Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* ---------------------------------------------------------------------- |
2 | * Project: CMSIS DSP Library |
||
3 | * Title: arm_cfft_radix4_q15.c |
||
4 | * Description: This file has function definition of Radix-4 FFT & IFFT function and |
||
5 | * In-place bit reversal using bit reversal table |
||
6 | * |
||
7 | * $Date: 27. January 2017 |
||
8 | * $Revision: V.1.5.1 |
||
9 | * |
||
10 | * Target Processor: Cortex-M cores |
||
11 | * -------------------------------------------------------------------- */ |
||
12 | /* |
||
13 | * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. |
||
14 | * |
||
15 | * SPDX-License-Identifier: Apache-2.0 |
||
16 | * |
||
17 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
18 | * not use this file except in compliance with the License. |
||
19 | * You may obtain a copy of the License at |
||
20 | * |
||
21 | * www.apache.org/licenses/LICENSE-2.0 |
||
22 | * |
||
23 | * Unless required by applicable law or agreed to in writing, software |
||
24 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
25 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
26 | * See the License for the specific language governing permissions and |
||
27 | * limitations under the License. |
||
28 | */ |
||
29 | |||
30 | #include "arm_math.h" |
||
31 | |||
32 | |||
33 | void arm_radix4_butterfly_q15( |
||
34 | q15_t * pSrc16, |
||
35 | uint32_t fftLen, |
||
36 | q15_t * pCoef16, |
||
37 | uint32_t twidCoefModifier); |
||
38 | |||
39 | void arm_radix4_butterfly_inverse_q15( |
||
40 | q15_t * pSrc16, |
||
41 | uint32_t fftLen, |
||
42 | q15_t * pCoef16, |
||
43 | uint32_t twidCoefModifier); |
||
44 | |||
45 | void arm_bitreversal_q15( |
||
46 | q15_t * pSrc, |
||
47 | uint32_t fftLen, |
||
48 | uint16_t bitRevFactor, |
||
49 | uint16_t * pBitRevTab); |
||
50 | |||
51 | /** |
||
52 | * @ingroup groupTransforms |
||
53 | */ |
||
54 | |||
55 | /** |
||
56 | * @addtogroup ComplexFFT |
||
57 | * @{ |
||
58 | */ |
||
59 | |||
60 | |||
61 | /** |
||
62 | * @details |
||
63 | * @brief Processing function for the Q15 CFFT/CIFFT. |
||
64 | * @deprecated Do not use this function. It has been superseded by \ref arm_cfft_q15 and will be removed |
||
65 | * @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure. |
||
66 | * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place. |
||
67 | * @return none. |
||
68 | * |
||
69 | * \par Input and output formats: |
||
70 | * \par |
||
71 | * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. |
||
72 | * Hence the output format is different for different FFT sizes. |
||
73 | * The input and output formats for different FFT sizes and number of bits to upscale are mentioned in the tables below for CFFT and CIFFT: |
||
74 | * \par |
||
75 | * \image html CFFTQ15.gif "Input and Output Formats for Q15 CFFT" |
||
76 | * \image html CIFFTQ15.gif "Input and Output Formats for Q15 CIFFT" |
||
77 | */ |
||
78 | |||
79 | void arm_cfft_radix4_q15( |
||
80 | const arm_cfft_radix4_instance_q15 * S, |
||
81 | q15_t * pSrc) |
||
82 | { |
||
83 | if (S->ifftFlag == 1U) |
||
84 | { |
||
85 | /* Complex IFFT radix-4 */ |
||
86 | arm_radix4_butterfly_inverse_q15(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); |
||
87 | } |
||
88 | else |
||
89 | { |
||
90 | /* Complex FFT radix-4 */ |
||
91 | arm_radix4_butterfly_q15(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); |
||
92 | } |
||
93 | |||
94 | if (S->bitReverseFlag == 1U) |
||
95 | { |
||
96 | /* Bit Reversal */ |
||
97 | arm_bitreversal_q15(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable); |
||
98 | } |
||
99 | |||
100 | } |
||
101 | |||
102 | /** |
||
103 | * @} end of ComplexFFT group |
||
104 | */ |
||
105 | |||
106 | /* |
||
107 | * Radix-4 FFT algorithm used is : |
||
108 | * |
||
109 | * Input real and imaginary data: |
||
110 | * x(n) = xa + j * ya |
||
111 | * x(n+N/4 ) = xb + j * yb |
||
112 | * x(n+N/2 ) = xc + j * yc |
||
113 | * x(n+3N 4) = xd + j * yd |
||
114 | * |
||
115 | * |
||
116 | * Output real and imaginary data: |
||
117 | * x(4r) = xa'+ j * ya' |
||
118 | * x(4r+1) = xb'+ j * yb' |
||
119 | * x(4r+2) = xc'+ j * yc' |
||
120 | * x(4r+3) = xd'+ j * yd' |
||
121 | * |
||
122 | * |
||
123 | * Twiddle factors for radix-4 FFT: |
||
124 | * Wn = co1 + j * (- si1) |
||
125 | * W2n = co2 + j * (- si2) |
||
126 | * W3n = co3 + j * (- si3) |
||
127 | |||
128 | * The real and imaginary output values for the radix-4 butterfly are |
||
129 | * xa' = xa + xb + xc + xd |
||
130 | * ya' = ya + yb + yc + yd |
||
131 | * xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) |
||
132 | * yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) |
||
133 | * xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) |
||
134 | * yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) |
||
135 | * xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) |
||
136 | * yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) |
||
137 | * |
||
138 | */ |
||
139 | |||
140 | /** |
||
141 | * @brief Core function for the Q15 CFFT butterfly process. |
||
142 | * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. |
||
143 | * @param[in] fftLen length of the FFT. |
||
144 | * @param[in] *pCoef16 points to twiddle coefficient buffer. |
||
145 | * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. |
||
146 | * @return none. |
||
147 | */ |
||
148 | |||
149 | void arm_radix4_butterfly_q15( |
||
150 | q15_t * pSrc16, |
||
151 | uint32_t fftLen, |
||
152 | q15_t * pCoef16, |
||
153 | uint32_t twidCoefModifier) |
||
154 | { |
||
155 | |||
156 | #if defined (ARM_MATH_DSP) |
||
157 | |||
158 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
159 | |||
160 | q31_t R, S, T, U; |
||
161 | q31_t C1, C2, C3, out1, out2; |
||
162 | uint32_t n1, n2, ic, i0, j, k; |
||
163 | |||
164 | q15_t *ptr1; |
||
165 | q15_t *pSi0; |
||
166 | q15_t *pSi1; |
||
167 | q15_t *pSi2; |
||
168 | q15_t *pSi3; |
||
169 | |||
170 | q31_t xaya, xbyb, xcyc, xdyd; |
||
171 | |||
172 | /* Total process is divided into three stages */ |
||
173 | |||
174 | /* process first stage, middle stages, & last stage */ |
||
175 | |||
176 | /* Initializations for the first stage */ |
||
177 | n2 = fftLen; |
||
178 | n1 = n2; |
||
179 | |||
180 | /* n2 = fftLen/4 */ |
||
181 | n2 >>= 2U; |
||
182 | |||
183 | /* Index for twiddle coefficient */ |
||
184 | ic = 0U; |
||
185 | |||
186 | /* Index for input read and output write */ |
||
187 | j = n2; |
||
188 | |||
189 | pSi0 = pSrc16; |
||
190 | pSi1 = pSi0 + 2 * n2; |
||
191 | pSi2 = pSi1 + 2 * n2; |
||
192 | pSi3 = pSi2 + 2 * n2; |
||
193 | |||
194 | /* Input is in 1.15(q15) format */ |
||
195 | |||
196 | /* start of first stage process */ |
||
197 | do |
||
198 | { |
||
199 | /* Butterfly implementation */ |
||
200 | |||
201 | /* Reading i0, i0+fftLen/2 inputs */ |
||
202 | /* Read ya (real), xa(imag) input */ |
||
203 | T = _SIMD32_OFFSET(pSi0); |
||
204 | T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1 |
||
205 | T = __SHADD16(T, 0); // it turns out doing this twice is 2 cycles, the alternative takes 3 cycles |
||
206 | //in = ((int16_t) (T & 0xFFFF)) >> 2; // alternative code that takes 3 cycles |
||
207 | //T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF); |
||
208 | |||
209 | /* Read yc (real), xc(imag) input */ |
||
210 | S = _SIMD32_OFFSET(pSi2); |
||
211 | S = __SHADD16(S, 0); |
||
212 | S = __SHADD16(S, 0); |
||
213 | |||
214 | /* R = packed((ya + yc), (xa + xc) ) */ |
||
215 | R = __QADD16(T, S); |
||
216 | |||
217 | /* S = packed((ya - yc), (xa - xc) ) */ |
||
218 | S = __QSUB16(T, S); |
||
219 | |||
220 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
221 | /* Read yb (real), xb(imag) input */ |
||
222 | T = _SIMD32_OFFSET(pSi1); |
||
223 | T = __SHADD16(T, 0); |
||
224 | T = __SHADD16(T, 0); |
||
225 | |||
226 | /* Read yd (real), xd(imag) input */ |
||
227 | U = _SIMD32_OFFSET(pSi3); |
||
228 | U = __SHADD16(U, 0); |
||
229 | U = __SHADD16(U, 0); |
||
230 | |||
231 | /* T = packed((yb + yd), (xb + xd) ) */ |
||
232 | T = __QADD16(T, U); |
||
233 | |||
234 | /* writing the butterfly processed i0 sample */ |
||
235 | /* xa' = xa + xb + xc + xd */ |
||
236 | /* ya' = ya + yb + yc + yd */ |
||
237 | _SIMD32_OFFSET(pSi0) = __SHADD16(R, T); |
||
238 | pSi0 += 2; |
||
239 | |||
240 | /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */ |
||
241 | R = __QSUB16(R, T); |
||
242 | |||
243 | /* co2 & si2 are read from SIMD Coefficient pointer */ |
||
244 | C2 = _SIMD32_OFFSET(pCoef16 + (4U * ic)); |
