Subversion Repositories LedShow

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------    
2
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
3
*    
4
* $Date:        19. March 2015
5
* $Revision:    V.1.4.5
6
*    
7
* Project:          CMSIS DSP Library    
8
* Title:            arm_mat_mult_fast_q15.c    
9
*    
10
* Description:   Q15 matrix multiplication (fast variant)    
11
*    
12
* Target Processor: Cortex-M4/Cortex-M3
13
*  
14
* Redistribution and use in source and binary forms, with or without
15
* modification, are permitted provided that the following conditions
16
* are met:
17
*   - Redistributions of source code must retain the above copyright
18
*     notice, this list of conditions and the following disclaimer.
19
*   - Redistributions in binary form must reproduce the above copyright
20
*     notice, this list of conditions and the following disclaimer in
21
*     the documentation and/or other materials provided with the
22
*     distribution.
23
*   - Neither the name of ARM LIMITED nor the names of its contributors
24
*     may be used to endorse or promote products derived from this
25
*     software without specific prior written permission.
26
*
27
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38
* POSSIBILITY OF SUCH DAMAGE.    
39
* -------------------------------------------------------------------- */
40
 
41
#include "arm_math.h"
42
 
43
/**    
44
 * @ingroup groupMatrix    
45
 */
46
 
47
/**    
48
 * @addtogroup MatrixMult    
49
 * @{    
50
 */
51
 
52
 
53
/**    
54
 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4    
55
 * @param[in]       *pSrcA points to the first input matrix structure    
56
 * @param[in]       *pSrcB points to the second input matrix structure    
57
 * @param[out]      *pDst points to output matrix structure    
58
 * @param[in]           *pState points to the array for storing intermediate results    
59
 * @return              The function returns either    
60
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.    
61
 *    
62
 * @details    
63
 * <b>Scaling and Overflow Behavior:</b>    
64
 *    
65
 * \par    
66
 * The difference between the function arm_mat_mult_q15() and this fast variant is that    
67
 * the fast variant use a 32-bit rather than a 64-bit accumulator.    
68
 * The result of each 1.15 x 1.15 multiplication is truncated to        
69
 * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30        
70
 * format. Finally, the accumulator is saturated and converted to a 1.15 result.        
71
 *        
72
 * \par        
73
 * The fast version has the same overflow behavior as the standard version but provides        
74
 * less precision since it discards the low 16 bits of each multiplication result.        
75
 * In order to avoid overflows completely the input signals must be scaled down.        
76
 * Scale down one of the input matrices by log2(numColsA) bits to        
77
 * avoid overflows, as a total of numColsA additions are computed internally for each        
78
 * output element.        
79
 *        
80
 * \par    
81
 * See <code>arm_mat_mult_q15()</code> for a slower implementation of this function    
82
 * which uses 64-bit accumulation to provide higher precision.    
83
 */
84
 
85
arm_status arm_mat_mult_fast_q15(
86
  const arm_matrix_instance_q15 * pSrcA,
87
  const arm_matrix_instance_q15 * pSrcB,
88
  arm_matrix_instance_q15 * pDst,
89
  q15_t * pState)
90
{
91
  q31_t sum;                                     /* accumulator */
92
  q15_t *pSrcBT = pState;                        /* input data matrix pointer for transpose */
93
  q15_t *pInA = pSrcA->pData;                    /* input data matrix pointer A of Q15 type */
94
  q15_t *pInB = pSrcB->pData;                    /* input data matrix pointer B of Q15 type */
95
  q15_t *px;                                     /* Temporary output data matrix pointer */
96
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
97
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
98
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
99
  uint16_t numRowsB = pSrcB->numRows;            /* number of rows of input matrix A    */
100
  uint16_t col, i = 0u, row = numRowsB, colCnt;  /* loop counters */
101
  arm_status status;                             /* status of matrix multiplication */
102
 
