Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /****************************************************************************** |
2 | * @file arm_math.h |
||
3 | * @brief Public header file for CMSIS DSP LibraryU |
||
4 | * @version V1.5.3 |
||
5 | * @date 10. January 2018 |
||
6 | ******************************************************************************/ |
||
7 | /* |
||
8 | * Copyright (c) 2010-2018 Arm Limited or its affiliates. All rights reserved. |
||
9 | * |
||
10 | * SPDX-License-Identifier: Apache-2.0 |
||
11 | * |
||
12 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
13 | * not use this file except in compliance with the License. |
||
14 | * You may obtain a copy of the License at |
||
15 | * |
||
16 | * www.apache.org/licenses/LICENSE-2.0 |
||
17 | * |
||
18 | * Unless required by applicable law or agreed to in writing, software |
||
19 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
20 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
21 | * See the License for the specific language governing permissions and |
||
22 | * limitations under the License. |
||
23 | */ |
||
24 | |||
25 | /** |
||
26 | \mainpage CMSIS DSP Software Library |
||
27 | * |
||
28 | * Introduction |
||
29 | * ------------ |
||
30 | * |
||
31 | * This user manual describes the CMSIS DSP software library, |
||
32 | * a suite of common signal processing functions for use on Cortex-M processor based devices. |
||
33 | * |
||
34 | * The library is divided into a number of functions each covering a specific category: |
||
35 | * - Basic math functions |
||
36 | * - Fast math functions |
||
37 | * - Complex math functions |
||
38 | * - Filters |
||
39 | * - Matrix functions |
||
40 | * - Transforms |
||
41 | * - Motor control functions |
||
42 | * - Statistical functions |
||
43 | * - Support functions |
||
44 | * - Interpolation functions |
||
45 | * |
||
46 | * The library has separate functions for operating on 8-bit integers, 16-bit integers, |
||
47 | * 32-bit integer and 32-bit floating-point values. |
||
48 | * |
||
49 | * Using the Library |
||
50 | * ------------ |
||
51 | * |
||
52 | * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. |
||
53 | * - arm_cortexM7lfdp_math.lib (Cortex-M7, Little endian, Double Precision Floating Point Unit) |
||
54 | * - arm_cortexM7bfdp_math.lib (Cortex-M7, Big endian, Double Precision Floating Point Unit) |
||
55 | * - arm_cortexM7lfsp_math.lib (Cortex-M7, Little endian, Single Precision Floating Point Unit) |
||
56 | * - arm_cortexM7bfsp_math.lib (Cortex-M7, Big endian and Single Precision Floating Point Unit on) |
||
57 | * - arm_cortexM7l_math.lib (Cortex-M7, Little endian) |
||
58 | * - arm_cortexM7b_math.lib (Cortex-M7, Big endian) |
||
59 | * - arm_cortexM4lf_math.lib (Cortex-M4, Little endian, Floating Point Unit) |
||
60 | * - arm_cortexM4bf_math.lib (Cortex-M4, Big endian, Floating Point Unit) |
||
61 | * - arm_cortexM4l_math.lib (Cortex-M4, Little endian) |
||
62 | * - arm_cortexM4b_math.lib (Cortex-M4, Big endian) |
||
63 | * - arm_cortexM3l_math.lib (Cortex-M3, Little endian) |
||
64 | * - arm_cortexM3b_math.lib (Cortex-M3, Big endian) |
||
65 | * - arm_cortexM0l_math.lib (Cortex-M0 / Cortex-M0+, Little endian) |
||
66 | * - arm_cortexM0b_math.lib (Cortex-M0 / Cortex-M0+, Big endian) |
||
67 | * - arm_ARMv8MBLl_math.lib (Armv8-M Baseline, Little endian) |
||
68 | * - arm_ARMv8MMLl_math.lib (Armv8-M Mainline, Little endian) |
||
69 | * - arm_ARMv8MMLlfsp_math.lib (Armv8-M Mainline, Little endian, Single Precision Floating Point Unit) |
||
70 | * - arm_ARMv8MMLld_math.lib (Armv8-M Mainline, Little endian, DSP instructions) |
||
71 | * - arm_ARMv8MMLldfsp_math.lib (Armv8-M Mainline, Little endian, DSP instructions, Single Precision Floating Point Unit) |
||
72 | * |
||
73 | * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. |
||
74 | * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single |
||
75 | * public header file <code> arm_math.h</code> for Cortex-M cores with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. |
||
76 | * Define the appropriate preprocessor macro ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or |
||
77 | * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. |
||
78 | * For Armv8-M cores define preprocessor macro ARM_MATH_ARMV8MBL or ARM_MATH_ARMV8MML. |
||
79 | * Set preprocessor macro __DSP_PRESENT if Armv8-M Mainline core supports DSP instructions. |
||
80 | * |
||
81 | * |
||
82 | * Examples |
||
83 | * -------- |
||
84 | * |
||
85 | * The library ships with a number of examples which demonstrate how to use the library functions. |
||
86 | * |
||
87 | * Toolchain Support |
||
88 | * ------------ |
||
89 | * |
||
90 | * The library has been developed and tested with MDK version 5.14.0.0 |
||
91 | * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. |
||
92 | * |
||
93 | * Building the Library |
||
94 | * ------------ |
||
95 | * |
||
96 | * The library installer contains a project file to rebuild libraries on MDK toolchain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder. |
||
97 | * - arm_cortexM_math.uvprojx |
||
98 | * |
||
99 | * |
||
100 | * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional preprocessor macros detailed above. |
||
101 | * |
||
102 | * Preprocessor Macros |
||
103 | * ------------ |
||
104 | * |
||
105 | * Each library project have different preprocessor macros. |
||
106 | * |
||
107 | * - UNALIGNED_SUPPORT_DISABLE: |
||
108 | * |
||
109 | * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access |
||
110 | * |
||
111 | * - ARM_MATH_BIG_ENDIAN: |
||
112 | * |
||
113 | * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. |
||
114 | * |
||
115 | * - ARM_MATH_MATRIX_CHECK: |
||
116 | * |
||
117 | * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices |
||
118 | * |
||
119 | * - ARM_MATH_ROUNDING: |
||
120 | * |
||
121 | * Define macro ARM_MATH_ROUNDING for rounding on support functions |
||
122 | * |
||
123 | * - ARM_MATH_CMx: |
||
124 | * |
||
125 | * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target |
||
126 | * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and |
||
127 | * ARM_MATH_CM7 for building the library on cortex-M7. |
||
128 | * |
||
129 | * - ARM_MATH_ARMV8MxL: |
||
130 | * |
||
131 | * Define macro ARM_MATH_ARMV8MBL for building the library on Armv8-M Baseline target, ARM_MATH_ARMV8MML for building library |
||
132 | * on Armv8-M Mainline target. |
||
133 | * |
||
134 | * - __FPU_PRESENT: |
||
135 | * |
||
136 | * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for floating point libraries. |
||
137 | * |
||
138 | * - __DSP_PRESENT: |
||
139 | * |
||
140 | * Initialize macro __DSP_PRESENT = 1 when Armv8-M Mainline core supports DSP instructions. |
||
141 | * |
||
142 | * <hr> |
||
143 | * CMSIS-DSP in ARM::CMSIS Pack |
||
144 | * ----------------------------- |
||
145 | * |
||
146 | * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: |
||
147 | * |File/Folder |Content | |
||
148 | * |------------------------------|------------------------------------------------------------------------| |
||
149 | * |\b CMSIS\\Documentation\\DSP | This documentation | |
||
150 | * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | |
||
151 | * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | |
||
152 | * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | |
||
153 | * |
||
154 | * <hr> |
||
155 | * Revision History of CMSIS-DSP |
||
156 | * ------------ |
||
157 | * Please refer to \ref ChangeLog_pg. |
||
158 | * |
||
159 | * Copyright Notice |
||
160 | * ------------ |
||
161 | * |
||
162 | * Copyright (C) 2010-2015 Arm Limited. All rights reserved. |
||
163 | */ |
||
164 | |||
165 | |||
166 | /** |
||
167 | * @defgroup groupMath Basic Math Functions |
||
168 | */ |
||
169 | |||
170 | /** |
||
171 | * @defgroup groupFastMath Fast Math Functions |
||
172 | * This set of functions provides a fast approximation to sine, cosine, and square root. |
||
173 | * As compared to most of the other functions in the CMSIS math library, the fast math functions |
||
174 | * operate on individual values and not arrays. |
||
175 | * There are separate functions for Q15, Q31, and floating-point data. |
||
176 | * |
||
177 | */ |
||
178 | |||
179 | /** |
||
180 | * @defgroup groupCmplxMath Complex Math Functions |
||
181 | * This set of functions operates on complex data vectors. |
||
182 | * The data in the complex arrays is stored in an interleaved fashion |
||
183 | * (real, imag, real, imag, ...). |
||
184 | * In the API functions, the number of samples in a complex array refers |
||
185 | * to the number of complex values; the array contains twice this number of |
||
186 | * real values. |
||
187 | */ |
||
188 | |||
189 | /** |
||
190 | * @defgroup groupFilters Filtering Functions |
||
191 | */ |
||
192 | |||
193 | /** |
||
194 | * @defgroup groupMatrix Matrix Functions |
||
195 | * |
||
196 | * This set of functions provides basic matrix math operations. |
||
197 | * The functions operate on matrix data structures. For example, |
||
198 | * the type |
||
199 | * definition for the floating-point matrix structure is shown |
||
200 | * below: |
||
201 | * <pre> |
||
202 | * typedef struct |
||
203 | * { |
||
204 | * uint16_t numRows; // number of rows of the matrix. |
||
205 | * uint16_t numCols; // number of columns of the matrix. |
||
206 | * float32_t *pData; // points to the data of the matrix. |
||
207 | * } arm_matrix_instance_f32; |
||
208 | * </pre> |
||
209 | * There are similar definitions for Q15 and Q31 data types. |
||
210 | * |
||
211 | * The structure specifies the size of the matrix and then points to |
||
212 | * an array of data. The array is of size <code>numRows X numCols</code> |
||
213 | * and the values are arranged in row order. That is, the |
||
214 | * matrix element (i, j) is stored at: |
||
215 | * <pre> |
||
216 | * pData[i*numCols + j] |
||
217 | * </pre> |
||
218 | * |
||
219 | * \par Init Functions |
||
220 | * There is an associated initialization function for each type of matrix |
||
221 | * data structure. |
||
222 | * The initialization function sets the values of the internal structure fields. |
||
223 | * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> |
||
224 | * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. |
||
225 | * |
||
226 | * \par |
||
227 | * Use of the initialization function is optional. However, if initialization function is used |
||
228 | * then the instance structure cannot be placed into a const data section. |
||
229 | * To place the instance structure in a const data |
||
230 | * section, manually initialize the data structure. For example: |
||
231 | * <pre> |
||
232 | * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> |
||
233 | * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> |
||
234 | * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> |
||
235 | * </pre> |
||
236 | * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> |
||
237 | * specifies the number of columns, and <code>pData</code> points to the |
||
238 | * data array. |
||
239 | * |
||
240 | * \par Size Checking |
||
241 | * By default all of the matrix functions perform size checking on the input and |
||
242 | * output matrices. For example, the matrix addition function verifies that the |
||
243 | * two input matrices and the output matrix all have the same number of rows and |
||
244 | * columns. If the size check fails the functions return: |
||
245 | * <pre> |
||
246 | * ARM_MATH_SIZE_MISMATCH |
||
247 | * </pre> |
||
248 | * Otherwise the functions return |
||
249 | * <pre> |
||
250 | * ARM_MATH_SUCCESS |
||
251 | * </pre> |
||
252 | * There is some overhead associated with this matrix size checking. |
||
253 | * The matrix size checking is enabled via the \#define |
||
254 | * <pre> |
||
255 | * ARM_MATH_MATRIX_CHECK |
||
256 | * </pre> |
||
257 | * within the library project settings. By default this macro is defined |
||
258 | * and size checking is enabled. By changing the project settings and |
||
259 | * undefining this macro size checking is eliminated and the functions |
||
260 | * run a bit faster. With size checking disabled the functions always |
||
261 | * return <code>ARM_MATH_SUCCESS</code>. |
||
262 | */ |
||
263 | |||
264 | /** |
||
265 | * @defgroup groupTransforms Transform Functions |
||
266 | */ |
||
267 | |||
268 | /** |
||
269 | * @defgroup groupController Controller Functions |
||
270 | */ |
||
271 | |||
272 | /** |
||
273 | * @defgroup groupStats Statistics Functions |
||
274 | */ |
||
275 | /** |
||
276 | * @defgroup groupSupport Support Functions |
||
277 | */ |
||
278 | |||
279 | /** |
||
280 | * @defgroup groupInterpolation Interpolation Functions |
||
281 | * These functions perform 1- and 2-dimensional interpolation of data. |
||
282 | * Linear interpolation is used for 1-dimensional data and |
||
283 | * bilinear interpolation is used for 2-dimensional data. |
||
284 | */ |
||
285 | |||
286 | /** |
||
287 | * @defgroup groupExamples Examples |
||
288 | */ |
||
289 | #ifndef _ARM_MATH_H |
||
290 | #define _ARM_MATH_H |
||
291 | |||
292 | /* Compiler specific diagnostic adjustment */ |
||
293 | #if defined ( __CC_ARM ) |
||
294 | |||
295 | #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) |
||
296 | |||
297 | #elif defined ( __GNUC__ ) |
||
298 | #pragma GCC diagnostic push |
||
299 | #pragma GCC diagnostic ignored "-Wsign-conversion" |
||
300 | #pragma GCC diagnostic ignored "-Wconversion" |
||
301 | #pragma GCC diagnostic ignored "-Wunused-parameter" |
||
302 | |||
303 | #elif defined ( __ICCARM__ ) |
||
304 | |||
305 | #elif defined ( __TI_ARM__ ) |
||
306 | |||
307 | #elif defined ( __CSMC__ ) |
||
308 | |||
309 | #elif defined ( __TASKING__ ) |
||
310 | |||
311 | #else |
||
312 | #error Unknown compiler |
||
313 | #endif |
||
314 | |||
315 | |||
316 | #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ |
||
317 | |||
318 | #if defined(ARM_MATH_CM7) |
||
319 | #include "core_cm7.h" |
||
320 | #define ARM_MATH_DSP |
||
321 | #elif defined (ARM_MATH_CM4) |
||
322 | #include "core_cm4.h" |
||
323 | #define ARM_MATH_DSP |
||
324 | #elif defined (ARM_MATH_CM3) |
||
325 | #include "core_cm3.h" |
||
326 | #elif defined (ARM_MATH_CM0) |
||
327 | #include "core_cm0.h" |
||
328 | #define ARM_MATH_CM0_FAMILY |
||
329 | #elif defined (ARM_MATH_CM0PLUS) |
||
330 | #include "core_cm0plus.h" |
||
331 | #define ARM_MATH_CM0_FAMILY |
||
332 | #elif defined (ARM_MATH_ARMV8MBL) |
||
333 | #include "core_armv8mbl.h" |
||
334 | #define ARM_MATH_CM0_FAMILY |
||
335 | #elif defined (ARM_MATH_ARMV8MML) |
||
336 | #include "core_armv8mml.h" |
||
337 | #if (defined (__DSP_PRESENT) && (__DSP_PRESENT == 1)) |
||
338 | #define ARM_MATH_DSP |
||
339 | #endif |
||
340 | #else |
||
341 | #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS, ARM_MATH_CM0, ARM_MATH_ARMV8MBL, ARM_MATH_ARMV8MML" |
||
342 | #endif |
||
343 | |||
344 | #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ |
||
345 | #include "string.h" |
||
346 | #include "math.h" |
||
347 | #ifdef __cplusplus |
||
348 | extern "C" |
||
349 | { |
||
350 | #endif |
||
351 | |||
352 | |||
353 | /** |
||
354 | * @brief Macros required for reciprocal calculation in Normalized LMS |
||
355 | */ |
||
356 | |||
357 | #define DELTA_Q31 (0x100) |
||
358 | #define DELTA_Q15 0x5 |
||
359 | #define INDEX_MASK 0x0000003F |
||
360 | #ifndef PI |
||
361 | #define PI 3.14159265358979f |
||
362 | #endif |
||
363 | |||
364 | /** |
||
365 | * @brief Macros required for SINE and COSINE Fast math approximations |
||
366 | */ |
||
367 | |||
368 | #define FAST_MATH_TABLE_SIZE 512 |
||
369 | #define FAST_MATH_Q31_SHIFT (32 - 10) |
||
370 | #define FAST_MATH_Q15_SHIFT (16 - 10) |
||
371 | #define CONTROLLER_Q31_SHIFT (32 - 9) |
||
372 | #define TABLE_SPACING_Q31 0x400000 |
||
373 | #define TABLE_SPACING_Q15 0x80 |
||
374 | |||
375 | /** |
||
376 | * @brief Macros required for SINE and COSINE Controller functions |
||
377 | */ |
||
378 | /* 1.31(q31) Fixed value of 2/360 */ |
||
379 | /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ |
||
380 | #define INPUT_SPACING 0xB60B61 |
||
381 | |||
382 | /** |
||
383 | * @brief Macro for Unaligned Support |
||
384 | */ |
||
385 | #ifndef UNALIGNED_SUPPORT_DISABLE |
||
386 | #define ALIGN4 |
||
387 | #else |
||
388 | #if defined (__GNUC__) |
||
389 | #define ALIGN4 __attribute__((aligned(4))) |
||
390 | #else |
||
391 | #define ALIGN4 __align(4) |
||
392 | #endif |
||
393 | #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
||
394 | |||
395 | /** |
||
396 | * @brief Error status returned by some functions in the library. |
||
397 | */ |
||
398 | |||
399 | typedef enum |
||
400 | { |
||
401 | ARM_MATH_SUCCESS = 0, /**< No error */ |
||
402 | ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ |
||
403 | ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ |
||
404 | ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ |
||
405 | ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ |
||
406 | ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ |
||
407 | ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ |
||
408 | } arm_status; |
||
409 | |||
410 | /** |
||
411 | * @brief 8-bit fractional data type in 1.7 format. |
||
412 | */ |
||
413 | typedef int8_t q7_t; |
||
414 | |||
415 | /** |
||
416 | * @brief 16-bit fractional data type in 1.15 format. |
||
417 | */ |
||
418 | typedef int16_t q15_t; |
||
419 | |||
420 | /** |
||
421 | * @brief 32-bit fractional data type in 1.31 format. |
||
422 | */ |
||
423 | typedef int32_t q31_t; |
||
424 | |||
425 | /** |
||
426 | * @brief 64-bit fractional data type in 1.63 format. |
||
427 | */ |
||
428 | typedef int64_t q63_t; |
||
429 | |||
430 | /** |
||
431 | * @brief 32-bit floating-point type definition. |
||
432 | */ |
||
433 | typedef float float32_t; |
||
434 | |||
435 | /** |
||
436 | * @brief 64-bit floating-point type definition. |
||
437 | */ |
||
438 | typedef double float64_t; |
||
439 | |||
440 | /** |
||
441 | * @brief definition to read/write two 16 bit values. |
||
442 | */ |
||
443 | #if defined ( __CC_ARM ) |
||
444 | #define __SIMD32_TYPE int32_t __packed |
||
445 | #define CMSIS_UNUSED __attribute__((unused)) |
||
446 | #define CMSIS_INLINE __attribute__((always_inline)) |
||
447 | |||
448 | #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) |
||
449 | #define __SIMD32_TYPE int32_t |
||
450 | #define CMSIS_UNUSED __attribute__((unused)) |
||
451 | #define CMSIS_INLINE __attribute__((always_inline)) |
||
452 | |||
453 | #elif defined ( __GNUC__ ) |
||
454 | #define __SIMD32_TYPE int32_t |
||
455 | #define CMSIS_UNUSED __attribute__((unused)) |
||
456 | #define CMSIS_INLINE __attribute__((always_inline)) |
||
457 | |||
458 | #elif defined ( __ICCARM__ ) |
||
459 | #define __SIMD32_TYPE int32_t __packed |
||
460 | #define CMSIS_UNUSED |
||
461 | #define CMSIS_INLINE |
||
462 | |||
463 | #elif defined ( __TI_ARM__ ) |
||
464 | #define __SIMD32_TYPE int32_t |
||
465 | #define CMSIS_UNUSED __attribute__((unused)) |
||
466 | #define CMSIS_INLINE |
||
467 | |||
468 | #elif defined ( __CSMC__ ) |
||
469 | #define __SIMD32_TYPE int32_t |
||
470 | #define CMSIS_UNUSED |
||
471 | #define CMSIS_INLINE |
||
472 | |||
473 | #elif defined ( __TASKING__ ) |
||
474 | #define __SIMD32_TYPE __unaligned int32_t |
||
475 | #define CMSIS_UNUSED |
||
476 | #define CMSIS_INLINE |
||
477 | |||
478 | #else |
||
479 | #error Unknown compiler |
||
480 | #endif |
||
481 | |||
482 | #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) |
||
483 | #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) |
||
484 | #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) |
||
485 | #define __SIMD64(addr) (*(int64_t **) & (addr)) |
||
486 | |||
487 | #if !defined (ARM_MATH_DSP) |
||
488 | /** |
||
489 | * @brief definition to pack two 16 bit values. |
||
490 | */ |
||
491 | #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ |
||
492 | (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) |
||
493 | #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ |
||
494 | (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) |
||
495 | |||
496 | #endif /* !defined (ARM_MATH_DSP) */ |
||
497 | |||
498 | /** |
||
499 | * @brief definition to pack four 8 bit values. |
||
500 | */ |
||
501 | #ifndef ARM_MATH_BIG_ENDIAN |
||
502 | |||
503 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ |
||
504 | (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ |
||
505 | (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ |
||
506 | (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) |
||
507 | #else |
||
508 | |||
509 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ |
||
510 | (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ |
||
511 | (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ |
||
512 | (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) |
||
513 | |||
514 | #endif |
||
515 | |||
516 | |||
517 | /** |
||
518 | * @brief Clips Q63 to Q31 values. |
||
519 | */ |
||
520 | CMSIS_INLINE __STATIC_INLINE q31_t clip_q63_to_q31( |
||
521 | q63_t x) |
||
522 | { |
||
523 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
||
524 | ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; |
||
525 | } |
||
526 | |||
527 | /** |
||
528 | * @brief Clips Q63 to Q15 values. |
||
529 | */ |
||
530 | CMSIS_INLINE __STATIC_INLINE q15_t clip_q63_to_q15( |
||
531 | q63_t x) |
||
532 | { |
||
533 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
||
534 | ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); |
||
535 | } |
||
536 | |||
537 | /** |
||
538 | * @brief Clips Q31 to Q7 values. |
||
539 | */ |
||
540 | CMSIS_INLINE __STATIC_INLINE q7_t clip_q31_to_q7( |
||
541 | q31_t x) |
||
542 | { |
||
543 | return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? |
||
544 | ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; |
||
545 | } |
||
546 | |||
547 | /** |
||
548 | * @brief Clips Q31 to Q15 values. |
||
549 | */ |
||
550 | CMSIS_INLINE __STATIC_INLINE q15_t clip_q31_to_q15( |
||
551 | q31_t x) |
||
552 | { |
||
553 | return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? |
||
554 | ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; |
||
555 | } |
||
556 | |||
557 | /** |
||
558 | * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. |
||
559 | */ |
||
560 | |||
561 | CMSIS_INLINE __STATIC_INLINE q63_t mult32x64( |
||
562 | q63_t x, |
||
563 | q31_t y) |
||
564 | { |
||
565 | return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + |
||
566 | (((q63_t) (x >> 32) * y))); |
||
567 | } |
||
568 | |||
569 | /** |
||
570 | * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. |
||
571 | */ |
||
572 | |||
573 | CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q31( |
||
574 | q31_t in, |
||
575 | q31_t * dst, |
||
576 | q31_t * pRecipTable) |
||
577 | { |
||
578 | q31_t out; |
||
579 | uint32_t tempVal; |
||
580 | uint32_t index, i; |
||
581 | uint32_t signBits; |
||
582 | |||
583 | if (in > 0) |
||
584 | { |
||
585 | signBits = ((uint32_t) (__CLZ( in) - 1)); |
||
586 | } |
||
587 | else |
||
588 | { |
||
589 | signBits = ((uint32_t) (__CLZ(-in) - 1)); |
||
590 | } |
||
591 | |||
592 | /* Convert input sample to 1.31 format */ |
||
593 | in = (in << signBits); |
||
594 | |||
595 | /* calculation of index for initial approximated Val */ |
||
596 | index = (uint32_t)(in >> 24); |
||
597 | index = (index & INDEX_MASK); |
||
598 | |||
599 | /* 1.31 with exp 1 */ |
||
600 | out = pRecipTable[index]; |
||
601 | |||
602 | /* calculation of reciprocal value */ |
||
603 | /* running approximation for two iterations */ |
||
604 | for (i = 0U; i < 2U; i++) |
||
605 | { |
||
606 | tempVal = (uint32_t) (((q63_t) in * out) >> 31); |
||
607 | tempVal = 0x7FFFFFFFu - tempVal; |
||
608 | /* 1.31 with exp 1 */ |
||
609 | /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ |
||
610 | out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); |
||
611 | } |
||
612 | |||
613 | /* write output */ |
||
614 | *dst = out; |
||
615 | |||
616 | /* return num of signbits of out = 1/in value */ |
||
617 | return (signBits + 1U); |
||
618 | } |
||
619 | |||
620 | |||
621 | /** |
||
622 | * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. |
||
623 | */ |
||
624 | CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q15( |
||
625 | q15_t in, |
||
626 | q15_t * dst, |
||
627 | q15_t * pRecipTable) |
||
628 | { |
||
629 | q15_t out = 0; |
||
630 | uint32_t tempVal = 0; |
||
631 | uint32_t index = 0, i = 0; |
||
632 | uint32_t signBits = 0; |
||
633 | |||
634 | if (in > 0) |
||
635 | { |
||
636 | signBits = ((uint32_t)(__CLZ( in) - 17)); |
||
637 | } |
||
638 | else |
||
639 | { |
||
640 | signBits = ((uint32_t)(__CLZ(-in) - 17)); |
||
641 | } |
||
642 | |||
643 | /* Convert input sample to 1.15 format */ |