||
245 | |||
246 | #ifndef ARM_MATH_BIG_ENDIAN |
||
247 | |||
248 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
249 | out1 = __SMUAD(C2, R) >> 16U; |
||
250 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
251 | out2 = __SMUSDX(C2, R); |
||
252 | |||
253 | #else |
||
254 | |||
255 | /* xc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
256 | out1 = __SMUSDX(R, C2) >> 16U; |
||
257 | /* yc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
258 | out2 = __SMUAD(C2, R); |
||
259 | |||
260 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
261 | |||
262 | /* Reading i0+fftLen/4 */ |
||
263 | /* T = packed(yb, xb) */ |
||
264 | T = _SIMD32_OFFSET(pSi1); |
||
265 | T = __SHADD16(T, 0); |
||
266 | T = __SHADD16(T, 0); |
||
267 | |||
268 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
269 | /* writing output(xc', yc') in little endian format */ |
||
270 | _SIMD32_OFFSET(pSi1) = |
||
271 | (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
272 | pSi1 += 2; |
||
273 | |||
274 | /* Butterfly calculations */ |
||
275 | /* U = packed(yd, xd) */ |
||
276 | U = _SIMD32_OFFSET(pSi3); |
||
277 | U = __SHADD16(U, 0); |
||
278 | U = __SHADD16(U, 0); |
||
279 | |||
280 | /* T = packed(yb-yd, xb-xd) */ |
||
281 | T = __QSUB16(T, U); |
||
282 | |||
283 | #ifndef ARM_MATH_BIG_ENDIAN |
||
284 | |||
285 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
286 | R = __QASX(S, T); |
||
287 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
288 | S = __QSAX(S, T); |
||
289 | |||
290 | #else |
||
291 | |||
292 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
293 | R = __QSAX(S, T); |
||
294 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
295 | S = __QASX(S, T); |
||
296 | |||
297 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
298 | |||
299 | /* co1 & si1 are read from SIMD Coefficient pointer */ |
||
300 | C1 = _SIMD32_OFFSET(pCoef16 + (2U * ic)); |
||
301 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
302 | |||
303 | #ifndef ARM_MATH_BIG_ENDIAN |
||
304 | |||
305 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
306 | out1 = __SMUAD(C1, S) >> 16U; |
||
307 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
308 | out2 = __SMUSDX(C1, S); |
||
309 | |||
310 | #else |
||
311 | |||
312 | /* xb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
313 | out1 = __SMUSDX(S, C1) >> 16U; |
||
314 | /* yb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
315 | out2 = __SMUAD(C1, S); |
||
316 | |||
317 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
318 | |||
319 | /* writing output(xb', yb') in little endian format */ |
||
320 | _SIMD32_OFFSET(pSi2) = |
||
321 | ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF); |
||
322 | pSi2 += 2; |
||
323 | |||
324 | |||
325 | /* co3 & si3 are read from SIMD Coefficient pointer */ |
||
326 | C3 = _SIMD32_OFFSET(pCoef16 + (6U * ic)); |
||
327 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
328 | |||
329 | #ifndef ARM_MATH_BIG_ENDIAN |
||
330 | |||
331 | /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
332 | out1 = __SMUAD(C3, R) >> 16U; |
||
333 | /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
334 | out2 = __SMUSDX(C3, R); |
||
335 | |||
336 | #else |
||
337 | |||
338 | /* xd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
339 | out1 = __SMUSDX(R, C3) >> 16U; |
||
340 | /* yd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
341 | out2 = __SMUAD(C3, R); |
||
342 | |||
343 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
344 | |||
345 | /* writing output(xd', yd') in little endian format */ |
||
346 | _SIMD32_OFFSET(pSi3) = |
||
347 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
348 | pSi3 += 2; |
||
349 | |||
350 | /* Twiddle coefficients index modifier */ |
||
351 | ic = ic + twidCoefModifier; |
||
352 | |||
353 | } while (--j); |
||
354 | /* data is in 4.11(q11) format */ |
||
355 | |||
356 | /* end of first stage process */ |
||
357 | |||
358 | |||
359 | /* start of middle stage process */ |
||
360 | |||
361 | /* Twiddle coefficients index modifier */ |
||
362 | twidCoefModifier <<= 2U; |
||
363 | |||
364 | /* Calculation of Middle stage */ |
||
365 | for (k = fftLen / 4U; k > 4U; k >>= 2U) |
||
366 | { |
||
367 | /* Initializations for the middle stage */ |
||
368 | n1 = n2; |
||
369 | n2 >>= 2U; |
||
370 | ic = 0U; |
||
371 | |||
372 | for (j = 0U; j <= (n2 - 1U); j++) |
||
373 | { |
||
374 | /* index calculation for the coefficients */ |
||
375 | C1 = _SIMD32_OFFSET(pCoef16 + (2U * ic)); |
||
376 | C2 = _SIMD32_OFFSET(pCoef16 + (4U * ic)); |
||
377 | C3 = _SIMD32_OFFSET(pCoef16 + (6U * ic)); |
||
378 | |||
379 | /* Twiddle coefficients index modifier */ |
||
380 | ic = ic + twidCoefModifier; |
||
381 | |||
382 | pSi0 = pSrc16 + 2 * j; |
||
383 | pSi1 = pSi0 + 2 * n2; |
||
384 | pSi2 = pSi1 + 2 * n2; |
||
385 | pSi3 = pSi2 + 2 * n2; |
||
386 | |||
387 | /* Butterfly implementation */ |
||
388 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
389 | { |
||
390 | /* Reading i0, i0+fftLen/2 inputs */ |
||
391 | /* Read ya (real), xa(imag) input */ |
||
392 | T = _SIMD32_OFFSET(pSi0); |
||
393 | |||
394 | /* Read yc (real), xc(imag) input */ |
||
395 | S = _SIMD32_OFFSET(pSi2); |
||
396 | |||
397 | /* R = packed( (ya + yc), (xa + xc)) */ |
||
398 | R = __QADD16(T, S); |
||
399 | |||
400 | /* S = packed((ya - yc), (xa - xc)) */ |
||
401 | S = __QSUB16(T, S); |
||
402 | |||
403 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
404 | /* Read yb (real), xb(imag) input */ |
||
405 | T = _SIMD32_OFFSET(pSi1); |
||
406 | |||
407 | /* Read yd (real), xd(imag) input */ |
||
408 | U = _SIMD32_OFFSET(pSi3); |
||
409 | |||
410 | /* T = packed( (yb + yd), (xb + xd)) */ |
||
411 | T = __QADD16(T, U); |
||
412 | |||
413 | /* writing the butterfly processed i0 sample */ |
||
414 | |||
415 | /* xa' = xa + xb + xc + xd */ |
||
416 | /* ya' = ya + yb + yc + yd */ |
||
417 | out1 = __SHADD16(R, T); |
||
418 | out1 = __SHADD16(out1, 0); |
||
419 | _SIMD32_OFFSET(pSi0) = out1; |
||
420 | pSi0 += 2 * n1; |
||
421 | |||
422 | /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */ |
||
423 | R = __SHSUB16(R, T); |
||
424 | |||
425 | #ifndef ARM_MATH_BIG_ENDIAN |
||
426 | |||
427 | /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */ |
||
428 | out1 = __SMUAD(C2, R) >> 16U; |
||
429 | |||
430 | /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
431 | out2 = __SMUSDX(C2, R); |
||
432 | |||
433 | #else |
||
434 | |||
435 | /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
436 | out1 = __SMUSDX(R, C2) >> 16U; |
||
437 | |||
438 | /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */ |
||
439 | out2 = __SMUAD(C2, R); |
||
440 | |||
441 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
442 | |||
443 | /* Reading i0+3fftLen/4 */ |
||
444 | /* Read yb (real), xb(imag) input */ |
||
445 | T = _SIMD32_OFFSET(pSi1); |
||
446 | |||
447 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
448 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
449 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
450 | _SIMD32_OFFSET(pSi1) = |
||
451 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
452 | pSi1 += 2 * n1; |
||
453 | |||
454 | /* Butterfly calculations */ |
||
455 | |||
456 | /* Read yd (real), xd(imag) input */ |
||
457 | U = _SIMD32_OFFSET(pSi3); |
||
458 | |||
459 | /* T = packed(yb-yd, xb-xd) */ |
||
460 | T = __QSUB16(T, U); |
||
461 | |||
462 | #ifndef ARM_MATH_BIG_ENDIAN |
||
463 | |||
464 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
465 | R = __SHASX(S, T); |
||
466 | |||
467 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
468 | S = __SHSAX(S, T); |
||
469 | |||
470 | |||
471 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
472 | out1 = __SMUAD(C1, S) >> 16U; |
||
473 | out2 = __SMUSDX(C1, S); |
||
474 | |||
475 | #else |
||
476 | |||
477 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
478 | R = __SHSAX(S, T); |
||
479 | |||
480 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
481 | S = __SHASX(S, T); |
||
482 | |||
483 | |||
484 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
485 | out1 = __SMUSDX(S, C1) >> 16U; |
||
486 | out2 = __SMUAD(C1, S); |
||
487 | |||
488 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
489 | |||
490 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
491 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
492 | _SIMD32_OFFSET(pSi2) = |
||
493 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
494 | pSi2 += 2 * n1; |
||
495 | |||
496 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