103
#ifndef UNALIGNED_SUPPORT_DISABLE
104
 
105
  q31_t in;                                      /* Temporary variable to hold the input value */
106
  q31_t inA1, inA2, inB1, inB2;
107
 
108
#else
109
 
110
  q15_t in;                                      /* Temporary variable to hold the input value */
111
  q15_t inA1, inA2, inB1, inB2;
112
 
113
#endif  /*      #ifndef UNALIGNED_SUPPORT_DISABLE       */
114
 
115
#ifdef ARM_MATH_MATRIX_CHECK
116
  /* Check for matrix mismatch condition */
117
  if((pSrcA->numCols != pSrcB->numRows) ||
118
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
119
  {
120
    /* Set status as ARM_MATH_SIZE_MISMATCH */
121
    status = ARM_MATH_SIZE_MISMATCH;
122
  }
123
  else
124
#endif
125
  {
126
    /* Matrix transpose */
127
    do
128
    {
129
      /* Apply loop unrolling and exchange the columns with row elements */
130
      col = numColsB >> 2;
131
 
132
      /* The pointer px is set to starting address of the column being processed */
133
      px = pSrcBT + i;
134
 
135
      /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.        
136
       ** a second loop below computes the remaining 1 to 3 samples. */
137
      while(col > 0u)
138
      {
139
#ifndef UNALIGNED_SUPPORT_DISABLE
140
        /* Read two elements from the row */
141
        in = *__SIMD32(pInB)++;
142
 
143
        /* Unpack and store one element in the destination */
144
#ifndef ARM_MATH_BIG_ENDIAN
145
 
146
        *px = (q15_t) in;
147
 
148
#else
149
 
150
        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
151
 
152
#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
153
 
154
        /* Update the pointer px to point to the next row of the transposed matrix */
155
        px += numRowsB;
156
 
157
        /* Unpack and store the second element in the destination */
158
#ifndef ARM_MATH_BIG_ENDIAN
159
 
160
        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
161
 
162
#else
163
 
164
        *px = (q15_t) in;
165
 
166
#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
167
 
168
        /* Update the pointer px to point to the next row of the transposed matrix */
169
        px += numRowsB;
170
 
171
        /* Read two elements from the row */
172
        in = *__SIMD32(pInB)++;
173
 
174
        /* Unpack and store one element in the destination */
175
#ifndef ARM_MATH_BIG_ENDIAN
176
 
177
        *px = (q15_t) in;
178
 
179
#else
180
 
181
        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
182
 
183
#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
184
 
185
        /* Update the pointer px to point to the next row of the transposed matrix */
186
        px += numRowsB;
187
 
188
        /* Unpack and store the second element in the destination */
189
 
190
#ifndef ARM_MATH_BIG_ENDIAN
191
 
192
        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
193
 
194
#else
195
 
196
        *px = (q15_t) in;
197
 
198
#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
199
 
200
#else
201
 
202
        /* Read one element from the row */
203
        in = *pInB++;
204
 
205
        /* Store one element in the destination */
206
        *px = in;
207
 
208
        /* Update the pointer px to point to the next row of the transposed matrix */
209
        px += numRowsB;
210
 
211
        /* Read one element from the row */
212
        in = *pInB++;
213
 
214
        /* Store one element in the destination */
215
        *px = in;
216
 
217
        /* Update the pointer px to point to the next row of the transposed matrix */
218
        px += numRowsB;
219
 
220
        /* Read one element from the row */
221
        in = *pInB++;
222
 
223
        /* Store one element in the destination */
224
        *px = in;
225
 
226
        /* Update the pointer px to point to the next row of the transposed matrix */
227
        px += numRowsB;
228
 
229
        /* Read one element from the row */
230
        in = *pInB++;
231
 
232
        /* Store one element in the destination */
233
        *px = in;
234
 
235
#endif  /*      #ifndef UNALIGNED_SUPPORT_DISABLE       */
236
 
237
                /* Update the pointer px to point to the next row of the transposed matrix */
238
        px += numRowsB;
239
 
