Subversion Repositories LedShow

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------    
2
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
3
*    
4
* $Date:        19. March 2015
5
* $Revision:    V.1.4.5
6
*    
7
* Project:          CMSIS DSP Library    
8
* Title:            arm_mat_mult_fast_q31.c    
9
*    
10
* Description:   Q31 matrix multiplication (fast variant).    
11
*    
12
* Target Processor: Cortex-M4/Cortex-M3
13
*  
14
* Redistribution and use in source and binary forms, with or without
15
* modification, are permitted provided that the following conditions
16
* are met:
17
*   - Redistributions of source code must retain the above copyright
18
*     notice, this list of conditions and the following disclaimer.
19
*   - Redistributions in binary form must reproduce the above copyright
20
*     notice, this list of conditions and the following disclaimer in
21
*     the documentation and/or other materials provided with the
22
*     distribution.
23
*   - Neither the name of ARM LIMITED nor the names of its contributors
24
*     may be used to endorse or promote products derived from this
25
*     software without specific prior written permission.
26
*
27
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38
* POSSIBILITY OF SUCH DAMAGE.  
39
* -------------------------------------------------------------------- */
40
 
41
#include "arm_math.h"
42
 
43
/**    
44
 * @ingroup groupMatrix    
45
 */
46
 
47
/**    
48
 * @addtogroup MatrixMult    
49
 * @{    
50
 */
51
 
52
/**    
53
 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4    
54
 * @param[in]       *pSrcA points to the first input matrix structure    
55
 * @param[in]       *pSrcB points to the second input matrix structure    
56
 * @param[out]      *pDst points to output matrix structure    
57
 * @return              The function returns either    
58
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.    
59
 *    
60
 * @details    
61
 * <b>Scaling and Overflow Behavior:</b>    
62
 *    
63
 * \par    
64
 * The difference between the function arm_mat_mult_q31() and this fast variant is that    
65
 * the fast variant use a 32-bit rather than a 64-bit accumulator.    
66
 * The result of each 1.31 x 1.31 multiplication is truncated to    
67
 * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30    
68
 * format. Finally, the accumulator is saturated and converted to a 1.31 result.    
69
 *    
70
 * \par    
71
 * The fast version has the same overflow behavior as the standard version but provides    
72
 * less precision since it discards the low 32 bits of each multiplication result.    
73
 * In order to avoid overflows completely the input signals must be scaled down.    
74
 * Scale down one of the input matrices by log2(numColsA) bits to    
75
 * avoid overflows, as a total of numColsA additions are computed internally for each    
76
 * output element.    
77
 *    
78
 * \par    
79
 * See <code>arm_mat_mult_q31()</code> for a slower implementation of this function    
80
 * which uses 64-bit accumulation to provide higher precision.    
81
 */
82
 
83
arm_status arm_mat_mult_fast_q31(
84
  const arm_matrix_instance_q31 * pSrcA,
85
  const arm_matrix_instance_q31 * pSrcB,
86
  arm_matrix_instance_q31 * pDst)
87
{
88
  q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
89
  q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
90
  q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A */
91
//  q31_t *pSrcB = pSrcB->pData;                    /* input data matrix pointer B */    
92
  q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
93
  q31_t *px;                                     /* Temporary output data matrix pointer */
94
  q31_t sum;                                     /* Accumulator */
95
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
96
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
97
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
98
  uint16_t col, i = 0u, j, row = numRowsA, colCnt;      /* loop counters */
99
  arm_status status;                             /* status of matrix multiplication */
100
  q31_t inA1, inA2, inA3, inA4, inB1, inB2, inB3, inB4;
101
 
102
#ifdef ARM_MATH_MATRIX_CHECK
103
 
104
 
105
  /* Check for matrix mismatch condition */
106
  if((pSrcA->numCols != pSrcB->numRows) ||
107
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
108
  {
109
    /* Set status as ARM_MATH_SIZE_MISMATCH */
110
    status = ARM_MATH_SIZE_MISMATCH;
111
  }
112
  else
113
#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
114
 
115
  {
116
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
117
    /* row loop */
118
    do
119
    {
120
      /* Output pointer is set to starting address of the row being processed */
121
      px = pOut + i;
122
 
123
      /* For every row wise process, the column loop counter is to be initiated */
124
      col = numColsB;
125
 
126
      /* For every row wise process, the pIn2 pointer is set    
127
       ** to the starting address of the pSrcB data */
128
      pIn2 = pSrcB->pData;
129
 
130
      j = 0u;
131
 
132
      /* column loop */
133
      do
134
      {
135
        /* Set the variable sum, that acts as accumulator, to zero */
136
        sum = 0;
137
 
138
        /* Initiate the pointer pIn1 to point to the starting address of pInA */
139
        pIn1 = pInA;
140
 
141
        /* Apply loop unrolling and compute 4 MACs simultaneously. */
142
        colCnt = numColsA >> 2;
143
 
144
 
145
        /* matrix multiplication */
146
        while(colCnt > 0u)
147
        {
148
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
149
          /* Perform the multiply-accumulates */
150
          inB1 = *pIn2;
151
          pIn2 += numColsB;
152
 
153
          inA1 = pIn1[0];
154
          inA2 = pIn1[1];
155
 
156
          inB2 = *pIn2;
157
          pIn2 += numColsB;
158
 
159
          inB3 = *pIn2;
160
          pIn2 += numColsB;
161
 
162
          sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA1 * inB1)) >> 32);
163
          sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA2 * inB2)) >> 32);
164
 
165
          inA3 = pIn1[2];
166
          inA4 = pIn1[3];
167
 
168
          inB4 = *pIn2;
169
          pIn2 += numColsB;
170
 
171
          sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA3 * inB3)) >> 32);
172
          sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA4 * inB4)) >> 32);
173
 
174
          pIn1 += 4u;
175
 
176
          /* Decrement the loop counter */
177
          colCnt--;
178
        }
179
 
180
        /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.    
181
         ** No loop unrolling is used. */
182
        colCnt = numColsA % 0x4u;
183
 
184
        while(colCnt > 0u)
185
        {
186
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
187
          /* Perform the multiply-accumulates */
188
          sum = (q31_t) ((((q63_t) sum << 32) +
189
                          ((q63_t) * pIn1++ * (*pIn2))) >> 32);
190
          pIn2 += numColsB;
191
 
192
          /* Decrement the loop counter */
193
          colCnt--;
194
        }
195
 
196
        /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
197
        *px++ = sum << 1;
198
 
199
        /* Update the pointer pIn2 to point to the  starting address of the next column */
200
        j++;
201
        pIn2 = pSrcB->pData + j;
202
 
203
        /* Decrement the column loop counter */
204
        col--;
205
 
206
      } while(col > 0u);
207
 
208
      /* Update the pointer pInA to point to the  starting address of the next row */
209
      i = i + numColsB;
210
      pInA = pInA + numColsA;
211
 
212
      /* Decrement the row loop counter */
213
      row--;
214
 
215
    } while(row > 0u);
216
 
217
    /* set status as ARM_MATH_SUCCESS */
218
    status = ARM_MATH_SUCCESS;
219
  }
220
  /* Return to application */
221
  return (status);
222
}
223
 
224
/**    
225
 * @} end of MatrixMult group    
226
 */