497 | |||
498 | #ifndef ARM_MATH_BIG_ENDIAN |
||
499 | |||
500 | out1 = __SMUAD(C3, R) >> 16U; |
||
501 | out2 = __SMUSDX(C3, R); |
||
502 | |||
503 | #else |
||
504 | |||
505 | out1 = __SMUSDX(R, C3) >> 16U; |
||
506 | out2 = __SMUAD(C3, R); |
||
507 | |||
508 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
509 | |||
510 | /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
511 | /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
512 | _SIMD32_OFFSET(pSi3) = |
||
513 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
514 | pSi3 += 2 * n1; |
||
515 | } |
||
516 | } |
||
517 | /* Twiddle coefficients index modifier */ |
||
518 | twidCoefModifier <<= 2U; |
||
519 | } |
||
520 | /* end of middle stage process */ |
||
521 | |||
522 | |||
523 | /* data is in 10.6(q6) format for the 1024 point */ |
||
524 | /* data is in 8.8(q8) format for the 256 point */ |
||
525 | /* data is in 6.10(q10) format for the 64 point */ |
||
526 | /* data is in 4.12(q12) format for the 16 point */ |
||
527 | |||
528 | /* Initializations for the last stage */ |
||
529 | j = fftLen >> 2; |
||
530 | |||
531 | ptr1 = &pSrc16[0]; |
||
532 | |||
533 | /* start of last stage process */ |
||
534 | |||
535 | /* Butterfly implementation */ |
||
536 | do |
||
537 | { |
||
538 | /* Read xa (real), ya(imag) input */ |
||
539 | xaya = *__SIMD32(ptr1)++; |
||
540 | |||
541 | /* Read xb (real), yb(imag) input */ |
||
542 | xbyb = *__SIMD32(ptr1)++; |
||
543 | |||
544 | /* Read xc (real), yc(imag) input */ |
||
545 | xcyc = *__SIMD32(ptr1)++; |
||
546 | |||
547 | /* Read xd (real), yd(imag) input */ |
||
548 | xdyd = *__SIMD32(ptr1)++; |
||
549 | |||
550 | /* R = packed((ya + yc), (xa + xc)) */ |
||
551 | R = __QADD16(xaya, xcyc); |
||
552 | |||
553 | /* T = packed((yb + yd), (xb + xd)) */ |
||
554 | T = __QADD16(xbyb, xdyd); |
||
555 | |||
556 | /* pointer updation for writing */ |
||
557 | ptr1 = ptr1 - 8U; |
||
558 | |||
559 | |||
560 | /* xa' = xa + xb + xc + xd */ |
||
561 | /* ya' = ya + yb + yc + yd */ |
||
562 | *__SIMD32(ptr1)++ = __SHADD16(R, T); |
||
563 | |||
564 | /* T = packed((yb + yd), (xb + xd)) */ |
||
565 | T = __QADD16(xbyb, xdyd); |
||
566 | |||
567 | /* xc' = (xa-xb+xc-xd) */ |
||
568 | /* yc' = (ya-yb+yc-yd) */ |
||
569 | *__SIMD32(ptr1)++ = __SHSUB16(R, T); |
||
570 | |||
571 | /* S = packed((ya - yc), (xa - xc)) */ |
||
572 | S = __QSUB16(xaya, xcyc); |
||
573 | |||
574 | /* Read yd (real), xd(imag) input */ |
||
575 | /* T = packed( (yb - yd), (xb - xd)) */ |
||
576 | U = __QSUB16(xbyb, xdyd); |
||
577 | |||
578 | #ifndef ARM_MATH_BIG_ENDIAN |
||
579 | |||
580 | /* xb' = (xa+yb-xc-yd) */ |
||
581 | /* yb' = (ya-xb-yc+xd) */ |
||
582 | *__SIMD32(ptr1)++ = __SHSAX(S, U); |
||
583 | |||
584 | |||
585 | /* xd' = (xa-yb-xc+yd) */ |
||
586 | /* yd' = (ya+xb-yc-xd) */ |
||
587 | *__SIMD32(ptr1)++ = __SHASX(S, U); |
||
588 | |||
589 | #else |
||
590 | |||
591 | /* xb' = (xa+yb-xc-yd) */ |
||
592 | /* yb' = (ya-xb-yc+xd) */ |
||
593 | *__SIMD32(ptr1)++ = __SHASX(S, U); |
||
594 | |||
595 | |||
596 | /* xd' = (xa-yb-xc+yd) */ |
||
597 | /* yd' = (ya+xb-yc-xd) */ |
||
598 | *__SIMD32(ptr1)++ = __SHSAX(S, U); |
||
599 | |||
600 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
601 | |||
602 | } while (--j); |
||
603 | |||
604 | /* end of last stage process */ |
||
605 | |||
606 | /* output is in 11.5(q5) format for the 1024 point */ |
||
607 | /* output is in 9.7(q7) format for the 256 point */ |
||
608 | /* output is in 7.9(q9) format for the 64 point */ |
||
609 | /* output is in 5.11(q11) format for the 16 point */ |
||
610 | |||
611 | |||
612 | #else |
||
613 | |||
614 | /* Run the below code for Cortex-M0 */ |
||
615 | |||
616 | q15_t R0, R1, S0, S1, T0, T1, U0, U1; |
||
617 | q15_t Co1, Si1, Co2, Si2, Co3, Si3, out1, out2; |
||
618 | uint32_t n1, n2, ic, i0, i1, i2, i3, j, k; |
||
619 | |||
620 | /* Total process is divided into three stages */ |
||
621 | |||
622 | /* process first stage, middle stages, & last stage */ |
||
623 | |||
624 | /* Initializations for the first stage */ |
||
625 | n2 = fftLen; |
||
626 | n1 = n2; |
||
627 | |||
628 | /* n2 = fftLen/4 */ |
||
629 | n2 >>= 2U; |
||
630 | |||
631 | /* Index for twiddle coefficient */ |
||
632 | ic = 0U; |
||
633 | |||
634 | /* Index for input read and output write */ |
||
635 | i0 = 0U; |
||
636 | j = n2; |
||
637 | |||
638 | /* Input is in 1.15(q15) format */ |
||
639 | |||
640 | /* start of first stage process */ |
||
641 | do |
||
642 | { |
||
643 | /* Butterfly implementation */ |
||
644 | |||
645 | /* index calculation for the input as, */ |
||
646 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
647 | i1 = i0 + n2; |
||
648 | i2 = i1 + n2; |
||
649 | i3 = i2 + n2; |
||
650 | |||
651 | /* Reading i0, i0+fftLen/2 inputs */ |
||
652 | |||
653 | /* input is down scale by 4 to avoid overflow */ |
||
654 | /* Read ya (real), xa(imag) input */ |
||
655 | T0 = pSrc16[i0 * 2U] >> 2U; |
||
656 | T1 = pSrc16[(i0 * 2U) + 1U] >> 2U; |
||
657 | |||
658 | /* input is down scale by 4 to avoid overflow */ |
||
659 | /* Read yc (real), xc(imag) input */ |
||
660 | S0 = pSrc16[i2 * 2U] >> 2U; |
||
661 | S1 = pSrc16[(i2 * 2U) + 1U] >> 2U; |
||
662 | |||
663 | /* R0 = (ya + yc) */ |
||
664 | R0 = __SSAT(T0 + S0, 16U); |
||
665 | /* R1 = (xa + xc) */ |
||
666 | R1 = __SSAT(T1 + S1, 16U); |
||
667 | |||
668 | /* S0 = (ya - yc) */ |
||
669 | S0 = __SSAT(T0 - S0, 16); |
||
670 | /* S1 = (xa - xc) */ |
||
671 | S1 = __SSAT(T1 - S1, 16); |
||
672 | |||
673 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
674 | /* input is down scale by 4 to avoid overflow */ |
||
675 | /* Read yb (real), xb(imag) input */ |
||
676 | T0 = pSrc16[i1 * 2U] >> 2U; |
||
677 | T1 = pSrc16[(i1 * 2U) + 1U] >> 2U; |
||
678 | |||
679 | /* input is down scale by 4 to avoid overflow */ |
||
680 | /* Read yd (real), xd(imag) input */ |
||
681 | U0 = pSrc16[i3 * 2U] >> 2U; |
||
682 | U1 = pSrc16[(i3 * 2U) + 1] >> 2U; |
||
683 | |||
684 | /* T0 = (yb + yd) */ |
||
685 | T0 = __SSAT(T0 + U0, 16U); |
||
686 | /* T1 = (xb + xd) */ |
||
687 | T1 = __SSAT(T1 + U1, 16U); |
||
688 | |||
689 | /* writing the butterfly processed i0 sample */ |
||
690 | /* ya' = ya + yb + yc + yd */ |
||
691 | /* xa' = xa + xb + xc + xd */ |
||
692 | pSrc16[i0 * 2U] = (R0 >> 1U) + (T0 >> 1U); |
||
693 | pSrc16[(i0 * 2U) + 1U] = (R1 >> 1U) + (T1 >> 1U); |
||
694 | |||
695 | /* R0 = (ya + yc) - (yb + yd) */ |
||
696 | /* R1 = (xa + xc) - (xb + xd) */ |
||
697 | R0 = __SSAT(R0 - T0, 16U); |
||
698 | R1 = __SSAT(R1 - T1, 16U); |
||
699 | |||
700 | /* co2 & si2 are read from Coefficient pointer */ |
||
701 | Co2 = pCoef16[2U * ic * 2U]; |
||
702 | Si2 = pCoef16[(2U * ic * 2U) + 1]; |
||
703 | |||
704 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
705 | out1 = (q15_t) ((Co2 * R0 + Si2 * R1) >> 16U); |
||
706 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
707 | out2 = (q15_t) ((-Si2 * R0 + Co2 * R1) >> 16U); |
||
708 | |||
709 | /* Reading i0+fftLen/4 */ |
||
710 | /* input is down scale by 4 to avoid overflow */ |
||
711 | /* T0 = yb, T1 = xb */ |
||
712 | T0 = pSrc16[i1 * 2U] >> 2; |
||
713 | T1 = pSrc16[(i1 * 2U) + 1] >> 2; |
||
714 | |||
715 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
716 | /* writing output(xc', yc') in little endian format */ |
||
717 | pSrc16[i1 * 2U] = out1; |
||
718 | pSrc16[(i1 * 2U) + 1] = out2; |
||
719 | |||
720 | /* Butterfly calculations */ |
||
721 | /* input is down scale by 4 to avoid overflow */ |
||
722 | /* U0 = yd, U1 = xd */ |
||
723 | U0 = pSrc16[i3 * 2U] >> 2; |
||
724 | U1 = pSrc16[(i3 * 2U) + 1] >> 2; |
||
725 | /* T0 = yb-yd */ |
||
726 | T0 = __SSAT(T0 - U0, 16); |
||
727 | /* T1 = xb-xd */ |
||
728 | T1 = __SSAT(T1 - U1, 16); |
||
729 | |||
730 | /* R1 = (ya-yc) + (xb- xd), R0 = (xa-xc) - (yb-yd)) */ |
||
731 | R0 = (q15_t) __SSAT((q31_t) (S0 - T1), 16); |
||
732 | R1 = (q15_t) __SSAT((q31_t) (S1 + T0), 16); |
||
733 | |||
734 | /* S1 = (ya-yc) - (xb- xd), S0 = (xa-xc) + (yb-yd)) */ |
||
735 | S0 = (q15_t) __SSAT(((q31_t) S0 + T1), 16U); |
||
736 | S1 = (q15_t) __SSAT(((q31_t) S1 - T0), 16U); |
||
737 | |||
738 | /* co1 & si1 are read from Coefficient pointer */ |
||
739 | Co1 = pCoef16[ic * 2U]; |
||
740 | Si1 = pCoef16[(ic * 2U) + 1]; |
||
741 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
742 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
743 | out1 = (q15_t) ((Si1 * S1 + Co1 * S0) >> 16); |
||
744 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
745 | out2 = (q15_t) ((-Si1 * S0 + Co1 * S1) >> 16); |