||
644 | in = (in << signBits); |
||
645 | |||
646 | /* calculation of index for initial approximated Val */ |
||
647 | index = (uint32_t)(in >> 8); |
||
648 | index = (index & INDEX_MASK); |
||
649 | |||
650 | /* 1.15 with exp 1 */ |
||
651 | out = pRecipTable[index]; |
||
652 | |||
653 | /* calculation of reciprocal value */ |
||
654 | /* running approximation for two iterations */ |
||
655 | for (i = 0U; i < 2U; i++) |
||
656 | { |
||
657 | tempVal = (uint32_t) (((q31_t) in * out) >> 15); |
||
658 | tempVal = 0x7FFFu - tempVal; |
||
659 | /* 1.15 with exp 1 */ |
||
660 | out = (q15_t) (((q31_t) out * tempVal) >> 14); |
||
661 | /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ |
||
662 | } |
||
663 | |||
664 | /* write output */ |
||
665 | *dst = out; |
||
666 | |||
667 | /* return num of signbits of out = 1/in value */ |
||
668 | return (signBits + 1); |
||
669 | } |
||
670 | |||
671 | |||
672 | /* |
||
673 | * @brief C custom defined intrinsic function for M3 and M0 processors |
||
674 | */ |
||
675 | #if !defined (ARM_MATH_DSP) |
||
676 | |||
677 | /* |
||
678 | * @brief C custom defined QADD8 for M3 and M0 processors |
||
679 | */ |
||
680 | CMSIS_INLINE __STATIC_INLINE uint32_t __QADD8( |
||
681 | uint32_t x, |
||
682 | uint32_t y) |
||
683 | { |
||
684 | q31_t r, s, t, u; |
||
685 | |||
686 | r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; |
||
687 | s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; |
||
688 | t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; |
||
689 | u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; |
||
690 | |||
691 | return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); |
||
692 | } |
||
693 | |||
694 | |||
695 | /* |
||
696 | * @brief C custom defined QSUB8 for M3 and M0 processors |
||
697 | */ |
||
698 | CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB8( |
||
699 | uint32_t x, |
||
700 | uint32_t y) |
||
701 | { |
||
702 | q31_t r, s, t, u; |
||
703 | |||
704 | r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; |
||
705 | s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; |
||
706 | t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; |
||
707 | u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; |
||
708 | |||
709 | return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); |
||
710 | } |
||
711 | |||
712 | |||
713 | /* |
||
714 | * @brief C custom defined QADD16 for M3 and M0 processors |
||
715 | */ |
||
716 | CMSIS_INLINE __STATIC_INLINE uint32_t __QADD16( |
||
717 | uint32_t x, |
||
718 | uint32_t y) |
||
719 | { |
||
720 | /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ |
||
721 | q31_t r = 0, s = 0; |
||
722 | |||
723 | r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
724 | s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
725 | |||
726 | return ((uint32_t)((s << 16) | (r ))); |
||
727 | } |
||
728 | |||
729 | |||
730 | /* |
||
731 | * @brief C custom defined SHADD16 for M3 and M0 processors |
||
732 | */ |
||
733 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHADD16( |
||
734 | uint32_t x, |
||
735 | uint32_t y) |
||
736 | { |
||
737 | q31_t r, s; |
||
738 | |||
739 | r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
740 | s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
741 | |||
742 | return ((uint32_t)((s << 16) | (r ))); |
||
743 | } |
||
744 | |||
745 | |||
746 | /* |
||
747 | * @brief C custom defined QSUB16 for M3 and M0 processors |
||
748 | */ |
||
749 | CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB16( |
||
750 | uint32_t x, |
||
751 | uint32_t y) |
||
752 | { |
||
753 | q31_t r, s; |
||
754 | |||
755 | r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
756 | s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
757 | |||
758 | return ((uint32_t)((s << 16) | (r ))); |
||
759 | } |
||
760 | |||
761 | |||
762 | /* |
||
763 | * @brief C custom defined SHSUB16 for M3 and M0 processors |
||
764 | */ |
||
765 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHSUB16( |
||
766 | uint32_t x, |
||
767 | uint32_t y) |
||
768 | { |
||
769 | q31_t r, s; |
||
770 | |||
771 | r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
772 | s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
773 | |||
774 | return ((uint32_t)((s << 16) | (r ))); |
||
775 | } |
||
776 | |||
777 | |||
778 | /* |
||
779 | * @brief C custom defined QASX for M3 and M0 processors |
||
780 | */ |
||
781 | CMSIS_INLINE __STATIC_INLINE uint32_t __QASX( |
||
782 | uint32_t x, |
||
783 | uint32_t y) |
||
784 | { |
||
785 | q31_t r, s; |
||
786 | |||
787 | r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
788 | s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
789 | |||
790 | return ((uint32_t)((s << 16) | (r ))); |
||
791 | } |
||
792 | |||
793 | |||
794 | /* |
||
795 | * @brief C custom defined SHASX for M3 and M0 processors |
||
796 | */ |
||
797 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHASX( |
||
798 | uint32_t x, |
||
799 | uint32_t y) |
||
800 | { |
||
801 | q31_t r, s; |
||
802 | |||
803 | r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
804 | s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
805 | |||
806 | return ((uint32_t)((s << 16) | (r ))); |
||
807 | } |
||
808 | |||
809 | |||
810 | /* |
||
811 | * @brief C custom defined QSAX for M3 and M0 processors |
||
812 | */ |
||
813 | CMSIS_INLINE __STATIC_INLINE uint32_t __QSAX( |
||
814 | uint32_t x, |
||
815 | uint32_t y) |
||
816 | { |
||
817 | q31_t r, s; |
||
818 | |||
819 | r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
820 | s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
||
821 | |||
822 | return ((uint32_t)((s << 16) | (r ))); |
||
823 | } |
||
824 | |||
825 | |||
826 | /* |
||
827 | * @brief C custom defined SHSAX for M3 and M0 processors |
||
828 | */ |
||
829 | CMSIS_INLINE __STATIC_INLINE uint32_t __SHSAX( |
||
830 | uint32_t x, |
||
831 | uint32_t y) |
||
832 | { |
||
833 | q31_t r, s; |
||
834 | |||
835 | r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
836 | s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
||
837 | |||
838 | return ((uint32_t)((s << 16) | (r ))); |
||
839 | } |
||
840 | |||
841 | |||
842 | /* |
||
843 | * @brief C custom defined SMUSDX for M3 and M0 processors |
||
844 | */ |
||
845 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSDX( |
||
846 | uint32_t x, |
||
847 | uint32_t y) |
||
848 | { |
||
849 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - |
||
850 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); |
||
851 | } |
||
852 | |||
853 | /* |
||
854 | * @brief C custom defined SMUADX for M3 and M0 processors |
||
855 | */ |
||
856 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUADX( |
||
857 | uint32_t x, |
||
858 | uint32_t y) |
||
859 | { |
||
860 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
||
861 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); |
||
862 | } |
||
863 | |||
864 | |||
865 | /* |
||
866 | * @brief C custom defined QADD for M3 and M0 processors |
||
867 | */ |
||
868 | CMSIS_INLINE __STATIC_INLINE int32_t __QADD( |
||
869 | int32_t x, |
||
870 | int32_t y) |
||
871 | { |
||
872 | return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); |
||
873 | } |
||
874 | |||
875 | |||
876 | /* |
||
877 | * @brief C custom defined QSUB for M3 and M0 processors |
||
878 | */ |
||
879 | CMSIS_INLINE __STATIC_INLINE int32_t __QSUB( |
||
880 | int32_t x, |
||
881 | int32_t y) |
||
882 | { |
||
883 | return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); |
||
884 | } |
||
885 | |||
886 | |||
887 | /* |
||
888 | * @brief C custom defined SMLAD for M3 and M0 processors |
||
889 | */ |
||
890 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMLAD( |
||
891 | uint32_t x, |
||
892 | uint32_t y, |
||
893 | uint32_t sum) |
||
894 | { |
||
895 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
896 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + |
||
897 | ( ((q31_t)sum ) ) )); |
||
898 | } |
||
899 | |||
900 | |||
901 | /* |
||
902 | * @brief C custom defined SMLADX for M3 and M0 processors |
||
903 | */ |
||
904 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMLADX( |
||
905 | uint32_t x, |
||
906 | uint32_t y, |
||
907 | uint32_t sum) |
||
908 | { |
||
909 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
||
910 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
911 | ( ((q31_t)sum ) ) )); |
||
912 | } |
||
913 | |||
914 | |||
915 | /* |
||
916 | * @brief C custom defined SMLSDX for M3 and M0 processors |
||
917 | */ |
||
918 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMLSDX( |
||
919 | uint32_t x, |
||
920 | uint32_t y, |
||
921 | uint32_t sum) |
||
922 | { |
||
923 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - |
||
924 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
925 | ( ((q31_t)sum ) ) )); |
||
926 | } |
||
927 | |||
928 | |||
929 | /* |
||
930 | * @brief C custom defined SMLALD for M3 and M0 processors |
||
931 | */ |
||
932 | CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALD( |
||
933 | uint32_t x, |
||
934 | uint32_t y, |
||
935 | uint64_t sum) |
||
936 | { |
||
937 | /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ |
||
938 | return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
939 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + |
||
940 | ( ((q63_t)sum ) ) )); |
||
941 | } |
||
942 | |||
943 | |||
944 | /* |
||
945 | * @brief C custom defined SMLALDX for M3 and M0 processors |
||
946 | */ |
||
947 | CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALDX( |
||
948 | uint32_t x, |
||
949 | uint32_t y, |
||
950 | uint64_t sum) |
||
951 | { |
||
952 | /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ |
||
953 | return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
||
954 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
955 | ( ((q63_t)sum ) ) )); |
||
956 | } |
||
957 | |||
958 | |||
959 | /* |
||
960 | * @brief C custom defined SMUAD for M3 and M0 processors |
||
961 | */ |
||
962 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUAD( |
||
963 | uint32_t x, |
||
964 | uint32_t y) |
||
965 | { |
||
966 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
||
967 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); |
||
968 | } |
||
969 | |||
970 | |||
971 | /* |
||
972 | * @brief C custom defined SMUSD for M3 and M0 processors |
||
973 | */ |
||
974 | CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSD( |
||
975 | uint32_t x, |
||
976 | uint32_t y) |
||
977 | { |
||
978 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - |
||
979 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); |
||
980 | } |
||
981 | |||
982 | |||
983 | /* |
||
984 | * @brief C custom defined SXTB16 for M3 and M0 processors |
||
985 | */ |
||
986 | CMSIS_INLINE __STATIC_INLINE uint32_t __SXTB16( |
||
987 | uint32_t x) |
||
988 | { |
||
989 | return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | |
||
990 | ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); |
||
991 | } |
||
992 | |||
993 | /* |
||
994 | * @brief C custom defined SMMLA for M3 and M0 processors |
||
995 | */ |
||
996 | CMSIS_INLINE __STATIC_INLINE int32_t __SMMLA( |
||
997 | int32_t x, |
||
998 | int32_t y, |
||
999 | int32_t sum) |
||
1000 | { |
||
1001 | return (sum + (int32_t) (((int64_t) x * y) >> 32)); |
||
1002 | } |
||
1003 | |||
1004 | #endif /* !defined (ARM_MATH_DSP) */ |
||
1005 | |||
1006 | |||
1007 | /** |
||
1008 | * @brief Instance structure for the Q7 FIR filter. |
||
1009 | */ |
||
1010 | typedef struct |
||
1011 | { |
||
1012 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1013 | q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1014 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
1015 | } arm_fir_instance_q7; |
||
1016 | |||
1017 | /** |
||
1018 | * @brief Instance structure for the Q15 FIR filter. |
||
1019 | */ |
||
1020 | typedef struct |
||
1021 | { |
||
1022 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1023 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1024 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
1025 | } arm_fir_instance_q15; |
||
1026 | |||
1027 | /** |
||
1028 | * @brief Instance structure for the Q31 FIR filter. |
||
1029 | */ |
||
1030 | typedef struct |
||
1031 | { |
||
1032 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1033 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1034 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
1035 | } arm_fir_instance_q31; |
||
1036 | |||
1037 | /** |
||
1038 | * @brief Instance structure for the floating-point FIR filter. |
||
1039 | */ |
||
1040 | typedef struct |
||
1041 | { |
||
1042 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
||
1043 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
1044 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
1045 | } arm_fir_instance_f32; |
||
1046 | |||
1047 | |||
1048 | /** |
||
1049 | * @brief Processing function for the Q7 FIR filter. |
||
1050 | * @param[in] S points to an instance of the Q7 FIR filter structure. |
||
1051 | * @param[in] pSrc points to the block of input data. |
||
1052 | * @param[out] pDst points to the block of output data. |
||
1053 | * @param[in] blockSize number of samples to process. |
||
1054 | */ |
||
1055 | void arm_fir_q7( |
||
1056 | const arm_fir_instance_q7 * S, |
||
1057 | q7_t * pSrc, |
||
1058 | q7_t * pDst, |
||
1059 | uint32_t blockSize); |
||
1060 | |||
1061 | |||
1062 | /** |
||
1063 | * @brief Initialization function for the Q7 FIR filter. |
||
1064 | * @param[in,out] S points to an instance of the Q7 FIR structure. |
||
1065 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
1066 | * @param[in] pCoeffs points to the filter coefficients. |
||
1067 | * @param[in] pState points to the state buffer. |
||
1068 | * @param[in] blockSize number of samples that are processed. |
||
1069 | */ |
||
1070 | void arm_fir_init_q7( |
||
1071 | arm_fir_instance_q7 * S, |
||
1072 | uint16_t numTaps, |
||
1073 | q7_t * pCoeffs, |
||
1074 | q7_t * pState, |
||
1075 | uint32_t blockSize); |
||
1076 | |||
1077 | |||
1078 | /** |
||
1079 | * @brief Processing function for the Q15 FIR filter. |
||
1080 | * @param[in] S points to an instance of the Q15 FIR structure. |
||
1081 | * @param[in] pSrc points to the block of input data. |
||
1082 | * @param[out] pDst points to the block of output data. |
||
1083 | * @param[in] blockSize number of samples to process. |
||
1084 | */ |
||
1085 | void arm_fir_q15( |
||
1086 | const arm_fir_instance_q15 * S, |
||
1087 | q15_t * pSrc, |
||
1088 | q15_t * pDst, |
||
1089 | uint32_t blockSize); |
||
1090 | |||
1091 | |||
1092 | /** |
||
1093 | * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. |
||
1094 | * @param[in] S points to an instance of the Q15 FIR filter structure. |
||
1095 | * @param[in] pSrc points to the block of input data. |
||
1096 | * @param[out] pDst points to the block of output data. |
||
1097 | * @param[in] blockSize number of samples to process. |
||
1098 | */ |
||
1099 | void arm_fir_fast_q15( |
||
1100 | const arm_fir_instance_q15 * S, |
||
1101 | q15_t * pSrc, |
||
1102 | q15_t * pDst, |
||
1103 | uint32_t blockSize); |
||
1104 | |||
1105 | |||
1106 | /** |
||
1107 | * @brief Initialization function for the Q15 FIR filter. |
||
1108 | * @param[in,out] S points to an instance of the Q15 FIR filter structure. |
||
1109 | * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. |
||
1110 | * @param[in] pCoeffs points to the filter coefficients. |
||
1111 | * @param[in] pState points to the state buffer. |
||
1112 | * @param[in] blockSize number of samples that are processed at a time. |
||
1113 | * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if |
||
1114 | * <code>numTaps</code> is not a supported value. |
||
1115 | */ |
||
1116 | arm_status arm_fir_init_q15( |
||
1117 | arm_fir_instance_q15 * S, |
||
1118 | uint16_t numTaps, |
||
1119 | q15_t * pCoeffs, |
||
1120 | q15_t * pState, |
||
1121 | uint32_t blockSize); |
||
1122 | |||
1123 | |||
1124 | /** |
||
1125 | * @brief Processing function for the Q31 FIR filter. |
||
1126 | * @param[in] S points to an instance of the Q31 FIR filter structure. |
||
1127 | * @param[in] pSrc points to the block of input data. |
||
1128 | * @param[out] pDst points to the block of output data. |
||
1129 | * @param[in] blockSize number of samples to process. |
||
1130 | */ |
||
1131 | void arm_fir_q31( |
||
1132 | const arm_fir_instance_q31 * S, |
||
1133 | q31_t * pSrc, |
||
1134 | q31_t * pDst, |
||
1135 | uint32_t blockSize); |
||
1136 | |||
1137 | |||
1138 | /** |
||
1139 | * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. |
||
1140 | * @param[in] S points to an instance of the Q31 FIR structure. |
||
1141 | * @param[in] pSrc points to the block of input data. |
||
1142 | * @param[out] pDst points to the block of output data. |
||
1143 | * @param[in] blockSize number of samples to process. |
||
1144 | */ |
||
1145 | void arm_fir_fast_q31( |
||
1146 | const arm_fir_instance_q31 * S, |
||
1147 | q31_t * pSrc, |
||
1148 | q31_t * pDst, |
||
1149 | uint32_t blockSize); |
||
1150 | |||
1151 | |||
1152 | /** |
||
1153 | * @brief Initialization function for the Q31 FIR filter. |
||
1154 | * @param[in,out] S points to an instance of the Q31 FIR structure. |
||
1155 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
1156 | * @param[in] pCoeffs points to the filter coefficients. |
||
1157 | * @param[in] pState points to the state buffer. |
||
1158 | * @param[in] blockSize number of samples that are processed at a time. |
||
1159 | */ |
||
1160 | void arm_fir_init_q31( |
||
1161 | arm_fir_instance_q31 * S, |
||
1162 | uint16_t numTaps, |
||
1163 | q31_t * pCoeffs, |
||
1164 | q31_t * pState, |
||
1165 | uint32_t blockSize); |
||
1166 | |||
1167 | |||
1168 | /** |
||
1169 | * @brief Processing function for the floating-point FIR filter. |
||
1170 | * @param[in] S points to an instance of the floating-point FIR structure. |
||
1171 | * @param[in] pSrc points to the block of input data. |
||
1172 | * @param[out] pDst points to the block of output data. |
||
1173 | * @param[in] blockSize number of samples to process. |
||
1174 | */ |
||
1175 | void arm_fir_f32( |
||
1176 | const arm_fir_instance_f32 * S, |
||
1177 | float32_t * pSrc, |
||
1178 | float32_t * pDst, |
||
1179 | uint32_t blockSize); |
||
1180 | |||
1181 | |||
1182 | /** |
||
1183 | * @brief Initialization function for the floating-point FIR filter. |
||
1184 | * @param[in,out] S points to an instance of the floating-point FIR filter structure. |
||
1185 | * @param[in] numTaps Number of filter coefficients in the filter. |
||
1186 | * @param[in] pCoeffs points to the filter coefficients. |
||
1187 | * @param[in] pState points to the state buffer. |
||
1188 | * @param[in] blockSize number of samples that are processed at a time. |
||
1189 | */ |
||
1190 | void arm_fir_init_f32( |
||
1191 | arm_fir_instance_f32 * S, |
||
1192 | uint16_t numTaps, |
||
1193 | float32_t * pCoeffs, |
||
1194 | float32_t * pState, |
||
1195 | uint32_t blockSize); |
||
1196 | |||
1197 | |||
1198 | /** |
||
1199 | * @brief Instance structure for the Q15 Biquad cascade filter. |
||
1200 | */ |
||
1201 | typedef struct |
||
1202 | { |
||
1203 | int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
1204 | q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
1205 | q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
1206 | int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
||
1207 | } arm_biquad_casd_df1_inst_q15; |
||
1208 | |||
1209 | /** |
||
1210 | * @brief Instance structure for the Q31 Biquad cascade filter. |
||
1211 | */ |
||
1212 | typedef struct |
||
1213 | { |
||
1214 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
1215 | q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
1216 | q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
1217 | uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
||
1218 | } arm_biquad_casd_df1_inst_q31; |
||
1219 | |||
1220 | /** |
||
1221 | * @brief Instance structure for the floating-point Biquad cascade filter. |
||
1222 | */ |
||
1223 | typedef struct |
||
1224 | { |
||
1225 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
1226 | float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
||
1227 | float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
||
1228 | } arm_biquad_casd_df1_inst_f32; |
||
1229 | |||
1230 | |||
1231 | /** |
||
1232 | * @brief Processing function for the Q15 Biquad cascade filter. |
||
1233 | * @param[in] S points to an instance of the Q15 Biquad cascade structure. |
||
1234 | * @param[in] pSrc points to the block of input data. |
||
1235 | * @param[out] pDst points to the block of output data. |
||
1236 | * @param[in] blockSize number of samples to process. |
||
1237 | */ |
||
1238 | void arm_biquad_cascade_df1_q15( |
||
1239 | const arm_biquad_casd_df1_inst_q15 * S, |
||
1240 | q15_t * pSrc, |
||
1241 | q15_t * pDst, |
||
1242 | uint32_t blockSize); |
||
1243 | |||
1244 | |||
1245 | /** |
||
1246 | * @brief Initialization function for the Q15 Biquad cascade filter. |
||
1247 | * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. |
||
1248 | * @param[in] numStages number of 2nd order stages in the filter. |
||
1249 | * @param[in] pCoeffs points to the filter coefficients. |
||
1250 | * @param[in] pState points to the state buffer. |
||
1251 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
||
1252 | */ |
||
1253 | void arm_biquad_cascade_df1_init_q15( |
||
1254 | arm_biquad_casd_df1_inst_q15 * S, |
||
1255 | uint8_t numStages, |
||
1256 | q15_t * pCoeffs, |
||
1257 | q15_t * pState, |
||
1258 | int8_t postShift); |
||
1259 | |||
1260 | |||
1261 | /** |
||
1262 | * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
||
1263 | * @param[in] S points to an instance of the Q15 Biquad cascade structure. |
||
1264 | * @param[in] pSrc points to the block of input data. |
||
1265 | * @param[out] pDst points to the block of output data. |
||
1266 | * @param[in] blockSize number of samples to process. |
||
1267 | */ |
||
1268 | void arm_biquad_cascade_df1_fast_q15( |
||
1269 | const arm_biquad_casd_df1_inst_q15 * S, |
||
1270 | q15_t * pSrc, |
||
1271 | q15_t * pDst, |
||
1272 | uint32_t blockSize); |
||
1273 | |||
1274 | |||
1275 | /** |
||
1276 | * @brief Processing function for the Q31 Biquad cascade filter |
||
1277 | * @param[in] S points to an instance of the Q31 Biquad cascade structure. |
||
1278 | * @param[in] pSrc points to the block of input data. |
||
1279 | * @param[out] pDst points to the block of output data. |
||
1280 | * @param[in] blockSize number of samples to process. |
||
1281 | */ |
||
1282 | void arm_biquad_cascade_df1_q31( |
||
1283 | const arm_biquad_casd_df1_inst_q31 * S, |
||
1284 | q31_t * pSrc, |
||
1285 | q31_t * pDst, |
||
1286 | uint32_t blockSize); |
||
1287 | |||
1288 | |||
1289 | /** |
||
1290 | * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
||
1291 | * @param[in] S points to an instance of the Q31 Biquad cascade structure. |
||
1292 | * @param[in] pSrc points to the block of input data. |
||
1293 | * @param[out] pDst points to the block of output data. |
||
1294 | * @param[in] blockSize number of samples to process. |
||
1295 | */ |
||
1296 | void arm_biquad_cascade_df1_fast_q31( |
||
1297 | const arm_biquad_casd_df1_inst_q31 * S, |
||
1298 | q31_t * pSrc, |
||
1299 | q31_t * pDst, |
||
1300 | uint32_t blockSize); |
||
1301 | |||
1302 | |||
1303 | /** |
||
1304 | * @brief Initialization function for the Q31 Biquad cascade filter. |
||
1305 | * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. |
||
1306 | * @param[in] numStages number of 2nd order stages in the filter. |
||
1307 | * @param[in] pCoeffs points to the filter coefficients. |
||
1308 | * @param[in] pState points to the state buffer. |
||
1309 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
||
1310 | */ |
||
1311 | void arm_biquad_cascade_df1_init_q31( |
||
1312 | arm_biquad_casd_df1_inst_q31 * S, |
||
1313 | uint8_t numStages, |
||
1314 | q31_t * pCoeffs, |
||
1315 | q31_t * pState, |
||
1316 | int8_t postShift); |
||
1317 | |||
1318 | |||
1319 | /** |
||
1320 | * @brief Processing function for the floating-point Biquad cascade filter. |
||
1321 | * @param[in] S points to an instance of the floating-point Biquad cascade structure. |
||
1322 | * @param[in] pSrc points to the block of input data. |
||
1323 | * @param[out] pDst points to the block of output data. |
||
1324 | * @param[in] blockSize number of samples to process. |
||
1325 | */ |
||
1326 | void arm_biquad_cascade_df1_f32( |
||
1327 | const arm_biquad_casd_df1_inst_f32 * S, |
||
1328 | float32_t * pSrc, |
||
1329 | float32_t * pDst, |
||
1330 | uint32_t blockSize); |
||
1331 | |||
1332 | |||
1333 | /** |
||
1334 | * @brief Initialization function for the floating-point Biquad cascade filter. |
