Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
||
3 | * |
||
4 | * $Date: 19. March 2015 |
||
5 | * $Revision: V.1.4.5 |
||
6 | * |
||
7 | * Project: CMSIS DSP Library |
||
8 | * Title: arm_cfft_f32.c |
||
9 | * |
||
10 | * Description: Combined Radix Decimation in Frequency CFFT Floating point processing function |
||
11 | * |
||
12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
||
13 | * |
||
14 | * Redistribution and use in source and binary forms, with or without |
||
15 | * modification, are permitted provided that the following conditions |
||
16 | * are met: |
||
17 | * - Redistributions of source code must retain the above copyright |
||
18 | * notice, this list of conditions and the following disclaimer. |
||
19 | * - Redistributions in binary form must reproduce the above copyright |
||
20 | * notice, this list of conditions and the following disclaimer in |
||
21 | * the documentation and/or other materials provided with the |
||
22 | * distribution. |
||
23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
24 | * may be used to endorse or promote products derived from this |
||
25 | * software without specific prior written permission. |
||
26 | * |
||
27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
38 | * POSSIBILITY OF SUCH DAMAGE. |
||
39 | * -------------------------------------------------------------------- */ |
||
40 | |||
41 | #include "arm_math.h" |
||
42 | #include "arm_common_tables.h" |
||
43 | |||
44 | extern void arm_radix8_butterfly_f32( |
||
45 | float32_t * pSrc, |
||
46 | uint16_t fftLen, |
||
47 | const float32_t * pCoef, |
||
48 | uint16_t twidCoefModifier); |
||
49 | |||
50 | extern void arm_bitreversal_32( |
||
51 | uint32_t * pSrc, |
||
52 | const uint16_t bitRevLen, |
||
53 | const uint16_t * pBitRevTable); |
||
54 | |||
55 | /** |
||
56 | * @ingroup groupTransforms |
||
57 | */ |
||
58 | |||
59 | /** |
||
60 | * @defgroup ComplexFFT Complex FFT Functions |
||
61 | * |
||
62 | * \par |
||
63 | * The Fast Fourier Transform (FFT) is an efficient algorithm for computing the |
||
64 | * Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster |
||
65 | * than the DFT, especially for long lengths. |
||
66 | * The algorithms described in this section |
||
67 | * operate on complex data. A separate set of functions is devoted to handling |
||
68 | * of real sequences. |
||
69 | * \par |
||
70 | * There are separate algorithms for handling floating-point, Q15, and Q31 data |
||
71 | * types. The algorithms available for each data type are described next. |
||
72 | * \par |
||
73 | * The FFT functions operate in-place. That is, the array holding the input data |
||
74 | * will also be used to hold the corresponding result. The input data is complex |
||
75 | * and contains <code>2*fftLen</code> interleaved values as shown below. |
||
76 | * <pre> {real[0], imag[0], real[1], imag[1],..} </pre> |
||
77 | * The FFT result will be contained in the same array and the frequency domain |
||
78 | * values will have the same interleaving. |
||
