Subversion Repositories AFRtranscoder

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------
2
 * Project:      CMSIS DSP Library
3
 * Title:        arm_dct4_f32.c
4
 * Description:  Processing function of DCT4 & IDCT4 F32
5
 *
6
 * $Date:        27. January 2017
7
 * $Revision:    V.1.5.1
8
 *
9
 * Target Processor: Cortex-M cores
10
 * -------------------------------------------------------------------- */
11
/*
12
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
13
 *
14
 * SPDX-License-Identifier: Apache-2.0
15
 *
16
 * Licensed under the Apache License, Version 2.0 (the License); you may
17
 * not use this file except in compliance with the License.
18
 * You may obtain a copy of the License at
19
 *
20
 * www.apache.org/licenses/LICENSE-2.0
21
 *
22
 * Unless required by applicable law or agreed to in writing, software
23
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25
 * See the License for the specific language governing permissions and
26
 * limitations under the License.
27
 */
28
 
29
#include "arm_math.h"
30
 
31
/**
32
 * @ingroup groupTransforms
33
 */
34
 
35
/**
36
 * @defgroup DCT4_IDCT4 DCT Type IV Functions
37
 * Representation of signals by minimum number of values is important for storage and transmission.
38
 * The possibility of large discontinuity between the beginning and end of a period of a signal
39
 * in DFT can be avoided by extending the signal so that it is even-symmetric.
40
 * Discrete Cosine Transform (DCT) is constructed such that its energy is heavily concentrated in the lower part of the
41
 * spectrum and is very widely used in signal and image coding applications.
42
 * The family of DCTs (DCT type- 1,2,3,4) is the outcome of different combinations of homogeneous boundary conditions.
43
 * DCT has an excellent energy-packing capability, hence has many applications and in data compression in particular.
44
 *
45
 * DCT is essentially the Discrete Fourier Transform(DFT) of an even-extended real signal.
46
 * Reordering of the input data makes the computation of DCT just a problem of
47
 * computing the DFT of a real signal with a few additional operations.
48
 * This approach provides regular, simple, and very efficient DCT algorithms for practical hardware and software implementations.
49
 *
50
 * DCT type-II can be implemented using Fast fourier transform (FFT) internally, as the transform is applied on real values, Real FFT can be used.
51
 * DCT4 is implemented using DCT2 as their implementations are similar except with some added pre-processing and post-processing.
52
 * DCT2 implementation can be described in the following steps:
53
 * - Re-ordering input
54
 * - Calculating Real FFT
55
 * - Multiplication of weights and Real FFT output and getting real part from the product.
56
 *
57
 * This process is explained by the block diagram below:
58
 * \image html DCT4.gif "Discrete Cosine Transform - type-IV"
59
 *
60
 * \par Algorithm:
61
 * The N-point type-IV DCT is defined as a real, linear transformation by the formula:
62
 * \image html DCT4Equation.gif
63
 * where <code>k = 0,1,2,.....N-1</code>
64
 *\par
65
 * Its inverse is defined as follows:
66
 * \image html IDCT4Equation.gif
67
 * where <code>n = 0,1,2,.....N-1</code>
68
 *\par
69
 * The DCT4 matrices become involutory (i.e. they are self-inverse) by multiplying with an overall scale factor of sqrt(2/N).
70
 * The symmetry of the transform matrix indicates that the fast algorithms for the forward
71
 * and inverse transform computation are identical.
72
 * Note that the implementation of Inverse DCT4 and DCT4 is same, hence same process function can be used for both.
73
 *
74
 * \par Lengths supported by the transform:
75
 *  As DCT4 internally uses Real FFT, it supports all the lengths 128, 512, 2048 and 8192.
76
 * The library provides separate functions for Q15, Q31, and floating-point data types.
77
 * \par Instance Structure
78
 * The instances for Real FFT and FFT, cosine values table and twiddle factor table are stored in an instance data structure.
79
 * A separate instance structure must be defined for each transform.
80
 * There are separate instance structure declarations for each of the 3 supported data types.
81
 *
82
 * \par Initialization Functions
83
 * There is also an associated initialization function for each data type.
84
 * The initialization function performs the following operations:
85
 * - Sets the values of the internal structure fields.
86
 * - Initializes Real FFT as its process function is used internally in DCT4, by calling arm_rfft_init_f32().
87
 * \par
88
 * Use of the initialization function is optional.
89
 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
90
 * To place an instance structure into a const data section, the instance structure must be manually initialized.
91
 * Manually initialize the instance structure as follows:
92
 * <pre>
93
 *arm_dct4_instance_f32 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
94
 *arm_dct4_instance_q31 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
95
 *arm_dct4_instance_q15 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
96
 * </pre>
97
 * where \c N is the length of the DCT4; \c Nby2 is half of the length of the DCT4;
98
 * \c normalize is normalizing factor used and is equal to <code>sqrt(2/N)</code>;
99
 * \c pTwiddle points to the twiddle factor table;
100
 * \c pCosFactor points to the cosFactor table;
101
 * \c pRfft points to the real FFT instance;
102
 * \c pCfft points to the complex FFT instance;
103
 * The CFFT and RFFT structures also needs to be initialized, refer to arm_cfft_radix4_f32()
104
 * and arm_rfft_f32() respectively for details regarding static initialization.
105
 *
106
 * \par Fixed-Point Behavior
107
 * Care must be taken when using the fixed-point versions of the DCT4 transform functions.
108
 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
109
 * Refer to the function specific documentation below for usage guidelines.
110
 */
111
 