||
1335 | * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. |
||
1336 | * @param[in] numStages number of 2nd order stages in the filter. |
||
1337 | * @param[in] pCoeffs points to the filter coefficients. |
||
1338 | * @param[in] pState points to the state buffer. |
||
1339 | */ |
||
1340 | void arm_biquad_cascade_df1_init_f32( |
||
1341 | arm_biquad_casd_df1_inst_f32 * S, |
||
1342 | uint8_t numStages, |
||
1343 | float32_t * pCoeffs, |
||
1344 | float32_t * pState); |
||
1345 | |||
1346 | |||
1347 | /** |
||
1348 | * @brief Instance structure for the floating-point matrix structure. |
||
1349 | */ |
||
1350 | typedef struct |
||
1351 | { |
||
1352 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1353 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1354 | float32_t *pData; /**< points to the data of the matrix. */ |
||
1355 | } arm_matrix_instance_f32; |
||
1356 | |||
1357 | |||
1358 | /** |
||
1359 | * @brief Instance structure for the floating-point matrix structure. |
||
1360 | */ |
||
1361 | typedef struct |
||
1362 | { |
||
1363 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1364 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1365 | float64_t *pData; /**< points to the data of the matrix. */ |
||
1366 | } arm_matrix_instance_f64; |
||
1367 | |||
1368 | /** |
||
1369 | * @brief Instance structure for the Q15 matrix structure. |
||
1370 | */ |
||
1371 | typedef struct |
||
1372 | { |
||
1373 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1374 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1375 | q15_t *pData; /**< points to the data of the matrix. */ |
||
1376 | } arm_matrix_instance_q15; |
||
1377 | |||
1378 | /** |
||
1379 | * @brief Instance structure for the Q31 matrix structure. |
||
1380 | */ |
||
1381 | typedef struct |
||
1382 | { |
||
1383 | uint16_t numRows; /**< number of rows of the matrix. */ |
||
1384 | uint16_t numCols; /**< number of columns of the matrix. */ |
||
1385 | q31_t *pData; /**< points to the data of the matrix. */ |
||
1386 | } arm_matrix_instance_q31; |
||
1387 | |||
1388 | |||
1389 | /** |
||
1390 | * @brief Floating-point matrix addition. |
||
1391 | * @param[in] pSrcA points to the first input matrix structure |
||
1392 | * @param[in] pSrcB points to the second input matrix structure |
||
1393 | * @param[out] pDst points to output matrix structure |
||
1394 | * @return The function returns either |
||
1395 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1396 | */ |
||
1397 | arm_status arm_mat_add_f32( |
||
1398 | const arm_matrix_instance_f32 * pSrcA, |
||
1399 | const arm_matrix_instance_f32 * pSrcB, |
||
1400 | arm_matrix_instance_f32 * pDst); |
||
1401 | |||
1402 | |||
1403 | /** |
||
1404 | * @brief Q15 matrix addition. |
||
1405 | * @param[in] pSrcA points to the first input matrix structure |
||
1406 | * @param[in] pSrcB points to the second input matrix structure |
||
1407 | * @param[out] pDst points to output matrix structure |
||
1408 | * @return The function returns either |
||
1409 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1410 | */ |
||
1411 | arm_status arm_mat_add_q15( |
||
1412 | const arm_matrix_instance_q15 * pSrcA, |
||
1413 | const arm_matrix_instance_q15 * pSrcB, |
||
1414 | arm_matrix_instance_q15 * pDst); |
||
1415 | |||
1416 | |||
1417 | /** |
||
1418 | * @brief Q31 matrix addition. |
||
1419 | * @param[in] pSrcA points to the first input matrix structure |
||
1420 | * @param[in] pSrcB points to the second input matrix structure |
||
1421 | * @param[out] pDst points to output matrix structure |
||
1422 | * @return The function returns either |
||
1423 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1424 | */ |
||
1425 | arm_status arm_mat_add_q31( |
||
1426 | const arm_matrix_instance_q31 * pSrcA, |
||
1427 | const arm_matrix_instance_q31 * pSrcB, |
||
1428 | arm_matrix_instance_q31 * pDst); |
||
1429 | |||
1430 | |||
1431 | /** |
||
1432 | * @brief Floating-point, complex, matrix multiplication. |
||
1433 | * @param[in] pSrcA points to the first input matrix structure |
||
1434 | * @param[in] pSrcB points to the second input matrix structure |
||
1435 | * @param[out] pDst points to output matrix structure |
||
1436 | * @return The function returns either |
||
1437 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1438 | */ |
||
1439 | arm_status arm_mat_cmplx_mult_f32( |
||
1440 | const arm_matrix_instance_f32 * pSrcA, |
||
1441 | const arm_matrix_instance_f32 * pSrcB, |
||
1442 | arm_matrix_instance_f32 * pDst); |
||
1443 | |||
1444 | |||
1445 | /** |
||
1446 | * @brief Q15, complex, matrix multiplication. |
||
1447 | * @param[in] pSrcA points to the first input matrix structure |
||
1448 | * @param[in] pSrcB points to the second input matrix structure |
||
1449 | * @param[out] pDst points to output matrix structure |
||
1450 | * @return The function returns either |
||
1451 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1452 | */ |
||
1453 | arm_status arm_mat_cmplx_mult_q15( |
||
1454 | const arm_matrix_instance_q15 * pSrcA, |
||
1455 | const arm_matrix_instance_q15 * pSrcB, |
||
1456 | arm_matrix_instance_q15 * pDst, |
||
1457 | q15_t * pScratch); |
||
1458 | |||
1459 | |||
1460 | /** |
||
1461 | * @brief Q31, complex, matrix multiplication. |
||
1462 | * @param[in] pSrcA points to the first input matrix structure |
||
1463 | * @param[in] pSrcB points to the second input matrix structure |
||
1464 | * @param[out] pDst points to output matrix structure |
||
1465 | * @return The function returns either |
||
1466 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1467 | */ |
||
1468 | arm_status arm_mat_cmplx_mult_q31( |
||
1469 | const arm_matrix_instance_q31 * pSrcA, |
||
1470 | const arm_matrix_instance_q31 * pSrcB, |
||
1471 | arm_matrix_instance_q31 * pDst); |
||
1472 | |||
1473 | |||
1474 | /** |
||
1475 | * @brief Floating-point matrix transpose. |
||
1476 | * @param[in] pSrc points to the input matrix |
||
1477 | * @param[out] pDst points to the output matrix |
||
1478 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
1479 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1480 | */ |
||
1481 | arm_status arm_mat_trans_f32( |
||
1482 | const arm_matrix_instance_f32 * pSrc, |
||
1483 | arm_matrix_instance_f32 * pDst); |
||
1484 | |||
1485 | |||
1486 | /** |
||
1487 | * @brief Q15 matrix transpose. |
||
1488 | * @param[in] pSrc points to the input matrix |
||
1489 | * @param[out] pDst points to the output matrix |
||
1490 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
1491 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1492 | */ |
||
1493 | arm_status arm_mat_trans_q15( |
||
1494 | const arm_matrix_instance_q15 * pSrc, |
||
1495 | arm_matrix_instance_q15 * pDst); |
||
1496 | |||
1497 | |||
1498 | /** |
||
1499 | * @brief Q31 matrix transpose. |
||
1500 | * @param[in] pSrc points to the input matrix |
||
1501 | * @param[out] pDst points to the output matrix |
||
1502 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
||
1503 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1504 | */ |
||
1505 | arm_status arm_mat_trans_q31( |
||
1506 | const arm_matrix_instance_q31 * pSrc, |
||
1507 | arm_matrix_instance_q31 * pDst); |
||
1508 | |||
1509 | |||
1510 | /** |
||
1511 | * @brief Floating-point matrix multiplication |
||
1512 | * @param[in] pSrcA points to the first input matrix structure |
||
1513 | * @param[in] pSrcB points to the second input matrix structure |
||
1514 | * @param[out] pDst points to output matrix structure |
||
1515 | * @return The function returns either |
||
1516 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1517 | */ |
||
1518 | arm_status arm_mat_mult_f32( |
||
1519 | const arm_matrix_instance_f32 * pSrcA, |
||
1520 | const arm_matrix_instance_f32 * pSrcB, |
||
1521 | arm_matrix_instance_f32 * pDst); |
||
1522 | |||
1523 | |||
1524 | /** |
||
1525 | * @brief Q15 matrix multiplication |
||
1526 | * @param[in] pSrcA points to the first input matrix structure |
||
1527 | * @param[in] pSrcB points to the second input matrix structure |
||
1528 | * @param[out] pDst points to output matrix structure |
||
1529 | * @param[in] pState points to the array for storing intermediate results |
||
1530 | * @return The function returns either |
||
1531 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1532 | */ |
||
1533 | arm_status arm_mat_mult_q15( |
||
1534 | const arm_matrix_instance_q15 * pSrcA, |
||
1535 | const arm_matrix_instance_q15 * pSrcB, |
||
1536 | arm_matrix_instance_q15 * pDst, |
||
1537 | q15_t * pState); |
||
1538 | |||
1539 | |||
1540 | /** |
||
1541 | * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
||
1542 | * @param[in] pSrcA points to the first input matrix structure |
||
1543 | * @param[in] pSrcB points to the second input matrix structure |
||
1544 | * @param[out] pDst points to output matrix structure |
||
1545 | * @param[in] pState points to the array for storing intermediate results |
||
1546 | * @return The function returns either |
||
1547 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1548 | */ |
||
1549 | arm_status arm_mat_mult_fast_q15( |
||
1550 | const arm_matrix_instance_q15 * pSrcA, |
||
1551 | const arm_matrix_instance_q15 * pSrcB, |
||
1552 | arm_matrix_instance_q15 * pDst, |
||
1553 | q15_t * pState); |
||
1554 | |||
1555 | |||
1556 | /** |
||
1557 | * @brief Q31 matrix multiplication |
||
1558 | * @param[in] pSrcA points to the first input matrix structure |
||
1559 | * @param[in] pSrcB points to the second input matrix structure |
||
1560 | * @param[out] pDst points to output matrix structure |
||
1561 | * @return The function returns either |
||
1562 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1563 | */ |
||
1564 | arm_status arm_mat_mult_q31( |
||
1565 | const arm_matrix_instance_q31 * pSrcA, |
||
1566 | const arm_matrix_instance_q31 * pSrcB, |
||
1567 | arm_matrix_instance_q31 * pDst); |
||
1568 | |||
1569 | |||
1570 | /** |
||
1571 | * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
||
1572 | * @param[in] pSrcA points to the first input matrix structure |
||
1573 | * @param[in] pSrcB points to the second input matrix structure |
||
1574 | * @param[out] pDst points to output matrix structure |
||
1575 | * @return The function returns either |
||
1576 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1577 | */ |
||
1578 | arm_status arm_mat_mult_fast_q31( |
||
1579 | const arm_matrix_instance_q31 * pSrcA, |
||
1580 | const arm_matrix_instance_q31 * pSrcB, |
||
1581 | arm_matrix_instance_q31 * pDst); |
||
1582 | |||
1583 | |||
1584 | /** |
||
1585 | * @brief Floating-point matrix subtraction |
||
1586 | * @param[in] pSrcA points to the first input matrix structure |
||
1587 | * @param[in] pSrcB points to the second input matrix structure |
||
1588 | * @param[out] pDst points to output matrix structure |
||
1589 | * @return The function returns either |
||
1590 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1591 | */ |
||
1592 | arm_status arm_mat_sub_f32( |
||
1593 | const arm_matrix_instance_f32 * pSrcA, |
||
1594 | const arm_matrix_instance_f32 * pSrcB, |
||
1595 | arm_matrix_instance_f32 * pDst); |
||
1596 | |||
1597 | |||
1598 | /** |
||
1599 | * @brief Q15 matrix subtraction |
||
1600 | * @param[in] pSrcA points to the first input matrix structure |
||
1601 | * @param[in] pSrcB points to the second input matrix structure |
||
1602 | * @param[out] pDst points to output matrix structure |
||
1603 | * @return The function returns either |
||
1604 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1605 | */ |
||
1606 | arm_status arm_mat_sub_q15( |
||
1607 | const arm_matrix_instance_q15 * pSrcA, |
||
1608 | const arm_matrix_instance_q15 * pSrcB, |
||
1609 | arm_matrix_instance_q15 * pDst); |
||
1610 | |||
1611 | |||
1612 | /** |
||
1613 | * @brief Q31 matrix subtraction |
||
1614 | * @param[in] pSrcA points to the first input matrix structure |
||
1615 | * @param[in] pSrcB points to the second input matrix structure |
||
1616 | * @param[out] pDst points to output matrix structure |
||
1617 | * @return The function returns either |
||
1618 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1619 | */ |
||
1620 | arm_status arm_mat_sub_q31( |
||
1621 | const arm_matrix_instance_q31 * pSrcA, |
||
1622 | const arm_matrix_instance_q31 * pSrcB, |
||
1623 | arm_matrix_instance_q31 * pDst); |
||
1624 | |||
1625 | |||
1626 | /** |
||
1627 | * @brief Floating-point matrix scaling. |
||
1628 | * @param[in] pSrc points to the input matrix |
||
1629 | * @param[in] scale scale factor |
||
1630 | * @param[out] pDst points to the output matrix |
||
1631 | * @return The function returns either |
||
1632 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1633 | */ |
||
1634 | arm_status arm_mat_scale_f32( |
||
1635 | const arm_matrix_instance_f32 * pSrc, |
||
1636 | float32_t scale, |
||
1637 | arm_matrix_instance_f32 * pDst); |
||
1638 | |||
1639 | |||
1640 | /** |
||
1641 | * @brief Q15 matrix scaling. |
||
1642 | * @param[in] pSrc points to input matrix |
||
1643 | * @param[in] scaleFract fractional portion of the scale factor |
||
1644 | * @param[in] shift number of bits to shift the result by |
||
1645 | * @param[out] pDst points to output matrix |
||
1646 | * @return The function returns either |
||
1647 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1648 | */ |
||
1649 | arm_status arm_mat_scale_q15( |
||
1650 | const arm_matrix_instance_q15 * pSrc, |
||
1651 | q15_t scaleFract, |
||
1652 | int32_t shift, |
||
1653 | arm_matrix_instance_q15 * pDst); |
||
1654 | |||
1655 | |||
1656 | /** |
||
1657 | * @brief Q31 matrix scaling. |
||
1658 | * @param[in] pSrc points to input matrix |
||
1659 | * @param[in] scaleFract fractional portion of the scale factor |
||
1660 | * @param[in] shift number of bits to shift the result by |
||
1661 | * @param[out] pDst points to output matrix structure |
||
1662 | * @return The function returns either |
||
1663 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
1664 | */ |
||
1665 | arm_status arm_mat_scale_q31( |
||
1666 | const arm_matrix_instance_q31 * pSrc, |
||
1667 | q31_t scaleFract, |
||
1668 | int32_t shift, |
||
1669 | arm_matrix_instance_q31 * pDst); |
||
1670 | |||
1671 | |||
1672 | /** |
||
1673 | * @brief Q31 matrix initialization. |
||
1674 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
||
1675 | * @param[in] nRows number of rows in the matrix. |
||
1676 | * @param[in] nColumns number of columns in the matrix. |
||
1677 | * @param[in] pData points to the matrix data array. |
||
1678 | */ |
||
1679 | void arm_mat_init_q31( |
||
1680 | arm_matrix_instance_q31 * S, |
||
1681 | uint16_t nRows, |
||
1682 | uint16_t nColumns, |
||
1683 | q31_t * pData); |
||
1684 | |||
1685 | |||
1686 | /** |
||
1687 | * @brief Q15 matrix initialization. |
||
1688 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
||
1689 | * @param[in] nRows number of rows in the matrix. |
||
1690 | * @param[in] nColumns number of columns in the matrix. |
||
1691 | * @param[in] pData points to the matrix data array. |
||
1692 | */ |
||
1693 | void arm_mat_init_q15( |
||
1694 | arm_matrix_instance_q15 * S, |
||
1695 | uint16_t nRows, |
||
1696 | uint16_t nColumns, |
||
1697 | q15_t * pData); |
||
1698 | |||
1699 | |||
1700 | /** |
||
1701 | * @brief Floating-point matrix initialization. |
||
1702 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
||
1703 | * @param[in] nRows number of rows in the matrix. |
||
1704 | * @param[in] nColumns number of columns in the matrix. |
||
1705 | * @param[in] pData points to the matrix data array. |
||
1706 | */ |
||
1707 | void arm_mat_init_f32( |
||
1708 | arm_matrix_instance_f32 * S, |
||
1709 | uint16_t nRows, |
||
1710 | uint16_t nColumns, |
||
1711 | float32_t * pData); |
||
1712 | |||
1713 | |||
1714 | |||
1715 | /** |
||
1716 | * @brief Instance structure for the Q15 PID Control. |
||
1717 | */ |
||
1718 | typedef struct |
||
1719 | { |
||
1720 | q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
||
1721 | #if !defined (ARM_MATH_DSP) |
||
1722 | q15_t A1; |
||
1723 | q15_t A2; |
||
1724 | #else |
||
1725 | q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ |
||
1726 | #endif |
||
1727 | q15_t state[3]; /**< The state array of length 3. */ |
||
1728 | q15_t Kp; /**< The proportional gain. */ |
||
1729 | q15_t Ki; /**< The integral gain. */ |
||
1730 | q15_t Kd; /**< The derivative gain. */ |
||
1731 | } arm_pid_instance_q15; |
||
1732 | |||
1733 | /** |
||
1734 | * @brief Instance structure for the Q31 PID Control. |
||
1735 | */ |
||
1736 | typedef struct |
||
1737 | { |
||
1738 | q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
||
1739 | q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
||
1740 | q31_t A2; /**< The derived gain, A2 = Kd . */ |
||
1741 | q31_t state[3]; /**< The state array of length 3. */ |
||
1742 | q31_t Kp; /**< The proportional gain. */ |
||
1743 | q31_t Ki; /**< The integral gain. */ |
||
1744 | q31_t Kd; /**< The derivative gain. */ |
||
1745 | } arm_pid_instance_q31; |
||
1746 | |||
1747 | /** |
||
1748 | * @brief Instance structure for the floating-point PID Control. |
||
1749 | */ |
||
1750 | typedef struct |
||
1751 | { |
||
1752 | float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
||
1753 | float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
||
1754 | float32_t A2; /**< The derived gain, A2 = Kd . */ |
||
1755 | float32_t state[3]; /**< The state array of length 3. */ |
||
1756 | float32_t Kp; /**< The proportional gain. */ |
||
1757 | float32_t Ki; /**< The integral gain. */ |
||
1758 | float32_t Kd; /**< The derivative gain. */ |
||
1759 | } arm_pid_instance_f32; |
||
1760 | |||
1761 | |||
1762 | |||
1763 | /** |
||
1764 | * @brief Initialization function for the floating-point PID Control. |
||
1765 | * @param[in,out] S points to an instance of the PID structure. |
||
1766 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
||
1767 | */ |
||
1768 | void arm_pid_init_f32( |
||
1769 | arm_pid_instance_f32 * S, |
||
1770 | int32_t resetStateFlag); |
||
1771 | |||
1772 | |||
1773 | /** |
||
1774 | * @brief Reset function for the floating-point PID Control. |
||
1775 | * @param[in,out] S is an instance of the floating-point PID Control structure |
||
1776 | */ |
||
1777 | void arm_pid_reset_f32( |
||
1778 | arm_pid_instance_f32 * S); |
||
1779 | |||
1780 | |||
1781 | /** |
||
1782 | * @brief Initialization function for the Q31 PID Control. |
||
1783 | * @param[in,out] S points to an instance of the Q15 PID structure. |
||
1784 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
||
1785 | */ |
||
1786 | void arm_pid_init_q31( |
||
1787 | arm_pid_instance_q31 * S, |
||
1788 | int32_t resetStateFlag); |
||
1789 | |||
1790 | |||
1791 | /** |
||
1792 | * @brief Reset function for the Q31 PID Control. |
||
1793 | * @param[in,out] S points to an instance of the Q31 PID Control structure |
||
1794 | */ |
||
1795 | |||
1796 | void arm_pid_reset_q31( |
||
1797 | arm_pid_instance_q31 * S); |
||
1798 | |||
1799 | |||
1800 | /** |
||
1801 | * @brief Initialization function for the Q15 PID Control. |
||
1802 | * @param[in,out] S points to an instance of the Q15 PID structure. |
||
1803 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
||
1804 | */ |
||
1805 | void arm_pid_init_q15( |
||
1806 | arm_pid_instance_q15 * S, |
||
1807 | int32_t resetStateFlag); |
||
1808 | |||
1809 | |||
1810 | /** |
||
1811 | * @brief Reset function for the Q15 PID Control. |
||
1812 | * @param[in,out] S points to an instance of the q15 PID Control structure |
||
1813 | */ |
||
1814 | void arm_pid_reset_q15( |
||
1815 | arm_pid_instance_q15 * S); |
||
1816 | |||
1817 | |||
1818 | /** |
||
1819 | * @brief Instance structure for the floating-point Linear Interpolate function. |
||
1820 | */ |
||
1821 | typedef struct |
||
1822 | { |
||
1823 | uint32_t nValues; /**< nValues */ |
||
1824 | float32_t x1; /**< x1 */ |
||
1825 | float32_t xSpacing; /**< xSpacing */ |
||
1826 | float32_t *pYData; /**< pointer to the table of Y values */ |
||
1827 | } arm_linear_interp_instance_f32; |
||
1828 | |||
1829 | /** |
||
1830 | * @brief Instance structure for the floating-point bilinear interpolation function. |
||
1831 | */ |
||
1832 | typedef struct |
||
1833 | { |
||
1834 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1835 | uint16_t numCols; /**< number of columns in the data table. */ |
||
1836 | float32_t *pData; /**< points to the data table. */ |
||
1837 | } arm_bilinear_interp_instance_f32; |
||
1838 | |||
1839 | /** |
||
1840 | * @brief Instance structure for the Q31 bilinear interpolation function. |
||
1841 | */ |
||
1842 | typedef struct |
||
1843 | { |
||
1844 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1845 | uint16_t numCols; /**< number of columns in the data table. */ |
||
1846 | q31_t *pData; /**< points to the data table. */ |
||
1847 | } arm_bilinear_interp_instance_q31; |
||
1848 | |||
1849 | /** |
||
1850 | * @brief Instance structure for the Q15 bilinear interpolation function. |
||
1851 | */ |
||
1852 | typedef struct |
||
1853 | { |
||
1854 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1855 | uint16_t numCols; /**< number of columns in the data table. */ |
||
1856 | q15_t *pData; /**< points to the data table. */ |
||
1857 | } arm_bilinear_interp_instance_q15; |
||
1858 | |||
1859 | /** |
||
1860 | * @brief Instance structure for the Q15 bilinear interpolation function. |
||
1861 | */ |
||
1862 | typedef struct |
||
1863 | { |
||
1864 | uint16_t numRows; /**< number of rows in the data table. */ |
||
1865 | uint16_t numCols; /**< number of columns in the data table. */ |
||
1866 | q7_t *pData; /**< points to the data table. */ |
||
1867 | } arm_bilinear_interp_instance_q7; |
||
1868 | |||
1869 | |||
1870 | /** |
||
1871 | * @brief Q7 vector multiplication. |
||
1872 | * @param[in] pSrcA points to the first input vector |
||
1873 | * @param[in] pSrcB points to the second input vector |
||
1874 | * @param[out] pDst points to the output vector |
||
1875 | * @param[in] blockSize number of samples in each vector |
||
1876 | */ |
||
1877 | void arm_mult_q7( |
||
1878 | q7_t * pSrcA, |
||
1879 | q7_t * pSrcB, |
||
1880 | q7_t * pDst, |
||
1881 | uint32_t blockSize); |
||
1882 | |||
1883 | |||
1884 | /** |
||
1885 | * @brief Q15 vector multiplication. |
||
1886 | * @param[in] pSrcA points to the first input vector |
||
1887 | * @param[in] pSrcB points to the second input vector |
||
1888 | * @param[out] pDst points to the output vector |
||
1889 | * @param[in] blockSize number of samples in each vector |
||
1890 | */ |
||
1891 | void arm_mult_q15( |
||
1892 | q15_t * pSrcA, |
||
1893 | q15_t * pSrcB, |
||
1894 | q15_t * pDst, |
||
1895 | uint32_t blockSize); |
||
1896 | |||
1897 | |||
1898 | /** |
||
1899 | * @brief Q31 vector multiplication. |
||
1900 | * @param[in] pSrcA points to the first input vector |
||
1901 | * @param[in] pSrcB points to the second input vector |
||
1902 | * @param[out] pDst points to the output vector |
||
1903 | * @param[in] blockSize number of samples in each vector |
||
1904 | */ |
||
1905 | void arm_mult_q31( |
||
1906 | q31_t * pSrcA, |
||
1907 | q31_t * pSrcB, |
||
1908 | q31_t * pDst, |
||
1909 | uint32_t blockSize); |
||
1910 | |||
1911 | |||
1912 | /** |
||
1913 | * @brief Floating-point vector multiplication. |
||
1914 | * @param[in] pSrcA points to the first input vector |
||
1915 | * @param[in] pSrcB points to the second input vector |
||
1916 | * @param[out] pDst points to the output vector |
||
1917 | * @param[in] blockSize number of samples in each vector |
||
1918 | */ |
||
1919 | void arm_mult_f32( |
||
1920 | float32_t * pSrcA, |
||
1921 | float32_t * pSrcB, |
||
1922 | float32_t * pDst, |
||
1923 | uint32_t blockSize); |
||
1924 | |||
1925 | |||
1926 | /** |
||
1927 | * @brief Instance structure for the Q15 CFFT/CIFFT function. |
||
1928 | */ |
||
1929 | typedef struct |
||
1930 | { |
||
1931 | uint16_t fftLen; /**< length of the FFT. */ |
||
1932 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
1933 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
1934 | q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ |
||
1935 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
1936 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
1937 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
1938 | } arm_cfft_radix2_instance_q15; |
||
1939 | |||
1940 | /* Deprecated */ |
||
1941 | arm_status arm_cfft_radix2_init_q15( |
||
1942 | arm_cfft_radix2_instance_q15 * S, |
||
1943 | uint16_t fftLen, |
||
1944 | uint8_t ifftFlag, |
||
1945 | uint8_t bitReverseFlag); |
||
1946 | |||
1947 | /* Deprecated */ |
||
1948 | void arm_cfft_radix2_q15( |
||
1949 | const arm_cfft_radix2_instance_q15 * S, |