79 | * |
||
80 | * \par Floating-point |
||
81 | * The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8 |
||
82 | * stages are performed along with a single radix-2 or radix-4 stage, as needed. |
||
83 | * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses |
||
84 | * a different twiddle factor table. |
||
85 | * \par |
||
86 | * The function uses the standard FFT definition and output values may grow by a |
||
87 | * factor of <code>fftLen</code> when computing the forward transform. The |
||
88 | * inverse transform includes a scale of <code>1/fftLen</code> as part of the |
||
89 | * calculation and this matches the textbook definition of the inverse FFT. |
||
90 | * \par |
||
91 | * Pre-initialized data structures containing twiddle factors and bit reversal |
||
92 | * tables are provided and defined in <code>arm_const_structs.h</code>. Include |
||
93 | * this header in your function and then pass one of the constant structures as |
||
94 | * an argument to arm_cfft_f32. For example: |
||
95 | * \par |
||
96 | * <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code> |
||
97 | * \par |
||
98 | * computes a 64-point inverse complex FFT including bit reversal. |
||
99 | * The data structures are treated as constant data and not modified during the |
||
100 | * calculation. The same data structure can be reused for multiple transforms |
||
101 | * including mixing forward and inverse transforms. |
||
102 | * \par |
||
103 | * Earlier releases of the library provided separate radix-2 and radix-4 |
||
104 | * algorithms that operated on floating-point data. These functions are still |
||
105 | * provided but are deprecated. The older functions are slower and less general |
||
106 | * than the new functions. |
||
107 | * \par |
||
108 | * An example of initialization of the constants for the arm_cfft_f32 function follows: |
||
109 | * \code |
||
110 | * const static arm_cfft_instance_f32 *S; |
||
111 | * ... |
||
112 | * switch (length) { |
||
113 | * case 16: |
||
114 | * S = &arm_cfft_sR_f32_len16; |
||
115 | * break; |
||
116 | * case 32: |
||
117 | * S = &arm_cfft_sR_f32_len32; |
||
118 | * break; |
||
119 | * case 64: |
||
120 | * S = &arm_cfft_sR_f32_len64; |
||
121 | * break; |
||
122 | * case 128: |
||
123 | * S = &arm_cfft_sR_f32_len128; |
||
124 | * break; |
||
125 | * case 256: |
||
126 | * S = &arm_cfft_sR_f32_len256; |
||
127 | * break; |
||
128 | * case 512: |
||
129 | * S = &arm_cfft_sR_f32_len512; |
||
130 | * break; |
||
131 | * case 1024: |
||
132 | * S = &arm_cfft_sR_f32_len1024; |
||
133 | * break; |
||
134 | * case 2048: |
||
135 | * S = &arm_cfft_sR_f32_len2048; |
||
136 | * break; |
||
137 | * case 4096: |
||
138 | * S = &arm_cfft_sR_f32_len4096; |
||
139 | * break; |
||
140 | * } |
||
141 | * \endcode |
||
142 | * \par Q15 and Q31 |
||
143 | * The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4 |
||
144 | * stages are performed along with a single radix-2 stage, as needed. |
||
145 | * The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses |
||