||
746 | |||
747 | /* writing output(xb', yb') in little endian format */ |
||
748 | pSrc16[i2 * 2U] = out1; |
||
749 | pSrc16[(i2 * 2U) + 1] = out2; |
||
750 | |||
751 | /* Co3 & si3 are read from Coefficient pointer */ |
||
752 | Co3 = pCoef16[3U * (ic * 2U)]; |
||
753 | Si3 = pCoef16[(3U * (ic * 2U)) + 1]; |
||
754 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
755 | /* xd' = (xa-yb-xc+yd)* Co3 + (ya+xb-yc-xd)* (si3) */ |
||
756 | out1 = (q15_t) ((Si3 * R1 + Co3 * R0) >> 16U); |
||
757 | /* yd' = (ya+xb-yc-xd)* Co3 - (xa-yb-xc+yd)* (si3) */ |
||
758 | out2 = (q15_t) ((-Si3 * R0 + Co3 * R1) >> 16U); |
||
759 | /* writing output(xd', yd') in little endian format */ |
||
760 | pSrc16[i3 * 2U] = out1; |
||
761 | pSrc16[(i3 * 2U) + 1] = out2; |
||
762 | |||
763 | /* Twiddle coefficients index modifier */ |
||
764 | ic = ic + twidCoefModifier; |
||
765 | |||
766 | /* Updating input index */ |
||
767 | i0 = i0 + 1U; |
||
768 | |||
769 | } while (--j); |
||
770 | /* data is in 4.11(q11) format */ |
||
771 | |||
772 | /* end of first stage process */ |
||
773 | |||
774 | |||
775 | /* start of middle stage process */ |
||
776 | |||
777 | /* Twiddle coefficients index modifier */ |
||
778 | twidCoefModifier <<= 2U; |
||
779 | |||
780 | /* Calculation of Middle stage */ |
||
781 | for (k = fftLen / 4U; k > 4U; k >>= 2U) |
||
782 | { |
||
783 | /* Initializations for the middle stage */ |
||
784 | n1 = n2; |
||
785 | n2 >>= 2U; |
||
786 | ic = 0U; |
||
787 | |||
788 | for (j = 0U; j <= (n2 - 1U); j++) |
||
789 | { |
||
790 | /* index calculation for the coefficients */ |
||
791 | Co1 = pCoef16[ic * 2U]; |
||
792 | Si1 = pCoef16[(ic * 2U) + 1U]; |
||
793 | Co2 = pCoef16[2U * (ic * 2U)]; |
||
794 | Si2 = pCoef16[(2U * (ic * 2U)) + 1U]; |
||
795 | Co3 = pCoef16[3U * (ic * 2U)]; |
||
796 | Si3 = pCoef16[(3U * (ic * 2U)) + 1U]; |
||
797 | |||
798 | /* Twiddle coefficients index modifier */ |
||
799 | ic = ic + twidCoefModifier; |
||
800 | |||
801 | /* Butterfly implementation */ |
||
802 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
803 | { |
||
804 | /* index calculation for the input as, */ |
||
805 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
806 | i1 = i0 + n2; |
||
807 | i2 = i1 + n2; |
||
808 | i3 = i2 + n2; |
||
809 | |||
810 | /* Reading i0, i0+fftLen/2 inputs */ |
||
811 | /* Read ya (real), xa(imag) input */ |
||
812 | T0 = pSrc16[i0 * 2U]; |
||
813 | T1 = pSrc16[(i0 * 2U) + 1U]; |
||
814 | |||
815 | /* Read yc (real), xc(imag) input */ |
||
816 | S0 = pSrc16[i2 * 2U]; |
||
817 | S1 = pSrc16[(i2 * 2U) + 1U]; |
||
818 | |||
819 | /* R0 = (ya + yc), R1 = (xa + xc) */ |
||
820 | R0 = __SSAT(T0 + S0, 16); |
||
821 | R1 = __SSAT(T1 + S1, 16); |
||
822 | |||
823 | /* S0 = (ya - yc), S1 =(xa - xc) */ |
||
824 | S0 = __SSAT(T0 - S0, 16); |
||
825 | S1 = __SSAT(T1 - S1, 16); |
||
826 | |||
827 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
828 | /* Read yb (real), xb(imag) input */ |
||
829 | T0 = pSrc16[i1 * 2U]; |
||
830 | T1 = pSrc16[(i1 * 2U) + 1U]; |
||
831 | |||
832 | /* Read yd (real), xd(imag) input */ |
||
833 | U0 = pSrc16[i3 * 2U]; |
||
834 | U1 = pSrc16[(i3 * 2U) + 1U]; |
||
835 | |||
836 | |||
837 | /* T0 = (yb + yd), T1 = (xb + xd) */ |
||
838 | T0 = __SSAT(T0 + U0, 16); |
||
839 | T1 = __SSAT(T1 + U1, 16); |
||
840 | |||
841 | /* writing the butterfly processed i0 sample */ |
||
842 | |||
843 | /* xa' = xa + xb + xc + xd */ |
||
844 | /* ya' = ya + yb + yc + yd */ |
||
845 | out1 = ((R0 >> 1U) + (T0 >> 1U)) >> 1U; |
||
846 | out2 = ((R1 >> 1U) + (T1 >> 1U)) >> 1U; |
||
847 | |||
848 | pSrc16[i0 * 2U] = out1; |
||
849 | pSrc16[(2U * i0) + 1U] = out2; |
||
850 | |||
851 | /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */ |
||
852 | R0 = (R0 >> 1U) - (T0 >> 1U); |
||
853 | R1 = (R1 >> 1U) - (T1 >> 1U); |
||
854 | |||
855 | /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */ |
||
856 | out1 = (q15_t) ((Co2 * R0 + Si2 * R1) >> 16U); |
||
857 | |||
858 | /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
859 | out2 = (q15_t) ((-Si2 * R0 + Co2 * R1) >> 16U); |
||
860 | |||
861 | /* Reading i0+3fftLen/4 */ |
||
862 | /* Read yb (real), xb(imag) input */ |
||
863 | T0 = pSrc16[i1 * 2U]; |
||
864 | T1 = pSrc16[(i1 * 2U) + 1U]; |
||
865 | |||
866 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
867 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
868 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
869 | pSrc16[i1 * 2U] = out1; |
||
870 | pSrc16[(i1 * 2U) + 1U] = out2; |
||
871 | |||
872 | /* Butterfly calculations */ |
||
873 | |||
874 | /* Read yd (real), xd(imag) input */ |
||
875 | U0 = pSrc16[i3 * 2U]; |
||
876 | U1 = pSrc16[(i3 * 2U) + 1U]; |
||
877 | |||
878 | /* T0 = yb-yd, T1 = xb-xd */ |
||
879 | T0 = __SSAT(T0 - U0, 16); |
||
880 | T1 = __SSAT(T1 - U1, 16); |
||
881 | |||
882 | /* R0 = (ya-yc) + (xb- xd), R1 = (xa-xc) - (yb-yd)) */ |
||
883 | R0 = (S0 >> 1U) - (T1 >> 1U); |
||
884 | R1 = (S1 >> 1U) + (T0 >> 1U); |
||
885 | |||
886 | /* S0 = (ya-yc) - (xb- xd), S1 = (xa-xc) + (yb-yd)) */ |
||
887 | S0 = (S0 >> 1U) + (T1 >> 1U); |
||
888 | S1 = (S1 >> 1U) - (T0 >> 1U); |
||
889 | |||
890 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
891 | out1 = (q15_t) ((Co1 * S0 + Si1 * S1) >> 16U); |
||
892 | |||
893 | out2 = (q15_t) ((-Si1 * S0 + Co1 * S1) >> 16U); |
||
894 | |||
895 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
896 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
897 | pSrc16[i2 * 2U] = out1; |
||
898 | pSrc16[(i2 * 2U) + 1U] = out2; |
||
899 | |||
900 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
901 | out1 = (q15_t) ((Si3 * R1 + Co3 * R0) >> 16U); |
||
902 | |||
903 | out2 = (q15_t) ((-Si3 * R0 + Co3 * R1) >> 16U); |
||
904 | /* xd' = (xa-yb-xc+yd)* Co3 + (ya+xb-yc-xd)* (si3) */ |
||
905 | /* yd' = (ya+xb-yc-xd)* Co3 - (xa-yb-xc+yd)* (si3) */ |
||
906 | pSrc16[i3 * 2U] = out1; |
||
907 | pSrc16[(i3 * 2U) + 1U] = out2; |
||
908 | } |
||
909 | } |
||
910 | /* Twiddle coefficients index modifier */ |
||
911 | twidCoefModifier <<= 2U; |
||
912 | } |
||
913 | /* end of middle stage process */ |
||
914 | |||
915 | |||
916 | /* data is in 10.6(q6) format for the 1024 point */ |
||
917 | /* data is in 8.8(q8) format for the 256 point */ |
||
918 | /* data is in 6.10(q10) format for the 64 point */ |
||
919 | /* data is in 4.12(q12) format for the 16 point */ |
||
920 | |||
921 | /* Initializations for the last stage */ |
||
922 | n1 = n2; |
||
923 | n2 >>= 2U; |
||
924 | |||
925 | /* start of last stage process */ |
||
926 | |||
927 | /* Butterfly implementation */ |
||
928 | for (i0 = 0U; i0 <= (fftLen - n1); i0 += n1) |
||
929 | { |
||
930 | /* index calculation for the input as, */ |
||
931 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
932 | i1 = i0 + n2; |
||
933 | i2 = i1 + n2; |
||
934 | i3 = i2 + n2; |
||
935 | |||
936 | /* Reading i0, i0+fftLen/2 inputs */ |
||
937 | /* Read ya (real), xa(imag) input */ |
||
938 | T0 = pSrc16[i0 * 2U]; |
||
939 | T1 = pSrc16[(i0 * 2U) + 1U]; |
||
940 | |||
941 | /* Read yc (real), xc(imag) input */ |
||
942 | S0 = pSrc16[i2 * 2U]; |
||
943 | S1 = pSrc16[(i2 * 2U) + 1U]; |
||
944 | |||
945 | /* R0 = (ya + yc), R1 = (xa + xc) */ |
||
946 | R0 = __SSAT(T0 + S0, 16U); |
||
947 | R1 = __SSAT(T1 + S1, 16U); |
||
948 | |||
949 | /* S0 = (ya - yc), S1 = (xa - xc) */ |
||
950 | S0 = __SSAT(T0 - S0, 16U); |
||
951 | S1 = __SSAT(T1 - S1, 16U); |
||
952 | |||
953 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
954 | /* Read yb (real), xb(imag) input */ |
||
955 | T0 = pSrc16[i1 * 2U]; |
||
956 | T1 = pSrc16[(i1 * 2U) + 1U]; |
||
957 | /* Read yd (real), xd(imag) input */ |
||
958 | U0 = pSrc16[i3 * 2U]; |
||
959 | U1 = pSrc16[(i3 * 2U) + 1U]; |
||
960 | |||
961 | /* T0 = (yb + yd), T1 = (xb + xd)) */ |
||
962 | T0 = __SSAT(T0 + U0, 16U); |
||
963 | T1 = __SSAT(T1 + U1, 16U); |
||
964 | |||
965 | /* writing the butterfly processed i0 sample */ |
||
966 | /* xa' = xa + xb + xc + xd */ |
||
967 | /* ya' = ya + yb + yc + yd */ |
||
968 | pSrc16[i0 * 2U] = (R0 >> 1U) + (T0 >> 1U); |
||
969 | pSrc16[(i0 * 2U) + 1U] = (R1 >> 1U) + (T1 >> 1U); |
||
970 | |||
971 | /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */ |
||
972 | R0 = (R0 >> 1U) - (T0 >> 1U); |
||
973 | R1 = (R1 >> 1U) - (T1 >> 1U); |
||
974 | /* Read yb (real), xb(imag) input */ |
||
975 | T0 = pSrc16[i1 * 2U]; |
||
976 | T1 = pSrc16[(i1 * 2U) + 1U]; |
||
977 | |||
978 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
979 | /* xc' = (xa-xb+xc-xd) */ |
||