||
1950 | q15_t * pSrc); |
||
1951 | |||
1952 | |||
1953 | /** |
||
1954 | * @brief Instance structure for the Q15 CFFT/CIFFT function. |
||
1955 | */ |
||
1956 | typedef struct |
||
1957 | { |
||
1958 | uint16_t fftLen; /**< length of the FFT. */ |
||
1959 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
1960 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
1961 | q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
1962 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
1963 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
1964 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
1965 | } arm_cfft_radix4_instance_q15; |
||
1966 | |||
1967 | /* Deprecated */ |
||
1968 | arm_status arm_cfft_radix4_init_q15( |
||
1969 | arm_cfft_radix4_instance_q15 * S, |
||
1970 | uint16_t fftLen, |
||
1971 | uint8_t ifftFlag, |
||
1972 | uint8_t bitReverseFlag); |
||
1973 | |||
1974 | /* Deprecated */ |
||
1975 | void arm_cfft_radix4_q15( |
||
1976 | const arm_cfft_radix4_instance_q15 * S, |
||
1977 | q15_t * pSrc); |
||
1978 | |||
1979 | /** |
||
1980 | * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. |
||
1981 | */ |
||
1982 | typedef struct |
||
1983 | { |
||
1984 | uint16_t fftLen; /**< length of the FFT. */ |
||
1985 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
1986 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
1987 | q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
1988 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
1989 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
1990 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
1991 | } arm_cfft_radix2_instance_q31; |
||
1992 | |||
1993 | /* Deprecated */ |
||
1994 | arm_status arm_cfft_radix2_init_q31( |
||
1995 | arm_cfft_radix2_instance_q31 * S, |
||
1996 | uint16_t fftLen, |
||
1997 | uint8_t ifftFlag, |
||
1998 | uint8_t bitReverseFlag); |
||
1999 | |||
2000 | /* Deprecated */ |
||
2001 | void arm_cfft_radix2_q31( |
||
2002 | const arm_cfft_radix2_instance_q31 * S, |
||
2003 | q31_t * pSrc); |
||
2004 | |||
2005 | /** |
||
2006 | * @brief Instance structure for the Q31 CFFT/CIFFT function. |
||
2007 | */ |
||
2008 | typedef struct |
||
2009 | { |
||
2010 | uint16_t fftLen; /**< length of the FFT. */ |
||
2011 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2012 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2013 | q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2014 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2015 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2016 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
2017 | } arm_cfft_radix4_instance_q31; |
||
2018 | |||
2019 | /* Deprecated */ |
||
2020 | void arm_cfft_radix4_q31( |
||
2021 | const arm_cfft_radix4_instance_q31 * S, |
||
2022 | q31_t * pSrc); |
||
2023 | |||
2024 | /* Deprecated */ |
||
2025 | arm_status arm_cfft_radix4_init_q31( |
||
2026 | arm_cfft_radix4_instance_q31 * S, |
||
2027 | uint16_t fftLen, |
||
2028 | uint8_t ifftFlag, |
||
2029 | uint8_t bitReverseFlag); |
||
2030 | |||
2031 | /** |
||
2032 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
2033 | */ |
||
2034 | typedef struct |
||
2035 | { |
||
2036 | uint16_t fftLen; /**< length of the FFT. */ |
||
2037 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2038 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2039 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2040 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2041 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2042 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
2043 | float32_t onebyfftLen; /**< value of 1/fftLen. */ |
||
2044 | } arm_cfft_radix2_instance_f32; |
||
2045 | |||
2046 | /* Deprecated */ |
||
2047 | arm_status arm_cfft_radix2_init_f32( |
||
2048 | arm_cfft_radix2_instance_f32 * S, |
||
2049 | uint16_t fftLen, |
||
2050 | uint8_t ifftFlag, |
||
2051 | uint8_t bitReverseFlag); |
||
2052 | |||
2053 | /* Deprecated */ |
||
2054 | void arm_cfft_radix2_f32( |
||
2055 | const arm_cfft_radix2_instance_f32 * S, |
||
2056 | float32_t * pSrc); |
||
2057 | |||
2058 | /** |
||
2059 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
2060 | */ |
||
2061 | typedef struct |
||
2062 | { |
||
2063 | uint16_t fftLen; /**< length of the FFT. */ |
||
2064 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
||
2065 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
||
2066 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2067 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2068 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2069 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
||
2070 | float32_t onebyfftLen; /**< value of 1/fftLen. */ |
||
2071 | } arm_cfft_radix4_instance_f32; |
||
2072 | |||
2073 | /* Deprecated */ |
||
2074 | arm_status arm_cfft_radix4_init_f32( |
||
2075 | arm_cfft_radix4_instance_f32 * S, |
||
2076 | uint16_t fftLen, |
||
2077 | uint8_t ifftFlag, |
||
2078 | uint8_t bitReverseFlag); |
||
2079 | |||
2080 | /* Deprecated */ |
||
2081 | void arm_cfft_radix4_f32( |
||
2082 | const arm_cfft_radix4_instance_f32 * S, |
||
2083 | float32_t * pSrc); |
||
2084 | |||
2085 | /** |
||
2086 | * @brief Instance structure for the fixed-point CFFT/CIFFT function. |
||
2087 | */ |
||
2088 | typedef struct |
||
2089 | { |
||
2090 | uint16_t fftLen; /**< length of the FFT. */ |
||
2091 | const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2092 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2093 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
2094 | } arm_cfft_instance_q15; |
||
2095 | |||
2096 | void arm_cfft_q15( |
||
2097 | const arm_cfft_instance_q15 * S, |
||
2098 | q15_t * p1, |
||
2099 | uint8_t ifftFlag, |
||
2100 | uint8_t bitReverseFlag); |
||
2101 | |||
2102 | /** |
||
2103 | * @brief Instance structure for the fixed-point CFFT/CIFFT function. |
||
2104 | */ |
||
2105 | typedef struct |
||
2106 | { |
||
2107 | uint16_t fftLen; /**< length of the FFT. */ |
||
2108 | const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2109 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2110 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
2111 | } arm_cfft_instance_q31; |
||
2112 | |||
2113 | void arm_cfft_q31( |
||
2114 | const arm_cfft_instance_q31 * S, |
||
2115 | q31_t * p1, |
||
2116 | uint8_t ifftFlag, |
||
2117 | uint8_t bitReverseFlag); |
||
2118 | |||
2119 | /** |
||
2120 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
||
2121 | */ |
||
2122 | typedef struct |
||
2123 | { |
||
2124 | uint16_t fftLen; /**< length of the FFT. */ |
||
2125 | const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
||
2126 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
||
2127 | uint16_t bitRevLength; /**< bit reversal table length. */ |
||
2128 | } arm_cfft_instance_f32; |
||
2129 | |||
2130 | void arm_cfft_f32( |
||
2131 | const arm_cfft_instance_f32 * S, |
||
2132 | float32_t * p1, |
||
2133 | uint8_t ifftFlag, |
||
2134 | uint8_t bitReverseFlag); |
||
2135 | |||
2136 | /** |
||
2137 | * @brief Instance structure for the Q15 RFFT/RIFFT function. |
||
2138 | */ |
||
2139 | typedef struct |
||
2140 | { |
||
2141 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
2142 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
2143 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
2144 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2145 | q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
2146 | q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
2147 | const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
||
2148 | } arm_rfft_instance_q15; |
||
2149 | |||
2150 | arm_status arm_rfft_init_q15( |
||
2151 | arm_rfft_instance_q15 * S, |
||
2152 | uint32_t fftLenReal, |
||
2153 | uint32_t ifftFlagR, |
||
2154 | uint32_t bitReverseFlag); |
||
2155 | |||
2156 | void arm_rfft_q15( |
||
2157 | const arm_rfft_instance_q15 * S, |
||
2158 | q15_t * pSrc, |
||
2159 | q15_t * pDst); |
||
2160 | |||
2161 | /** |
||
2162 | * @brief Instance structure for the Q31 RFFT/RIFFT function. |
||
2163 | */ |
||
2164 | typedef struct |
||
2165 | { |
||
2166 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
2167 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
2168 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
2169 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2170 | q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
2171 | q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
2172 | const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
||
2173 | } arm_rfft_instance_q31; |
||
2174 | |||
2175 | arm_status arm_rfft_init_q31( |
||
2176 | arm_rfft_instance_q31 * S, |
||
2177 | uint32_t fftLenReal, |
||
2178 | uint32_t ifftFlagR, |
||
2179 | uint32_t bitReverseFlag); |
||
2180 | |||
2181 | void arm_rfft_q31( |
||
2182 | const arm_rfft_instance_q31 * S, |
||
2183 | q31_t * pSrc, |
||
2184 | q31_t * pDst); |
||
2185 | |||
2186 | /** |
||
2187 | * @brief Instance structure for the floating-point RFFT/RIFFT function. |
||
2188 | */ |
||
2189 | typedef struct |
||
2190 | { |
||
2191 | uint32_t fftLenReal; /**< length of the real FFT. */ |
||
2192 | uint16_t fftLenBy2; /**< length of the complex FFT. */ |
||
2193 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
||
2194 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
||
2195 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
||
2196 | float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
||
2197 | float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
||
2198 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
||
2199 | } arm_rfft_instance_f32; |
||
2200 | |||
2201 | arm_status arm_rfft_init_f32( |
||
2202 | arm_rfft_instance_f32 * S, |
||
2203 | arm_cfft_radix4_instance_f32 * S_CFFT, |
||
2204 | uint32_t fftLenReal, |
||
2205 | uint32_t ifftFlagR, |
||
2206 | uint32_t bitReverseFlag); |
||
2207 | |||
2208 | void arm_rfft_f32( |
||
2209 | const arm_rfft_instance_f32 * S, |
||
2210 | float32_t * pSrc, |
||
2211 | float32_t * pDst); |
||
2212 | |||
2213 | /** |
||
2214 | * @brief Instance structure for the floating-point RFFT/RIFFT function. |
||
2215 | */ |
||
2216 | typedef struct |
||
2217 | { |
||
2218 | arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ |
||
2219 | uint16_t fftLenRFFT; /**< length of the real sequence */ |
||
2220 | float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ |
||
2221 | } arm_rfft_fast_instance_f32 ; |
||
2222 | |||
2223 | arm_status arm_rfft_fast_init_f32 ( |
||
2224 | arm_rfft_fast_instance_f32 * S, |
||
2225 | uint16_t fftLen); |
||
2226 | |||
2227 | void arm_rfft_fast_f32( |
||
2228 | arm_rfft_fast_instance_f32 * S, |
||
2229 | float32_t * p, float32_t * pOut, |
||
2230 | uint8_t ifftFlag); |
||
2231 | |||
2232 | /** |
||
2233 | * @brief Instance structure for the floating-point DCT4/IDCT4 function. |
||
2234 | */ |
||
2235 | typedef struct |
||
2236 | { |
||
2237 | uint16_t N; /**< length of the DCT4. */ |
||
2238 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
2239 | float32_t normalize; /**< normalizing factor. */ |
||
2240 | float32_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2241 | float32_t *pCosFactor; /**< points to the cosFactor table. */ |
||
2242 | arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ |
||
2243 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
||
2244 | } arm_dct4_instance_f32; |
||
2245 | |||
2246 | |||
2247 | /** |
||
2248 | * @brief Initialization function for the floating-point DCT4/IDCT4. |
||
2249 | * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. |
||
2250 | * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. |
||
2251 | * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. |
||
2252 | * @param[in] N length of the DCT4. |
||
2253 | * @param[in] Nby2 half of the length of the DCT4. |
||
2254 | * @param[in] normalize normalizing factor. |
||
2255 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. |
||
2256 | */ |
||
2257 | arm_status arm_dct4_init_f32( |
||
2258 | arm_dct4_instance_f32 * S, |
||
2259 | arm_rfft_instance_f32 * S_RFFT, |
||
2260 | arm_cfft_radix4_instance_f32 * S_CFFT, |
||
2261 | uint16_t N, |
||
2262 | uint16_t Nby2, |
||
2263 | float32_t normalize); |
||
2264 | |||
2265 | |||
2266 | /** |
||
2267 | * @brief Processing function for the floating-point DCT4/IDCT4. |
||
2268 | * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. |
||
2269 | * @param[in] pState points to state buffer. |
||
2270 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
||
2271 | */ |
||
2272 | void arm_dct4_f32( |
||
2273 | const arm_dct4_instance_f32 * S, |
||
2274 | float32_t * pState, |
||
2275 | float32_t * pInlineBuffer); |
||
2276 | |||
2277 | |||
2278 | /** |
||
2279 | * @brief Instance structure for the Q31 DCT4/IDCT4 function. |
||
2280 | */ |
||
2281 | typedef struct |
||
2282 | { |
||
2283 | uint16_t N; /**< length of the DCT4. */ |
||
2284 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
2285 | q31_t normalize; /**< normalizing factor. */ |
||
2286 | q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2287 | q31_t *pCosFactor; /**< points to the cosFactor table. */ |
||
2288 | arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ |
||
2289 | arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
||
2290 | } arm_dct4_instance_q31; |
||
2291 | |||
2292 | |||
2293 | /** |
||
2294 | * @brief Initialization function for the Q31 DCT4/IDCT4. |
||
2295 | * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. |
||
2296 | * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure |
||
2297 | * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure |
||
2298 | * @param[in] N length of the DCT4. |
||
2299 | * @param[in] Nby2 half of the length of the DCT4. |
||
2300 | * @param[in] normalize normalizing factor. |
||
2301 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
||
2302 | */ |
||
2303 | arm_status arm_dct4_init_q31( |
||
2304 | arm_dct4_instance_q31 * S, |
||
2305 | arm_rfft_instance_q31 * S_RFFT, |
||
2306 | arm_cfft_radix4_instance_q31 * S_CFFT, |
||
2307 | uint16_t N, |
||
2308 | uint16_t Nby2, |
||
2309 | q31_t normalize); |
||
2310 | |||
2311 | |||
2312 | /** |
||
2313 | * @brief Processing function for the Q31 DCT4/IDCT4. |
||
2314 | * @param[in] S points to an instance of the Q31 DCT4 structure. |
||
2315 | * @param[in] pState points to state buffer. |
||
2316 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
||
2317 | */ |
||
2318 | void arm_dct4_q31( |
||
2319 | const arm_dct4_instance_q31 * S, |
||
2320 | q31_t * pState, |
||
2321 | q31_t * pInlineBuffer); |
||
2322 | |||
2323 | |||
2324 | /** |
||
2325 | * @brief Instance structure for the Q15 DCT4/IDCT4 function. |
||
2326 | */ |
||
2327 | typedef struct |
||
2328 | { |
||
2329 | uint16_t N; /**< length of the DCT4. */ |
||
2330 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
||
2331 | q15_t normalize; /**< normalizing factor. */ |
||
2332 | q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
||
2333 | q15_t *pCosFactor; /**< points to the cosFactor table. */ |
||
2334 | arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ |
||
2335 | arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
||
2336 | } arm_dct4_instance_q15; |
||
2337 | |||
2338 | |||
2339 | /** |
||
2340 | * @brief Initialization function for the Q15 DCT4/IDCT4. |
||
2341 | * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. |
||
2342 | * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. |
||
2343 | * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. |
||
2344 | * @param[in] N length of the DCT4. |
||
2345 | * @param[in] Nby2 half of the length of the DCT4. |
||
2346 | * @param[in] normalize normalizing factor. |
||
2347 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
||
2348 | */ |
||
2349 | arm_status arm_dct4_init_q15( |
||
2350 | arm_dct4_instance_q15 * S, |
||
2351 | arm_rfft_instance_q15 * S_RFFT, |
||
2352 | arm_cfft_radix4_instance_q15 * S_CFFT, |
||
2353 | uint16_t N, |
||
2354 | uint16_t Nby2, |
||
2355 | q15_t normalize); |
||
2356 | |||
2357 | |||
2358 | /** |
||
2359 | * @brief Processing function for the Q15 DCT4/IDCT4. |
||
2360 | * @param[in] S points to an instance of the Q15 DCT4 structure. |
||
2361 | * @param[in] pState points to state buffer. |
||
2362 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
||
2363 | */ |
||
2364 | void arm_dct4_q15( |
||
2365 | const arm_dct4_instance_q15 * S, |
||
2366 | q15_t * pState, |
||
2367 | q15_t * pInlineBuffer); |
||
2368 | |||
2369 | |||
2370 | /** |
||
2371 | * @brief Floating-point vector addition. |
||
2372 | * @param[in] pSrcA points to the first input vector |
||
2373 | * @param[in] pSrcB points to the second input vector |
||
2374 | * @param[out] pDst points to the output vector |
||
2375 | * @param[in] blockSize number of samples in each vector |
||
2376 | */ |
||
2377 | void arm_add_f32( |
||
2378 | float32_t * pSrcA, |
||
2379 | float32_t * pSrcB, |
||
2380 | float32_t * pDst, |
||
2381 | uint32_t blockSize); |
||
2382 | |||
2383 | |||
2384 | /** |
||
2385 | * @brief Q7 vector addition. |
||
2386 | * @param[in] pSrcA points to the first input vector |
||
2387 | * @param[in] pSrcB points to the second input vector |
||
2388 | * @param[out] pDst points to the output vector |
||
2389 | * @param[in] blockSize number of samples in each vector |
||
2390 | */ |
||
2391 | void arm_add_q7( |
||
2392 | q7_t * pSrcA, |
||
2393 | q7_t * pSrcB, |
||
2394 | q7_t * pDst, |
||
2395 | uint32_t blockSize); |
||
2396 | |||
2397 | |||
2398 | /** |
||
2399 | * @brief Q15 vector addition. |
||
2400 | * @param[in] pSrcA points to the first input vector |
||
2401 | * @param[in] pSrcB points to the second input vector |
||
2402 | * @param[out] pDst points to the output vector |
||
2403 | * @param[in] blockSize number of samples in each vector |
||
2404 | */ |
||
2405 | void arm_add_q15( |
||
2406 | q15_t * pSrcA, |
||
2407 | q15_t * pSrcB, |
||
2408 | q15_t * pDst, |
||
2409 | uint32_t blockSize); |
||
2410 | |||
2411 | |||
2412 | /** |
||
2413 | * @brief Q31 vector addition. |
||
2414 | * @param[in] pSrcA points to the first input vector |
||
2415 | * @param[in] pSrcB points to the second input vector |
||
2416 | * @param[out] pDst points to the output vector |
||
2417 | * @param[in] blockSize number of samples in each vector |
||
2418 | */ |
||
2419 | void arm_add_q31( |
||
2420 | q31_t * pSrcA, |
||
2421 | q31_t * pSrcB, |
||
2422 | q31_t * pDst, |
||
2423 | uint32_t blockSize); |
||
2424 | |||
2425 | |||
2426 | /** |
||
2427 | * @brief Floating-point vector subtraction. |
||
2428 | * @param[in] pSrcA points to the first input vector |
||
2429 | * @param[in] pSrcB points to the second input vector |
||
2430 | * @param[out] pDst points to the output vector |
||
2431 | * @param[in] blockSize number of samples in each vector |
||
2432 | */ |
||
2433 | void arm_sub_f32( |
||
2434 | float32_t * pSrcA, |
||
2435 | float32_t * pSrcB, |
||
2436 | float32_t * pDst, |
||
2437 | uint32_t blockSize); |
||
2438 | |||
2439 | |||
2440 | /** |
||
2441 | * @brief Q7 vector subtraction. |
||
2442 | * @param[in] pSrcA points to the first input vector |
||
2443 | * @param[in] pSrcB points to the second input vector |
||
2444 | * @param[out] pDst points to the output vector |
||
2445 | * @param[in] blockSize number of samples in each vector |
||
2446 | */ |
||
2447 | void arm_sub_q7( |
||
2448 | q7_t * pSrcA, |
||
2449 | q7_t * pSrcB, |
||
2450 | q7_t * pDst, |
||
2451 | uint32_t blockSize); |
||
2452 | |||
2453 | |||
2454 | /** |
||
2455 | * @brief Q15 vector subtraction. |
||
2456 | * @param[in] pSrcA points to the first input vector |
||
2457 | * @param[in] pSrcB points to the second input vector |
||
2458 | * @param[out] pDst points to the output vector |
||
2459 | * @param[in] blockSize number of samples in each vector |
||
2460 | */ |
||
2461 | void arm_sub_q15( |
||
2462 | q15_t * pSrcA, |
||
2463 | q15_t * pSrcB, |
||
2464 | q15_t * pDst, |
||
2465 | uint32_t blockSize); |
||
2466 | |||
2467 | |||
2468 | /** |
||
2469 | * @brief Q31 vector subtraction. |
||
2470 | * @param[in] pSrcA points to the first input vector |
||
2471 | * @param[in] pSrcB points to the second input vector |
||
2472 | * @param[out] pDst points to the output vector |
||
2473 | * @param[in] blockSize number of samples in each vector |
||
2474 | */ |
||
2475 | void arm_sub_q31( |
||
2476 | q31_t * pSrcA, |
||
2477 | q31_t * pSrcB, |
||
2478 | q31_t * pDst, |
||
2479 | uint32_t blockSize); |
||
2480 | |||
2481 | |||
2482 | /** |
||
2483 | * @brief Multiplies a floating-point vector by a scalar. |
||
2484 | * @param[in] pSrc points to the input vector |
||
2485 | * @param[in] scale scale factor to be applied |
||
2486 | * @param[out] pDst points to the output vector |
||
2487 | * @param[in] blockSize number of samples in the vector |
||
2488 | */ |
||
2489 | void arm_scale_f32( |
||
2490 | float32_t * pSrc, |
||
2491 | float32_t scale, |
||
2492 | float32_t * pDst, |
||
2493 | uint32_t blockSize); |
||
2494 | |||
2495 | |||
2496 | /** |
||
2497 | * @brief Multiplies a Q7 vector by a scalar. |
||
2498 | * @param[in] pSrc points to the input vector |
||
2499 | * @param[in] scaleFract fractional portion of the scale value |
||
2500 | * @param[in] shift number of bits to shift the result by |
||
2501 | * @param[out] pDst points to the output vector |
||
2502 | * @param[in] blockSize number of samples in the vector |
||
2503 | */ |
||
2504 | void arm_scale_q7( |
||
2505 | q7_t * pSrc, |
||
2506 | q7_t scaleFract, |
||
2507 | int8_t shift, |
||
2508 | q7_t * pDst, |
||
2509 | uint32_t blockSize); |
||
2510 | |||
2511 | |||
2512 | /** |
||
2513 | * @brief Multiplies a Q15 vector by a scalar. |
||
2514 | * @param[in] pSrc points to the input vector |
||
2515 | * @param[in] scaleFract fractional portion of the scale value |
||
2516 | * @param[in] shift number of bits to shift the result by |
||
2517 | * @param[out] pDst points to the output vector |
||
2518 | * @param[in] blockSize number of samples in the vector |
||
2519 | */ |
||
2520 | void arm_scale_q15( |
||
2521 | q15_t * pSrc, |
||
2522 | q15_t scaleFract, |
||
2523 | int8_t shift, |
||
2524 | q15_t * pDst, |
||
2525 | uint32_t blockSize); |
||
2526 | |||
2527 | |||
2528 | /** |
||
2529 | * @brief Multiplies a Q31 vector by a scalar. |
||
2530 | * @param[in] pSrc points to the input vector |
||
2531 | * @param[in] scaleFract fractional portion of the scale value |
||
2532 | * @param[in] shift number of bits to shift the result by |
||
2533 | * @param[out] pDst points to the output vector |
||
2534 | * @param[in] blockSize number of samples in the vector |
||
2535 | */ |
||
2536 | void arm_scale_q31( |
||
2537 | q31_t * pSrc, |
||
2538 | q31_t scaleFract, |
||
2539 | int8_t shift, |
||
2540 | q31_t * pDst, |
||
2541 | uint32_t blockSize); |
||
2542 | |||
2543 | |||
2544 | /** |
||
2545 | * @brief Q7 vector absolute value. |
||
2546 | * @param[in] pSrc points to the input buffer |
||
2547 | * @param[out] pDst points to the output buffer |
||
2548 | * @param[in] blockSize number of samples in each vector |
||
2549 | */ |
||
2550 | void arm_abs_q7( |
||
2551 | q7_t * pSrc, |
||
2552 | q7_t * pDst, |
||
2553 | uint32_t blockSize); |
||
2554 | |||
2555 | |||
2556 | /** |
||
2557 | * @brief Floating-point vector absolute value. |
||
2558 | * @param[in] pSrc points to the input buffer |
||
2559 | * @param[out] pDst points to the output buffer |
||
2560 | * @param[in] blockSize number of samples in each vector |
||
2561 | */ |
||
2562 | void arm_abs_f32( |
||
2563 | float32_t * pSrc, |
||
2564 | float32_t * pDst, |
||
2565 | uint32_t blockSize); |
||
2566 | |||
2567 | |||
2568 | /** |
||
2569 | * @brief Q15 vector absolute value. |
||
2570 | * @param[in] pSrc points to the input buffer |
||
2571 | * @param[out] pDst points to the output buffer |
||
2572 | * @param[in] blockSize number of samples in each vector |
||
2573 | */ |
||
2574 | void arm_abs_q15( |
||
2575 | q15_t * pSrc, |
||
2576 | q15_t * pDst, |
||
2577 | uint32_t blockSize); |
||
2578 | |||
2579 | |||
2580 | /** |
||
2581 | * @brief Q31 vector absolute value. |
||
2582 | * @param[in] pSrc points to the input buffer |
||
2583 | * @param[out] pDst points to the output buffer |
||
2584 | * @param[in] blockSize number of samples in each vector |
||
2585 | */ |
||
2586 | void arm_abs_q31( |
||
2587 | q31_t * pSrc, |
||
2588 | q31_t * pDst, |
||
2589 | uint32_t blockSize); |
||
2590 | |||
2591 | |||
2592 | /** |
||
2593 | * @brief Dot product of floating-point vectors. |
||
2594 | * @param[in] pSrcA points to the first input vector |
||
2595 | * @param[in] pSrcB points to the second input vector |
||
2596 | * @param[in] blockSize number of samples in each vector |
||
2597 | * @param[out] result output result returned here |
||
2598 | */ |
||
2599 | void arm_dot_prod_f32( |