146 | * a different twiddle factor table. |
||
147 | * \par |
||
148 | * The function uses the standard FFT definition and output values may grow by a |
||
149 | * factor of <code>fftLen</code> when computing the forward transform. The |
||
150 | * inverse transform includes a scale of <code>1/fftLen</code> as part of the |
||
151 | * calculation and this matches the textbook definition of the inverse FFT. |
||
152 | * \par |
||
153 | * Pre-initialized data structures containing twiddle factors and bit reversal |
||
154 | * tables are provided and defined in <code>arm_const_structs.h</code>. Include |
||
155 | * this header in your function and then pass one of the constant structures as |
||
156 | * an argument to arm_cfft_q31. For example: |
||
157 | * \par |
||
158 | * <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code> |
||
159 | * \par |
||
160 | * computes a 64-point inverse complex FFT including bit reversal. |
||
161 | * The data structures are treated as constant data and not modified during the |
||
162 | * calculation. The same data structure can be reused for multiple transforms |
||
163 | * including mixing forward and inverse transforms. |
||
164 | * \par |
||
165 | * Earlier releases of the library provided separate radix-2 and radix-4 |
||
166 | * algorithms that operated on floating-point data. These functions are still |
||
167 | * provided but are deprecated. The older functions are slower and less general |
||
168 | * than the new functions. |
||
169 | * \par |
||
170 | * An example of initialization of the constants for the arm_cfft_q31 function follows: |
||
171 | * \code |
||
172 | * const static arm_cfft_instance_q31 *S; |
||
173 | * ... |
||
174 | * switch (length) { |
||
175 | * case 16: |
||
176 | * S = &arm_cfft_sR_q31_len16; |
||
177 | * break; |
||
178 | * case 32: |
||
179 | * S = &arm_cfft_sR_q31_len32; |
||
180 | * break; |
||
181 | * case 64: |
||
182 | * S = &arm_cfft_sR_q31_len64; |
||
183 | * break; |
||
184 | * case 128: |
||
185 | * S = &arm_cfft_sR_q31_len128; |
||
186 | * break; |
||
187 | * case 256: |
||
188 | * S = &arm_cfft_sR_q31_len256; |
||
189 | * break; |
||
190 | * case 512: |
||
191 | * S = &arm_cfft_sR_q31_len512; |
||
192 | * break; |
||
193 | * case 1024: |
||
194 | * S = &arm_cfft_sR_q31_len1024; |
||
195 | * break; |
||
196 | * case 2048: |
||
197 | * S = &arm_cfft_sR_q31_len2048; |
||
198 | * break; |
||
199 | * case 4096: |
||
200 | * S = &arm_cfft_sR_q31_len4096; |
||
201 | * break; |
||
202 | * } |
||
203 | * \endcode |
||
204 | * |
||
205 | */ |
||
206 | |||
207 | void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1) |
||
208 | { |
||
209 | uint32_t L = S->fftLen; |
||
210 | float32_t * pCol1, * pCol2, * pMid1, * pMid2; |
||
211 | float32_t * p2 = p1 + L; |
||
212 | const float32_t * tw = (float32_t *) S->pTwiddle; |
||
213 | float32_t t1[4], t2[4], t3[4], t4[4], twR, twI; |
||
214 | float32_t m0, m1, m2, m3; |
||
215 | uint32_t l; |
||
216 | |||
217 | pCol1 = p1; |
||
218 | pCol2 = p2; |
||
219 | |||
220 | // Define new length |