980 | /* yc' = (ya-yb+yc-yd) */ |
||
981 | pSrc16[i1 * 2U] = R0; |
||
982 | pSrc16[(i1 * 2U) + 1U] = R1; |
||
983 | |||
984 | /* Read yd (real), xd(imag) input */ |
||
985 | U0 = pSrc16[i3 * 2U]; |
||
986 | U1 = pSrc16[(i3 * 2U) + 1U]; |
||
987 | /* T0 = (yb - yd), T1 = (xb - xd) */ |
||
988 | T0 = __SSAT(T0 - U0, 16U); |
||
989 | T1 = __SSAT(T1 - U1, 16U); |
||
990 | |||
991 | /* writing the butterfly processed i0 + fftLen/2 sample */ |
||
992 | /* xb' = (xa+yb-xc-yd) */ |
||
993 | /* yb' = (ya-xb-yc+xd) */ |
||
994 | pSrc16[i2 * 2U] = (S0 >> 1U) + (T1 >> 1U); |
||
995 | pSrc16[(i2 * 2U) + 1U] = (S1 >> 1U) - (T0 >> 1U); |
||
996 | |||
997 | /* writing the butterfly processed i0 + 3fftLen/4 sample */ |
||
998 | /* xd' = (xa-yb-xc+yd) */ |
||
999 | /* yd' = (ya+xb-yc-xd) */ |
||
1000 | pSrc16[i3 * 2U] = (S0 >> 1U) - (T1 >> 1U); |
||
1001 | pSrc16[(i3 * 2U) + 1U] = (S1 >> 1U) + (T0 >> 1U); |
||
1002 | |||
1003 | } |
||
1004 | |||
1005 | /* end of last stage process */ |
||
1006 | |||
1007 | /* output is in 11.5(q5) format for the 1024 point */ |
||
1008 | /* output is in 9.7(q7) format for the 256 point */ |
||
1009 | /* output is in 7.9(q9) format for the 64 point */ |
||
1010 | /* output is in 5.11(q11) format for the 16 point */ |
||
1011 | |||
1012 | #endif /* #if defined (ARM_MATH_DSP) */ |
||
1013 | |||
1014 | } |
||
1015 | |||
1016 | |||
1017 | /** |
||
1018 | * @brief Core function for the Q15 CIFFT butterfly process. |
||
1019 | * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type. |
||
1020 | * @param[in] fftLen length of the FFT. |
||
1021 | * @param[in] *pCoef16 points to twiddle coefficient buffer. |
||
1022 | * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. |
||
1023 | * @return none. |
||
1024 | */ |
||
1025 | |||
1026 | /* |
||
1027 | * Radix-4 IFFT algorithm used is : |
||
1028 | * |
||
1029 | * CIFFT uses same twiddle coefficients as CFFT function |
||
1030 | * x[k] = x[n] + (j)k * x[n + fftLen/4] + (-1)k * x[n+fftLen/2] + (-j)k * x[n+3*fftLen/4] |
||
1031 | * |
||
1032 | * |
||
1033 | * IFFT is implemented with following changes in equations from FFT |
||
1034 | * |
||
1035 | * Input real and imaginary data: |
||
1036 | * x(n) = xa + j * ya |
||
1037 | * x(n+N/4 ) = xb + j * yb |
||
1038 | * x(n+N/2 ) = xc + j * yc |
||
1039 | * x(n+3N 4) = xd + j * yd |
||
1040 | * |
||
1041 | * |
||
1042 | * Output real and imaginary data: |
||
1043 | * x(4r) = xa'+ j * ya' |
||
1044 | * x(4r+1) = xb'+ j * yb' |
||
1045 | * x(4r+2) = xc'+ j * yc' |
||
1046 | * x(4r+3) = xd'+ j * yd' |
||
1047 | * |
||
1048 | * |
||
1049 | * Twiddle factors for radix-4 IFFT: |
||
1050 | * Wn = co1 + j * (si1) |
||
1051 | * W2n = co2 + j * (si2) |
||
1052 | * W3n = co3 + j * (si3) |
||
1053 | |||
1054 | * The real and imaginary output values for the radix-4 butterfly are |
||
1055 | * xa' = xa + xb + xc + xd |
||
1056 | * ya' = ya + yb + yc + yd |
||
1057 | * xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) |
||
1058 | * yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) |
||
1059 | * xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) |
||
1060 | * yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) |
||
1061 | * xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3) |
||
1062 | * yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3) |
||
1063 | * |
||
1064 | */ |
||
1065 | |||
1066 | void arm_radix4_butterfly_inverse_q15( |
||
1067 | q15_t * pSrc16, |
||
1068 | uint32_t fftLen, |
||
1069 | q15_t * pCoef16, |
||
1070 | uint32_t twidCoefModifier) |
||
1071 | { |
||
1072 | |||
1073 | #if defined (ARM_MATH_DSP) |
||
1074 | |||
1075 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
||
1076 | |||
1077 | q31_t R, S, T, U; |
||
1078 | q31_t C1, C2, C3, out1, out2; |
||
1079 | uint32_t n1, n2, ic, i0, j, k; |
||
1080 | |||
1081 | q15_t *ptr1; |
||
1082 | q15_t *pSi0; |
||
1083 | q15_t *pSi1; |
||
1084 | q15_t *pSi2; |
||
1085 | q15_t *pSi3; |
||
1086 | |||
1087 | q31_t xaya, xbyb, xcyc, xdyd; |
||
1088 | |||
1089 | /* Total process is divided into three stages */ |
||
1090 | |||
1091 | /* process first stage, middle stages, & last stage */ |
||
1092 | |||
1093 | /* Initializations for the first stage */ |
||
1094 | n2 = fftLen; |
||
1095 | n1 = n2; |
||
1096 | |||
1097 | /* n2 = fftLen/4 */ |
||
1098 | n2 >>= 2U; |
||
1099 | |||
1100 | /* Index for twiddle coefficient */ |
||
1101 | ic = 0U; |
||
1102 | |||
1103 | /* Index for input read and output write */ |
||
1104 | j = n2; |
||
1105 | |||
1106 | pSi0 = pSrc16; |
||
1107 | pSi1 = pSi0 + 2 * n2; |
||
1108 | pSi2 = pSi1 + 2 * n2; |
||
1109 | pSi3 = pSi2 + 2 * n2; |
||
1110 | |||
1111 | /* Input is in 1.15(q15) format */ |
||
1112 | |||
1113 | /* start of first stage process */ |
||
1114 | do |
||
1115 | { |
||
1116 | /* Butterfly implementation */ |
||
1117 | |||
1118 | /* Reading i0, i0+fftLen/2 inputs */ |
||
1119 | /* Read ya (real), xa(imag) input */ |
||
1120 | T = _SIMD32_OFFSET(pSi0); |
||
1121 | T = __SHADD16(T, 0); |
||
1122 | T = __SHADD16(T, 0); |
||
1123 | |||
1124 | /* Read yc (real), xc(imag) input */ |
||
1125 | S = _SIMD32_OFFSET(pSi2); |
||
1126 | S = __SHADD16(S, 0); |
||
1127 | S = __SHADD16(S, 0); |
||
1128 | |||
1129 | /* R = packed((ya + yc), (xa + xc) ) */ |
||
1130 | R = __QADD16(T, S); |
||
1131 | |||
1132 | /* S = packed((ya - yc), (xa - xc) ) */ |
||
1133 | S = __QSUB16(T, S); |
||
1134 | |||
1135 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
1136 | /* Read yb (real), xb(imag) input */ |
||
1137 | T = _SIMD32_OFFSET(pSi1); |
||
1138 | T = __SHADD16(T, 0); |
||
1139 | T = __SHADD16(T, 0); |
||
1140 | |||
1141 | /* Read yd (real), xd(imag) input */ |
||
1142 | U = _SIMD32_OFFSET(pSi3); |
||
1143 | U = __SHADD16(U, 0); |
||
1144 | U = __SHADD16(U, 0); |
||
1145 | |||
1146 | /* T = packed((yb + yd), (xb + xd) ) */ |
||
1147 | T = __QADD16(T, U); |
||
1148 | |||
1149 | /* writing the butterfly processed i0 sample */ |
||
1150 | /* xa' = xa + xb + xc + xd */ |
||
1151 | /* ya' = ya + yb + yc + yd */ |
||
1152 | _SIMD32_OFFSET(pSi0) = __SHADD16(R, T); |
||
1153 | pSi0 += 2; |
||
1154 | |||
1155 | /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */ |
||
1156 | R = __QSUB16(R, T); |
||
1157 | |||
1158 | /* co2 & si2 are read from SIMD Coefficient pointer */ |
||
1159 | C2 = _SIMD32_OFFSET(pCoef16 + (4U * ic)); |
||
1160 | |||
1161 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1162 | |||
1163 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
1164 | out1 = __SMUSD(C2, R) >> 16U; |
||
1165 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
1166 | out2 = __SMUADX(C2, R); |
||
1167 | |||
1168 | #else |
||
1169 | |||
1170 | /* xc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
1171 | out1 = __SMUADX(C2, R) >> 16U; |
||
1172 | /* yc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
1173 | out2 = __SMUSD(__QSUB16(0, C2), R); |
||
1174 | |||
1175 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1176 | |||
1177 | /* Reading i0+fftLen/4 */ |
||
1178 | /* T = packed(yb, xb) */ |
||
1179 | T = _SIMD32_OFFSET(pSi1); |
||
1180 | T = __SHADD16(T, 0); |
||
1181 | T = __SHADD16(T, 0); |
||
1182 | |||
1183 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
1184 | /* writing output(xc', yc') in little endian format */ |
||
1185 | _SIMD32_OFFSET(pSi1) = |
||
1186 | (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
1187 | pSi1 += 2; |
||
1188 | |||
1189 | /* Butterfly calculations */ |
||
1190 | /* U = packed(yd, xd) */ |
||
1191 | U = _SIMD32_OFFSET(pSi3); |
||
1192 | U = __SHADD16(U, 0); |
||
1193 | U = __SHADD16(U, 0); |
||
1194 | |||
1195 | /* T = packed(yb-yd, xb-xd) */ |
||
1196 | T = __QSUB16(T, U); |
||
1197 | |||
1198 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1199 | |||
1200 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
1201 | R = __QSAX(S, T); |
||
1202 | /* S = packed((ya-yc) + (xb- xd), (xa-xc) - (yb-yd)) */ |
||
1203 | S = __QASX(S, T); |
||
1204 | |||
1205 | #else |
||
1206 | |||
1207 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
1208 | R = __QASX(S, T); |
||
1209 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
1210 | S = __QSAX(S, T); |
||
1211 | |||
1212 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1213 | |||
1214 | /* co1 & si1 are read from SIMD Coefficient pointer */ |
||
1215 | C1 = _SIMD32_OFFSET(pCoef16 + (2U * ic)); |
||
1216 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
1217 | |||
1218 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1219 | |||
1220 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