||
2600 | float32_t * pSrcA, |
||
2601 | float32_t * pSrcB, |
||
2602 | uint32_t blockSize, |
||
2603 | float32_t * result); |
||
2604 | |||
2605 | |||
2606 | /** |
||
2607 | * @brief Dot product of Q7 vectors. |
||
2608 | * @param[in] pSrcA points to the first input vector |
||
2609 | * @param[in] pSrcB points to the second input vector |
||
2610 | * @param[in] blockSize number of samples in each vector |
||
2611 | * @param[out] result output result returned here |
||
2612 | */ |
||
2613 | void arm_dot_prod_q7( |
||
2614 | q7_t * pSrcA, |
||
2615 | q7_t * pSrcB, |
||
2616 | uint32_t blockSize, |
||
2617 | q31_t * result); |
||
2618 | |||
2619 | |||
2620 | /** |
||
2621 | * @brief Dot product of Q15 vectors. |
||
2622 | * @param[in] pSrcA points to the first input vector |
||
2623 | * @param[in] pSrcB points to the second input vector |
||
2624 | * @param[in] blockSize number of samples in each vector |
||
2625 | * @param[out] result output result returned here |
||
2626 | */ |
||
2627 | void arm_dot_prod_q15( |
||
2628 | q15_t * pSrcA, |
||
2629 | q15_t * pSrcB, |
||
2630 | uint32_t blockSize, |
||
2631 | q63_t * result); |
||
2632 | |||
2633 | |||
2634 | /** |
||
2635 | * @brief Dot product of Q31 vectors. |
||
2636 | * @param[in] pSrcA points to the first input vector |
||
2637 | * @param[in] pSrcB points to the second input vector |
||
2638 | * @param[in] blockSize number of samples in each vector |
||
2639 | * @param[out] result output result returned here |
||
2640 | */ |
||
2641 | void arm_dot_prod_q31( |
||
2642 | q31_t * pSrcA, |
||
2643 | q31_t * pSrcB, |
||
2644 | uint32_t blockSize, |
||
2645 | q63_t * result); |
||
2646 | |||
2647 | |||
2648 | /** |
||
2649 | * @brief Shifts the elements of a Q7 vector a specified number of bits. |
||
2650 | * @param[in] pSrc points to the input vector |
||
2651 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
2652 | * @param[out] pDst points to the output vector |
||
2653 | * @param[in] blockSize number of samples in the vector |
||
2654 | */ |
||
2655 | void arm_shift_q7( |
||
2656 | q7_t * pSrc, |
||
2657 | int8_t shiftBits, |
||
2658 | q7_t * pDst, |
||
2659 | uint32_t blockSize); |
||
2660 | |||
2661 | |||
2662 | /** |
||
2663 | * @brief Shifts the elements of a Q15 vector a specified number of bits. |
||
2664 | * @param[in] pSrc points to the input vector |
||
2665 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
2666 | * @param[out] pDst points to the output vector |
||
2667 | * @param[in] blockSize number of samples in the vector |
||
2668 | */ |
||
2669 | void arm_shift_q15( |
||
2670 | q15_t * pSrc, |
||
2671 | int8_t shiftBits, |
||
2672 | q15_t * pDst, |
||
2673 | uint32_t blockSize); |
||
2674 | |||
2675 | |||
2676 | /** |
||
2677 | * @brief Shifts the elements of a Q31 vector a specified number of bits. |
||
2678 | * @param[in] pSrc points to the input vector |
||
2679 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
||
2680 | * @param[out] pDst points to the output vector |
||
2681 | * @param[in] blockSize number of samples in the vector |
||
2682 | */ |
||
2683 | void arm_shift_q31( |
||
2684 | q31_t * pSrc, |
||
2685 | int8_t shiftBits, |
||
2686 | q31_t * pDst, |
||
2687 | uint32_t blockSize); |
||
2688 | |||
2689 | |||
2690 | /** |
||
2691 | * @brief Adds a constant offset to a floating-point vector. |
||
2692 | * @param[in] pSrc points to the input vector |
||
2693 | * @param[in] offset is the offset to be added |
||
2694 | * @param[out] pDst points to the output vector |
||
2695 | * @param[in] blockSize number of samples in the vector |
||
2696 | */ |
||
2697 | void arm_offset_f32( |
||
2698 | float32_t * pSrc, |
||
2699 | float32_t offset, |
||
2700 | float32_t * pDst, |
||
2701 | uint32_t blockSize); |
||
2702 | |||
2703 | |||
2704 | /** |
||
2705 | * @brief Adds a constant offset to a Q7 vector. |
||
2706 | * @param[in] pSrc points to the input vector |
||
2707 | * @param[in] offset is the offset to be added |
||
2708 | * @param[out] pDst points to the output vector |
||
2709 | * @param[in] blockSize number of samples in the vector |
||
2710 | */ |
||
2711 | void arm_offset_q7( |
||
2712 | q7_t * pSrc, |
||
2713 | q7_t offset, |
||
2714 | q7_t * pDst, |
||
2715 | uint32_t blockSize); |
||
2716 | |||
2717 | |||
2718 | /** |
||
2719 | * @brief Adds a constant offset to a Q15 vector. |
||
2720 | * @param[in] pSrc points to the input vector |
||
2721 | * @param[in] offset is the offset to be added |
||
2722 | * @param[out] pDst points to the output vector |
||
2723 | * @param[in] blockSize number of samples in the vector |
||
2724 | */ |
||
2725 | void arm_offset_q15( |
||
2726 | q15_t * pSrc, |
||
2727 | q15_t offset, |
||
2728 | q15_t * pDst, |
||
2729 | uint32_t blockSize); |
||
2730 | |||
2731 | |||
2732 | /** |
||
2733 | * @brief Adds a constant offset to a Q31 vector. |
||
2734 | * @param[in] pSrc points to the input vector |
||
2735 | * @param[in] offset is the offset to be added |
||
2736 | * @param[out] pDst points to the output vector |
||
2737 | * @param[in] blockSize number of samples in the vector |
||
2738 | */ |
||
2739 | void arm_offset_q31( |
||
2740 | q31_t * pSrc, |
||
2741 | q31_t offset, |
||
2742 | q31_t * pDst, |
||
2743 | uint32_t blockSize); |
||
2744 | |||
2745 | |||
2746 | /** |
||
2747 | * @brief Negates the elements of a floating-point vector. |
||
2748 | * @param[in] pSrc points to the input vector |
||
2749 | * @param[out] pDst points to the output vector |
||
2750 | * @param[in] blockSize number of samples in the vector |
||
2751 | */ |
||
2752 | void arm_negate_f32( |
||
2753 | float32_t * pSrc, |
||
2754 | float32_t * pDst, |
||
2755 | uint32_t blockSize); |
||
2756 | |||
2757 | |||
2758 | /** |
||
2759 | * @brief Negates the elements of a Q7 vector. |
||
2760 | * @param[in] pSrc points to the input vector |
||
2761 | * @param[out] pDst points to the output vector |
||
2762 | * @param[in] blockSize number of samples in the vector |
||
2763 | */ |
||
2764 | void arm_negate_q7( |
||
2765 | q7_t * pSrc, |
||
2766 | q7_t * pDst, |
||
2767 | uint32_t blockSize); |
||
2768 | |||
2769 | |||
2770 | /** |
||
2771 | * @brief Negates the elements of a Q15 vector. |
||
2772 | * @param[in] pSrc points to the input vector |
||
2773 | * @param[out] pDst points to the output vector |
||
2774 | * @param[in] blockSize number of samples in the vector |
||
2775 | */ |
||
2776 | void arm_negate_q15( |
||
2777 | q15_t * pSrc, |
||
2778 | q15_t * pDst, |
||
2779 | uint32_t blockSize); |
||
2780 | |||
2781 | |||
2782 | /** |
||
2783 | * @brief Negates the elements of a Q31 vector. |
||
2784 | * @param[in] pSrc points to the input vector |
||
2785 | * @param[out] pDst points to the output vector |
||
2786 | * @param[in] blockSize number of samples in the vector |
||
2787 | */ |
||
2788 | void arm_negate_q31( |
||
2789 | q31_t * pSrc, |
||
2790 | q31_t * pDst, |
||
2791 | uint32_t blockSize); |
||
2792 | |||
2793 | |||
2794 | /** |
||
2795 | * @brief Copies the elements of a floating-point vector. |
||
2796 | * @param[in] pSrc input pointer |
||
2797 | * @param[out] pDst output pointer |
||
2798 | * @param[in] blockSize number of samples to process |
||
2799 | */ |
||
2800 | void arm_copy_f32( |
||
2801 | float32_t * pSrc, |
||
2802 | float32_t * pDst, |
||
2803 | uint32_t blockSize); |
||
2804 | |||
2805 | |||
2806 | /** |
||
2807 | * @brief Copies the elements of a Q7 vector. |
||
2808 | * @param[in] pSrc input pointer |
||
2809 | * @param[out] pDst output pointer |
||
2810 | * @param[in] blockSize number of samples to process |
||
2811 | */ |
||
2812 | void arm_copy_q7( |
||
2813 | q7_t * pSrc, |
||
2814 | q7_t * pDst, |
||
2815 | uint32_t blockSize); |
||
2816 | |||
2817 | |||
2818 | /** |
||
2819 | * @brief Copies the elements of a Q15 vector. |
||
2820 | * @param[in] pSrc input pointer |
||
2821 | * @param[out] pDst output pointer |
||
2822 | * @param[in] blockSize number of samples to process |
||
2823 | */ |
||
2824 | void arm_copy_q15( |
||
2825 | q15_t * pSrc, |
||
2826 | q15_t * pDst, |
||
2827 | uint32_t blockSize); |
||
2828 | |||
2829 | |||
2830 | /** |
||
2831 | * @brief Copies the elements of a Q31 vector. |
||
2832 | * @param[in] pSrc input pointer |
||
2833 | * @param[out] pDst output pointer |
||
2834 | * @param[in] blockSize number of samples to process |
||
2835 | */ |
||
2836 | void arm_copy_q31( |
||
2837 | q31_t * pSrc, |
||
2838 | q31_t * pDst, |
||
2839 | uint32_t blockSize); |
||
2840 | |||
2841 | |||
2842 | /** |
||
2843 | * @brief Fills a constant value into a floating-point vector. |
||
2844 | * @param[in] value input value to be filled |
||
2845 | * @param[out] pDst output pointer |
||
2846 | * @param[in] blockSize number of samples to process |
||
2847 | */ |
||
2848 | void arm_fill_f32( |
||
2849 | float32_t value, |
||
2850 | float32_t * pDst, |
||
2851 | uint32_t blockSize); |
||
2852 | |||
2853 | |||
2854 | /** |
||
2855 | * @brief Fills a constant value into a Q7 vector. |
||
2856 | * @param[in] value input value to be filled |
||
2857 | * @param[out] pDst output pointer |
||
2858 | * @param[in] blockSize number of samples to process |
||
2859 | */ |
||
2860 | void arm_fill_q7( |
||
2861 | q7_t value, |
||
2862 | q7_t * pDst, |
||
2863 | uint32_t blockSize); |
||
2864 | |||
2865 | |||
2866 | /** |
||
2867 | * @brief Fills a constant value into a Q15 vector. |
||
2868 | * @param[in] value input value to be filled |
||
2869 | * @param[out] pDst output pointer |
||
2870 | * @param[in] blockSize number of samples to process |
||
2871 | */ |
||
2872 | void arm_fill_q15( |
||
2873 | q15_t value, |
||
2874 | q15_t * pDst, |
||
2875 | uint32_t blockSize); |
||
2876 | |||
2877 | |||
2878 | /** |
||
2879 | * @brief Fills a constant value into a Q31 vector. |
||
2880 | * @param[in] value input value to be filled |
||
2881 | * @param[out] pDst output pointer |
||
2882 | * @param[in] blockSize number of samples to process |
||
2883 | */ |
||
2884 | void arm_fill_q31( |
||
2885 | q31_t value, |
||
2886 | q31_t * pDst, |
||
2887 | uint32_t blockSize); |
||
2888 | |||
2889 | |||
2890 | /** |
||
2891 | * @brief Convolution of floating-point sequences. |
||
2892 | * @param[in] pSrcA points to the first input sequence. |
||
2893 | * @param[in] srcALen length of the first input sequence. |
||
2894 | * @param[in] pSrcB points to the second input sequence. |
||
2895 | * @param[in] srcBLen length of the second input sequence. |
||
2896 | * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
||
2897 | */ |
||
2898 | void arm_conv_f32( |
||
2899 | float32_t * pSrcA, |
||
2900 | uint32_t srcALen, |
||
2901 | float32_t * pSrcB, |
||
2902 | uint32_t srcBLen, |
||
2903 | float32_t * pDst); |
||
2904 | |||
2905 | |||
2906 | /** |
||
2907 | * @brief Convolution of Q15 sequences. |
||
2908 | * @param[in] pSrcA points to the first input sequence. |
||
2909 | * @param[in] srcALen length of the first input sequence. |
||
2910 | * @param[in] pSrcB points to the second input sequence. |
||
2911 | * @param[in] srcBLen length of the second input sequence. |
||
2912 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
2913 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
2914 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
2915 | */ |
||
2916 | void arm_conv_opt_q15( |
||
2917 | q15_t * pSrcA, |
||
2918 | uint32_t srcALen, |
||
2919 | q15_t * pSrcB, |
||
2920 | uint32_t srcBLen, |
||
2921 | q15_t * pDst, |
||
2922 | q15_t * pScratch1, |
||
2923 | q15_t * pScratch2); |
||
2924 | |||
2925 | |||
2926 | /** |
||
2927 | * @brief Convolution of Q15 sequences. |
||
2928 | * @param[in] pSrcA points to the first input sequence. |
||
2929 | * @param[in] srcALen length of the first input sequence. |
||
2930 | * @param[in] pSrcB points to the second input sequence. |
||
2931 | * @param[in] srcBLen length of the second input sequence. |
||
2932 | * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
||
2933 | */ |
||
2934 | void arm_conv_q15( |
||
2935 | q15_t * pSrcA, |
||
2936 | uint32_t srcALen, |
||
2937 | q15_t * pSrcB, |
||
2938 | uint32_t srcBLen, |
||
2939 | q15_t * pDst); |
||
2940 | |||
2941 | |||
2942 | /** |
||
2943 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
2944 | * @param[in] pSrcA points to the first input sequence. |
||
2945 | * @param[in] srcALen length of the first input sequence. |
||
2946 | * @param[in] pSrcB points to the second input sequence. |
||
2947 | * @param[in] srcBLen length of the second input sequence. |
||
2948 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
2949 | */ |
||
2950 | void arm_conv_fast_q15( |
||
2951 | q15_t * pSrcA, |
||
2952 | uint32_t srcALen, |
||
2953 | q15_t * pSrcB, |
||
2954 | uint32_t srcBLen, |
||
2955 | q15_t * pDst); |
||
2956 | |||
2957 | |||
2958 | /** |
||
2959 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
2960 | * @param[in] pSrcA points to the first input sequence. |
||
2961 | * @param[in] srcALen length of the first input sequence. |
||
2962 | * @param[in] pSrcB points to the second input sequence. |
||
2963 | * @param[in] srcBLen length of the second input sequence. |
||
2964 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
2965 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
2966 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
2967 | */ |
||
2968 | void arm_conv_fast_opt_q15( |
||
2969 | q15_t * pSrcA, |
||
2970 | uint32_t srcALen, |
||
2971 | q15_t * pSrcB, |
||
2972 | uint32_t srcBLen, |
||
2973 | q15_t * pDst, |
||
2974 | q15_t * pScratch1, |
||
2975 | q15_t * pScratch2); |
||
2976 | |||
2977 | |||
2978 | /** |
||
2979 | * @brief Convolution of Q31 sequences. |
||
2980 | * @param[in] pSrcA points to the first input sequence. |
||
2981 | * @param[in] srcALen length of the first input sequence. |
||
2982 | * @param[in] pSrcB points to the second input sequence. |
||
2983 | * @param[in] srcBLen length of the second input sequence. |
||
2984 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
2985 | */ |
||
2986 | void arm_conv_q31( |
||
2987 | q31_t * pSrcA, |
||
2988 | uint32_t srcALen, |
||
2989 | q31_t * pSrcB, |
||
2990 | uint32_t srcBLen, |
||
2991 | q31_t * pDst); |
||
2992 | |||
2993 | |||
2994 | /** |
||
2995 | * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
2996 | * @param[in] pSrcA points to the first input sequence. |
||
2997 | * @param[in] srcALen length of the first input sequence. |
||
2998 | * @param[in] pSrcB points to the second input sequence. |
||
2999 | * @param[in] srcBLen length of the second input sequence. |
||
3000 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
3001 | */ |
||
3002 | void arm_conv_fast_q31( |
||
3003 | q31_t * pSrcA, |
||
3004 | uint32_t srcALen, |
||
3005 | q31_t * pSrcB, |
||
3006 | uint32_t srcBLen, |
||
3007 | q31_t * pDst); |
||
3008 | |||
3009 | |||
3010 | /** |
||
3011 | * @brief Convolution of Q7 sequences. |
||
3012 | * @param[in] pSrcA points to the first input sequence. |
||
3013 | * @param[in] srcALen length of the first input sequence. |
||
3014 | * @param[in] pSrcB points to the second input sequence. |
||
3015 | * @param[in] srcBLen length of the second input sequence. |
||
3016 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
3017 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3018 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
3019 | */ |
||
3020 | void arm_conv_opt_q7( |
||
3021 | q7_t * pSrcA, |
||
3022 | uint32_t srcALen, |
||
3023 | q7_t * pSrcB, |
||
3024 | uint32_t srcBLen, |
||
3025 | q7_t * pDst, |
||
3026 | q15_t * pScratch1, |
||
3027 | q15_t * pScratch2); |
||
3028 | |||
3029 | |||
3030 | /** |
||
3031 | * @brief Convolution of Q7 sequences. |
||
3032 | * @param[in] pSrcA points to the first input sequence. |
||
3033 | * @param[in] srcALen length of the first input sequence. |
||
3034 | * @param[in] pSrcB points to the second input sequence. |
||
3035 | * @param[in] srcBLen length of the second input sequence. |
||
3036 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
||
3037 | */ |
||
3038 | void arm_conv_q7( |
||
3039 | q7_t * pSrcA, |
||
3040 | uint32_t srcALen, |
||
3041 | q7_t * pSrcB, |
||
3042 | uint32_t srcBLen, |
||
3043 | q7_t * pDst); |
||
3044 | |||
3045 | |||
3046 | /** |
||
3047 | * @brief Partial convolution of floating-point sequences. |
||
3048 | * @param[in] pSrcA points to the first input sequence. |
||
3049 | * @param[in] srcALen length of the first input sequence. |
||
3050 | * @param[in] pSrcB points to the second input sequence. |
||
3051 | * @param[in] srcBLen length of the second input sequence. |
||
3052 | * @param[out] pDst points to the block of output data |
||
3053 | * @param[in] firstIndex is the first output sample to start with. |
||
3054 | * @param[in] numPoints is the number of output points to be computed. |
||
3055 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3056 | */ |
||
3057 | arm_status arm_conv_partial_f32( |
||
3058 | float32_t * pSrcA, |
||
3059 | uint32_t srcALen, |
||
3060 | float32_t * pSrcB, |
||
3061 | uint32_t srcBLen, |
||
3062 | float32_t * pDst, |
||
3063 | uint32_t firstIndex, |
||
3064 | uint32_t numPoints); |
||
3065 | |||
3066 | |||
3067 | /** |
||
3068 | * @brief Partial convolution of Q15 sequences. |
||
3069 | * @param[in] pSrcA points to the first input sequence. |
||
3070 | * @param[in] srcALen length of the first input sequence. |
||
3071 | * @param[in] pSrcB points to the second input sequence. |
||
3072 | * @param[in] srcBLen length of the second input sequence. |
||
3073 | * @param[out] pDst points to the block of output data |
||
3074 | * @param[in] firstIndex is the first output sample to start with. |
||
3075 | * @param[in] numPoints is the number of output points to be computed. |
||
3076 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3077 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
3078 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3079 | */ |
||
3080 | arm_status arm_conv_partial_opt_q15( |
||
3081 | q15_t * pSrcA, |
||
3082 | uint32_t srcALen, |
||
3083 | q15_t * pSrcB, |
||
3084 | uint32_t srcBLen, |
||
3085 | q15_t * pDst, |
||
3086 | uint32_t firstIndex, |
||
3087 | uint32_t numPoints, |
||
3088 | q15_t * pScratch1, |
||
3089 | q15_t * pScratch2); |
||
3090 | |||
3091 | |||
3092 | /** |
||
3093 | * @brief Partial convolution of Q15 sequences. |
||
3094 | * @param[in] pSrcA points to the first input sequence. |
||
3095 | * @param[in] srcALen length of the first input sequence. |
||
3096 | * @param[in] pSrcB points to the second input sequence. |
||
3097 | * @param[in] srcBLen length of the second input sequence. |
||
3098 | * @param[out] pDst points to the block of output data |
||
3099 | * @param[in] firstIndex is the first output sample to start with. |
||
3100 | * @param[in] numPoints is the number of output points to be computed. |
||
3101 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3102 | */ |
||
3103 | arm_status arm_conv_partial_q15( |
||
3104 | q15_t * pSrcA, |
||
3105 | uint32_t srcALen, |
||
3106 | q15_t * pSrcB, |
||
3107 | uint32_t srcBLen, |
||
3108 | q15_t * pDst, |
||
3109 | uint32_t firstIndex, |
||
3110 | uint32_t numPoints); |
||
3111 | |||
3112 | |||
3113 | /** |
||
3114 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
3115 | * @param[in] pSrcA points to the first input sequence. |
||
3116 | * @param[in] srcALen length of the first input sequence. |
||
3117 | * @param[in] pSrcB points to the second input sequence. |
||
3118 | * @param[in] srcBLen length of the second input sequence. |
||
3119 | * @param[out] pDst points to the block of output data |
||
3120 | * @param[in] firstIndex is the first output sample to start with. |
||
3121 | * @param[in] numPoints is the number of output points to be computed. |
||
3122 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3123 | */ |
||
3124 | arm_status arm_conv_partial_fast_q15( |
||
3125 | q15_t * pSrcA, |
||
3126 | uint32_t srcALen, |
||
3127 | q15_t * pSrcB, |
||
3128 | uint32_t srcBLen, |
||
3129 | q15_t * pDst, |
||
3130 | uint32_t firstIndex, |
||
3131 | uint32_t numPoints); |
||
3132 | |||
3133 | |||
3134 | /** |
||
3135 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
3136 | * @param[in] pSrcA points to the first input sequence. |
||
3137 | * @param[in] srcALen length of the first input sequence. |
||
3138 | * @param[in] pSrcB points to the second input sequence. |
||
3139 | * @param[in] srcBLen length of the second input sequence. |
||
3140 | * @param[out] pDst points to the block of output data |
||
3141 | * @param[in] firstIndex is the first output sample to start with. |
||
3142 | * @param[in] numPoints is the number of output points to be computed. |
||
3143 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3144 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
||
3145 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3146 | */ |
||
3147 | arm_status arm_conv_partial_fast_opt_q15( |
||
3148 | q15_t * pSrcA, |
||
3149 | uint32_t srcALen, |
||
3150 | q15_t * pSrcB, |
||
3151 | uint32_t srcBLen, |
||
3152 | q15_t * pDst, |
||
3153 | uint32_t firstIndex, |
||
3154 | uint32_t numPoints, |
||
3155 | q15_t * pScratch1, |
||
3156 | q15_t * pScratch2); |
||
3157 | |||
3158 | |||
3159 | /** |
||
3160 | * @brief Partial convolution of Q31 sequences. |
||
3161 | * @param[in] pSrcA points to the first input sequence. |
||
3162 | * @param[in] srcALen length of the first input sequence. |
||
3163 | * @param[in] pSrcB points to the second input sequence. |
||
3164 | * @param[in] srcBLen length of the second input sequence. |
||
3165 | * @param[out] pDst points to the block of output data |
||
3166 | * @param[in] firstIndex is the first output sample to start with. |
||
3167 | * @param[in] numPoints is the number of output points to be computed. |
||
3168 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3169 | */ |
||
3170 | arm_status arm_conv_partial_q31( |
||
3171 | q31_t * pSrcA, |
||
3172 | uint32_t srcALen, |
||
3173 | q31_t * pSrcB, |
||
3174 | uint32_t srcBLen, |
||
3175 | q31_t * pDst, |
||
3176 | uint32_t firstIndex, |
||
3177 | uint32_t numPoints); |
||
3178 | |||
3179 | |||
3180 | /** |
||
3181 | * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
3182 | * @param[in] pSrcA points to the first input sequence. |
||
3183 | * @param[in] srcALen length of the first input sequence. |
||
3184 | * @param[in] pSrcB points to the second input sequence. |
||
3185 | * @param[in] srcBLen length of the second input sequence. |
||
3186 | * @param[out] pDst points to the block of output data |
||
3187 | * @param[in] firstIndex is the first output sample to start with. |
||
3188 | * @param[in] numPoints is the number of output points to be computed. |
||
3189 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3190 | */ |
||
3191 | arm_status arm_conv_partial_fast_q31( |
||
3192 | q31_t * pSrcA, |
||
3193 | uint32_t srcALen, |
||
3194 | q31_t * pSrcB, |
||
3195 | uint32_t srcBLen, |
||
3196 | q31_t * pDst, |
||
3197 | uint32_t firstIndex, |
||
3198 | uint32_t numPoints); |
||
3199 | |||
3200 | |||
3201 | /** |
||
3202 | * @brief Partial convolution of Q7 sequences |
||
3203 | * @param[in] pSrcA points to the first input sequence. |
||
3204 | * @param[in] srcALen length of the first input sequence. |
||
3205 | * @param[in] pSrcB points to the second input sequence. |
||
3206 | * @param[in] srcBLen length of the second input sequence. |
||
3207 | * @param[out] pDst points to the block of output data |
||
3208 | * @param[in] firstIndex is the first output sample to start with. |
||
3209 | * @param[in] numPoints is the number of output points to be computed. |
||
3210 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
3211 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
3212 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3213 | */ |
||
3214 | arm_status arm_conv_partial_opt_q7( |
||
3215 | q7_t * pSrcA, |
||
3216 | uint32_t srcALen, |
||
3217 | q7_t * pSrcB, |
||
3218 | uint32_t srcBLen, |
||
3219 | q7_t * pDst, |
||
3220 | uint32_t firstIndex, |
||
3221 | uint32_t numPoints, |
||
3222 | q15_t * pScratch1, |
||
3223 | q15_t * pScratch2); |
||
3224 | |||
3225 | |||
3226 | /** |
||
3227 | * @brief Partial convolution of Q7 sequences. |
||
3228 | * @param[in] pSrcA points to the first input sequence. |
||
3229 | * @param[in] srcALen length of the first input sequence. |
||
3230 | * @param[in] pSrcB points to the second input sequence. |
||
3231 | * @param[in] srcBLen length of the second input sequence. |
||
3232 | * @param[out] pDst points to the block of output data |
||
3233 | * @param[in] firstIndex is the first output sample to start with. |
||
3234 | * @param[in] numPoints is the number of output points to be computed. |
||
3235 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
||
3236 | */ |
||
3237 | arm_status arm_conv_partial_q7( |
