Subversion Repositories testOled

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------
2
 * Project:      CMSIS DSP Library
3
 * Title:        arm_rfft_f32.c
4
 * Description:  RFFT & RIFFT Floating point process function
5
 *
6
 * $Date:        27. January 2017
7
 * $Revision:    V.1.5.1
8
 *
9
 * Target Processor: Cortex-M cores
10
 * -------------------------------------------------------------------- */
11
/*
12
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
13
 *
14
 * SPDX-License-Identifier: Apache-2.0
15
 *
16
 * Licensed under the Apache License, Version 2.0 (the License); you may
17
 * not use this file except in compliance with the License.
18
 * You may obtain a copy of the License at
19
 *
20
 * www.apache.org/licenses/LICENSE-2.0
21
 *
22
 * Unless required by applicable law or agreed to in writing, software
23
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25
 * See the License for the specific language governing permissions and
26
 * limitations under the License.
27
 */
28
 
29
#include "arm_math.h"
30
 
31
void stage_rfft_f32(
32
  arm_rfft_fast_instance_f32 * S,
33
  float32_t * p, float32_t * pOut)
34
{
35
   uint32_t  k;                                                            /* Loop Counter                     */
36
   float32_t twR, twI;                                             /* RFFT Twiddle coefficients        */
37
   float32_t * pCoeff = S->pTwiddleRFFT;  /* Points to RFFT Twiddle factors   */
38
   float32_t *pA = p;                                              /* increasing pointer               */
39
   float32_t *pB = p;                                              /* decreasing pointer               */
40
   float32_t xAR, xAI, xBR, xBI;                                /* temporary variables              */
41
   float32_t t1a, t1b;                                   /* temporary variables              */
42
   float32_t p0, p1, p2, p3;                               /* temporary variables              */
43
 
44
 
45
   k = (S->Sint).fftLen - 1;
46
 
47
   /* Pack first and last sample of the frequency domain together */
48
 
49
   xBR = pB[0];
50
   xBI = pB[1];
51
   xAR = pA[0];
52
   xAI = pA[1];
53
 
54
   twR = *pCoeff++ ;
55
   twI = *pCoeff++ ;
56
 
57
   // U1 = XA(1) + XB(1); % It is real
58
   t1a = xBR + xAR  ;
59
 
60
   // U2 = XB(1) - XA(1); % It is imaginary
61
   t1b = xBI + xAI  ;
62
 
63
   // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
64
   // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
65
   *pOut++ = 0.5f * ( t1a + t1b );
66
   *pOut++ = 0.5f * ( t1a - t1b );
67
 
68
   // XA(1) = 1/2*( U1 - imag(U2) +  i*( U1 +imag(U2) ));
69
   pB  = p + 2*k;
70
   pA += 2;
71
 
72
   do
73
   {
74
      /*
75
         function X = my_split_rfft(X, ifftFlag)
76
         % X is a series of real numbers
77
         L  = length(X);
78
         XC = X(1:2:end) +i*X(2:2:end);
79
         XA = fft(XC);
80
         XB = conj(XA([1 end:-1:2]));
81
         TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
82
         for l = 2:L/2
83
            XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
84
         end
85
         XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
86
         X = XA;
87
      */
88
 
89
      xBI = pB[1];
90
      xBR = pB[0];
91
      xAR = pA[0];
92
      xAI = pA[1];
93
 
94
      twR = *pCoeff++;
95
      twI = *pCoeff++;
96
 
97
      t1a = xBR - xAR ;
98
      t1b = xBI + xAI ;
99
 
100
      // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
101
      // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
102
      p0 = twR * t1a;
103
      p1 = twI * t1a;
104
      p2 = twR * t1b;
105
      p3 = twI * t1b;
106
 
107
      *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR
108
      *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI
109
 
110
      pA += 2;
111
      pB -= 2;
112
      k--;
113
   } while (k > 0U);
114
}
115
 