240
        /* Decrement the column loop counter */
241
        col--;
242
      }
243
 
244
      /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.        
245
       ** No loop unrolling is used. */
246
      col = numColsB % 0x4u;
247
 
248
      while(col > 0u)
249
      {
250
        /* Read and store the input element in the destination */
251
        *px = *pInB++;
252
 
253
        /* Update the pointer px to point to the next row of the transposed matrix */
254
        px += numRowsB;
255
 
256
        /* Decrement the column loop counter */
257
        col--;
258
      }
259
 
260
      i++;
261
 
262
      /* Decrement the row loop counter */
263
      row--;
264
 
265
    } while(row > 0u);
266
 
267
    /* Reset the variables for the usage in the following multiplication process */
268
    row = numRowsA;
269
    i = 0u;
270
    px = pDst->pData;
271
 
272
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
273
    /* row loop */
274
    do
275
    {
276
      /* For every row wise process, the column loop counter is to be initiated */
277
      col = numColsB;
278
 
279
      /* For every row wise process, the pIn2 pointer is set        
280
       ** to the starting address of the transposed pSrcB data */
281
      pInB = pSrcBT;
282
 
283
      /* column loop */
284
      do
285
      {
286
        /* Set the variable sum, that acts as accumulator, to zero */
287
        sum = 0;
288
 
289
        /* Apply loop unrolling and compute 2 MACs simultaneously. */
290
        colCnt = numColsA >> 2;
291
 
292
        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
293
        pInA = pSrcA->pData + i;
294
 
295
        /* matrix multiplication */
296
        while(colCnt > 0u)
297
        {
298
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
299
#ifndef UNALIGNED_SUPPORT_DISABLE
300
 
301
          inA1 = *__SIMD32(pInA)++;
302
          inB1 = *__SIMD32(pInB)++;
303
          inA2 = *__SIMD32(pInA)++;
304
          inB2 = *__SIMD32(pInB)++;
305
 
306
          sum = __SMLAD(inA1, inB1, sum);
307
          sum = __SMLAD(inA2, inB2, sum);
308
 
309
#else
310
 
311
          inA1 = *pInA++;
312
          inB1 = *pInB++;
313
          inA2 = *pInA++;
314
          sum += inA1 * inB1;
315
          inB2 = *pInB++;
316
 
317
          inA1 = *pInA++;
318
          inB1 = *pInB++;
319
          sum += inA2 * inB2;
320
          inA2 = *pInA++;
321
          inB2 = *pInB++;
322
 
323
          sum += inA1 * inB1;
324
          sum += inA2 * inB2;
325
 
326
#endif  /*      #ifndef UNALIGNED_SUPPORT_DISABLE       */
327
 
328
          /* Decrement the loop counter */
329
          colCnt--;
330
        }
331
 
332
        /* process odd column samples */
333
        colCnt = numColsA % 0x4u;
334
 
335
        while(colCnt > 0u)
336
        {
337
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
338
          sum += (q31_t) (*pInA++) * (*pInB++);
339
 
340
          colCnt--;
341
        }
342
 
343
        /* Saturate and store the result in the destination buffer */
344
        *px = (q15_t) (sum >> 15);
345
        px++;
346
 
347
        /* Decrement the column loop counter */
348
        col--;
349
 
350
      } while(col > 0u);
351
 
352
      i = i + numColsA;
353
 
354
      /* Decrement the row loop counter */
355
      row--;
356
 
357
    } while(row > 0u);
358
 
359
    /* set status as ARM_MATH_SUCCESS */
360
    status = ARM_MATH_SUCCESS;
361
  }
362
 
363
  /* Return to application */
364
  return (status);
365
}
366
 
367
/**        
368
 * @} end of MatrixMult group        
369
 */