||
3238 | q7_t * pSrcA, |
||
3239 | uint32_t srcALen, |
||
3240 | q7_t * pSrcB, |
||
3241 | uint32_t srcBLen, |
||
3242 | q7_t * pDst, |
||
3243 | uint32_t firstIndex, |
||
3244 | uint32_t numPoints); |
||
3245 | |||
3246 | |||
3247 | /** |
||
3248 | * @brief Instance structure for the Q15 FIR decimator. |
||
3249 | */ |
||
3250 | typedef struct |
||
3251 | { |
||
3252 | uint8_t M; /**< decimation factor. */ |
||
3253 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
3254 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
3255 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
3256 | } arm_fir_decimate_instance_q15; |
||
3257 | |||
3258 | /** |
||
3259 | * @brief Instance structure for the Q31 FIR decimator. |
||
3260 | */ |
||
3261 | typedef struct |
||
3262 | { |
||
3263 | uint8_t M; /**< decimation factor. */ |
||
3264 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
3265 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
3266 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
3267 | } arm_fir_decimate_instance_q31; |
||
3268 | |||
3269 | /** |
||
3270 | * @brief Instance structure for the floating-point FIR decimator. |
||
3271 | */ |
||
3272 | typedef struct |
||
3273 | { |
||
3274 | uint8_t M; /**< decimation factor. */ |
||
3275 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
3276 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
3277 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
3278 | } arm_fir_decimate_instance_f32; |
||
3279 | |||
3280 | |||
3281 | /** |
||
3282 | * @brief Processing function for the floating-point FIR decimator. |
||
3283 | * @param[in] S points to an instance of the floating-point FIR decimator structure. |
||
3284 | * @param[in] pSrc points to the block of input data. |
||
3285 | * @param[out] pDst points to the block of output data |
||
3286 | * @param[in] blockSize number of input samples to process per call. |
||
3287 | */ |
||
3288 | void arm_fir_decimate_f32( |
||
3289 | const arm_fir_decimate_instance_f32 * S, |
||
3290 | float32_t * pSrc, |
||
3291 | float32_t * pDst, |
||
3292 | uint32_t blockSize); |
||
3293 | |||
3294 | |||
3295 | /** |
||
3296 | * @brief Initialization function for the floating-point FIR decimator. |
||
3297 | * @param[in,out] S points to an instance of the floating-point FIR decimator structure. |
||
3298 | * @param[in] numTaps number of coefficients in the filter. |
||
3299 | * @param[in] M decimation factor. |
||
3300 | * @param[in] pCoeffs points to the filter coefficients. |
||
3301 | * @param[in] pState points to the state buffer. |
||
3302 | * @param[in] blockSize number of input samples to process per call. |
||
3303 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3304 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
3305 | */ |
||
3306 | arm_status arm_fir_decimate_init_f32( |
||
3307 | arm_fir_decimate_instance_f32 * S, |
||
3308 | uint16_t numTaps, |
||
3309 | uint8_t M, |
||
3310 | float32_t * pCoeffs, |
||
3311 | float32_t * pState, |
||
3312 | uint32_t blockSize); |
||
3313 | |||
3314 | |||
3315 | /** |
||
3316 | * @brief Processing function for the Q15 FIR decimator. |
||
3317 | * @param[in] S points to an instance of the Q15 FIR decimator structure. |
||
3318 | * @param[in] pSrc points to the block of input data. |
||
3319 | * @param[out] pDst points to the block of output data |
||
3320 | * @param[in] blockSize number of input samples to process per call. |
||
3321 | */ |
||
3322 | void arm_fir_decimate_q15( |
||
3323 | const arm_fir_decimate_instance_q15 * S, |
||
3324 | q15_t * pSrc, |
||
3325 | q15_t * pDst, |
||
3326 | uint32_t blockSize); |
||
3327 | |||
3328 | |||
3329 | /** |
||
3330 | * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
||
3331 | * @param[in] S points to an instance of the Q15 FIR decimator structure. |
||
3332 | * @param[in] pSrc points to the block of input data. |
||
3333 | * @param[out] pDst points to the block of output data |
||
3334 | * @param[in] blockSize number of input samples to process per call. |
||
3335 | */ |
||
3336 | void arm_fir_decimate_fast_q15( |
||
3337 | const arm_fir_decimate_instance_q15 * S, |
||
3338 | q15_t * pSrc, |
||
3339 | q15_t * pDst, |
||
3340 | uint32_t blockSize); |
||
3341 | |||
3342 | |||
3343 | /** |
||
3344 | * @brief Initialization function for the Q15 FIR decimator. |
||
3345 | * @param[in,out] S points to an instance of the Q15 FIR decimator structure. |
||
3346 | * @param[in] numTaps number of coefficients in the filter. |
||
3347 | * @param[in] M decimation factor. |
||
3348 | * @param[in] pCoeffs points to the filter coefficients. |
||
3349 | * @param[in] pState points to the state buffer. |
||
3350 | * @param[in] blockSize number of input samples to process per call. |
||
3351 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3352 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
3353 | */ |
||
3354 | arm_status arm_fir_decimate_init_q15( |
||
3355 | arm_fir_decimate_instance_q15 * S, |
||
3356 | uint16_t numTaps, |
||
3357 | uint8_t M, |
||
3358 | q15_t * pCoeffs, |
||
3359 | q15_t * pState, |
||
3360 | uint32_t blockSize); |
||
3361 | |||
3362 | |||
3363 | /** |
||
3364 | * @brief Processing function for the Q31 FIR decimator. |
||
3365 | * @param[in] S points to an instance of the Q31 FIR decimator structure. |
||
3366 | * @param[in] pSrc points to the block of input data. |
||
3367 | * @param[out] pDst points to the block of output data |
||
3368 | * @param[in] blockSize number of input samples to process per call. |
||
3369 | */ |
||
3370 | void arm_fir_decimate_q31( |
||
3371 | const arm_fir_decimate_instance_q31 * S, |
||
3372 | q31_t * pSrc, |
||
3373 | q31_t * pDst, |
||
3374 | uint32_t blockSize); |
||
3375 | |||
3376 | /** |
||
3377 | * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
||
3378 | * @param[in] S points to an instance of the Q31 FIR decimator structure. |
||
3379 | * @param[in] pSrc points to the block of input data. |
||
3380 | * @param[out] pDst points to the block of output data |
||
3381 | * @param[in] blockSize number of input samples to process per call. |
||
3382 | */ |
||
3383 | void arm_fir_decimate_fast_q31( |
||
3384 | arm_fir_decimate_instance_q31 * S, |
||
3385 | q31_t * pSrc, |
||
3386 | q31_t * pDst, |
||
3387 | uint32_t blockSize); |
||
3388 | |||
3389 | |||
3390 | /** |
||
3391 | * @brief Initialization function for the Q31 FIR decimator. |
||
3392 | * @param[in,out] S points to an instance of the Q31 FIR decimator structure. |
||
3393 | * @param[in] numTaps number of coefficients in the filter. |
||
3394 | * @param[in] M decimation factor. |
||
3395 | * @param[in] pCoeffs points to the filter coefficients. |
||
3396 | * @param[in] pState points to the state buffer. |
||
3397 | * @param[in] blockSize number of input samples to process per call. |
||
3398 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3399 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
||
3400 | */ |
||
3401 | arm_status arm_fir_decimate_init_q31( |
||
3402 | arm_fir_decimate_instance_q31 * S, |
||
3403 | uint16_t numTaps, |
||
3404 | uint8_t M, |
||
3405 | q31_t * pCoeffs, |
||
3406 | q31_t * pState, |
||
3407 | uint32_t blockSize); |
||
3408 | |||
3409 | |||
3410 | /** |
||
3411 | * @brief Instance structure for the Q15 FIR interpolator. |
||
3412 | */ |
||
3413 | typedef struct |
||
3414 | { |
||
3415 | uint8_t L; /**< upsample factor. */ |
||
3416 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
3417 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
||
3418 | q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
||
3419 | } arm_fir_interpolate_instance_q15; |
||
3420 | |||
3421 | /** |
||
3422 | * @brief Instance structure for the Q31 FIR interpolator. |
||
3423 | */ |
||
3424 | typedef struct |
||
3425 | { |
||
3426 | uint8_t L; /**< upsample factor. */ |
||
3427 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
3428 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
||
3429 | q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
||
3430 | } arm_fir_interpolate_instance_q31; |
||
3431 | |||
3432 | /** |
||
3433 | * @brief Instance structure for the floating-point FIR interpolator. |
||
3434 | */ |
||
3435 | typedef struct |
||
3436 | { |
||
3437 | uint8_t L; /**< upsample factor. */ |
||
3438 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
||
3439 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
||
3440 | float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ |
||
3441 | } arm_fir_interpolate_instance_f32; |
||
3442 | |||
3443 | |||
3444 | /** |
||
3445 | * @brief Processing function for the Q15 FIR interpolator. |
||
3446 | * @param[in] S points to an instance of the Q15 FIR interpolator structure. |
||
3447 | * @param[in] pSrc points to the block of input data. |
||
3448 | * @param[out] pDst points to the block of output data. |
||
3449 | * @param[in] blockSize number of input samples to process per call. |
||
3450 | */ |
||
3451 | void arm_fir_interpolate_q15( |
||
3452 | const arm_fir_interpolate_instance_q15 * S, |
||
3453 | q15_t * pSrc, |
||
3454 | q15_t * pDst, |
||
3455 | uint32_t blockSize); |
||
3456 | |||
3457 | |||
3458 | /** |
||
3459 | * @brief Initialization function for the Q15 FIR interpolator. |
||
3460 | * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. |
||
3461 | * @param[in] L upsample factor. |
||
3462 | * @param[in] numTaps number of filter coefficients in the filter. |
||
3463 | * @param[in] pCoeffs points to the filter coefficient buffer. |
||
3464 | * @param[in] pState points to the state buffer. |
||
3465 | * @param[in] blockSize number of input samples to process per call. |
||
3466 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3467 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
3468 | */ |
||
3469 | arm_status arm_fir_interpolate_init_q15( |
||
3470 | arm_fir_interpolate_instance_q15 * S, |
||
3471 | uint8_t L, |
||
3472 | uint16_t numTaps, |
||
3473 | q15_t * pCoeffs, |
||
3474 | q15_t * pState, |
||
3475 | uint32_t blockSize); |
||
3476 | |||
3477 | |||
3478 | /** |
||
3479 | * @brief Processing function for the Q31 FIR interpolator. |
||
3480 | * @param[in] S points to an instance of the Q15 FIR interpolator structure. |
||
3481 | * @param[in] pSrc points to the block of input data. |
||
3482 | * @param[out] pDst points to the block of output data. |
||
3483 | * @param[in] blockSize number of input samples to process per call. |
||
3484 | */ |
||
3485 | void arm_fir_interpolate_q31( |
||
3486 | const arm_fir_interpolate_instance_q31 * S, |
||
3487 | q31_t * pSrc, |
||
3488 | q31_t * pDst, |
||
3489 | uint32_t blockSize); |
||
3490 | |||
3491 | |||
3492 | /** |
||
3493 | * @brief Initialization function for the Q31 FIR interpolator. |
||
3494 | * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. |
||
3495 | * @param[in] L upsample factor. |
||
3496 | * @param[in] numTaps number of filter coefficients in the filter. |
||
3497 | * @param[in] pCoeffs points to the filter coefficient buffer. |
||
3498 | * @param[in] pState points to the state buffer. |
||
3499 | * @param[in] blockSize number of input samples to process per call. |
||
3500 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3501 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
3502 | */ |
||
3503 | arm_status arm_fir_interpolate_init_q31( |
||
3504 | arm_fir_interpolate_instance_q31 * S, |
||
3505 | uint8_t L, |
||
3506 | uint16_t numTaps, |
||
3507 | q31_t * pCoeffs, |
||
3508 | q31_t * pState, |
||
3509 | uint32_t blockSize); |
||
3510 | |||
3511 | |||
3512 | /** |
||
3513 | * @brief Processing function for the floating-point FIR interpolator. |
||
3514 | * @param[in] S points to an instance of the floating-point FIR interpolator structure. |
||
3515 | * @param[in] pSrc points to the block of input data. |
||
3516 | * @param[out] pDst points to the block of output data. |
||
3517 | * @param[in] blockSize number of input samples to process per call. |
||
3518 | */ |
||
3519 | void arm_fir_interpolate_f32( |
||
3520 | const arm_fir_interpolate_instance_f32 * S, |
||
3521 | float32_t * pSrc, |
||
3522 | float32_t * pDst, |
||
3523 | uint32_t blockSize); |
||
3524 | |||
3525 | |||
3526 | /** |
||
3527 | * @brief Initialization function for the floating-point FIR interpolator. |
||
3528 | * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. |
||
3529 | * @param[in] L upsample factor. |
||
3530 | * @param[in] numTaps number of filter coefficients in the filter. |
||
3531 | * @param[in] pCoeffs points to the filter coefficient buffer. |
||
3532 | * @param[in] pState points to the state buffer. |
||
3533 | * @param[in] blockSize number of input samples to process per call. |
||
3534 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
||
3535 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
||
3536 | */ |
||
3537 | arm_status arm_fir_interpolate_init_f32( |
||
3538 | arm_fir_interpolate_instance_f32 * S, |
||
3539 | uint8_t L, |
||
3540 | uint16_t numTaps, |
||
3541 | float32_t * pCoeffs, |
||
3542 | float32_t * pState, |
||
3543 | uint32_t blockSize); |
||
3544 | |||
3545 | |||
3546 | /** |
||
3547 | * @brief Instance structure for the high precision Q31 Biquad cascade filter. |
||
3548 | */ |
||
3549 | typedef struct |
||
3550 | { |
||
3551 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3552 | q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
||
3553 | q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3554 | uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ |
||
3555 | } arm_biquad_cas_df1_32x64_ins_q31; |
||
3556 | |||
3557 | |||
3558 | /** |
||
3559 | * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. |
||
3560 | * @param[in] pSrc points to the block of input data. |
||
3561 | * @param[out] pDst points to the block of output data |
||
3562 | * @param[in] blockSize number of samples to process. |
||
3563 | */ |
||
3564 | void arm_biquad_cas_df1_32x64_q31( |
||
3565 | const arm_biquad_cas_df1_32x64_ins_q31 * S, |
||
3566 | q31_t * pSrc, |
||
3567 | q31_t * pDst, |
||
3568 | uint32_t blockSize); |
||
3569 | |||
3570 | |||
3571 | /** |
||
3572 | * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. |
||
3573 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3574 | * @param[in] pCoeffs points to the filter coefficients. |
||
3575 | * @param[in] pState points to the state buffer. |
||
3576 | * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format |
||
3577 | */ |
||
3578 | void arm_biquad_cas_df1_32x64_init_q31( |
||
3579 | arm_biquad_cas_df1_32x64_ins_q31 * S, |
||
3580 | uint8_t numStages, |
||
3581 | q31_t * pCoeffs, |
||
3582 | q63_t * pState, |
||
3583 | uint8_t postShift); |
||
3584 | |||
3585 | |||
3586 | /** |
||
3587 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
3588 | */ |
||
3589 | typedef struct |
||
3590 | { |
||
3591 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3592 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
||
3593 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3594 | } arm_biquad_cascade_df2T_instance_f32; |
||
3595 | |||
3596 | /** |
||
3597 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
3598 | */ |
||
3599 | typedef struct |
||
3600 | { |
||
3601 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3602 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
||
3603 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3604 | } arm_biquad_cascade_stereo_df2T_instance_f32; |
||
3605 | |||
3606 | /** |
||
3607 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
||
3608 | */ |
||
3609 | typedef struct |
||
3610 | { |
||
3611 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
||
3612 | float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
||
3613 | float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
||
3614 | } arm_biquad_cascade_df2T_instance_f64; |
||
3615 | |||
3616 | |||
3617 | /** |
||
3618 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
||
3619 | * @param[in] S points to an instance of the filter data structure. |
||
3620 | * @param[in] pSrc points to the block of input data. |
||
3621 | * @param[out] pDst points to the block of output data |
||
3622 | * @param[in] blockSize number of samples to process. |
||
3623 | */ |
||
3624 | void arm_biquad_cascade_df2T_f32( |
||
3625 | const arm_biquad_cascade_df2T_instance_f32 * S, |
||
3626 | float32_t * pSrc, |
||
3627 | float32_t * pDst, |
||
3628 | uint32_t blockSize); |
||
3629 | |||
3630 | |||
3631 | /** |
||
3632 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels |
||
3633 | * @param[in] S points to an instance of the filter data structure. |
||
3634 | * @param[in] pSrc points to the block of input data. |
||
3635 | * @param[out] pDst points to the block of output data |
||
3636 | * @param[in] blockSize number of samples to process. |
||
3637 | */ |
||
3638 | void arm_biquad_cascade_stereo_df2T_f32( |
||
3639 | const arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
||
3640 | float32_t * pSrc, |
||
3641 | float32_t * pDst, |
||
3642 | uint32_t blockSize); |
||
3643 | |||
3644 | |||
3645 | /** |
||
3646 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
||
3647 | * @param[in] S points to an instance of the filter data structure. |
||
3648 | * @param[in] pSrc points to the block of input data. |
||
3649 | * @param[out] pDst points to the block of output data |
||
3650 | * @param[in] blockSize number of samples to process. |
||
3651 | */ |
||
3652 | void arm_biquad_cascade_df2T_f64( |
||
3653 | const arm_biquad_cascade_df2T_instance_f64 * S, |
||
3654 | float64_t * pSrc, |
||
3655 | float64_t * pDst, |
||
3656 | uint32_t blockSize); |
||
3657 | |||
3658 | |||
3659 | /** |
||
3660 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
3661 | * @param[in,out] S points to an instance of the filter data structure. |
||
3662 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3663 | * @param[in] pCoeffs points to the filter coefficients. |
||
3664 | * @param[in] pState points to the state buffer. |
||
3665 | */ |
||
3666 | void arm_biquad_cascade_df2T_init_f32( |
||
3667 | arm_biquad_cascade_df2T_instance_f32 * S, |
||
3668 | uint8_t numStages, |
||
3669 | float32_t * pCoeffs, |
||
3670 | float32_t * pState); |
||
3671 | |||
3672 | |||
3673 | /** |
||
3674 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
3675 | * @param[in,out] S points to an instance of the filter data structure. |
||
3676 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3677 | * @param[in] pCoeffs points to the filter coefficients. |
||
3678 | * @param[in] pState points to the state buffer. |
||
3679 | */ |
||
3680 | void arm_biquad_cascade_stereo_df2T_init_f32( |
||
3681 | arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
||
3682 | uint8_t numStages, |
||
3683 | float32_t * pCoeffs, |
||
3684 | float32_t * pState); |
||
3685 | |||
3686 | |||
3687 | /** |
||
3688 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
||
3689 | * @param[in,out] S points to an instance of the filter data structure. |
||
3690 | * @param[in] numStages number of 2nd order stages in the filter. |
||
3691 | * @param[in] pCoeffs points to the filter coefficients. |
||
3692 | * @param[in] pState points to the state buffer. |
||
3693 | */ |
||
3694 | void arm_biquad_cascade_df2T_init_f64( |
||
3695 | arm_biquad_cascade_df2T_instance_f64 * S, |
||
3696 | uint8_t numStages, |
||
3697 | float64_t * pCoeffs, |
||
3698 | float64_t * pState); |
||
3699 | |||
3700 | |||
3701 | /** |
||
3702 | * @brief Instance structure for the Q15 FIR lattice filter. |
||
3703 | */ |
||
3704 | typedef struct |
||
3705 | { |
||
3706 | uint16_t numStages; /**< number of filter stages. */ |
||
3707 | q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
3708 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
3709 | } arm_fir_lattice_instance_q15; |
||
3710 | |||
3711 | /** |
||
3712 | * @brief Instance structure for the Q31 FIR lattice filter. |
||
3713 | */ |
||
3714 | typedef struct |
||
3715 | { |
||
3716 | uint16_t numStages; /**< number of filter stages. */ |
||
3717 | q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
3718 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
3719 | } arm_fir_lattice_instance_q31; |
||
3720 | |||
3721 | /** |
||
3722 | * @brief Instance structure for the floating-point FIR lattice filter. |
||
3723 | */ |
||
3724 | typedef struct |
||
3725 | { |
||
3726 | uint16_t numStages; /**< number of filter stages. */ |
||
3727 | float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
||
3728 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
||
3729 | } arm_fir_lattice_instance_f32; |
||
3730 | |||
3731 | |||
3732 | /** |
||
3733 | * @brief Initialization function for the Q15 FIR lattice filter. |
||
3734 | * @param[in] S points to an instance of the Q15 FIR lattice structure. |
||
3735 | * @param[in] numStages number of filter stages. |
||
3736 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
||
3737 | * @param[in] pState points to the state buffer. The array is of length numStages. |
||
3738 | */ |
||
3739 | void arm_fir_lattice_init_q15( |
||
3740 | arm_fir_lattice_instance_q15 * S, |
||
3741 | uint16_t numStages, |
||
3742 | q15_t * pCoeffs, |
||
3743 | q15_t * pState); |
||
3744 | |||
3745 | |||
3746 | /** |
||
3747 | * @brief Processing function for the Q15 FIR lattice filter. |
||
3748 | * @param[in] S points to an instance of the Q15 FIR lattice structure. |
||
3749 | * @param[in] pSrc points to the block of input data. |
||
3750 | * @param[out] pDst points to the block of output data. |
||
3751 | * @param[in] blockSize number of samples to process. |
||
3752 | */ |
||
3753 | void arm_fir_lattice_q15( |
||
3754 | const arm_fir_lattice_instance_q15 * S, |
||
3755 | q15_t * pSrc, |
||
3756 | q15_t * pDst, |
||
3757 | uint32_t blockSize); |
||
3758 | |||
3759 | |||
3760 | /** |
||
3761 | * @brief Initialization function for the Q31 FIR lattice filter. |
||
3762 | * @param[in] S points to an instance of the Q31 FIR lattice structure. |
||
3763 | * @param[in] numStages number of filter stages. |
||
3764 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
||
3765 | * @param[in] pState points to the state buffer. The array is of length numStages. |
||
3766 | */ |
||
3767 | void arm_fir_lattice_init_q31( |
||
3768 | arm_fir_lattice_instance_q31 * S, |
||
3769 | uint16_t numStages, |
||
3770 | q31_t * pCoeffs, |
||
3771 | q31_t * pState); |
||
3772 | |||
3773 | |||
3774 | /** |
||
3775 | * @brief Processing function for the Q31 FIR lattice filter. |
||
3776 | * @param[in] S points to an instance of the Q31 FIR lattice structure. |
||
3777 | * @param[in] pSrc points to the block of input data. |
||
3778 | * @param[out] pDst points to the block of output data |
||
3779 | * @param[in] blockSize number of samples to process. |
||
3780 | */ |
||
3781 | void arm_fir_lattice_q31( |
||
3782 | const arm_fir_lattice_instance_q31 * S, |
||
3783 | q31_t * pSrc, |
||
3784 | q31_t * pDst, |
||
3785 | uint32_t blockSize); |
||
3786 | |||
3787 | |||
3788 | /** |
||
3789 | * @brief Initialization function for the floating-point FIR lattice filter. |
||
3790 | * @param[in] S points to an instance of the floating-point FIR lattice structure. |
||
3791 | * @param[in] numStages number of filter stages. |
||
3792 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
||
3793 | * @param[in] pState points to the state buffer. The array is of length numStages. |
||
3794 | */ |
||
3795 | void arm_fir_lattice_init_f32( |
||
3796 | arm_fir_lattice_instance_f32 * S, |
||
3797 | uint16_t numStages, |
||
3798 | float32_t * pCoeffs, |
||
3799 | float32_t * pState); |
||
3800 | |||
3801 | |||
3802 | /** |
||
3803 | * @brief Processing function for the floating-point FIR lattice filter. |
||
3804 | * @param[in] S points to an instance of the floating-point FIR lattice structure. |
||
3805 | * @param[in] pSrc points to the block of input data. |
||
3806 | * @param[out] pDst points to the block of output data |
||
3807 | * @param[in] blockSize number of samples to process. |
||
3808 | */ |
||
3809 | void arm_fir_lattice_f32( |
||
3810 | const arm_fir_lattice_instance_f32 * S, |
||
3811 | float32_t * pSrc, |
||
3812 | float32_t * pDst, |
||
3813 | uint32_t blockSize); |
||
3814 | |||
3815 | |||
3816 | /** |
||
3817 | * @brief Instance structure for the Q15 IIR lattice filter. |
||
3818 | */ |
||
3819 | typedef struct |
||
3820 | { |
||
3821 | uint16_t numStages; /**< number of stages in the filter. */ |
||
3822 | q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
3823 | q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
3824 | q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
3825 | } arm_iir_lattice_instance_q15; |
||
3826 | |||
3827 | /** |
||
3828 | * @brief Instance structure for the Q31 IIR lattice filter. |
||
3829 | */ |
||
