1) >> 16); |
||
1770 | /* (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */ |
||
1771 | out2 = (q15_t) ((Si2 * R0 + Co2 * R1) >> 16); |
||
1772 | |||
1773 | /* Reading i0+3fftLen/4 */ |
||
1774 | /* Read yb (real), xb(imag) input */ |
||
1775 | T0 = pSrc16[i1 * 2u]; |
||
1776 | T1 = pSrc16[(i1 * 2u) + 1u]; |
||
1777 | |||
1778 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
1779 | /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */ |
||
1780 | /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */ |
||
1781 | pSrc16[i1 * 2u] = out1; |
||
1782 | pSrc16[(i1 * 2u) + 1u] = out2; |
||
1783 | |||
1784 | /* Butterfly calculations */ |
||
1785 | /* Read yd (real), xd(imag) input */ |
||
1786 | U0 = pSrc16[i3 * 2u]; |
||
1787 | U1 = pSrc16[(i3 * 2u) + 1u]; |
||
1788 | |||
1789 | /* T0 = yb-yd, T1 = xb-xd) */ |
||
1790 | T0 = __SSAT(T0 - U0, 16u); |
||
1791 | T1 = __SSAT(T1 - U1, 16u); |
||
1792 | |||
1793 | /* R0 = (ya-yc) - (xb- xd) , R1 = (xa-xc) + (yb-yd) */ |
||
1794 | R0 = (S0 >> 1u) + (T1 >> 1u); |
||
1795 | R1 = (S1 >> 1u) - (T0 >> 1u); |
||
1796 | |||
1797 | /* S1 = (ya-yc) + (xb- xd), S1 = (xa-xc) - (yb-yd) */ |
||
1798 | S0 = (S0 >> 1u) - (T1 >> 1u); |
||
1799 | S1 = (S1 >> 1u) + (T0 >> 1u); |
||
1800 | |||
1801 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
1802 | out1 = (q15_t) ((Co1 * S0 - Si1 * S1) >> 16u); |
||
1803 | out2 = (q15_t) ((Si1 * S0 + Co1 * S1) >> 16u); |
||
1804 | /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */ |
||
1805 | /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */ |
||
1806 | pSrc16[i2 * 2u] = out1; |
||
1807 | pSrc16[(i2 * 2u) + 1u] = out2; |
||
1808 | |||
1809 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
1810 | out1 = (q15_t) ((Co3 * R0 - Si3 * R1) >> 16u); |
||
1811 | |||
1812 | out2 = (q15_t) ((Si3 * R0 + Co3 * R1) >> 16u); |
||
1813 | /* xd' = (xa+yb-xc-yd)* Co3 - (ya-xb-yc+xd)* (si3) */ |
||
1814 | /* yd' = (ya-xb-yc+xd)* Co3 + (xa+yb-xc-yd)* (si3) */ |
||
1815 | pSrc16[i3 * 2u] = out1; |
||
1816 | pSrc16[(i3 * 2u) + 1u] = out2; |
||
1817 | |||
1818 | |||
1819 | } |
||
1820 | } |
||
1821 | /* Twiddle coefficients index modifier */ |
||
1822 | twidCoefModifier <<= 2u; |
||
1823 | } |
||
1824 | /* End of Middle stages process */ |
||
1825 | |||
1826 | |||
1827 | /* data is in 10.6(q6) format for the 1024 point */ |
||
1828 | /* data is in 8.8(q8) format for the 256 point */ |
||
1829 | /* data is in 6.10(q10) format for the 64 point */ |
||
1830 | /* data is in 4.12(q12) format for the 16 point */ |
||
1831 | |||
1832 | /* start of last stage process */ |
||
1833 | |||
1834 | |||
1835 | /* Initializations for the last stage */ |
||
1836 | n1 = n2; |
||
1837 | n2 >>= 2u; |
||
1838 | |||
1839 | /* Butterfly implementation */ |
||
1840 | for (i0 = 0u; i0 <= (fftLen - n1); i0 += n1) |
||
1841 | { |
||
1842 | /* index calculation for the input as, */ |
||
1843 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
1844 | i1 = i0 + n2; |
||
1845 | i2 = i1 + n2; |
||
1846 | i3 = i2 + n2; |
||
1847 | |||
1848 | /* Reading i0, i0+fftLen/2 inputs */ |
