Subversion Repositories LedShow

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------    
2
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
3
*    
4
* $Date:        19. March 2015
5
* $Revision:    V.1.4.5
6
*    
7
* Project:          CMSIS DSP Library    
8
* Title:            arm_mat_mult_q31.c    
9
*    
10
* Description:   Q31 matrix multiplication.    
11
*    
12
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13
*  
14
* Redistribution and use in source and binary forms, with or without
15
* modification, are permitted provided that the following conditions
16
* are met:
17
*   - Redistributions of source code must retain the above copyright
18
*     notice, this list of conditions and the following disclaimer.
19
*   - Redistributions in binary form must reproduce the above copyright
20
*     notice, this list of conditions and the following disclaimer in
21
*     the documentation and/or other materials provided with the
22
*     distribution.
23
*   - Neither the name of ARM LIMITED nor the names of its contributors
24
*     may be used to endorse or promote products derived from this
25
*     software without specific prior written permission.
26
*
27
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38
* POSSIBILITY OF SUCH DAMAGE.  
39
* -------------------------------------------------------------------- */
40
 
41
#include "arm_math.h"
42
 
43
/**    
44
 * @ingroup groupMatrix    
45
 */
46
 
47
/**    
48
 * @addtogroup MatrixMult    
49
 * @{    
50
 */
51
 
52
/**    
53
 * @brief Q31 matrix multiplication    
54
 * @param[in]       *pSrcA points to the first input matrix structure    
55
 * @param[in]       *pSrcB points to the second input matrix structure    
56
 * @param[out]      *pDst points to output matrix structure    
57
 * @return              The function returns either    
58
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.    
59
 *    
60
 * @details    
61
 * <b>Scaling and Overflow Behavior:</b>    
62
 *    
63
 * \par    
64
 * The function is implemented using an internal 64-bit accumulator.    
65
 * The accumulator has a 2.62 format and maintains full precision of the intermediate    
66
 * multiplication results but provides only a single guard bit. There is no saturation    
67
 * on intermediate additions. Thus, if the accumulator overflows it wraps around and    
68
 * distorts the result. The input signals should be scaled down to avoid intermediate    
69
 * overflows. The input is thus scaled down by log2(numColsA) bits    
70
 * to avoid overflows, as a total of numColsA additions are performed internally.    
71
 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.    
72
 *    
73
 * \par    
74
 * See <code>arm_mat_mult_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.    
75
 *    
76
 */
77
 
78
arm_status arm_mat_mult_q31(
79
  const arm_matrix_instance_q31 * pSrcA,
80
  const arm_matrix_instance_q31 * pSrcB,
81
  arm_matrix_instance_q31 * pDst)
82
{
83
  q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
84
  q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
85
  q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A */
86
  q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
87
  q31_t *px;                                     /* Temporary output data matrix pointer */
88
  q63_t sum;                                     /* Accumulator */
89
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
90
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
91
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
92
 
93
#ifndef ARM_MATH_CM0_FAMILY
94
 
95
  /* Run the below code for Cortex-M4 and Cortex-M3 */
96
 
97
  uint16_t col, i = 0u, j, row = numRowsA, colCnt;      /* loop counters */
98
  arm_status status;                             /* status of matrix multiplication */
99
  q31_t a0, a1, a2, a3, b0, b1, b2, b3;
100
 
101
#ifdef ARM_MATH_MATRIX_CHECK
102
 
103
 
104
  /* Check for matrix mismatch condition */
105
  if((pSrcA->numCols != pSrcB->numRows) ||
106
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
107
  {
108
    /* Set status as ARM_MATH_SIZE_MISMATCH */
109
    status = ARM_MATH_SIZE_MISMATCH;
110
  }
111
  else
112
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
113
 
114
  {
115
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
116
    /* row loop */
117
    do
118
    {
119
      /* Output pointer is set to starting address of the row being processed */
120
      px = pOut + i;
121
 
122
      /* For every row wise process, the column loop counter is to be initiated */
123
      col = numColsB;
124
 
125
      /* For every row wise process, the pIn2 pointer is set    
126
       ** to the starting address of the pSrcB data */
127
      pIn2 = pSrcB->pData;
128
 
129
      j = 0u;
130
 
131
      /* column loop */
132
      do
133
      {
134
        /* Set the variable sum, that acts as accumulator, to zero */
135
        sum = 0;
136
 
137
        /* Initiate the pointer pIn1 to point to the starting address of pInA */
138
        pIn1 = pInA;
139
 
140
        /* Apply loop unrolling and compute 4 MACs simultaneously. */
141
        colCnt = numColsA >> 2;
142
 