3830 | typedef struct |
||
3831 | { |
||
3832 | uint16_t numStages; /**< number of stages in the filter. */ |
||
3833 | q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
3834 | q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
3835 | q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
3836 | } arm_iir_lattice_instance_q31; |
||
3837 | |||
3838 | /** |
||
3839 | * @brief Instance structure for the floating-point IIR lattice filter. |
||
3840 | */ |
||
3841 | typedef struct |
||
3842 | { |
||
3843 | uint16_t numStages; /**< number of stages in the filter. */ |
||
3844 | float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
||
3845 | float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
||
3846 | float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
||
3847 | } arm_iir_lattice_instance_f32; |
||
3848 | |||
3849 | |||
3850 | /** |
||
3851 | * @brief Processing function for the floating-point IIR lattice filter. |
||
3852 | * @param[in] S points to an instance of the floating-point IIR lattice structure. |
||
3853 | * @param[in] pSrc points to the block of input data. |
||
3854 | * @param[out] pDst points to the block of output data. |
||
3855 | * @param[in] blockSize number of samples to process. |
||
3856 | */ |
||
3857 | void arm_iir_lattice_f32( |
||
3858 | const arm_iir_lattice_instance_f32 * S, |
||
3859 | float32_t * pSrc, |
||
3860 | float32_t * pDst, |
||
3861 | uint32_t blockSize); |
||
3862 | |||
3863 | |||
3864 | /** |
||
3865 | * @brief Initialization function for the floating-point IIR lattice filter. |
||
3866 | * @param[in] S points to an instance of the floating-point IIR lattice structure. |
||
3867 | * @param[in] numStages number of stages in the filter. |
||
3868 | * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
||
3869 | * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
||
3870 | * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. |
||
3871 | * @param[in] blockSize number of samples to process. |
||
3872 | */ |
||
3873 | void arm_iir_lattice_init_f32( |
||
3874 | arm_iir_lattice_instance_f32 * S, |
||
3875 | uint16_t numStages, |
||
3876 | float32_t * pkCoeffs, |
||
3877 | float32_t * pvCoeffs, |
||
3878 | float32_t * pState, |
||
3879 | uint32_t blockSize); |
||
3880 | |||
3881 | |||
3882 | /** |
||
3883 | * @brief Processing function for the Q31 IIR lattice filter. |
||
3884 | * @param[in] S points to an instance of the Q31 IIR lattice structure. |
||
3885 | * @param[in] pSrc points to the block of input data. |
||
3886 | * @param[out] pDst points to the block of output data. |
||
3887 | * @param[in] blockSize number of samples to process. |
||
3888 | */ |
||
3889 | void arm_iir_lattice_q31( |
||
3890 | const arm_iir_lattice_instance_q31 * S, |
||
3891 | q31_t * pSrc, |
||
3892 | q31_t * pDst, |
||
3893 | uint32_t blockSize); |
||
3894 | |||
3895 | |||
3896 | /** |
||
3897 | * @brief Initialization function for the Q31 IIR lattice filter. |
||
3898 | * @param[in] S points to an instance of the Q31 IIR lattice structure. |
||
3899 | * @param[in] numStages number of stages in the filter. |
||
3900 | * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
||
3901 | * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
||
3902 | * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. |
||
3903 | * @param[in] blockSize number of samples to process. |
||
3904 | */ |
||
3905 | void arm_iir_lattice_init_q31( |
||
3906 | arm_iir_lattice_instance_q31 * S, |
||
3907 | uint16_t numStages, |
||
3908 | q31_t * pkCoeffs, |
||
3909 | q31_t * pvCoeffs, |
||
3910 | q31_t * pState, |
||
3911 | uint32_t blockSize); |
||
3912 | |||
3913 | |||
3914 | /** |
||
3915 | * @brief Processing function for the Q15 IIR lattice filter. |
||
3916 | * @param[in] S points to an instance of the Q15 IIR lattice structure. |
||
3917 | * @param[in] pSrc points to the block of input data. |
||
3918 | * @param[out] pDst points to the block of output data. |
||
3919 | * @param[in] blockSize number of samples to process. |
||
3920 | */ |
||
3921 | void arm_iir_lattice_q15( |
||
3922 | const arm_iir_lattice_instance_q15 * S, |
||
3923 | q15_t * pSrc, |
||
3924 | q15_t * pDst, |
||
3925 | uint32_t blockSize); |
||
3926 | |||
3927 | |||
3928 | /** |
||
3929 | * @brief Initialization function for the Q15 IIR lattice filter. |
||
3930 | * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. |
||
3931 | * @param[in] numStages number of stages in the filter. |
||
3932 | * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. |
||
3933 | * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. |
||
3934 | * @param[in] pState points to state buffer. The array is of length numStages+blockSize. |
||
3935 | * @param[in] blockSize number of samples to process per call. |
||
3936 | */ |
||
3937 | void arm_iir_lattice_init_q15( |
||
3938 | arm_iir_lattice_instance_q15 * S, |
||
3939 | uint16_t numStages, |
||
3940 | q15_t * pkCoeffs, |
||
3941 | q15_t * pvCoeffs, |
||
3942 | q15_t * pState, |
||
3943 | uint32_t blockSize); |
||
3944 | |||
3945 | |||
3946 | /** |
||
3947 | * @brief Instance structure for the floating-point LMS filter. |
||
3948 | */ |
||
3949 | typedef struct |
||
3950 | { |
||
3951 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
3952 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
3953 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
3954 | float32_t mu; /**< step size that controls filter coefficient updates. */ |
||
3955 | } arm_lms_instance_f32; |
||
3956 | |||
3957 | |||
3958 | /** |
||
3959 | * @brief Processing function for floating-point LMS filter. |
||
3960 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
||
3961 | * @param[in] pSrc points to the block of input data. |
||
3962 | * @param[in] pRef points to the block of reference data. |
||
3963 | * @param[out] pOut points to the block of output data. |
||
3964 | * @param[out] pErr points to the block of error data. |
||
3965 | * @param[in] blockSize number of samples to process. |
||
3966 | */ |
||
3967 | void arm_lms_f32( |
||
3968 | const arm_lms_instance_f32 * S, |
||
3969 | float32_t * pSrc, |
||
3970 | float32_t * pRef, |
||
3971 | float32_t * pOut, |
||
3972 | float32_t * pErr, |
||
3973 | uint32_t blockSize); |
||
3974 | |||
3975 | |||
3976 | /** |
||
3977 | * @brief Initialization function for floating-point LMS filter. |
||
3978 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
||
3979 | * @param[in] numTaps number of filter coefficients. |
||
3980 | * @param[in] pCoeffs points to the coefficient buffer. |
||
3981 | * @param[in] pState points to state buffer. |
||
3982 | * @param[in] mu step size that controls filter coefficient updates. |
||
3983 | * @param[in] blockSize number of samples to process. |
||
3984 | */ |
||
3985 | void arm_lms_init_f32( |
||
3986 | arm_lms_instance_f32 * S, |
||
3987 | uint16_t numTaps, |
||
3988 | float32_t * pCoeffs, |
||
3989 | float32_t * pState, |
||
3990 | float32_t mu, |
||
3991 | uint32_t blockSize); |
||
3992 | |||
3993 | |||
3994 | /** |
||
3995 | * @brief Instance structure for the Q15 LMS filter. |
||
3996 | */ |
||
3997 | typedef struct |
||
3998 | { |
||
3999 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4000 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4001 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4002 | q15_t mu; /**< step size that controls filter coefficient updates. */ |
||
4003 | uint32_t postShift; /**< bit shift applied to coefficients. */ |
||
4004 | } arm_lms_instance_q15; |
||
4005 | |||
4006 | |||
4007 | /** |
||
4008 | * @brief Initialization function for the Q15 LMS filter. |
||
4009 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
||
4010 | * @param[in] numTaps number of filter coefficients. |
||
4011 | * @param[in] pCoeffs points to the coefficient buffer. |
||
4012 | * @param[in] pState points to the state buffer. |
||
4013 | * @param[in] mu step size that controls filter coefficient updates. |
||
4014 | * @param[in] blockSize number of samples to process. |
||
4015 | * @param[in] postShift bit shift applied to coefficients. |
||
4016 | */ |
||
4017 | void arm_lms_init_q15( |
||
4018 | arm_lms_instance_q15 * S, |
||
4019 | uint16_t numTaps, |
||
4020 | q15_t * pCoeffs, |
||
4021 | q15_t * pState, |
||
4022 | q15_t mu, |
||
4023 | uint32_t blockSize, |
||
4024 | uint32_t postShift); |
||
4025 | |||
4026 | |||
4027 | /** |
||
4028 | * @brief Processing function for Q15 LMS filter. |
||
4029 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
||
4030 | * @param[in] pSrc points to the block of input data. |
||
4031 | * @param[in] pRef points to the block of reference data. |
||
4032 | * @param[out] pOut points to the block of output data. |
||
4033 | * @param[out] pErr points to the block of error data. |
||
4034 | * @param[in] blockSize number of samples to process. |
||
4035 | */ |
||
4036 | void arm_lms_q15( |
||
4037 | const arm_lms_instance_q15 * S, |
||
4038 | q15_t * pSrc, |
||
4039 | q15_t * pRef, |
||
4040 | q15_t * pOut, |
||
4041 | q15_t * pErr, |
||
4042 | uint32_t blockSize); |
||
4043 | |||
4044 | |||
4045 | /** |
||
4046 | * @brief Instance structure for the Q31 LMS filter. |
||
4047 | */ |
||
4048 | typedef struct |
||
4049 | { |
||
4050 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4051 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4052 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4053 | q31_t mu; /**< step size that controls filter coefficient updates. */ |
||
4054 | uint32_t postShift; /**< bit shift applied to coefficients. */ |
||
4055 | } arm_lms_instance_q31; |
||
4056 | |||
4057 | |||
4058 | /** |
||
4059 | * @brief Processing function for Q31 LMS filter. |
||
4060 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
||
4061 | * @param[in] pSrc points to the block of input data. |
||
4062 | * @param[in] pRef points to the block of reference data. |
||
4063 | * @param[out] pOut points to the block of output data. |
||
4064 | * @param[out] pErr points to the block of error data. |
||
4065 | * @param[in] blockSize number of samples to process. |
||
4066 | */ |
||
4067 | void arm_lms_q31( |
||
4068 | const arm_lms_instance_q31 * S, |
||
4069 | q31_t * pSrc, |
||
4070 | q31_t * pRef, |
||
4071 | q31_t * pOut, |
||
4072 | q31_t * pErr, |
||
4073 | uint32_t blockSize); |
||
4074 | |||
4075 | |||
4076 | /** |
||
4077 | * @brief Initialization function for Q31 LMS filter. |
||
4078 | * @param[in] S points to an instance of the Q31 LMS filter structure. |
||
4079 | * @param[in] numTaps number of filter coefficients. |
||
4080 | * @param[in] pCoeffs points to coefficient buffer. |
||
4081 | * @param[in] pState points to state buffer. |
||
4082 | * @param[in] mu step size that controls filter coefficient updates. |
||
4083 | * @param[in] blockSize number of samples to process. |
||
4084 | * @param[in] postShift bit shift applied to coefficients. |
||
4085 | */ |
||
4086 | void arm_lms_init_q31( |
||
4087 | arm_lms_instance_q31 * S, |
||
4088 | uint16_t numTaps, |
||
4089 | q31_t * pCoeffs, |
||
4090 | q31_t * pState, |
||
4091 | q31_t mu, |
||
4092 | uint32_t blockSize, |
||
4093 | uint32_t postShift); |
||
4094 | |||
4095 | |||
4096 | /** |
||
4097 | * @brief Instance structure for the floating-point normalized LMS filter. |
||
4098 | */ |
||
4099 | typedef struct |
||
4100 | { |
||
4101 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4102 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4103 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4104 | float32_t mu; /**< step size that control filter coefficient updates. */ |
||
4105 | float32_t energy; /**< saves previous frame energy. */ |
||
4106 | float32_t x0; /**< saves previous input sample. */ |
||
4107 | } arm_lms_norm_instance_f32; |
||
4108 | |||
4109 | |||
4110 | /** |
||
4111 | * @brief Processing function for floating-point normalized LMS filter. |
||
4112 | * @param[in] S points to an instance of the floating-point normalized LMS filter structure. |
||
4113 | * @param[in] pSrc points to the block of input data. |
||
4114 | * @param[in] pRef points to the block of reference data. |
||
4115 | * @param[out] pOut points to the block of output data. |
||
4116 | * @param[out] pErr points to the block of error data. |
||
4117 | * @param[in] blockSize number of samples to process. |
||
4118 | */ |
||
4119 | void arm_lms_norm_f32( |
||
4120 | arm_lms_norm_instance_f32 * S, |
||
4121 | float32_t * pSrc, |
||
4122 | float32_t * pRef, |
||
4123 | float32_t * pOut, |
||
4124 | float32_t * pErr, |
||
4125 | uint32_t blockSize); |
||
4126 | |||
4127 | |||
4128 | /** |
||
4129 | * @brief Initialization function for floating-point normalized LMS filter. |
||
4130 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
||
4131 | * @param[in] numTaps number of filter coefficients. |
||
4132 | * @param[in] pCoeffs points to coefficient buffer. |
||
4133 | * @param[in] pState points to state buffer. |
||
4134 | * @param[in] mu step size that controls filter coefficient updates. |
||
4135 | * @param[in] blockSize number of samples to process. |
||
4136 | */ |
||
4137 | void arm_lms_norm_init_f32( |
||
4138 | arm_lms_norm_instance_f32 * S, |
||
4139 | uint16_t numTaps, |
||
4140 | float32_t * pCoeffs, |
||
4141 | float32_t * pState, |
||
4142 | float32_t mu, |
||
4143 | uint32_t blockSize); |
||
4144 | |||
4145 | |||
4146 | /** |
||
4147 | * @brief Instance structure for the Q31 normalized LMS filter. |
||
4148 | */ |
||
4149 | typedef struct |
||
4150 | { |
||
4151 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4152 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4153 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4154 | q31_t mu; /**< step size that controls filter coefficient updates. */ |
||
4155 | uint8_t postShift; /**< bit shift applied to coefficients. */ |
||
4156 | q31_t *recipTable; /**< points to the reciprocal initial value table. */ |
||
4157 | q31_t energy; /**< saves previous frame energy. */ |
||
4158 | q31_t x0; /**< saves previous input sample. */ |
||
4159 | } arm_lms_norm_instance_q31; |
||
4160 | |||
4161 | |||
4162 | /** |
||
4163 | * @brief Processing function for Q31 normalized LMS filter. |
||
4164 | * @param[in] S points to an instance of the Q31 normalized LMS filter structure. |
||
4165 | * @param[in] pSrc points to the block of input data. |
||
4166 | * @param[in] pRef points to the block of reference data. |
||
4167 | * @param[out] pOut points to the block of output data. |
||
4168 | * @param[out] pErr points to the block of error data. |
||
4169 | * @param[in] blockSize number of samples to process. |
||
4170 | */ |
||
4171 | void arm_lms_norm_q31( |
||
4172 | arm_lms_norm_instance_q31 * S, |
||
4173 | q31_t * pSrc, |
||
4174 | q31_t * pRef, |
||
4175 | q31_t * pOut, |
||
4176 | q31_t * pErr, |
||
4177 | uint32_t blockSize); |
||
4178 | |||
4179 | |||
4180 | /** |
||
4181 | * @brief Initialization function for Q31 normalized LMS filter. |
||
4182 | * @param[in] S points to an instance of the Q31 normalized LMS filter structure. |
||
4183 | * @param[in] numTaps number of filter coefficients. |
||
4184 | * @param[in] pCoeffs points to coefficient buffer. |
||
4185 | * @param[in] pState points to state buffer. |
||
4186 | * @param[in] mu step size that controls filter coefficient updates. |
||
4187 | * @param[in] blockSize number of samples to process. |
||
4188 | * @param[in] postShift bit shift applied to coefficients. |
||
4189 | */ |
||
4190 | void arm_lms_norm_init_q31( |
||
4191 | arm_lms_norm_instance_q31 * S, |
||
4192 | uint16_t numTaps, |
||
4193 | q31_t * pCoeffs, |
||
4194 | q31_t * pState, |
||
4195 | q31_t mu, |
||
4196 | uint32_t blockSize, |
||
4197 | uint8_t postShift); |
||
4198 | |||
4199 | |||
4200 | /** |
||
4201 | * @brief Instance structure for the Q15 normalized LMS filter. |
||
4202 | */ |
||
4203 | typedef struct |
||
4204 | { |
||
4205 | uint16_t numTaps; /**< Number of coefficients in the filter. */ |
||
4206 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
||
4207 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
||
4208 | q15_t mu; /**< step size that controls filter coefficient updates. */ |
||
4209 | uint8_t postShift; /**< bit shift applied to coefficients. */ |
||
4210 | q15_t *recipTable; /**< Points to the reciprocal initial value table. */ |
||
4211 | q15_t energy; /**< saves previous frame energy. */ |
||
4212 | q15_t x0; /**< saves previous input sample. */ |
||
4213 | } arm_lms_norm_instance_q15; |
||
4214 | |||
4215 | |||
4216 | /** |
||
4217 | * @brief Processing function for Q15 normalized LMS filter. |
||
4218 | * @param[in] S points to an instance of the Q15 normalized LMS filter structure. |
||
4219 | * @param[in] pSrc points to the block of input data. |
||
4220 | * @param[in] pRef points to the block of reference data. |
||
4221 | * @param[out] pOut points to the block of output data. |
||
4222 | * @param[out] pErr points to the block of error data. |
||
4223 | * @param[in] blockSize number of samples to process. |
||
4224 | */ |
||
4225 | void arm_lms_norm_q15( |
||
4226 | arm_lms_norm_instance_q15 * S, |
||
4227 | q15_t * pSrc, |
||
4228 | q15_t * pRef, |
||
4229 | q15_t * pOut, |
||
4230 | q15_t * pErr, |
||
4231 | uint32_t blockSize); |
||
4232 | |||
4233 | |||
4234 | /** |
||
4235 | * @brief Initialization function for Q15 normalized LMS filter. |
||
4236 | * @param[in] S points to an instance of the Q15 normalized LMS filter structure. |
||
4237 | * @param[in] numTaps number of filter coefficients. |
||
4238 | * @param[in] pCoeffs points to coefficient buffer. |
||
4239 | * @param[in] pState points to state buffer. |
||
4240 | * @param[in] mu step size that controls filter coefficient updates. |
||
4241 | * @param[in] blockSize number of samples to process. |
||
4242 | * @param[in] postShift bit shift applied to coefficients. |
||
4243 | */ |
||
4244 | void arm_lms_norm_init_q15( |
||
4245 | arm_lms_norm_instance_q15 * S, |
||
4246 | uint16_t numTaps, |
||
4247 | q15_t * pCoeffs, |
||
4248 | q15_t * pState, |
||
4249 | q15_t mu, |
||
4250 | uint32_t blockSize, |
||
4251 | uint8_t postShift); |
||
4252 | |||
4253 | |||
4254 | /** |
||
4255 | * @brief Correlation of floating-point sequences. |
||
4256 | * @param[in] pSrcA points to the first input sequence. |
||
4257 | * @param[in] srcALen length of the first input sequence. |
||
4258 | * @param[in] pSrcB points to the second input sequence. |
||
4259 | * @param[in] srcBLen length of the second input sequence. |
||
4260 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4261 | */ |
||
4262 | void arm_correlate_f32( |
||
4263 | float32_t * pSrcA, |
||
4264 | uint32_t srcALen, |
||
4265 | float32_t * pSrcB, |
||
4266 | uint32_t srcBLen, |
||
4267 | float32_t * pDst); |
||
4268 | |||
4269 | |||
4270 | /** |
||
4271 | * @brief Correlation of Q15 sequences |
||
4272 | * @param[in] pSrcA points to the first input sequence. |
||
4273 | * @param[in] srcALen length of the first input sequence. |
||
4274 | * @param[in] pSrcB points to the second input sequence. |
||
4275 | * @param[in] srcBLen length of the second input sequence. |
||
4276 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4277 | * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
4278 | */ |
||
4279 | void arm_correlate_opt_q15( |
||
4280 | q15_t * pSrcA, |
||
4281 | uint32_t srcALen, |
||
4282 | q15_t * pSrcB, |
||
4283 | uint32_t srcBLen, |
||
4284 | q15_t * pDst, |
||
4285 | q15_t * pScratch); |
||
4286 | |||
4287 | |||
4288 | /** |
||
4289 | * @brief Correlation of Q15 sequences. |
||
4290 | * @param[in] pSrcA points to the first input sequence. |
||
4291 | * @param[in] srcALen length of the first input sequence. |
||
4292 | * @param[in] pSrcB points to the second input sequence. |
||
4293 | * @param[in] srcBLen length of the second input sequence. |
||
4294 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4295 | */ |
||
4296 | |||
4297 | void arm_correlate_q15( |
||
4298 | q15_t * pSrcA, |
||
4299 | uint32_t srcALen, |
||
4300 | q15_t * pSrcB, |
||
4301 | uint32_t srcBLen, |
||
4302 | q15_t * pDst); |
||
4303 | |||
4304 | |||
4305 | /** |
||
4306 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
||
4307 | * @param[in] pSrcA points to the first input sequence. |
||
4308 | * @param[in] srcALen length of the first input sequence. |
||
4309 | * @param[in] pSrcB points to the second input sequence. |
||
4310 | * @param[in] srcBLen length of the second input sequence. |
||
4311 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4312 | */ |
||
4313 | |||
4314 | void arm_correlate_fast_q15( |
||
4315 | q15_t * pSrcA, |
||
4316 | uint32_t srcALen, |
||
4317 | q15_t * pSrcB, |
||
4318 | uint32_t srcBLen, |
||
4319 | q15_t * pDst); |
||
4320 | |||
4321 | |||
4322 | /** |
||
4323 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
||
4324 | * @param[in] pSrcA points to the first input sequence. |
||
4325 | * @param[in] srcALen length of the first input sequence. |
||
4326 | * @param[in] pSrcB points to the second input sequence. |
||
4327 | * @param[in] srcBLen length of the second input sequence. |
||
4328 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4329 | * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
4330 | */ |
||
4331 | void arm_correlate_fast_opt_q15( |
||
4332 | q15_t * pSrcA, |
||
4333 | uint32_t srcALen, |
||
4334 | q15_t * pSrcB, |
||
4335 | uint32_t srcBLen, |
||
4336 | q15_t * pDst, |
||
4337 | q15_t * pScratch); |
||
4338 | |||
4339 | |||
4340 | /** |
||
4341 | * @brief Correlation of Q31 sequences. |
||
4342 | * @param[in] pSrcA points to the first input sequence. |
||
4343 | * @param[in] srcALen length of the first input sequence. |
||
4344 | * @param[in] pSrcB points to the second input sequence. |
||
4345 | * @param[in] srcBLen length of the second input sequence. |
||
4346 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4347 | */ |
||
4348 | void arm_correlate_q31( |
||
4349 | q31_t * pSrcA, |
||
4350 | uint32_t srcALen, |
||
4351 | q31_t * pSrcB, |
||
4352 | uint32_t srcBLen, |
||
4353 | q31_t * pDst); |
||
4354 | |||
4355 | |||
4356 | /** |
||
4357 | * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
||
4358 | * @param[in] pSrcA points to the first input sequence. |
||
4359 | * @param[in] srcALen length of the first input sequence. |
||
4360 | * @param[in] pSrcB points to the second input sequence. |
||
4361 | * @param[in] srcBLen length of the second input sequence. |
||
4362 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4363 | */ |
||
4364 | void arm_correlate_fast_q31( |
||
4365 | q31_t * pSrcA, |
||
4366 | uint32_t srcALen, |
||
4367 | q31_t * pSrcB, |
||
4368 | uint32_t srcBLen, |
||
4369 | q31_t * pDst); |
||
4370 | |||
4371 | |||
4372 | /** |
||
4373 | * @brief Correlation of Q7 sequences. |
||
4374 | * @param[in] pSrcA points to the first input sequence. |
||
4375 | * @param[in] srcALen length of the first input sequence. |
||
4376 | * @param[in] pSrcB points to the second input sequence. |
||
4377 | * @param[in] srcBLen length of the second input sequence. |
||
4378 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4379 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
||
4380 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
||
4381 | */ |
||
4382 | void arm_correlate_opt_q7( |
||
4383 | q7_t * pSrcA, |
||
4384 | uint32_t srcALen, |
||
4385 | q7_t * pSrcB, |
||
4386 | uint32_t srcBLen, |
||
4387 | q7_t * pDst, |
||
4388 | q15_t * pScratch1, |
||
4389 | q15_t * pScratch2); |
||
4390 | |||
4391 | |||
4392 | /** |
||
4393 | * @brief Correlation of Q7 sequences. |
||
4394 | * @param[in] pSrcA points to the first input sequence. |
||
4395 | * @param[in] srcALen length of the first input sequence. |
||
4396 | * @param[in] pSrcB points to the second input sequence. |
||
4397 | * @param[in] srcBLen length of the second input sequence. |
||
4398 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
||
4399 | */ |
||
4400 | void arm_correlate_q7( |
||
4401 | q7_t * pSrcA, |
||
4402 | uint32_t srcALen, |
||
4403 | q7_t * pSrcB, |
||
4404 | uint32_t srcBLen, |
||
4405 | q7_t * pDst); |
||
4406 | |||
4407 | |||
4408 | /** |
||
4409 | * @brief Instance structure for the floating-point sparse FIR filter. |
||
4410 | */ |
||
4411 | typedef struct |
||
4412 | { |
||
4413 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4414 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4415 | float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4416 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4417 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4418 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4419 | } arm_fir_sparse_instance_f32; |
||
4420 | |||
4421 | /** |
||
4422 | * @brief Instance structure for the Q31 sparse FIR filter. |
||
4423 | */ |
||
4424 | typedef struct |