||
221 | L >>= 1; |
||
222 | // Initialize mid pointers |
||
223 | pMid1 = p1 + L; |
||
224 | pMid2 = p2 + L; |
||
225 | |||
226 | // do two dot Fourier transform |
||
227 | for ( l = L >> 2; l > 0; l-- ) |
||
228 | { |
||
229 | t1[0] = p1[0]; |
||
230 | t1[1] = p1[1]; |
||
231 | t1[2] = p1[2]; |
||
232 | t1[3] = p1[3]; |
||
233 | |||
234 | t2[0] = p2[0]; |
||
235 | t2[1] = p2[1]; |
||
236 | t2[2] = p2[2]; |
||
237 | t2[3] = p2[3]; |
||
238 | |||
239 | t3[0] = pMid1[0]; |
||
240 | t3[1] = pMid1[1]; |
||
241 | t3[2] = pMid1[2]; |
||
242 | t3[3] = pMid1[3]; |
||
243 | |||
244 | t4[0] = pMid2[0]; |
||
245 | t4[1] = pMid2[1]; |
||
246 | t4[2] = pMid2[2]; |
||
247 | t4[3] = pMid2[3]; |
||
248 | |||
249 | *p1++ = t1[0] + t2[0]; |
||
250 | *p1++ = t1[1] + t2[1]; |
||
251 | *p1++ = t1[2] + t2[2]; |
||
252 | *p1++ = t1[3] + t2[3]; // col 1 |
||
253 | |||
254 | t2[0] = t1[0] - t2[0]; |
||
255 | t2[1] = t1[1] - t2[1]; |
||
256 | t2[2] = t1[2] - t2[2]; |
||
257 | t2[3] = t1[3] - t2[3]; // for col 2 |
||
258 | |||
259 | *pMid1++ = t3[0] + t4[0]; |
||
260 | *pMid1++ = t3[1] + t4[1]; |
||
261 | *pMid1++ = t3[2] + t4[2]; |
||
262 | *pMid1++ = t3[3] + t4[3]; // col 1 |
||
263 | |||
264 | t4[0] = t4[0] - t3[0]; |
||
265 | t4[1] = t4[1] - t3[1]; |
||
266 | t4[2] = t4[2] - t3[2]; |
||
267 | t4[3] = t4[3] - t3[3]; // for col 2 |
||
268 | |||
269 | twR = *tw++; |
||
270 | twI = *tw++; |
||
271 | |||
272 | // multiply by twiddle factors |
||
273 | m0 = t2[0] * twR; |
||
274 | m1 = t2[1] * twI; |
||
275 | m2 = t2[1] * twR; |
||
276 | m3 = t2[0] * twI; |
||
277 | |||
278 | // R = R * Tr - I * Ti |
||
279 | *p2++ = m0 + m1; |
||
280 | // I = I * Tr + R * Ti |
||
281 | *p2++ = m2 - m3; |
||
282 | |||
283 | // use vertical symmetry |
||
284 | // 0.9988 - 0.0491i <==> -0.0491 - 0.9988i |
||
285 | m0 = t4[0] * twI; |
||
286 | m1 = t4[1] * twR; |
||
287 | m2 = t4[1] * twI; |
||
288 | m3 = t4[0] * twR; |
||
289 | |||
290 | *pMid2++ = m0 - m1; |
||
291 | *pMid2++ = m2 + m3; |
||
292 | |||
293 | twR = *tw++; |
||
294 | twI = *tw++; |
||
295 | |||
296 | m0 = t2[2] * twR; |
||
297 | m1 = t2[3] * twI; |
||
298 | m2 = t2[3] * twR; |
||
299 | m3 = t2[2] * twI; |
||
300 | |||
301 | *p2++ = m0 + m1; |
||
302 | *p2++ = m2 - m3; |
||
303 | |||
304 | m0 = t4[2] * twI; |
||
305 | m1 = t4[3] * twR; |
||
306 | m2 = t4[3] * twI; |
||
307 | m3 = t4[2] * twR; |
||
308 | |||
309 | *pMid2++ = m0 - m1; |
||
310 | *pMid2++ = m2 + m3; |
||
311 | } |
||
312 | |||
313 | // first col |
||
314 | arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2u); |
||
315 | // second col |
||
316 | arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2u); |
||
317 | } |
||
318 | |||
319 | void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1) |
||
320 | { |
||
321 | uint32_t L = S->fftLen >> 1; |
||
322 | float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4; |
||
323 | const float32_t *tw2, *tw3, *tw4; |
||
324 | float32_t * p2 = p1 + L; |
||
325 | float32_t * p3 = p2 + L; |
||
326 | float32_t * p4 = p3 + L; |
||