143
 
144
        /* matrix multiplication */
145
        while(colCnt > 0u)
146
        {
147
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
148
          /* Perform the multiply-accumulates */
149
          b0 = *pIn2;
150
          pIn2 += numColsB;
151
 
152
          a0 = *pIn1++;
153
          a1 = *pIn1++;
154
 
155
          b1 = *pIn2;
156
          pIn2 += numColsB;
157
          b2 = *pIn2;
158
          pIn2 += numColsB;
159
 
160
          sum += (q63_t) a0 *b0;
161
          sum += (q63_t) a1 *b1;
162
 
163
          a2 = *pIn1++;
164
          a3 = *pIn1++;
165
 
166
          b3 = *pIn2;
167
          pIn2 += numColsB;
168
 
169
          sum += (q63_t) a2 *b2;
170
          sum += (q63_t) a3 *b3;
171
 
172
          /* Decrement the loop counter */
173
          colCnt--;
174
        }
175
 
176
        /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.    
177
         ** No loop unrolling is used. */
178
        colCnt = numColsA % 0x4u;
179
 
180
        while(colCnt > 0u)
181
        {
182
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
183
          /* Perform the multiply-accumulates */
184
          sum += (q63_t) * pIn1++ * *pIn2;
185
          pIn2 += numColsB;
186
 
187
          /* Decrement the loop counter */
188
          colCnt--;
189
        }
190
 
191
        /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
192
        *px++ = (q31_t) (sum >> 31);
193
 
194
        /* Update the pointer pIn2 to point to the  starting address of the next column */
195
        j++;
196
        pIn2 = (pSrcB->pData) + j;
197
 
198
        /* Decrement the column loop counter */
199
        col--;
200
 
201
      } while(col > 0u);
202
 
203
#else
204
 
205
  /* Run the below code for Cortex-M0 */
206
 
207
  q31_t *pInB = pSrcB->pData;                    /* input data matrix pointer B */
208
  uint16_t col, i = 0u, row = numRowsA, colCnt;  /* loop counters */
209
  arm_status status;                             /* status of matrix multiplication */
210
 
211
 
212
#ifdef ARM_MATH_MATRIX_CHECK
213
 
214
  /* Check for matrix mismatch condition */
215
  if((pSrcA->numCols != pSrcB->numRows) ||
216
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
217
  {
218
    /* Set status as ARM_MATH_SIZE_MISMATCH */
219
    status = ARM_MATH_SIZE_MISMATCH;
220
  }
221
  else
222
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
223
 
224
  {
225
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
226
    /* row loop */
227
    do
228
    {
229
      /* Output pointer is set to starting address of the row being processed */
230
      px = pOut + i;
231
 
232
      /* For every row wise process, the column loop counter is to be initiated */
233
      col = numColsB;
234
 
235
      /* For every row wise process, the pIn2 pointer is set          
236
       ** to the starting address of the pSrcB data */
237
      pIn2 = pSrcB->pData;
238
 
239
      /* column loop */
240
      do
241
      {
242
        /* Set the variable sum, that acts as accumulator, to zero */
243
        sum = 0;
244
 
245
        /* Initiate the pointer pIn1 to point to the starting address of pInA */
246
        pIn1 = pInA;
247
 
248
        /* Matrix A columns number of MAC operations are to be performed */
249
        colCnt = numColsA;
250
 
251
        /* matrix multiplication */
252
        while(colCnt > 0u)
253
        {
254
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
255
          /* Perform the multiply-accumulates */
256
          sum += (q63_t) * pIn1++ * *pIn2;
257
          pIn2 += numColsB;
258
 
259
          /* Decrement the loop counter */
260
          colCnt--;
261
        }
262
 
263
        /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
264
        *px++ = (q31_t) clip_q63_to_q31(sum >> 31);
265
 
266
        /* Decrement the column loop counter */
267
        col--;
268
 
269
        /* Update the pointer pIn2 to point to the  starting address of the next column */
270
        pIn2 = pInB + (numColsB - col);
271
 
272
      } while(col > 0u);
273
 
274
#endif
275
 
276
      /* Update the pointer pInA to point to the  starting address of the next row */
277
      i = i + numColsB;
278
      pInA = pInA + numColsA;
279
 
280
      /* Decrement the row loop counter */
281
      row--;
282
 
283
    } while(row > 0u);
284
 
285
    /* set status as ARM_MATH_SUCCESS */
286
    status = ARM_MATH_SUCCESS;
287
  }
288
  /* Return to application */
289
  return (status);
290
}
291
 
292
/**    
293
 * @} end of MatrixMult group    
294
 */