112
 /**
113
 * @addtogroup DCT4_IDCT4
114
 * @{
115
 */
116
 
117
/**
118
 * @brief Processing function for the floating-point DCT4/IDCT4.
119
 * @param[in]       *S             points to an instance of the floating-point DCT4/IDCT4 structure.
120
 * @param[in]       *pState        points to state buffer.
121
 * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer.
122
 * @return none.
123
 */
124
 
125
void arm_dct4_f32(
126
  const arm_dct4_instance_f32 * S,
127
  float32_t * pState,
128
  float32_t * pInlineBuffer)
129
{
130
  uint32_t i;                                    /* Loop counter */
131
  float32_t *weights = S->pTwiddle;              /* Pointer to the Weights table */
132
  float32_t *cosFact = S->pCosFactor;            /* Pointer to the cos factors table */
133
  float32_t *pS1, *pS2, *pbuff;                  /* Temporary pointers for input buffer and pState buffer */
134
  float32_t in;                                  /* Temporary variable */
135
 
136
 
137
  /* DCT4 computation involves DCT2 (which is calculated using RFFT)
138
   * along with some pre-processing and post-processing.
139
   * Computational procedure is explained as follows:
140
   * (a) Pre-processing involves multiplying input with cos factor,
141
   *     r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n))
142
   *              where,
143
   *                 r(n) -- output of preprocessing
144
   *                 u(n) -- input to preprocessing(actual Source buffer)
145
   * (b) Calculation of DCT2 using FFT is divided into three steps:
146
   *                  Step1: Re-ordering of even and odd elements of input.
147
   *                  Step2: Calculating FFT of the re-ordered input.
148
   *                  Step3: Taking the real part of the product of FFT output and weights.
149
   * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation:
150
   *                   Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
151
   *                        where,
152
   *                           Y4 -- DCT4 output,   Y2 -- DCT2 output
153
   * (d) Multiplying the output with the normalizing factor sqrt(2/N).
154
   */
155
 
156
        /*-------- Pre-processing ------------*/
157
  /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */
158
  arm_scale_f32(pInlineBuffer, 2.0f, pInlineBuffer, S->N);
159
  arm_mult_f32(pInlineBuffer, cosFact, pInlineBuffer, S->N);
160
 
161
  /* ----------------------------------------------------------------
162
   * Step1: Re-ordering of even and odd elements as,
163
   *             pState[i] =  pInlineBuffer[2*i] and
164
   *             pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2
165
   ---------------------------------------------------------------------*/
166
 
167
  /* pS1 initialized to pState */
168
  pS1 = pState;
169
 
170
  /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */
171
  pS2 = pState + (S->N - 1U);
172
 
173
  /* pbuff initialized to input buffer */
174
  pbuff = pInlineBuffer;
175
 
176
#if defined (ARM_MATH_DSP)
177
 
178
  /* Run the below code for Cortex-M4 and Cortex-M3 */
179
 
180
  /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */
181
  i = (uint32_t) S->Nby2 >> 2U;
182
 