1221 | out1 = __SMUSD(C1, S) >> 16U; |
||
1222 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
1223 | out2 = __SMUADX(C1, S); |
||
1224 | |||
1225 | #else |
||
1226 | |||
1227 | /* xb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
1228 | out1 = __SMUADX(C1, S) >> 16U; |
||
1229 | /* yb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
1230 | out2 = __SMUSD(__QSUB16(0, C1), S); |
||
1231 | |||
1232 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1233 | |||
1234 | /* writing output(xb', yb') in little endian format */ |
||
1235 | _SIMD32_OFFSET(pSi2) = |
||
1236 | ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF); |
||
1237 | pSi2 += 2; |
||
1238 | |||
1239 | |||
1240 | /* co3 & si3 are read from SIMD Coefficient pointer */ |
||
1241 | C3 = _SIMD32_OFFSET(pCoef16 + (6U * ic)); |
||
1242 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
1243 | |||
1244 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1245 | |||
1246 | /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
1247 | out1 = __SMUSD(C3, R) >> 16U; |
||
1248 | /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
1249 | out2 = __SMUADX(C3, R); |
||
1250 | |||
1251 | #else |
||
1252 | |||
1253 | /* xd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
1254 | out1 = __SMUADX(C3, R) >> 16U; |
||
1255 | /* yd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
1256 | out2 = __SMUSD(__QSUB16(0, C3), R); |
||
1257 | |||
1258 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1259 | |||
1260 | /* writing output(xd', yd') in little endian format */ |
||
1261 | _SIMD32_OFFSET(pSi3) = |
||
1262 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
1263 | pSi3 += 2; |
||
1264 | |||
1265 | /* Twiddle coefficients index modifier */ |
||
1266 | ic = ic + twidCoefModifier; |
||
1267 | |||
1268 | } while (--j); |
||
1269 | /* data is in 4.11(q11) format */ |
||
1270 | |||
1271 | /* end of first stage process */ |
||
1272 | |||
1273 | |||
1274 | /* start of middle stage process */ |
||
1275 | |||
1276 | /* Twiddle coefficients index modifier */ |
||
1277 | twidCoefModifier <<= 2U; |
||
1278 | |||
1279 | /* Calculation of Middle stage */ |
||
1280 | for (k = fftLen / 4U; k > 4U; k >>= 2U) |
||
1281 | { |
||
1282 | /* Initializations for the middle stage */ |
||
1283 | n1 = n2; |
||
1284 | n2 >>= 2U; |
||
1285 | ic = 0U; |
||
1286 | |||
1287 | for (j = 0U; j <= (n2 - 1U); j++) |
||
1288 | { |
||
1289 | /* index calculation for the coefficients */ |
||
1290 | C1 = _SIMD32_OFFSET(pCoef16 + (2U * ic)); |
||
1291 | C2 = _SIMD32_OFFSET(pCoef16 + (4U * ic)); |
||
1292 | C3 = _SIMD32_OFFSET(pCoef16 + (6U * ic)); |
||
1293 | |||
1294 | /* Twiddle coefficients index modifier */ |
||
1295 | ic = ic + twidCoefModifier; |
||
1296 | |||
1297 | pSi0 = pSrc16 + 2 * j; |
||
1298 | pSi1 = pSi0 + 2 * n2; |
||
1299 | pSi2 = pSi1 + 2 * n2; |
||
1300 | pSi3 = pSi2 + 2 * n2; |
||
1301 | |||
1302 | /* Butterfly implementation */ |
||
1303 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
1304 | { |
||
1305 | /* Reading i0, i0+fftLen/2 inputs */ |
||
1306 | /* Read ya (real), xa(imag) input */ |
||
1307 | T = _SIMD32_OFFSET(pSi0); |
||
1308 | |||
1309 | /* Read yc (real), xc(imag) input */ |
||
1310 | S = _SIMD32_OFFSET(pSi2); |
||
1311 | |||
1312 | /* R = packed( (ya + yc), (xa + xc)) */ |
||
1313 | R = __QADD16(T, S); |
||
1314 | |||
1315 | /* S = packed((ya - yc), (xa - xc)) */ |
||
1316 | S = __QSUB16(T, S); |
||
1317 | |||
1318 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
1319 | /* Read yb (real), xb(imag) input */ |
||
1320 | T = _SIMD32_OFFSET(pSi1); |
||
1321 | |||
1322 | /* Read yd (real), xd(imag) input */ |
||
1323 | U = _SIMD32_OFFSET(pSi3); |
||
1324 | |||
1325 | /* T = packed( (yb + yd), (xb + xd)) */ |
||
1326 | T = __QADD16(T, U); |
||
1327 | |||
1328 | /* writing the butterfly processed i0 sample */ |
||
1329 | |||
1330 | /* xa' = xa + xb + xc + xd */ |
||
1331 | /* ya' = ya + yb + yc + yd */ |
||
1332 | out1 = __SHADD16(R, T); |
||
1333 | out1 = __SHADD16(out1, 0); |
||
1334 | _SIMD32_OFFSET(pSi0) = out1; |
||
1335 | pSi0 += 2 * n1; |
||
1336 | |||
1337 | /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */ |
||
1338 | R = __SHSUB16(R, T); |
||
1339 | |||
1340 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1341 | |||
1342 | /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */ |
||
1343 | out1 = __SMUSD(C2, R) >> 16U; |
||
1344 | |||
1345 | /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
1346 | out2 = __SMUADX(C2, R); |
||
1347 | |||
1348 | #else |
||
1349 | |||
1350 | /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
1351 | out1 = __SMUADX(R, C2) >> 16U; |
||
1352 | |||
1353 | /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */ |
||
1354 | out2 = __SMUSD(__QSUB16(0, C2), R); |
||
1355 | |||
1356 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1357 | |||
1358 | /* Reading i0+3fftLen/4 */ |
||
1359 | /* Read yb (real), xb(imag) input */ |
||
1360 | T = _SIMD32_OFFSET(pSi1); |
||
1361 | |||
1362 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
1363 | /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */ |
||
1364 | /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */ |
||
1365 | _SIMD32_OFFSET(pSi1) = |
||
1366 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
1367 | pSi1 += 2 * n1; |
||
1368 | |||
1369 | /* Butterfly calculations */ |
||
1370 | |||
1371 | /* Read yd (real), xd(imag) input */ |
||
1372 | U = _SIMD32_OFFSET(pSi3); |
||
1373 | |||
1374 | /* T = packed(yb-yd, xb-xd) */ |
||
1375 | T = __QSUB16(T, U); |
||
1376 | |||
1377 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1378 | |||
1379 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
1380 | R = __SHSAX(S, T); |
||
1381 | |||
1382 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
1383 | S = __SHASX(S, T); |
||
1384 | |||
1385 | |||
1386 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
1387 | out1 = __SMUSD(C1, S) >> 16U; |
||
1388 | out2 = __SMUADX(C1, S); |
||
1389 | |||
1390 | #else |
||
1391 | |||
1392 | /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */ |
||
1393 | R = __SHASX(S, T); |
||
1394 | |||
1395 | /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */ |
||
1396 | S = __SHSAX(S, T); |
||
1397 | |||
1398 | |||
1399 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
1400 | out1 = __SMUADX(S, C1) >> 16U; |
||
1401 | out2 = __SMUSD(__QSUB16(0, C1), S); |
||
1402 | |||
1403 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1404 | |||
1405 | /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */ |
||
1406 | /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */ |
||
1407 | _SIMD32_OFFSET(pSi2) = |
||
1408 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
1409 | pSi2 += 2 * n1; |
||
1410 | |||
1411 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
1412 | |||
1413 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1414 | |||
1415 | out1 = __SMUSD(C3, R) >> 16U; |
||
1416 | out2 = __SMUADX(C3, R); |
||
1417 | |||
1418 | #else |
||
1419 | |||
1420 | out1 = __SMUADX(C3, R) >> 16U; |
||
1421 | out2 = __SMUSD(__QSUB16(0, C3), R); |
||
1422 | |||
1423 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1424 | |||
1425 | /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */ |
||
1426 | /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */ |
||
1427 | _SIMD32_OFFSET(pSi3) = |
||
1428 | ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); |
||
1429 | pSi3 += 2 * n1; |
||
1430 | } |
||
1431 | } |
||
1432 | /* Twiddle coefficients index modifier */ |
||
1433 | twidCoefModifier <<= 2U; |
||
1434 | } |
||
1435 | /* end of middle stage process */ |
||
1436 | |||
1437 | /* data is in 10.6(q6) format for the 1024 point */ |
||
1438 | /* data is in 8.8(q8) format for the 256 point */ |
||
1439 | /* data is in 6.10(q10) format for the 64 point */ |
||
1440 | /* data is in 4.12(q12) format for the 16 point */ |
||
1441 | |||
1442 | /* Initializations for the last stage */ |
||
1443 | j = fftLen >> 2; |
||
1444 | |||
1445 | ptr1 = &pSrc16[0]; |
||
1446 | |||
1447 | /* start of last stage process */ |
||
1448 | |||
1449 | /* Butterfly implementation */ |
||
1450 | do |
||
1451 | { |
||
1452 | /* Read xa (real), ya(imag) input */ |
||
1453 | xaya = *__SIMD32(ptr1)++; |
||
1454 | |||
1455 | /* Read xb (real), yb(imag) input */ |
||
1456 | xbyb = *__SIMD32(ptr1)++; |
||
1457 | |||
1458 | /* Read xc (real), yc(imag) input */ |
||
1459 | xcyc = *__SIMD32(ptr1)++; |
||
1460 | |||
1461 | /* Read xd (real), yd(imag) input */ |
||
1462 | xdyd = *__SIMD32(ptr1)++; |
