Subversion Repositories FuelGauge

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------
2
 * Project:      CMSIS DSP Library
3
 * Title:        arm_mat_mult_q31.c
4
 * Description:  Q31 matrix multiplication
5
 *
6
 * $Date:        27. January 2017
7
 * $Revision:    V.1.5.1
8
 *
9
 * Target Processor: Cortex-M cores
10
 * -------------------------------------------------------------------- */
11
/*
12
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
13
 *
14
 * SPDX-License-Identifier: Apache-2.0
15
 *
16
 * Licensed under the Apache License, Version 2.0 (the License); you may
17
 * not use this file except in compliance with the License.
18
 * You may obtain a copy of the License at
19
 *
20
 * www.apache.org/licenses/LICENSE-2.0
21
 *
22
 * Unless required by applicable law or agreed to in writing, software
23
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25
 * See the License for the specific language governing permissions and
26
 * limitations under the License.
27
 */
28
 
29
#include "arm_math.h"
30
 
31
/**
32
 * @ingroup groupMatrix
33
 */
34
 
35
/**
36
 * @addtogroup MatrixMult
37
 * @{
38
 */
39
 
40
/**
41
 * @brief Q31 matrix multiplication
42
 * @param[in]       *pSrcA points to the first input matrix structure
43
 * @param[in]       *pSrcB points to the second input matrix structure
44
 * @param[out]      *pDst points to output matrix structure
45
 * @return              The function returns either
46
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
47
 *
48
 * @details
49
 * <b>Scaling and Overflow Behavior:</b>
50
 *
51
 * \par
52
 * The function is implemented using an internal 64-bit accumulator.
53
 * The accumulator has a 2.62 format and maintains full precision of the intermediate
54
 * multiplication results but provides only a single guard bit. There is no saturation
55
 * on intermediate additions. Thus, if the accumulator overflows it wraps around and
56
 * distorts the result. The input signals should be scaled down to avoid intermediate
57
 * overflows. The input is thus scaled down by log2(numColsA) bits
58
 * to avoid overflows, as a total of numColsA additions are performed internally.
59
 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
60
 *
61
 * \par
62
 * See <code>arm_mat_mult_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
63
 *
64
 */
65
 
66
arm_status arm_mat_mult_q31(
67
  const arm_matrix_instance_q31 * pSrcA,
68
  const arm_matrix_instance_q31 * pSrcB,
69
  arm_matrix_instance_q31 * pDst)
70
{
71
  q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
72
  q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
73
  q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A */
74
  q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
75
  q31_t *px;                                     /* Temporary output data matrix pointer */
76
  q63_t sum;                                     /* Accumulator */
77
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
78
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
79
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
80
 
81
#if defined (ARM_MATH_DSP)
82
 
83
  /* Run the below code for Cortex-M4 and Cortex-M3 */
84
 
85
  uint16_t col, i = 0U, j, row = numRowsA, colCnt;      /* loop counters */
86
  arm_status status;                             /* status of matrix multiplication */
87
  q31_t a0, a1, a2, a3, b0, b1, b2, b3;
88
 
89
#ifdef ARM_MATH_MATRIX_CHECK
90
 
91
 
92
  /* Check for matrix mismatch condition */
93
  if ((pSrcA->numCols != pSrcB->numRows) ||
94
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
95
  {
96
    /* Set status as ARM_MATH_SIZE_MISMATCH */
97
    status = ARM_MATH_SIZE_MISMATCH;
98
  }
99
  else
100
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
101
 
102
  {
103
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
104
    /* row loop */
105
    do
106
    {
107
      /* Output pointer is set to starting address of the row being processed */
108
      px = pOut + i;
109
 
110
      /* For every row wise process, the column loop counter is to be initiated */
111
      col = numColsB;
112
 
113
      /* For every row wise process, the pIn2 pointer is set
114
       ** to the starting address of the pSrcB data */
115
      pIn2 = pSrcB->pData;
116
 
117
      j = 0U;
118
 
119
      /* column loop */
120
      do
121
      {
122
        /* Set the variable sum, that acts as accumulator, to zero */
123
        sum = 0;
124
 
125
        /* Initiate the pointer pIn1 to point to the starting address of pInA */
126
        pIn1 = pInA;
127
 
128
        /* Apply loop unrolling and compute 4 MACs simultaneously. */
129
        colCnt = numColsA >> 2;
130
 