183
  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
184
   ** a second loop below computes the remaining 1 to 3 samples. */
185
  do
186
  {
187
    /* Re-ordering of even and odd elements */
188
    /* pState[i] =  pInlineBuffer[2*i] */
189
    *pS1++ = *pbuff++;
190
    /* pState[N-i-1] = pInlineBuffer[2*i+1] */
191
    *pS2-- = *pbuff++;
192
 
193
    *pS1++ = *pbuff++;
194
    *pS2-- = *pbuff++;
195
 
196
    *pS1++ = *pbuff++;
197
    *pS2-- = *pbuff++;
198
 
199
    *pS1++ = *pbuff++;
200
    *pS2-- = *pbuff++;
201
 
202
    /* Decrement the loop counter */
203
    i--;
204
  } while (i > 0U);
205
 
206
  /* pbuff initialized to input buffer */
207
  pbuff = pInlineBuffer;
208
 
209
  /* pS1 initialized to pState */
210
  pS1 = pState;
211
 
212
  /* Initializing the loop counter to N/4 instead of N for loop unrolling */
213
  i = (uint32_t) S->N >> 2U;
214
 
215
  /* Processing with loop unrolling 4 times as N is always multiple of 4.
216
   * Compute 4 outputs at a time */
217
  do
218
  {
219
    /* Writing the re-ordered output back to inplace input buffer */
220
    *pbuff++ = *pS1++;
221
    *pbuff++ = *pS1++;
222
    *pbuff++ = *pS1++;
223
    *pbuff++ = *pS1++;
224
 
225
    /* Decrement the loop counter */
226
    i--;
227
  } while (i > 0U);
228
 
229
 
230
  /* ---------------------------------------------------------
231
   *     Step2: Calculate RFFT for N-point input
232
   * ---------------------------------------------------------- */
233
  /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
234
  arm_rfft_f32(S->pRfft, pInlineBuffer, pState);
235
 
236
        /*----------------------------------------------------------------------
237
         *  Step3: Multiply the FFT output with the weights.
238
         *----------------------------------------------------------------------*/
239
  arm_cmplx_mult_cmplx_f32(pState, weights, pState, S->N);
240
 
241
  /* ----------- Post-processing ---------- */
242
  /* DCT-IV can be obtained from DCT-II by the equation,
243
   *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
244
   *       Hence, Y4(0) = Y2(0)/2  */
245
  /* Getting only real part from the output and Converting to DCT-IV */
246
 
247
  /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */
248
  i = ((uint32_t) S->N - 1U) >> 2U;
249
 
250
  /* pbuff initialized to input buffer. */
251
  pbuff = pInlineBuffer;
252
 
253
  /* pS1 initialized to pState */
254
  pS1 = pState;
255
 
256
  /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
257
  in = *pS1++ * (float32_t) 0.5;
258
  /* input buffer acts as inplace, so output values are stored in the input itself. */
259
  *pbuff++ = in;
260
 
261
  /* pState pointer is incremented twice as the real values are located alternatively in the array */
262
  pS1++;
263
 
264
  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
265
   ** a second loop below computes the remaining 1 to 3 samples. */
266
  do
267
  {
268
    /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
269
    /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
270
    in = *pS1++ - in;
271
    *pbuff++ = in;
272
    /* points to the next real value */
273
    pS1++;
274
 
275
    in = *pS1++ - in;
276
    *pbuff++ = in;
277
    pS1++;
278
 
279
    in = *pS1++ - in;
280
    *pbuff++ = in;
281
    pS1++;
282
 
283
    in = *pS1++ - in;
284
    *pbuff++ = in;
285
    pS1++;
286
 
287
    /* Decrement the loop counter */
288
    i--;
289
  } while (i > 0U);
290
 
291
  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
292
   ** No loop unrolling is used. */
293
  i = ((uint32_t) S->N - 1U) % 0x4U;
294
 
295
  while (i > 0U)
296
  {
297
    /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
298
    /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
299
    in = *pS1++ - in;
300
    *pbuff++ = in;
301
    /* points to the next real value */
302
    pS1++;
303
 
304
    /* Decrement the loop counter */
305
    i--;
306
  }
307
 
308
 
309
        /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
310
 
311
  /* Initializing the loop counter to N/4 instead of N for loop unrolling */
312
  i = (uint32_t) S->N >> 2U;
313
 