||
1463 | |||
1464 | /* R = packed((ya + yc), (xa + xc)) */ |
||
1465 | R = __QADD16(xaya, xcyc); |
||
1466 | |||
1467 | /* T = packed((yb + yd), (xb + xd)) */ |
||
1468 | T = __QADD16(xbyb, xdyd); |
||
1469 | |||
1470 | /* pointer updation for writing */ |
||
1471 | ptr1 = ptr1 - 8U; |
||
1472 | |||
1473 | |||
1474 | /* xa' = xa + xb + xc + xd */ |
||
1475 | /* ya' = ya + yb + yc + yd */ |
||
1476 | *__SIMD32(ptr1)++ = __SHADD16(R, T); |
||
1477 | |||
1478 | /* T = packed((yb + yd), (xb + xd)) */ |
||
1479 | T = __QADD16(xbyb, xdyd); |
||
1480 | |||
1481 | /* xc' = (xa-xb+xc-xd) */ |
||
1482 | /* yc' = (ya-yb+yc-yd) */ |
||
1483 | *__SIMD32(ptr1)++ = __SHSUB16(R, T); |
||
1484 | |||
1485 | /* S = packed((ya - yc), (xa - xc)) */ |
||
1486 | S = __QSUB16(xaya, xcyc); |
||
1487 | |||
1488 | /* Read yd (real), xd(imag) input */ |
||
1489 | /* T = packed( (yb - yd), (xb - xd)) */ |
||
1490 | U = __QSUB16(xbyb, xdyd); |
||
1491 | |||
1492 | #ifndef ARM_MATH_BIG_ENDIAN |
||
1493 | |||
1494 | /* xb' = (xa+yb-xc-yd) */ |
||
1495 | /* yb' = (ya-xb-yc+xd) */ |
||
1496 | *__SIMD32(ptr1)++ = __SHASX(S, U); |
||
1497 | |||
1498 | |||
1499 | /* xd' = (xa-yb-xc+yd) */ |
||
1500 | /* yd' = (ya+xb-yc-xd) */ |
||
1501 | *__SIMD32(ptr1)++ = __SHSAX(S, U); |
||
1502 | |||
1503 | #else |
||
1504 | |||
1505 | /* xb' = (xa+yb-xc-yd) */ |
||
1506 | /* yb' = (ya-xb-yc+xd) */ |
||
1507 | *__SIMD32(ptr1)++ = __SHSAX(S, U); |
||
1508 | |||
1509 | |||
1510 | /* xd' = (xa-yb-xc+yd) */ |
||
1511 | /* yd' = (ya+xb-yc-xd) */ |
||
1512 | *__SIMD32(ptr1)++ = __SHASX(S, U); |
||
1513 | |||
1514 | |||
1515 | #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
||
1516 | |||
1517 | } while (--j); |
||
1518 | |||
1519 | /* end of last stage process */ |
||
1520 | |||
1521 | /* output is in 11.5(q5) format for the 1024 point */ |
||
1522 | /* output is in 9.7(q7) format for the 256 point */ |
||
1523 | /* output is in 7.9(q9) format for the 64 point */ |
||
1524 | /* output is in 5.11(q11) format for the 16 point */ |
||
1525 | |||
1526 | |||
1527 | #else |
||
1528 | |||
1529 | /* Run the below code for Cortex-M0 */ |
||
1530 | |||
1531 | q15_t R0, R1, S0, S1, T0, T1, U0, U1; |
||
1532 | q15_t Co1, Si1, Co2, Si2, Co3, Si3, out1, out2; |
||
1533 | uint32_t n1, n2, ic, i0, i1, i2, i3, j, k; |
||
1534 | |||
1535 | /* Total process is divided into three stages */ |
||
1536 | |||
1537 | /* process first stage, middle stages, & last stage */ |
||
1538 | |||
1539 | /* Initializations for the first stage */ |
||
1540 | n2 = fftLen; |
||
1541 | n1 = n2; |
||
1542 | |||
1543 | /* n2 = fftLen/4 */ |
||
1544 | n2 >>= 2U; |
||
1545 | |||
1546 | /* Index for twiddle coefficient */ |
||
1547 | ic = 0U; |
||
1548 | |||
1549 | /* Index for input read and output write */ |
||
1550 | i0 = 0U; |
||
1551 | |||
1552 | j = n2; |
||
1553 | |||
1554 | /* Input is in 1.15(q15) format */ |
||
1555 | |||
1556 | /* Start of first stage process */ |
||
1557 | do |
||
1558 | { |
||
1559 | /* Butterfly implementation */ |
||
1560 | |||
1561 | /* index calculation for the input as, */ |
||
1562 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
1563 | i1 = i0 + n2; |
||
1564 | i2 = i1 + n2; |
||
1565 | i3 = i2 + n2; |
||
1566 | |||
1567 | /* Reading i0, i0+fftLen/2 inputs */ |
||
1568 | /* input is down scale by 4 to avoid overflow */ |
||
1569 | /* Read ya (real), xa(imag) input */ |
||
1570 | T0 = pSrc16[i0 * 2U] >> 2U; |
||
1571 | T1 = pSrc16[(i0 * 2U) + 1U] >> 2U; |
||
1572 | /* input is down scale by 4 to avoid overflow */ |
||
1573 | /* Read yc (real), xc(imag) input */ |
||
1574 | S0 = pSrc16[i2 * 2U] >> 2U; |
||
1575 | S1 = pSrc16[(i2 * 2U) + 1U] >> 2U; |
||
1576 | |||
1577 | /* R0 = (ya + yc), R1 = (xa + xc) */ |
||
1578 | R0 = __SSAT(T0 + S0, 16U); |
||
1579 | R1 = __SSAT(T1 + S1, 16U); |
||
1580 | /* S0 = (ya - yc), S1 = (xa - xc) */ |
||
1581 | S0 = __SSAT(T0 - S0, 16U); |
||
1582 | S1 = __SSAT(T1 - S1, 16U); |
||
1583 | |||
1584 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
1585 | /* input is down scale by 4 to avoid overflow */ |
||
1586 | /* Read yb (real), xb(imag) input */ |
||
1587 | T0 = pSrc16[i1 * 2U] >> 2U; |
||
1588 | T1 = pSrc16[(i1 * 2U) + 1U] >> 2U; |
||
1589 | /* Read yd (real), xd(imag) input */ |
||
1590 | /* input is down scale by 4 to avoid overflow */ |
||
1591 | U0 = pSrc16[i3 * 2U] >> 2U; |
||
1592 | U1 = pSrc16[(i3 * 2U) + 1U] >> 2U; |
||
1593 | |||
1594 | /* T0 = (yb + yd), T1 = (xb + xd) */ |
||
1595 | T0 = __SSAT(T0 + U0, 16U); |
||
1596 | T1 = __SSAT(T1 + U1, 16U); |
||
1597 | |||
1598 | /* writing the butterfly processed i0 sample */ |
||
1599 | /* xa' = xa + xb + xc + xd */ |
||
1600 | /* ya' = ya + yb + yc + yd */ |
||
1601 | pSrc16[i0 * 2U] = (R0 >> 1U) + (T0 >> 1U); |
||
1602 | pSrc16[(i0 * 2U) + 1U] = (R1 >> 1U) + (T1 >> 1U); |
||
1603 | |||
1604 | /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc)- (xb + xd) */ |
||
1605 | R0 = __SSAT(R0 - T0, 16U); |
||
1606 | R1 = __SSAT(R1 - T1, 16U); |
||
1607 | /* co2 & si2 are read from Coefficient pointer */ |
||
1608 | Co2 = pCoef16[2U * ic * 2U]; |
||
1609 | Si2 = pCoef16[(2U * ic * 2U) + 1U]; |
||
1610 | /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */ |
||
1611 | out1 = (q15_t) ((Co2 * R0 - Si2 * R1) >> 16U); |
||
1612 | /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */ |
||
1613 | out2 = (q15_t) ((Si2 * R0 + Co2 * R1) >> 16U); |
||
1614 | |||
1615 | /* Reading i0+fftLen/4 */ |
||
1616 | /* input is down scale by 4 to avoid overflow */ |
||
1617 | /* T0 = yb, T1 = xb */ |
||
1618 | T0 = pSrc16[i1 * 2U] >> 2U; |
||
1619 | T1 = pSrc16[(i1 * 2U) + 1U] >> 2U; |
||
1620 | |||
1621 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
1622 | /* writing output(xc', yc') in little endian format */ |
||
1623 | pSrc16[i1 * 2U] = out1; |
||
1624 | pSrc16[(i1 * 2U) + 1U] = out2; |
||
1625 | |||
1626 | /* Butterfly calculations */ |
||
1627 | /* input is down scale by 4 to avoid overflow */ |
||
1628 | /* U0 = yd, U1 = xd) */ |
||
1629 | U0 = pSrc16[i3 * 2U] >> 2U; |
||
1630 | U1 = pSrc16[(i3 * 2U) + 1U] >> 2U; |
||
1631 | |||
1632 | /* T0 = yb-yd, T1 = xb-xd) */ |
||
1633 | T0 = __SSAT(T0 - U0, 16U); |
||
1634 | T1 = __SSAT(T1 - U1, 16U); |
||
1635 | /* R0 = (ya-yc) - (xb- xd) , R1 = (xa-xc) + (yb-yd) */ |
||
1636 | R0 = (q15_t) __SSAT((q31_t) (S0 + T1), 16); |
||
1637 | R1 = (q15_t) __SSAT((q31_t) (S1 - T0), 16); |
||
1638 | /* S = (ya-yc) + (xb- xd), S1 = (xa-xc) - (yb-yd) */ |
||
1639 | S0 = (q15_t) __SSAT((q31_t) (S0 - T1), 16); |
||
1640 | S1 = (q15_t) __SSAT((q31_t) (S1 + T0), 16); |
||
1641 | |||
1642 | /* co1 & si1 are read from Coefficient pointer */ |
||
1643 | Co1 = pCoef16[ic * 2U]; |
||
1644 | Si1 = pCoef16[(ic * 2U) + 1U]; |
||
1645 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
1646 | /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */ |
||
1647 | out1 = (q15_t) ((Co1 * S0 - Si1 * S1) >> 16U); |
||
1648 | /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */ |
||
1649 | out2 = (q15_t) ((Si1 * S0 + Co1 * S1) >> 16U); |
||
1650 | /* writing output(xb', yb') in little endian format */ |
||
1651 | pSrc16[i2 * 2U] = out1; |
||
1652 | pSrc16[(i2 * 2U) + 1U] = out2; |
||
1653 | |||
1654 | /* Co3 & si3 are read from Coefficient pointer */ |
||
1655 | Co3 = pCoef16[3U * ic * 2U]; |
||
1656 | Si3 = pCoef16[(3U * ic * 2U) + 1U]; |
||
1657 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
1658 | /* xd' = (xa+yb-xc-yd)* Co3 - (ya-xb-yc+xd)* (si3) */ |
||
1659 | out1 = (q15_t) ((Co3 * R0 - Si3 * R1) >> 16U); |
||
1660 | /* yd' = (ya-xb-yc+xd)* Co3 + (xa+yb-xc-yd)* (si3) */ |
||
1661 | out2 = (q15_t) ((Si3 * R0 + Co3 * R1) >> 16U); |
||
1662 | /* writing output(xd', yd') in little endian format */ |
||
1663 | pSrc16[i3 * 2U] = out1; |
||
1664 | pSrc16[(i3 * 2U) + 1U] = out2; |
||
1665 | |||
1666 | /* Twiddle coefficients index modifier */ |
||
1667 | ic = ic + twidCoefModifier; |
||
1668 | |||
1669 | /* Updating input index */ |
||
1670 | i0 = i0 + 1U; |
||
1671 | |||
1672 | } while (--j); |
||
1673 | |||
1674 | /* End of first stage process */ |
||
1675 | |||
1676 | /* data is in 4.11(q11) format */ |
||
1677 | |||
1678 | |||
1679 | /* Start of Middle stage process */ |
||
1680 | |||
1681 | /* Twiddle coefficients index modifier */ |
||
1682 | twidCoefModifier <<= 2U; |
||
1683 | |||
1684 | /* Calculation of Middle stage */ |
||
1685 | for (k = fftLen / 4U; k > 4U; k >>= 2U) |
||
1686 | { |
||
1687 | /* Initializations for the middle stage */ |
||
1688 | n1 = n2; |
||
1689 | n2 >>= 2U; |
||
1690 | ic = 0U; |