327 | float32_t t2[4], t3[4], t4[4], twR, twI; |
||
328 | float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1; |
||
329 | float32_t m0, m1, m2, m3; |
||
330 | uint32_t l, twMod2, twMod3, twMod4; |
||
331 | |||
332 | pCol1 = p1; // points to real values by default |
||
333 | pCol2 = p2; |
||
334 | pCol3 = p3; |
||
335 | pCol4 = p4; |
||
336 | pEnd1 = p2 - 1; // points to imaginary values by default |
||
337 | pEnd2 = p3 - 1; |
||
338 | pEnd3 = p4 - 1; |
||
339 | pEnd4 = pEnd3 + L; |
||
340 | |||
341 | tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle; |
||
342 | |||
343 | L >>= 1; |
||
344 | |||
345 | // do four dot Fourier transform |
||
346 | |||
347 | twMod2 = 2; |
||
348 | twMod3 = 4; |
||
349 | twMod4 = 6; |
||
350 | |||
351 | // TOP |
||
352 | p1ap3_0 = p1[0] + p3[0]; |
||
353 | p1sp3_0 = p1[0] - p3[0]; |
||
354 | p1ap3_1 = p1[1] + p3[1]; |
||
355 | p1sp3_1 = p1[1] - p3[1]; |
||
356 | |||
357 | // col 2 |
||
358 | t2[0] = p1sp3_0 + p2[1] - p4[1]; |
||
359 | t2[1] = p1sp3_1 - p2[0] + p4[0]; |
||
360 | // col 3 |
||
361 | t3[0] = p1ap3_0 - p2[0] - p4[0]; |
||
362 | t3[1] = p1ap3_1 - p2[1] - p4[1]; |
||
363 | // col 4 |
||
364 | t4[0] = p1sp3_0 - p2[1] + p4[1]; |
||
365 | t4[1] = p1sp3_1 + p2[0] - p4[0]; |
||
366 | // col 1 |
||
367 | *p1++ = p1ap3_0 + p2[0] + p4[0]; |
||
368 | *p1++ = p1ap3_1 + p2[1] + p4[1]; |
||
369 | |||
370 | // Twiddle factors are ones |
||
371 | *p2++ = t2[0]; |
||
372 | *p2++ = t2[1]; |
||
373 | *p3++ = t3[0]; |
||
374 | *p3++ = t3[1]; |
||
375 | *p4++ = t4[0]; |
||
376 | *p4++ = t4[1]; |
||
377 | |||
378 | tw2 += twMod2; |
||
379 | tw3 += twMod3; |
||
380 | tw4 += twMod4; |
||
381 | |||
382 | for (l = (L - 2) >> 1; l > 0; l-- ) |
||
383 | { |
||
384 | // TOP |
||
385 | p1ap3_0 = p1[0] + p3[0]; |
||
386 | p1sp3_0 = p1[0] - p3[0]; |
||
387 | p1ap3_1 = p1[1] + p3[1]; |
||
388 | p1sp3_1 = p1[1] - p3[1]; |
||
389 | // col 2 |
||
390 | t2[0] = p1sp3_0 + p2[1] - p4[1]; |
||
391 | t2[1] = p1sp3_1 - p2[0] + p4[0]; |
||
392 | // col 3 |
||
393 | t3[0] = p1ap3_0 - p2[0] - p4[0]; |
||
394 | t3[1] = p1ap3_1 - p2[1] - p4[1]; |
||
395 | // col 4 |
||
396 | t4[0] = p1sp3_0 - p2[1] + p4[1]; |
||
397 | t4[1] = p1sp3_1 + p2[0] - p4[0]; |
||
398 | // col 1 - top |
||
399 | *p1++ = p1ap3_0 + p2[0] + p4[0]; |
||
400 | *p1++ = p1ap3_1 + p2[1] + p4[1]; |
||
401 | |||
402 | // BOTTOM |
||
403 | p1ap3_1 = pEnd1[-1] + pEnd3[-1]; |
||
404 | p1sp3_1 = pEnd1[-1] - pEnd3[-1]; |
||
405 | p1ap3_0 = pEnd1[0] + pEnd3[0]; |
||
406 | p1sp3_0 = pEnd1[0] - pEnd3[0]; |
||
407 | // col 2 |
||
408 | t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1; |
||
409 | t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1]; |
||
410 | // col 3 |
||
411 | t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1]; |
||
412 | t3[3] = p1ap3_0 - pEnd2[0] - pEnd4[0]; |
||
413 | // col 4 |
||
414 | t4[2] = pEnd2[0] - pEnd4[0] - p1sp3_1; |
||
415 | t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0; |
||
416 | // col 1 - Bottom |
||
417 | *pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0]; |
||