131
 
132
        /* matrix multiplication */
133
        while (colCnt > 0U)
134
        {
135
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
136
          /* Perform the multiply-accumulates */
137
          b0 = *pIn2;
138
          pIn2 += numColsB;
139
 
140
          a0 = *pIn1++;
141
          a1 = *pIn1++;
142
 
143
          b1 = *pIn2;
144
          pIn2 += numColsB;
145
          b2 = *pIn2;
146
          pIn2 += numColsB;
147
 
148
          sum += (q63_t) a0 *b0;
149
          sum += (q63_t) a1 *b1;
150
 
151
          a2 = *pIn1++;
152
          a3 = *pIn1++;
153
 
154
          b3 = *pIn2;
155
          pIn2 += numColsB;
156
 
157
          sum += (q63_t) a2 *b2;
158
          sum += (q63_t) a3 *b3;
159
 
160
          /* Decrement the loop counter */
161
          colCnt--;
162
        }
163
 
164
        /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.
165
         ** No loop unrolling is used. */
166
        colCnt = numColsA % 0x4U;
167
 
168
        while (colCnt > 0U)
169
        {
170
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
171
          /* Perform the multiply-accumulates */
172
          sum += (q63_t) * pIn1++ * *pIn2;
173
          pIn2 += numColsB;
174
 
175
          /* Decrement the loop counter */
176
          colCnt--;
177
        }
178
 
179
        /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
180
        *px++ = (q31_t) (sum >> 31);
181
 
182
        /* Update the pointer pIn2 to point to the  starting address of the next column */
183
        j++;
184
        pIn2 = (pSrcB->pData) + j;
185
 
186
        /* Decrement the column loop counter */
187
        col--;
188
 
189
      } while (col > 0U);
190
 
191
#else
192
 
193
  /* Run the below code for Cortex-M0 */
194
 
195
  q31_t *pInB = pSrcB->pData;                    /* input data matrix pointer B */
196
  uint16_t col, i = 0U, row = numRowsA, colCnt;  /* loop counters */
197
  arm_status status;                             /* status of matrix multiplication */
198
 
199
 
200
#ifdef ARM_MATH_MATRIX_CHECK
201
 
202
  /* Check for matrix mismatch condition */
203
  if ((pSrcA->numCols != pSrcB->numRows) ||
204
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
205
  {
206
    /* Set status as ARM_MATH_SIZE_MISMATCH */
207
    status = ARM_MATH_SIZE_MISMATCH;
208
  }
209
  else
210
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
211
 
212
  {
213
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
214
    /* row loop */
215
    do
216
    {
217
      /* Output pointer is set to starting address of the row being processed */
218
      px = pOut + i;
219
 
220
      /* For every row wise process, the column loop counter is to be initiated */
221
      col = numColsB;
222
 
223
      /* For every row wise process, the pIn2 pointer is set
224
       ** to the starting address of the pSrcB data */
225
      pIn2 = pSrcB->pData;
226
 
227
      /* column loop */
228
      do
229
      {
230
        /* Set the variable sum, that acts as accumulator, to zero */
231
        sum = 0;
232
 
233
        /* Initiate the pointer pIn1 to point to the starting address of pInA */
234
        pIn1 = pInA;
235
 
236
        /* Matrix A columns number of MAC operations are to be performed */
237
        colCnt = numColsA;
238
 
239
        /* matrix multiplication */
240
        while (colCnt > 0U)
241
        {
242
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
243
          /* Perform the multiply-accumulates */
244
          sum += (q63_t) * pIn1++ * *pIn2;
245
          pIn2 += numColsB;
246
 
247
          /* Decrement the loop counter */
248
          colCnt--;
249
        }
250
 
251
        /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
252
        *px++ = (q31_t) clip_q63_to_q31(sum >> 31);
253
 
254
        /* Decrement the column loop counter */
255
        col--;
256
 
257
        /* Update the pointer pIn2 to point to the  starting address of the next column */
258
        pIn2 = pInB + (numColsB - col);
259
 
260
      } while (col > 0U);
261
 
262
#endif
263
 
264
      /* Update the pointer pInA to point to the  starting address of the next row */
265
      i = i + numColsB;
266
      pInA = pInA + numColsA;
267
 
268
      /* Decrement the row loop counter */
269
      row--;
270
 
271
    } while (row > 0U);
272
 
273
    /* set status as ARM_MATH_SUCCESS */
274
    status = ARM_MATH_SUCCESS;
275
  }
276
  /* Return to application */
277
  return (status);
278
}
279
 
280
/**
281
 * @} end of MatrixMult group
282
 */