||
1691 | |||
1692 | for (j = 0U; j <= (n2 - 1U); j++) |
||
1693 | { |
||
1694 | /* index calculation for the coefficients */ |
||
1695 | Co1 = pCoef16[ic * 2U]; |
||
1696 | Si1 = pCoef16[(ic * 2U) + 1U]; |
||
1697 | Co2 = pCoef16[2U * ic * 2U]; |
||
1698 | Si2 = pCoef16[2U * ic * 2U + 1U]; |
||
1699 | Co3 = pCoef16[3U * ic * 2U]; |
||
1700 | Si3 = pCoef16[(3U * ic * 2U) + 1U]; |
||
1701 | |||
1702 | /* Twiddle coefficients index modifier */ |
||
1703 | ic = ic + twidCoefModifier; |
||
1704 | |||
1705 | /* Butterfly implementation */ |
||
1706 | for (i0 = j; i0 < fftLen; i0 += n1) |
||
1707 | { |
||
1708 | /* index calculation for the input as, */ |
||
1709 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
1710 | i1 = i0 + n2; |
||
1711 | i2 = i1 + n2; |
||
1712 | i3 = i2 + n2; |
||
1713 | |||
1714 | /* Reading i0, i0+fftLen/2 inputs */ |
||
1715 | /* Read ya (real), xa(imag) input */ |
||
1716 | T0 = pSrc16[i0 * 2U]; |
||
1717 | T1 = pSrc16[(i0 * 2U) + 1U]; |
||
1718 | |||
1719 | /* Read yc (real), xc(imag) input */ |
||
1720 | S0 = pSrc16[i2 * 2U]; |
||
1721 | S1 = pSrc16[(i2 * 2U) + 1U]; |
||
1722 | |||
1723 | |||
1724 | /* R0 = (ya + yc), R1 = (xa + xc) */ |
||
1725 | R0 = __SSAT(T0 + S0, 16U); |
||
1726 | R1 = __SSAT(T1 + S1, 16U); |
||
1727 | /* S0 = (ya - yc), S1 = (xa - xc) */ |
||
1728 | S0 = __SSAT(T0 - S0, 16U); |
||
1729 | S1 = __SSAT(T1 - S1, 16U); |
||
1730 | |||
1731 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
1732 | /* Read yb (real), xb(imag) input */ |
||
1733 | T0 = pSrc16[i1 * 2U]; |
||
1734 | T1 = pSrc16[(i1 * 2U) + 1U]; |
||
1735 | |||
1736 | /* Read yd (real), xd(imag) input */ |
||
1737 | U0 = pSrc16[i3 * 2U]; |
||
1738 | U1 = pSrc16[(i3 * 2U) + 1U]; |
||
1739 | |||
1740 | /* T0 = (yb + yd), T1 = (xb + xd) */ |
||
1741 | T0 = __SSAT(T0 + U0, 16U); |
||
1742 | T1 = __SSAT(T1 + U1, 16U); |
||
1743 | |||
1744 | /* writing the butterfly processed i0 sample */ |
||
1745 | /* xa' = xa + xb + xc + xd */ |
||
1746 | /* ya' = ya + yb + yc + yd */ |
||
1747 | pSrc16[i0 * 2U] = ((R0 >> 1U) + (T0 >> 1U)) >> 1U; |
||
1748 | pSrc16[(i0 * 2U) + 1U] = ((R1 >> 1U) + (T1 >> 1U)) >> 1U; |
||
1749 | |||
1750 | /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */ |
||
1751 | R0 = (R0 >> 1U) - (T0 >> 1U); |
||
1752 | R1 = (R1 >> 1U) - (T1 >> 1U); |
||
1753 | |||
1754 | /* (ya-yb+yc-yd)* (si2) - (xa-xb+xc-xd)* co2 */ |
||
1755 | out1 = (q15_t) ((Co2 * R0 - Si2 * R1) >> 16); |
||
1756 | /* (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */ |
||
1757 | out2 = (q15_t) ((Si2 * R0 + Co2 * R1) >> 16); |
||
1758 | |||
1759 | /* Reading i0+3fftLen/4 */ |
||
1760 | /* Read yb (real), xb(imag) input */ |
||
1761 | T0 = pSrc16[i1 * 2U]; |
||
1762 | T1 = pSrc16[(i1 * 2U) + 1U]; |
||
1763 | |||
1764 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
1765 | /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */ |
||
1766 | /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */ |
||
1767 | pSrc16[i1 * 2U] = out1; |
||
1768 | pSrc16[(i1 * 2U) + 1U] = out2; |
||
1769 | |||
1770 | /* Butterfly calculations */ |
||
1771 | /* Read yd (real), xd(imag) input */ |
||
1772 | U0 = pSrc16[i3 * 2U]; |
||
1773 | U1 = pSrc16[(i3 * 2U) + 1U]; |
||
1774 | |||
1775 | /* T0 = yb-yd, T1 = xb-xd) */ |
||
1776 | T0 = __SSAT(T0 - U0, 16U); |
||
1777 | T1 = __SSAT(T1 - U1, 16U); |
||
1778 | |||
1779 | /* R0 = (ya-yc) - (xb- xd) , R1 = (xa-xc) + (yb-yd) */ |
||
1780 | R0 = (S0 >> 1U) + (T1 >> 1U); |
||
1781 | R1 = (S1 >> 1U) - (T0 >> 1U); |
||
1782 | |||
1783 | /* S1 = (ya-yc) + (xb- xd), S1 = (xa-xc) - (yb-yd) */ |
||
1784 | S0 = (S0 >> 1U) - (T1 >> 1U); |
||
1785 | S1 = (S1 >> 1U) + (T0 >> 1U); |
||
1786 | |||
1787 | /* Butterfly process for the i0+fftLen/2 sample */ |
||
1788 | out1 = (q15_t) ((Co1 * S0 - Si1 * S1) >> 16U); |
||
1789 | out2 = (q15_t) ((Si1 * S0 + Co1 * S1) >> 16U); |
||
1790 | /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */ |
||
1791 | /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */ |
||
1792 | pSrc16[i2 * 2U] = out1; |
||
1793 | pSrc16[(i2 * 2U) + 1U] = out2; |
||
1794 | |||
1795 | /* Butterfly process for the i0+3fftLen/4 sample */ |
||
1796 | out1 = (q15_t) ((Co3 * R0 - Si3 * R1) >> 16U); |
||
1797 | |||
1798 | out2 = (q15_t) ((Si3 * R0 + Co3 * R1) >> 16U); |
||
1799 | /* xd' = (xa+yb-xc-yd)* Co3 - (ya-xb-yc+xd)* (si3) */ |
||
1800 | /* yd' = (ya-xb-yc+xd)* Co3 + (xa+yb-xc-yd)* (si3) */ |
||
1801 | pSrc16[i3 * 2U] = out1; |
||
1802 | pSrc16[(i3 * 2U) + 1U] = out2; |
||
1803 | |||
1804 | |||
1805 | } |
||
1806 | } |
||
1807 | /* Twiddle coefficients index modifier */ |
||
1808 | twidCoefModifier <<= 2U; |
||
1809 | } |
||
1810 | /* End of Middle stages process */ |
||
1811 | |||
1812 | |||
1813 | /* data is in 10.6(q6) format for the 1024 point */ |
||
1814 | /* data is in 8.8(q8) format for the 256 point */ |
||
1815 | /* data is in 6.10(q10) format for the 64 point */ |
||
1816 | /* data is in 4.12(q12) format for the 16 point */ |
||
1817 | |||
1818 | /* start of last stage process */ |
||
1819 | |||
1820 | |||
1821 | /* Initializations for the last stage */ |
||
1822 | n1 = n2; |
||
1823 | n2 >>= 2U; |
||
1824 | |||
1825 | /* Butterfly implementation */ |
||
1826 | for (i0 = 0U; i0 <= (fftLen - n1); i0 += n1) |
||
1827 | { |
||
1828 | /* index calculation for the input as, */ |
||
1829 | /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */ |
||
1830 | i1 = i0 + n2; |
||
1831 | i2 = i1 + n2; |
||
1832 | i3 = i2 + n2; |
||
1833 | |||
1834 | /* Reading i0, i0+fftLen/2 inputs */ |
||
1835 | /* Read ya (real), xa(imag) input */ |
||
1836 | T0 = pSrc16[i0 * 2U]; |
||
1837 | T1 = pSrc16[(i0 * 2U) + 1U]; |
||
1838 | /* Read yc (real), xc(imag) input */ |
||
1839 | S0 = pSrc16[i2 * 2U]; |
||
1840 | S1 = pSrc16[(i2 * 2U) + 1U]; |
||
1841 | |||
1842 | /* R0 = (ya + yc), R1 = (xa + xc) */ |
||
1843 | R0 = __SSAT(T0 + S0, 16U); |
||
1844 | R1 = __SSAT(T1 + S1, 16U); |
||
1845 | /* S0 = (ya - yc), S1 = (xa - xc) */ |
||
1846 | S0 = __SSAT(T0 - S0, 16U); |
||
1847 | S1 = __SSAT(T1 - S1, 16U); |
||
1848 | |||
1849 | /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */ |
||
1850 | /* Read yb (real), xb(imag) input */ |
||
1851 | T0 = pSrc16[i1 * 2U]; |
||
1852 | T1 = pSrc16[(i1 * 2U) + 1U]; |
||
1853 | /* Read yd (real), xd(imag) input */ |
||
1854 | U0 = pSrc16[i3 * 2U]; |
||
1855 | U1 = pSrc16[(i3 * 2U) + 1U]; |
||
1856 | |||
1857 | /* T0 = (yb + yd), T1 = (xb + xd) */ |
||
1858 | T0 = __SSAT(T0 + U0, 16U); |
||
1859 | T1 = __SSAT(T1 + U1, 16U); |
||
1860 | |||
1861 | /* writing the butterfly processed i0 sample */ |
||
1862 | /* xa' = xa + xb + xc + xd */ |
||
1863 | /* ya' = ya + yb + yc + yd */ |
||
1864 | pSrc16[i0 * 2U] = (R0 >> 1U) + (T0 >> 1U); |
||
1865 | pSrc16[(i0 * 2U) + 1U] = (R1 >> 1U) + (T1 >> 1U); |
||
1866 | |||
1867 | /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */ |
||
1868 | R0 = (R0 >> 1U) - (T0 >> 1U); |
||
1869 | R1 = (R1 >> 1U) - (T1 >> 1U); |
||
1870 | |||
1871 | /* Read yb (real), xb(imag) input */ |
||
1872 | T0 = pSrc16[i1 * 2U]; |
||
1873 | T1 = pSrc16[(i1 * 2U) + 1U]; |
||
1874 | |||
1875 | /* writing the butterfly processed i0 + fftLen/4 sample */ |
||
1876 | /* xc' = (xa-xb+xc-xd) */ |
||
1877 | /* yc' = (ya-yb+yc-yd) */ |
||
1878 | pSrc16[i1 * 2U] = R0; |
||
1879 | pSrc16[(i1 * 2U) + 1U] = R1; |
||
1880 | |||
1881 | /* Read yd (real), xd(imag) input */ |
||
1882 | U0 = pSrc16[i3 * 2U]; |
||
1883 | U1 = pSrc16[(i3 * 2U) + 1U]; |
||
1884 | /* T0 = (yb - yd), T1 = (xb - xd) */ |
||
1885 | T0 = __SSAT(T0 - U0, 16U); |
||
1886 | T1 = __SSAT(T1 - U1, 16U); |
||
1887 | |||
1888 | /* writing the butterfly processed i0 + fftLen/2 sample */ |
||
1889 | /* xb' = (xa-yb-xc+yd) */ |
||
1890 | /* yb' = (ya+xb-yc-xd) */ |
||
1891 | pSrc16[i2 * 2U] = (S0 >> 1U) - (T1 >> 1U); |
||
1892 | pSrc16[(i2 * 2U) + 1U] = (S1 >> 1U) + (T0 >> 1U); |
||
1893 | |||
1894 | |||
1895 | /* writing the butterfly processed i0 + 3fftLen/4 sample */ |
||
1896 | /* xd' = (xa+yb-xc-yd) */ |
||
1897 | /* yd' = (ya-xb-yc+xd) */ |
||
1898 | pSrc16[i3 * 2U] = (S0 >> 1U) + (T1 >> 1U); |
||
1899 | pSrc16[(i3 * 2U) + 1U] = (S1 >> 1U) - (T0 >> 1U); |
||
1900 | } |
||
1901 | /* end of last stage process */ |
||
1902 | |||
1903 | /* output is in 11.5(q5) format for the 1024 point */ |
||
1904 | /* output is in 9.7(q7) format for the 256 point */ |
||
1905 | /* output is in 7.9(q9) format for the 64 point */ |
||
1906 | /* output is in 5.11(q11) format for the 16 point */ |
||
1907 | |||
1908 | #endif /* #if defined (ARM_MATH_DSP) */ |
||
1909 | |||
1910 | } |