418 | *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1]; |
||
419 | |||
420 | // COL 2 |
||
421 | // read twiddle factors |
||
422 | twR = *tw2++; |
||
423 | twI = *tw2++; |
||
424 | // multiply by twiddle factors |
||
425 | // let Z1 = a + i(b), Z2 = c + i(d) |
||
426 | // => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d) |
||
427 | |||
428 | // Top |
||
429 | m0 = t2[0] * twR; |
||
430 | m1 = t2[1] * twI; |
||
431 | m2 = t2[1] * twR; |
||
432 | m3 = t2[0] * twI; |
||
433 | |||
434 | *p2++ = m0 + m1; |
||
435 | *p2++ = m2 - m3; |
||
436 | // use vertical symmetry col 2 |
||
437 | // 0.9997 - 0.0245i <==> 0.0245 - 0.9997i |
||
438 | // Bottom |
||
439 | m0 = t2[3] * twI; |
||
440 | m1 = t2[2] * twR; |
||
441 | m2 = t2[2] * twI; |
||
442 | m3 = t2[3] * twR; |
||
443 | |||
444 | *pEnd2-- = m0 - m1; |
||
445 | *pEnd2-- = m2 + m3; |
||
446 | |||
447 | // COL 3 |
||
448 | twR = tw3[0]; |
||
449 | twI = tw3[1]; |
||
450 | tw3 += twMod3; |
||
451 | // Top |
||
452 | m0 = t3[0] * twR; |
||
453 | m1 = t3[1] * twI; |
||
454 | m2 = t3[1] * twR; |
||
455 | m3 = t3[0] * twI; |
||
456 | |||
457 | *p3++ = m0 + m1; |
||
458 | *p3++ = m2 - m3; |
||
459 | // use vertical symmetry col 3 |
||
460 | // 0.9988 - 0.0491i <==> -0.9988 - 0.0491i |
||
461 | // Bottom |
||
462 | m0 = -t3[3] * twR; |
||
463 | m1 = t3[2] * twI; |
||
464 | m2 = t3[2] * twR; |
||
465 | m3 = t3[3] * twI; |
||
466 | |||
467 | *pEnd3-- = m0 - m1; |
||
468 | *pEnd3-- = m3 - m2; |
||
469 | |||
470 | // COL 4 |
||
471 | twR = tw4[0]; |
||
472 | twI = tw4[1]; |
||
473 | tw4 += twMod4; |
||
474 | // Top |
||
475 | m0 = t4[0] * twR; |
||
476 | m1 = t4[1] * twI; |
||
477 | m2 = t4[1] * twR; |
||
478 | m3 = t4[0] * twI; |
||
479 | |||
480 | *p4++ = m0 + m1; |
||
481 | *p4++ = m2 - m3; |
||
482 | // use vertical symmetry col 4 |
||
483 | // 0.9973 - 0.0736i <==> -0.0736 + 0.9973i |
||
484 | // Bottom |
||
485 | m0 = t4[3] * twI; |
||
486 | m1 = t4[2] * twR; |
||
487 | m2 = t4[2] * twI; |
||
488 | m3 = t4[3] * twR; |
||
489 | |||
490 | *pEnd4-- = m0 - m1; |
||
491 | *pEnd4-- = m2 + m3; |
||
492 | } |
||
493 | |||
494 | //MIDDLE |
||
495 | // Twiddle factors are |
||
496 | // 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i |
||
497 | p1ap3_0 = p1[0] + p3[0]; |
||
498 | p1sp3_0 = p1[0] - p3[0]; |
||
499 | p1ap3_1 = p1[1] + p3[1]; |
||
500 | p1sp3_1 = p1[1] - p3[1]; |
||
501 | |||
502 | // col 2 |
||
503 | t2[0] = p1sp3_0 + p2[1] - p4[1]; |
||
504 | t2[1] = p1sp3_1 - p2[0] + p4[0]; |
||
505 | // col 3 |
||
506 | t3[0] = p1ap3_0 - p2[0] - p4[0]; |
||
507 | t3[1] = p1ap3_1 - p2[1] - p4[1]; |
||
508 | // col 4 |
||
509 | t4[0] = p1sp3_0 - p2[1] + p4[1]; |
||
510 | t4[1] = p1sp3_1 + p2[0] - p4[0]; |
||
511 | // col 1 - Top |
||
512 | *p1++ = p1ap3_0 + p2[0] + p4[0]; |
||
513 | *p1++ = p1ap3_1 + p2[1] + p4[1]; |
||
514 | |||
515 | // COL 2 |
||
516 | twR = tw2[0]; |
||
517 | twI = tw2[1]; |
||
518 | |||
519 | m0 = t2[0] * twR; |
||
520 | m1 = t2[1] * twI; |
||
521 | m2 = t2[1] * twR; |
||
522 | m3 = t2[0] * twI; |
||
523 | |||
524 | *p2++ = m0 + m1; |