116
/* Prepares data for inverse cfft */
117
void merge_rfft_f32(
118
arm_rfft_fast_instance_f32 * S,
119
float32_t * p, float32_t * pOut)
120
{
121
   uint32_t  k;                                                         /* Loop Counter                     */
122
   float32_t twR, twI;                                          /* RFFT Twiddle coefficients        */
123
   float32_t *pCoeff = S->pTwiddleRFFT;         /* Points to RFFT Twiddle factors   */
124
   float32_t *pA = p;                                           /* increasing pointer               */
125
   float32_t *pB = p;                                           /* decreasing pointer               */
126
   float32_t xAR, xAI, xBR, xBI;                        /* temporary variables              */
127
   float32_t t1a, t1b, r, s, t, u;                      /* temporary variables              */
128
 
129
   k = (S->Sint).fftLen - 1;
130
 
131
   xAR = pA[0];
132
   xAI = pA[1];
133
 
134
   pCoeff += 2 ;
135
 
136
   *pOut++ = 0.5f * ( xAR + xAI );
137
   *pOut++ = 0.5f * ( xAR - xAI );
138
 
139
   pB  =  p + 2*k ;
140
   pA +=  2        ;
141
 
142
   while (k > 0U)
143
   {
144
      /* G is half of the frequency complex spectrum */
145
      //for k = 2:N
146
      //    Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
147
      xBI =   pB[1]    ;
148
      xBR =   pB[0]    ;
149
      xAR =  pA[0];
150
      xAI =  pA[1];
151
 
152
      twR = *pCoeff++;
153
      twI = *pCoeff++;
154
 
155
      t1a = xAR - xBR ;
156
      t1b = xAI + xBI ;
157
 
158
      r = twR * t1a;
159
      s = twI * t1b;
160
      t = twI * t1a;
161
      u = twR * t1b;
162
 
163
      // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);
164
      // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);
165
      *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR
166
      *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI
167
 