314
  /* pbuff initialized to the pInlineBuffer(now contains the output values) */
315
  pbuff = pInlineBuffer;
316
 
317
  /* Processing with loop unrolling 4 times as N is always multiple of 4.  Compute 4 outputs at a time */
318
  do
319
  {
320
    /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
321
    in = *pbuff;
322
    *pbuff++ = in * S->normalize;
323
 
324
    in = *pbuff;
325
    *pbuff++ = in * S->normalize;
326
 
327
    in = *pbuff;
328
    *pbuff++ = in * S->normalize;
329
 
330
    in = *pbuff;
331
    *pbuff++ = in * S->normalize;
332
 
333
    /* Decrement the loop counter */
334
    i--;
335
  } while (i > 0U);
336
 
337
 
338
#else
339
 
340
  /* Run the below code for Cortex-M0 */
341
 
342
  /* Initializing the loop counter to N/2 */
343
  i = (uint32_t) S->Nby2;
344
 
345
  do
346
  {
347
    /* Re-ordering of even and odd elements */
348
    /* pState[i] =  pInlineBuffer[2*i] */
349
    *pS1++ = *pbuff++;
350
    /* pState[N-i-1] = pInlineBuffer[2*i+1] */
351
    *pS2-- = *pbuff++;
352
 
353
    /* Decrement the loop counter */
354
    i--;
355
  } while (i > 0U);
356
 
357
  /* pbuff initialized to input buffer */
358
  pbuff = pInlineBuffer;
359
 
360
  /* pS1 initialized to pState */
361
  pS1 = pState;
362
 
363
  /* Initializing the loop counter */
364
  i = (uint32_t) S->N;
365
 
366
  do
367
  {
368
    /* Writing the re-ordered output back to inplace input buffer */
369
    *pbuff++ = *pS1++;
370
 
371
    /* Decrement the loop counter */
372
    i--;
373
  } while (i > 0U);
374
 
375
 
376
  /* ---------------------------------------------------------
377
   *     Step2: Calculate RFFT for N-point input
378
   * ---------------------------------------------------------- */
379
  /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
380
  arm_rfft_f32(S->pRfft, pInlineBuffer, pState);
381
 
382
        /*----------------------------------------------------------------------
383
         *  Step3: Multiply the FFT output with the weights.
384
         *----------------------------------------------------------------------*/
385
  arm_cmplx_mult_cmplx_f32(pState, weights, pState, S->N);
386
 
387
  /* ----------- Post-processing ---------- */
388
  /* DCT-IV can be obtained from DCT-II by the equation,
389
   *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
390
   *       Hence, Y4(0) = Y2(0)/2  */
391
  /* Getting only real part from the output and Converting to DCT-IV */
392
 
393
  /* pbuff initialized to input buffer. */
394
  pbuff = pInlineBuffer;
395
 
396
  /* pS1 initialized to pState */
397
  pS1 = pState;
398
 
399
  /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
400
  in = *pS1++ * (float32_t) 0.5;
401
  /* input buffer acts as inplace, so output values are stored in the input itself. */
402
  *pbuff++ = in;
403
 
404
  /* pState pointer is incremented twice as the real values are located alternatively in the array */
405
  pS1++;
406
 
407
  /* Initializing the loop counter */
408
  i = ((uint32_t) S->N - 1U);
409
 
410
  do
411
  {
412
    /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
413
    /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
414
    in = *pS1++ - in;
415
    *pbuff++ = in;
416
    /* points to the next real value */
417
    pS1++;
418
 
419
 
420
    /* Decrement the loop counter */
421
    i--;
422
  } while (i > 0U);
423
 
424
 
425
        /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
426
 
427
  /* Initializing the loop counter */
428
  i = (uint32_t) S->N;
429
 
430
  /* pbuff initialized to the pInlineBuffer(now contains the output values) */
431
  pbuff = pInlineBuffer;
432
 
433
  do
434
  {
435
    /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
436
    in = *pbuff;
437
    *pbuff++ = in * S->normalize;
438
 
439
    /* Decrement the loop counter */
440
    i--;
441
  } while (i > 0U);
442
 
443
#endif /* #if defined (ARM_MATH_DSP) */
444
 
445
}
446
 
447
/**
448
   * @} end of DCT4_IDCT4 group
449
   */