||
525 | *p2++ = m2 - m3; |
||
526 | // COL 3 |
||
527 | twR = tw3[0]; |
||
528 | twI = tw3[1]; |
||
529 | |||
530 | m0 = t3[0] * twR; |
||
531 | m1 = t3[1] * twI; |
||
532 | m2 = t3[1] * twR; |
||
533 | m3 = t3[0] * twI; |
||
534 | |||
535 | *p3++ = m0 + m1; |
||
536 | *p3++ = m2 - m3; |
||
537 | // COL 4 |
||
538 | twR = tw4[0]; |
||
539 | twI = tw4[1]; |
||
540 | |||
541 | m0 = t4[0] * twR; |
||
542 | m1 = t4[1] * twI; |
||
543 | m2 = t4[1] * twR; |
||
544 | m3 = t4[0] * twI; |
||
545 | |||
546 | *p4++ = m0 + m1; |
||
547 | *p4++ = m2 - m3; |
||
548 | |||
549 | // first col |
||
550 | arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4u); |
||
551 | // second col |
||
552 | arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4u); |
||
553 | // third col |
||
554 | arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4u); |
||
555 | // fourth col |
||
556 | arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4u); |
||
557 | } |
||
558 | |||
559 | /** |
||
560 | * @addtogroup ComplexFFT |
||
561 | * @{ |
||
562 | */ |
||
563 | |||
564 | /** |
||
565 | * @details |
||
566 | * @brief Processing function for the floating-point complex FFT. |
||
567 | * @param[in] *S points to an instance of the floating-point CFFT structure. |
||
568 | * @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place. |
||
569 | * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. |
||
570 | * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. |
||
571 | * @return none. |
||
572 | */ |
||
573 | |||
574 | void arm_cfft_f32( |
||
575 | const arm_cfft_instance_f32 * S, |
||
576 | float32_t * p1, |
||
577 | uint8_t ifftFlag, |
||
578 | uint8_t bitReverseFlag) |
||
579 | { |
||
580 | uint32_t L = S->fftLen, l; |
||
581 | float32_t invL, * pSrc; |
||
582 | |||
583 | if(ifftFlag == 1u) |
||
584 | { |
||
585 | /* Conjugate input data */ |
||
586 | pSrc = p1 + 1; |
||
587 | for(l=0; l<L; l++) |
||
588 | { |
||
589 | *pSrc = -*pSrc; |
||
590 | pSrc += 2; |
||
591 | } |
||
592 | } |
||
593 | |||
594 | switch (L) |
||
595 | { |
||
596 | case 16: |
||
597 | case 128: |
||
598 | case 1024: |
||
599 | arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1); |
||
600 | break; |
||
601 | case 32: |
||
602 | case 256: |
||
603 | case 2048: |
||
604 | arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1); |
||
605 | break; |
||
606 | case 64: |
||
607 | case 512: |
||
608 | case 4096: |
||
609 | arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1); |
||
610 | break; |
||
611 | } |
||
612 | |||
613 | if( bitReverseFlag ) |
||
614 | arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable); |
||
615 | |||
616 | if(ifftFlag == 1u) |
||
617 | { |
||
618 | invL = 1.0f/(float32_t)L; |
||
619 | /* Conjugate and scale output data */ |
||
620 | pSrc = p1; |
||
621 | for(l=0; l<L; l++) |
||
622 | { |
||
623 | *pSrc++ *= invL ; |
||
624 | *pSrc = -(*pSrc) * invL; |
||
625 | pSrc++; |
||
626 | } |
||
627 | } |
||
628 | } |
||
629 | |||
630 | /** |
||
631 | * @} end of ComplexFFT group |
||
632 | */ |