||
1849 | /* Read ya (real), xa(imag) input */ |
||
1850 | T0 = pSrc16[i0 * 2u]; |
||
1851 | T1 = pSrc16[(i0 * 2u) + 1u]; |
||
1852 | /* Read yc (real), xc(imag) input */ |
||
1853 | S0 = pSrc16[i2 * 2u]; |
||
1854 | S1 = pSrc16[(i2 * 2u) + 1u]; |
||
1855 | |||
1856 | /* R0 = (ya + yc), R1 = (xa + xc) */ |
||
1857 | R0 = __SSAT(T0 + S0, 16u); |
||
1858 | R1 = __SSAT(T1 + S1, 16u); |
||
1859 | /* S0 = (ya - yc), S1 = (xa - xc) */ |
||
1860 | S0 = __SSAT(T0 - S0, 16u); |
||
1861 | S1 = __SSAT(T1 - S1, 16u); |
||
1862 | |||
1863 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
1864 | /* Read yb (real), xb(imag) input */ |
||
1865 | T0 = pSrc16[i1 * 2u]; |
||
1866 | T1 = pSrc16[(i1 * 2u) + 1u]; |
||
1867 | /* Read yd (real), xd(imag) input */ |
||
1868 | U0 = pSrc16[i3 * 2u]; |
||
1869 | U1 = pSrc16[(i3 * 2u) + 1u]; |
||
1870 | |||
1871 | /* T0 = (yb + yd), T1 = (xb + xd) */ |
||
1872 | T0 = __SSAT(T0 + U0, 16u); |
||
1873 | T1 = __SSAT(T1 + U1, 16u); |
||
1874 | |||
1875 | /* writing the butterfly processed i0 sample */ |
||
1876 | /* xa' = xa + xb + xc + xd */ |
||
1877 | /* ya' = ya + yb + yc + yd */ |
||
1878 | pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u); |
||
1879 | pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u); |
||
1880 | |||
1881 | /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */ |
||
1882 | R0 = (R0 >> 1u) - (T0 >> 1u); |
||
1883 | R1 = (R1 >> 1u) - (T1 >> 1u); |
||
1884 | |||
1885 | /* Read yb (real), xb(imag) input */ |
||
1886 | T0 = pSrc16[i1 * 2u]; |
||
1887 | T1 = pSrc16[(i1 * 2u) + 1u]; |
||
1888 | |||
1889 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
1890 | /* xc' = (xa-xb+xc-xd) */ |
||
1891 | /* yc' = (ya-yb+yc-yd) */ |
||
1892 | pSrc16[i1 * 2u] = R0; |
||
1893 | pSrc16[(i1 * 2u) + 1u] = R1; |
||
1894 | |||
1895 | /* Read yd (real), xd(imag) input */ |
||
1896 | U0 = pSrc16[i3 * 2u]; |
||
1897 | U1 = pSrc16[(i3 * 2u) + 1u]; |
||
1898 | /* T0 = (yb - yd), T1 = (xb - xd) */ |
||
1899 | T0 = __SSAT(T0 - U0, 16u); |
||
1900 | T1 = __SSAT(T1 - U1, 16u); |
||
1901 | |||
1902 | /* writing the butterfly processed i0 + fftLen/2 sample */ |
||
1903 | /* xb' = (xa-yb-xc+yd) */ |
||
1904 | /* yb' = (ya+xb-yc-xd) */ |
||
1905 | pSrc16[i2 * 2u] = (S0 >> 1u) - (T1 >> 1u); |
||
1906 | pSrc16[(i2 * 2u) + 1u] = (S1 >> 1u) + (T0 >> 1u); |
||
1907 | |||
1908 | |||
1909 | /* writing the butterfly processed i0 + 3fftLen/4 sample */ |
||
1910 | /* xd' = (xa+yb-xc-yd) */ |
||
1911 | /* yd' = (ya-xb-yc+xd) */ |
||
1912 | pSrc16[i3 * 2u] = (S0 >> 1u) + (T1 >> 1u); |
||
1913 | pSrc16[(i3 * 2u) + 1u] = (S1 >> 1u) - (T0 >> 1u); |
||
1914 | } |
||
1915 | /* end of last stage process */ |
||
1916 | |||
1917 | /* output is in 11.5(q5) format for the 1024 point */ |
||
1918 | /* output is in 9.7(q7) format for the 256 point */ |
||
1919 | /* output is in 7.9(q9) format for the 64 point */ |
||
1920 | /* output is in 5.11(q11) format for the 16 point */ |
||
1921 | |||
1922 | #endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
||
1923 | |||
1924 | } |