168
      pA += 2;
169
      pB -= 2;
170
      k--;
171
   }
172
 
173
}
174
 
175
/**
176
* @ingroup groupTransforms
177
*/
178
 
179
/**
180
 * @defgroup RealFFT Real FFT Functions
181
 *
182
 * \par
183
 * The CMSIS DSP library includes specialized algorithms for computing the
184
 * FFT of real data sequences.  The FFT is defined over complex data but
185
 * in many applications the input is real.  Real FFT algorithms take advantage
186
 * of the symmetry properties of the FFT and have a speed advantage over complex
187
 * algorithms of the same length.
188
 * \par
189
 * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage.
190
 * \par
191
 * The real length N forward FFT of a sequence is computed using the steps shown below.
192
 * \par
193
 * \image html RFFT.gif "Real Fast Fourier Transform"
194
 * \par
195
 * The real sequence is initially treated as if it were complex to perform a CFFT.
196
 * Later, a processing stage reshapes the data to obtain half of the frequency spectrum
197
 * in complex format. Except the first complex number that contains the two real numbers
198
 * X[0] and X[N/2] all the data is complex. In other words, the first complex sample
199
 * contains two real values packed.
200
 * \par
201
 * The input for the inverse RFFT should keep the same format as the output of the
202
 * forward RFFT. A first processing stage pre-process the data to later perform an
203
 * inverse CFFT.
204
 * \par
205
 * \image html RIFFT.gif "Real Inverse Fast Fourier Transform"
206
 * \par
207
 * The algorithms for floating-point, Q15, and Q31 data are slightly different
208
 * and we describe each algorithm in turn.
209
 * \par Floating-point
210
 * The main functions are arm_rfft_fast_f32() and arm_rfft_fast_init_f32().
211
 * The older functions arm_rfft_f32() and arm_rfft_init_f32() have been
212
 * deprecated but are still documented.
213
 * \par
214
 * The FFT of a real N-point sequence has even symmetry in the frequency
215
 * domain. The second half of the data equals the conjugate of the first
216
 * half flipped in frequency. Looking at the data, we see that we can
217
 * uniquely represent the FFT using only N/2 complex numbers. These are
218
 * packed into the output array in alternating real and imaginary
219
 * components:
220
 * \par
221
 * X = { real[0], imag[0], real[1], imag[1], real[2], imag[2] ...
222
 * real[(N/2)-1], imag[(N/2)-1 }
223
 * \par
224
 * It happens that the first complex number (real[0], imag[0]) is actually
225
 * all real. real[0] represents the DC offset, and imag[0] should be 0.
226
 * (real[1], imag[1]) is the fundamental frequency, (real[2], imag[2]) is
227
 * the first harmonic and so on.
228
 * \par
229
 * The real FFT functions pack the frequency domain data in this fashion.
230
 * The forward transform outputs the data in this form and the inverse
231
 * transform expects input data in this form. The function always performs
232
 * the needed bitreversal so that the input and output data is always in
233
 * normal order. The functions support lengths of [32, 64, 128, ..., 4096]
234
 * samples.
235
 * \par Q15 and Q31
236
 * The real algorithms are defined in a similar manner and utilize N/2 complex
237
 * transforms behind the scenes.
238
 * \par
239
 * The complex transforms used internally include scaling to prevent fixed-point
240
 * overflows.  The overall scaling equals 1/(fftLen/2).
241
 * \par
242
 * A separate instance structure must be defined for each transform used but
243
 * twiddle factor and bit reversal tables can be reused.
244
 * \par
245
 * There is also an associated initialization function for each data type.
246
 * The initialization function performs the following operations:
247
 * - Sets the values of the internal structure fields.
248
 * - Initializes twiddle factor table and bit reversal table pointers.
249
 * - Initializes the internal complex FFT data structure.
250
 * \par
251
 * Use of the initialization function is optional.
252
 * However, if the initialization function is used, then the instance structure
253
 * cannot be placed into a const data section. To place an instance structure
254
 * into a const data section, the instance structure should be manually
255
 * initialized as follows:
256
 * <pre>
257
 *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
258
 *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
259
 * </pre>
260
 * where <code>fftLenReal</code> is the length of the real transform;
261
 * <code>fftLenBy2</code> length of  the internal complex transform.
262
 * <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform.
263
 * <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order
264
 * output (=1).
265
 * <code>twidCoefRModifier</code> stride modifier for the twiddle factor table.
266
 * The value is based on the FFT length;
267
 * <code>pTwiddleAReal</code>points to the A array of twiddle coefficients;
268
 * <code>pTwiddleBReal</code>points to the B array of twiddle coefficients;
269
 * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure
270
 * must also be initialized.  Refer to arm_cfft_radix4_f32() for details regarding
271
 * static initialization of the complex FFT instance structure.
272
 */
273
 
274
/**
275
* @addtogroup RealFFT
276
* @{
277
*/
278
 
279
/**
280
* @brief Processing function for the floating-point real FFT.
281
* @param[in]  *S              points to an arm_rfft_fast_instance_f32 structure.
282
* @param[in]  *p              points to the input buffer.
283
* @param[in]  *pOut           points to the output buffer.
284
* @param[in]  ifftFlag        RFFT if flag is 0, RIFFT if flag is 1
285
* @return none.
286
*/
287
 
288
void arm_rfft_fast_f32(
289
arm_rfft_fast_instance_f32 * S,
290
float32_t * p, float32_t * pOut,
291
uint8_t ifftFlag)
292
{
293
   arm_cfft_instance_f32 * Sint = &(S->Sint);
294
   Sint->fftLen = S->fftLenRFFT / 2;
295
 
296
   /* Calculation of Real FFT */
297
   if (ifftFlag)
298
   {
299
      /*  Real FFT compression */
300
      merge_rfft_f32(S, p, pOut);
301
 
302
      /* Complex radix-4 IFFT process */
303
      arm_cfft_f32( Sint, pOut, ifftFlag, 1);
304
   }
305
   else
306
   {
307
      /* Calculation of RFFT of input */
308
      arm_cfft_f32( Sint, p, ifftFlag, 1);
309
 
310
      /*  Real FFT extraction */
311
      stage_rfft_f32(S, p, pOut);
312
   }
313
}
314
 
315
/**
316
* @} end of RealFFT group
317
*/