||
4425 | { |
||
4426 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4427 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4428 | q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4429 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4430 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4431 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4432 | } arm_fir_sparse_instance_q31; |
||
4433 | |||
4434 | /** |
||
4435 | * @brief Instance structure for the Q15 sparse FIR filter. |
||
4436 | */ |
||
4437 | typedef struct |
||
4438 | { |
||
4439 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4440 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4441 | q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4442 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4443 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4444 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4445 | } arm_fir_sparse_instance_q15; |
||
4446 | |||
4447 | /** |
||
4448 | * @brief Instance structure for the Q7 sparse FIR filter. |
||
4449 | */ |
||
4450 | typedef struct |
||
4451 | { |
||
4452 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
||
4453 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
||
4454 | q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
||
4455 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
||
4456 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
||
4457 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
||
4458 | } arm_fir_sparse_instance_q7; |
||
4459 | |||
4460 | |||
4461 | /** |
||
4462 | * @brief Processing function for the floating-point sparse FIR filter. |
||
4463 | * @param[in] S points to an instance of the floating-point sparse FIR structure. |
||
4464 | * @param[in] pSrc points to the block of input data. |
||
4465 | * @param[out] pDst points to the block of output data |
||
4466 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
4467 | * @param[in] blockSize number of input samples to process per call. |
||
4468 | */ |
||
4469 | void arm_fir_sparse_f32( |
||
4470 | arm_fir_sparse_instance_f32 * S, |
||
4471 | float32_t * pSrc, |
||
4472 | float32_t * pDst, |
||
4473 | float32_t * pScratchIn, |
||
4474 | uint32_t blockSize); |
||
4475 | |||
4476 | |||
4477 | /** |
||
4478 | * @brief Initialization function for the floating-point sparse FIR filter. |
||
4479 | * @param[in,out] S points to an instance of the floating-point sparse FIR structure. |
||
4480 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
4481 | * @param[in] pCoeffs points to the array of filter coefficients. |
||
4482 | * @param[in] pState points to the state buffer. |
||
4483 | * @param[in] pTapDelay points to the array of offset times. |
||
4484 | * @param[in] maxDelay maximum offset time supported. |
||
4485 | * @param[in] blockSize number of samples that will be processed per block. |
||
4486 | */ |
||
4487 | void arm_fir_sparse_init_f32( |
||
4488 | arm_fir_sparse_instance_f32 * S, |
||
4489 | uint16_t numTaps, |
||
4490 | float32_t * pCoeffs, |
||
4491 | float32_t * pState, |
||
4492 | int32_t * pTapDelay, |
||
4493 | uint16_t maxDelay, |
||
4494 | uint32_t blockSize); |
||
4495 | |||
4496 | |||
4497 | /** |
||
4498 | * @brief Processing function for the Q31 sparse FIR filter. |
||
4499 | * @param[in] S points to an instance of the Q31 sparse FIR structure. |
||
4500 | * @param[in] pSrc points to the block of input data. |
||
4501 | * @param[out] pDst points to the block of output data |
||
4502 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
4503 | * @param[in] blockSize number of input samples to process per call. |
||
4504 | */ |
||
4505 | void arm_fir_sparse_q31( |
||
4506 | arm_fir_sparse_instance_q31 * S, |
||
4507 | q31_t * pSrc, |
||
4508 | q31_t * pDst, |
||
4509 | q31_t * pScratchIn, |
||
4510 | uint32_t blockSize); |
||
4511 | |||
4512 | |||
4513 | /** |
||
4514 | * @brief Initialization function for the Q31 sparse FIR filter. |
||
4515 | * @param[in,out] S points to an instance of the Q31 sparse FIR structure. |
||
4516 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
4517 | * @param[in] pCoeffs points to the array of filter coefficients. |
||
4518 | * @param[in] pState points to the state buffer. |
||
4519 | * @param[in] pTapDelay points to the array of offset times. |
||
4520 | * @param[in] maxDelay maximum offset time supported. |
||
4521 | * @param[in] blockSize number of samples that will be processed per block. |
||
4522 | */ |
||
4523 | void arm_fir_sparse_init_q31( |
||
4524 | arm_fir_sparse_instance_q31 * S, |
||
4525 | uint16_t numTaps, |
||
4526 | q31_t * pCoeffs, |
||
4527 | q31_t * pState, |
||
4528 | int32_t * pTapDelay, |
||
4529 | uint16_t maxDelay, |
||
4530 | uint32_t blockSize); |
||
4531 | |||
4532 | |||
4533 | /** |
||
4534 | * @brief Processing function for the Q15 sparse FIR filter. |
||
4535 | * @param[in] S points to an instance of the Q15 sparse FIR structure. |
||
4536 | * @param[in] pSrc points to the block of input data. |
||
4537 | * @param[out] pDst points to the block of output data |
||
4538 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
4539 | * @param[in] pScratchOut points to a temporary buffer of size blockSize. |
||
4540 | * @param[in] blockSize number of input samples to process per call. |
||
4541 | */ |
||
4542 | void arm_fir_sparse_q15( |
||
4543 | arm_fir_sparse_instance_q15 * S, |
||
4544 | q15_t * pSrc, |
||
4545 | q15_t * pDst, |
||
4546 | q15_t * pScratchIn, |
||
4547 | q31_t * pScratchOut, |
||
4548 | uint32_t blockSize); |
||
4549 | |||
4550 | |||
4551 | /** |
||
4552 | * @brief Initialization function for the Q15 sparse FIR filter. |
||
4553 | * @param[in,out] S points to an instance of the Q15 sparse FIR structure. |
||
4554 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
4555 | * @param[in] pCoeffs points to the array of filter coefficients. |
||
4556 | * @param[in] pState points to the state buffer. |
||
4557 | * @param[in] pTapDelay points to the array of offset times. |
||
4558 | * @param[in] maxDelay maximum offset time supported. |
||
4559 | * @param[in] blockSize number of samples that will be processed per block. |
||
4560 | */ |
||
4561 | void arm_fir_sparse_init_q15( |
||
4562 | arm_fir_sparse_instance_q15 * S, |
||
4563 | uint16_t numTaps, |
||
4564 | q15_t * pCoeffs, |
||
4565 | q15_t * pState, |
||
4566 | int32_t * pTapDelay, |
||
4567 | uint16_t maxDelay, |
||
4568 | uint32_t blockSize); |
||
4569 | |||
4570 | |||
4571 | /** |
||
4572 | * @brief Processing function for the Q7 sparse FIR filter. |
||
4573 | * @param[in] S points to an instance of the Q7 sparse FIR structure. |
||
4574 | * @param[in] pSrc points to the block of input data. |
||
4575 | * @param[out] pDst points to the block of output data |
||
4576 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
||
4577 | * @param[in] pScratchOut points to a temporary buffer of size blockSize. |
||
4578 | * @param[in] blockSize number of input samples to process per call. |
||
4579 | */ |
||
4580 | void arm_fir_sparse_q7( |
||
4581 | arm_fir_sparse_instance_q7 * S, |
||
4582 | q7_t * pSrc, |
||
4583 | q7_t * pDst, |
||
4584 | q7_t * pScratchIn, |
||
4585 | q31_t * pScratchOut, |
||
4586 | uint32_t blockSize); |
||
4587 | |||
4588 | |||
4589 | /** |
||
4590 | * @brief Initialization function for the Q7 sparse FIR filter. |
||
4591 | * @param[in,out] S points to an instance of the Q7 sparse FIR structure. |
||
4592 | * @param[in] numTaps number of nonzero coefficients in the filter. |
||
4593 | * @param[in] pCoeffs points to the array of filter coefficients. |
||
4594 | * @param[in] pState points to the state buffer. |
||
4595 | * @param[in] pTapDelay points to the array of offset times. |
||
4596 | * @param[in] maxDelay maximum offset time supported. |
||
4597 | * @param[in] blockSize number of samples that will be processed per block. |
||
4598 | */ |
||
4599 | void arm_fir_sparse_init_q7( |
||
4600 | arm_fir_sparse_instance_q7 * S, |
||
4601 | uint16_t numTaps, |
||
4602 | q7_t * pCoeffs, |
||
4603 | q7_t * pState, |
||
4604 | int32_t * pTapDelay, |
||
4605 | uint16_t maxDelay, |
||
4606 | uint32_t blockSize); |
||
4607 | |||
4608 | |||
4609 | /** |
||
4610 | * @brief Floating-point sin_cos function. |
||
4611 | * @param[in] theta input value in degrees |
||
4612 | * @param[out] pSinVal points to the processed sine output. |
||
4613 | * @param[out] pCosVal points to the processed cos output. |
||
4614 | */ |
||
4615 | void arm_sin_cos_f32( |
||
4616 | float32_t theta, |
||
4617 | float32_t * pSinVal, |
||
4618 | float32_t * pCosVal); |
||
4619 | |||
4620 | |||
4621 | /** |
||
4622 | * @brief Q31 sin_cos function. |
||
4623 | * @param[in] theta scaled input value in degrees |
||
4624 | * @param[out] pSinVal points to the processed sine output. |
||
4625 | * @param[out] pCosVal points to the processed cosine output. |
||
4626 | */ |
||
4627 | void arm_sin_cos_q31( |
||
4628 | q31_t theta, |
||
4629 | q31_t * pSinVal, |
||
4630 | q31_t * pCosVal); |
||
4631 | |||
4632 | |||
4633 | /** |
||
4634 | * @brief Floating-point complex conjugate. |
||
4635 | * @param[in] pSrc points to the input vector |
||
4636 | * @param[out] pDst points to the output vector |
||
4637 | * @param[in] numSamples number of complex samples in each vector |
||
4638 | */ |
||
4639 | void arm_cmplx_conj_f32( |
||
4640 | float32_t * pSrc, |
||
4641 | float32_t * pDst, |
||
4642 | uint32_t numSamples); |
||
4643 | |||
4644 | /** |
||
4645 | * @brief Q31 complex conjugate. |
||
4646 | * @param[in] pSrc points to the input vector |
||
4647 | * @param[out] pDst points to the output vector |
||
4648 | * @param[in] numSamples number of complex samples in each vector |
||
4649 | */ |
||
4650 | void arm_cmplx_conj_q31( |
||
4651 | q31_t * pSrc, |
||
4652 | q31_t * pDst, |
||
4653 | uint32_t numSamples); |
||
4654 | |||
4655 | |||
4656 | /** |
||
4657 | * @brief Q15 complex conjugate. |
||
4658 | * @param[in] pSrc points to the input vector |
||
4659 | * @param[out] pDst points to the output vector |
||
4660 | * @param[in] numSamples number of complex samples in each vector |
||
4661 | */ |
||
4662 | void arm_cmplx_conj_q15( |
||
4663 | q15_t * pSrc, |
||
4664 | q15_t * pDst, |
||
4665 | uint32_t numSamples); |
||
4666 | |||
4667 | |||
4668 | /** |
||
4669 | * @brief Floating-point complex magnitude squared |
||
4670 | * @param[in] pSrc points to the complex input vector |
||
4671 | * @param[out] pDst points to the real output vector |
||
4672 | * @param[in] numSamples number of complex samples in the input vector |
||
4673 | */ |
||
4674 | void arm_cmplx_mag_squared_f32( |
||
4675 | float32_t * pSrc, |
||
4676 | float32_t * pDst, |
||
4677 | uint32_t numSamples); |
||
4678 | |||
4679 | |||
4680 | /** |
||
4681 | * @brief Q31 complex magnitude squared |
||
4682 | * @param[in] pSrc points to the complex input vector |
||
4683 | * @param[out] pDst points to the real output vector |
||
4684 | * @param[in] numSamples number of complex samples in the input vector |
||
4685 | */ |
||
4686 | void arm_cmplx_mag_squared_q31( |
||
4687 | q31_t * pSrc, |
||
4688 | q31_t * pDst, |
||
4689 | uint32_t numSamples); |
||
4690 | |||
4691 | |||
4692 | /** |
||
4693 | * @brief Q15 complex magnitude squared |
||
4694 | * @param[in] pSrc points to the complex input vector |
||
4695 | * @param[out] pDst points to the real output vector |
||
4696 | * @param[in] numSamples number of complex samples in the input vector |
||
4697 | */ |
||
4698 | void arm_cmplx_mag_squared_q15( |
||
4699 | q15_t * pSrc, |
||
4700 | q15_t * pDst, |
||
4701 | uint32_t numSamples); |
||
4702 | |||
4703 | |||
4704 | /** |
||
4705 | * @ingroup groupController |
||
4706 | */ |
||
4707 | |||
4708 | /** |
||
4709 | * @defgroup PID PID Motor Control |
||
4710 | * |
||
4711 | * A Proportional Integral Derivative (PID) controller is a generic feedback control |
||
4712 | * loop mechanism widely used in industrial control systems. |
||
4713 | * A PID controller is the most commonly used type of feedback controller. |
||
4714 | * |
||
4715 | * This set of functions implements (PID) controllers |
||
4716 | * for Q15, Q31, and floating-point data types. The functions operate on a single sample |
||
4717 | * of data and each call to the function returns a single processed value. |
||
4718 | * <code>S</code> points to an instance of the PID control data structure. <code>in</code> |
||
4719 | * is the input sample value. The functions return the output value. |
||
4720 | * |
||
4721 | * \par Algorithm: |
||
4722 | * <pre> |
||
4723 | * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] |
||
4724 | * A0 = Kp + Ki + Kd |
||
4725 | * A1 = (-Kp ) - (2 * Kd ) |
||
4726 | * A2 = Kd </pre> |
||
4727 | * |
||
4728 | * \par |
||
4729 | * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant |
||
4730 | * |
||
4731 | * \par |
||
4732 | * \image html PID.gif "Proportional Integral Derivative Controller" |
||
4733 | * |
||
4734 | * \par |
||
4735 | * The PID controller calculates an "error" value as the difference between |
||
4736 | * the measured output and the reference input. |
||
4737 | * The controller attempts to minimize the error by adjusting the process control inputs. |
||
4738 | * The proportional value determines the reaction to the current error, |
||
4739 | * the integral value determines the reaction based on the sum of recent errors, |
||
4740 | * and the derivative value determines the reaction based on the rate at which the error has been changing. |
||
4741 | * |
||
4742 | * \par Instance Structure |
||
4743 | * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. |
||
4744 | * A separate instance structure must be defined for each PID Controller. |
||
4745 | * There are separate instance structure declarations for each of the 3 supported data types. |
||
4746 | * |
||
4747 | * \par Reset Functions |
||
4748 | * There is also an associated reset function for each data type which clears the state array. |
||
4749 | * |
||
4750 | * \par Initialization Functions |
||
4751 | * There is also an associated initialization function for each data type. |
||
4752 | * The initialization function performs the following operations: |
||
4753 | * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. |
||
4754 | * - Zeros out the values in the state buffer. |
||
4755 | * |
||
4756 | * \par |
||
4757 | * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. |
||
4758 | * |
||
4759 | * \par Fixed-Point Behavior |
||
4760 | * Care must be taken when using the fixed-point versions of the PID Controller functions. |
||
4761 | * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. |
||
4762 | * Refer to the function specific documentation below for usage guidelines. |
||
4763 | */ |
||
4764 | |||
4765 | /** |
||
4766 | * @addtogroup PID |
||
4767 | * @{ |
||
4768 | */ |
||
4769 | |||
4770 | /** |
||
4771 | * @brief Process function for the floating-point PID Control. |
||
4772 | * @param[in,out] S is an instance of the floating-point PID Control structure |
||
4773 | * @param[in] in input sample to process |
||
4774 | * @return out processed output sample. |
||
4775 | */ |
||
4776 | CMSIS_INLINE __STATIC_INLINE float32_t arm_pid_f32( |
||
4777 | arm_pid_instance_f32 * S, |
||
4778 | float32_t in) |
||
4779 | { |
||
4780 | float32_t out; |
||
4781 | |||
4782 | /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ |
||
4783 | out = (S->A0 * in) + |
||
4784 | (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); |
||
4785 | |||
4786 | /* Update state */ |
||
4787 | S->state[1] = S->state[0]; |
||
4788 | S->state[0] = in; |
||
4789 | S->state[2] = out; |
||
4790 | |||
4791 | /* return to application */ |
||
4792 | return (out); |
||
4793 | |||
4794 | } |
||
4795 | |||
4796 | /** |
||
4797 | * @brief Process function for the Q31 PID Control. |
||
4798 | * @param[in,out] S points to an instance of the Q31 PID Control structure |
||
4799 | * @param[in] in input sample to process |
||
4800 | * @return out processed output sample. |
||
4801 | * |
||
4802 | * <b>Scaling and Overflow Behavior:</b> |
||
4803 | * \par |
||
4804 | * The function is implemented using an internal 64-bit accumulator. |
||
4805 | * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. |
||
4806 | * Thus, if the accumulator result overflows it wraps around rather than clip. |
||
4807 | * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. |
||
4808 | * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. |
||
4809 | */ |
||
4810 | CMSIS_INLINE __STATIC_INLINE q31_t arm_pid_q31( |
||
4811 | arm_pid_instance_q31 * S, |
||
4812 | q31_t in) |
||
4813 | { |
||
4814 | q63_t acc; |
||
4815 | q31_t out; |
||
4816 | |||
4817 | /* acc = A0 * x[n] */ |
||
4818 | acc = (q63_t) S->A0 * in; |
||
4819 | |||
4820 | /* acc += A1 * x[n-1] */ |
||
4821 | acc += (q63_t) S->A1 * S->state[0]; |
||
4822 | |||
4823 | /* acc += A2 * x[n-2] */ |
||
4824 | acc += (q63_t) S->A2 * S->state[1]; |
||
4825 | |||
4826 | /* convert output to 1.31 format to add y[n-1] */ |
||
4827 | out = (q31_t) (acc >> 31U); |
||
4828 | |||
4829 | /* out += y[n-1] */ |
||
4830 | out += S->state[2]; |
||
4831 | |||
4832 | /* Update state */ |
||
4833 | S->state[1] = S->state[0]; |
||
4834 | S->state[0] = in; |
||
4835 | S->state[2] = out; |
||
4836 | |||
4837 | /* return to application */ |
||
4838 | return (out); |
||
4839 | } |
||
4840 | |||
4841 | |||
4842 | /** |
||
4843 | * @brief Process function for the Q15 PID Control. |
||
4844 | * @param[in,out] S points to an instance of the Q15 PID Control structure |
||
4845 | * @param[in] in input sample to process |
||
4846 | * @return out processed output sample. |
||
4847 | * |
||
4848 | * <b>Scaling and Overflow Behavior:</b> |
||
4849 | * \par |
||
4850 | * The function is implemented using a 64-bit internal accumulator. |
||
4851 | * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. |
||
4852 | * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. |
||
4853 | * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. |
||
4854 | * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. |
||
4855 | * Lastly, the accumulator is saturated to yield a result in 1.15 format. |
||
4856 | */ |
||
4857 | CMSIS_INLINE __STATIC_INLINE q15_t arm_pid_q15( |
||
4858 | arm_pid_instance_q15 * S, |
||
4859 | q15_t in) |
||
4860 | { |
||
4861 | q63_t acc; |
||
4862 | q15_t out; |
||
4863 | |||
4864 | #if defined (ARM_MATH_DSP) |
||
4865 | __SIMD32_TYPE *vstate; |
||
4866 | |||
4867 | /* Implementation of PID controller */ |
||
4868 | |||
4869 | /* acc = A0 * x[n] */ |
||
4870 | acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); |
||
4871 | |||
4872 | /* acc += A1 * x[n-1] + A2 * x[n-2] */ |
||
4873 | vstate = __SIMD32_CONST(S->state); |
||
4874 | acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); |
||
4875 | #else |
||
4876 | /* acc = A0 * x[n] */ |
||
4877 | acc = ((q31_t) S->A0) * in; |
||
4878 | |||
4879 | /* acc += A1 * x[n-1] + A2 * x[n-2] */ |
||
4880 | acc += (q31_t) S->A1 * S->state[0]; |
||
4881 | acc += (q31_t) S->A2 * S->state[1]; |
||
4882 | #endif |
||
4883 | |||
4884 | /* acc += y[n-1] */ |
||
4885 | acc += (q31_t) S->state[2] << 15; |
||
4886 | |||
4887 | /* saturate the output */ |
||
4888 | out = (q15_t) (__SSAT((acc >> 15), 16)); |
||
4889 | |||
4890 | /* Update state */ |
||
4891 | S->state[1] = S->state[0]; |
||
4892 | S->state[0] = in; |
||
4893 | S->state[2] = out; |
||
4894 | |||
4895 | /* return to application */ |
||
4896 | return (out); |
||
4897 | } |
||
4898 | |||
4899 | /** |
||
4900 | * @} end of PID group |
||
4901 | */ |
||
4902 | |||
4903 | |||
4904 | /** |
||
4905 | * @brief Floating-point matrix inverse. |
||
4906 | * @param[in] src points to the instance of the input floating-point matrix structure. |
||
4907 | * @param[out] dst points to the instance of the output floating-point matrix structure. |
||
4908 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
||
4909 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
||
4910 | */ |
||
4911 | arm_status arm_mat_inverse_f32( |
||
4912 | const arm_matrix_instance_f32 * src, |
||
4913 | arm_matrix_instance_f32 * dst); |
||
4914 | |||
4915 | |||
4916 | /** |
||
4917 | * @brief Floating-point matrix inverse. |
||
4918 | * @param[in] src points to the instance of the input floating-point matrix structure. |
||
4919 | * @param[out] dst points to the instance of the output floating-point matrix structure. |
||
4920 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
||
4921 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
||
4922 | */ |
||
4923 | arm_status arm_mat_inverse_f64( |
||
4924 | const arm_matrix_instance_f64 * src, |
||
4925 | arm_matrix_instance_f64 * dst); |
||
4926 | |||
4927 | |||
4928 | |||
4929 | /** |
||
4930 | * @ingroup groupController |
||
4931 | */ |
||
4932 | |||
4933 | /** |
||
4934 | * @defgroup clarke Vector Clarke Transform |
||
4935 | * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. |
||
4936 | * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents |
||
4937 | * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. |
||
4938 | * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below |
||
4939 | * \image html clarke.gif Stator current space vector and its components in (a,b). |
||
4940 | * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> |
||
4941 | * can be calculated using only <code>Ia</code> and <code>Ib</code>. |
||
4942 | * |
||
4943 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
4944 | * The library provides separate functions for Q31 and floating-point data types. |
||
4945 | * \par Algorithm |
||
4946 | * \image html clarkeFormula.gif |
||
4947 | * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and |
||
4948 | * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. |
||
4949 | * \par Fixed-Point Behavior |
||
4950 | * Care must be taken when using the Q31 version of the Clarke transform. |
||
4951 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
4952 | * Refer to the function specific documentation below for usage guidelines. |
||
4953 | */ |
||
4954 | |||
4955 | /** |
||
4956 | * @addtogroup clarke |
||
4957 | * @{ |
||
4958 | */ |
||
4959 | |||
4960 | /** |
||
4961 | * |
||
4962 | * @brief Floating-point Clarke transform |
||
4963 | * @param[in] Ia input three-phase coordinate <code>a</code> |
||
4964 | * @param[in] Ib input three-phase coordinate <code>b</code> |
||
4965 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
4966 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
4967 | */ |
||
4968 | CMSIS_INLINE __STATIC_INLINE void arm_clarke_f32( |
||
4969 | float32_t Ia, |
||
4970 | float32_t Ib, |
||
4971 | float32_t * pIalpha, |
||
4972 | float32_t * pIbeta) |
||
4973 | { |
||
4974 | /* Calculate pIalpha using the equation, pIalpha = Ia */ |
||
4975 | *pIalpha = Ia; |
||
4976 | |||
4977 | /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ |
||
4978 | *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); |
||
4979 | } |
||
4980 | |||
4981 | |||
4982 | /** |
||
4983 | * @brief Clarke transform for Q31 version |
||
4984 | * @param[in] Ia input three-phase coordinate <code>a</code> |
||
4985 | * @param[in] Ib input three-phase coordinate <code>b</code> |
||
4986 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
4987 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
4988 | * |
||
4989 | * <b>Scaling and Overflow Behavior:</b> |
||
4990 | * \par |
||
4991 | * The function is implemented using an internal 32-bit accumulator. |
||
4992 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
4993 | * There is saturation on the addition, hence there is no risk of overflow. |
||
4994 | */ |
||
4995 | CMSIS_INLINE __STATIC_INLINE void arm_clarke_q31( |
||
4996 | q31_t Ia, |
||
4997 | q31_t Ib, |
||
4998 | q31_t * pIalpha, |
||
4999 | q31_t * pIbeta) |
||
5000 | { |
||
5001 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5002 | |||
5003 | /* Calculating pIalpha from Ia by equation pIalpha = Ia */ |
||
5004 | *pIalpha = Ia; |
||
5005 | |||
5006 | /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ |
||
5007 | product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); |
||
5008 | |||
5009 | /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ |
||
5010 | product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); |
||
5011 | |||
5012 | /* pIbeta is calculated by adding the intermediate products */ |
||
5013 | *pIbeta = __QADD(product1, product2); |
||
5014 | } |
||
5015 | |||
5016 | /** |
||
5017 | * @} end of clarke group |
||
5018 | */ |
||
5019 | |||
5020 | /** |
||
5021 | * @brief Converts the elements of the Q7 vector to Q31 vector. |
||
5022 | * @param[in] pSrc input pointer |
||
5023 | * @param[out] pDst output pointer |
||
5024 | * @param[in] blockSize number of samples to process |
||
5025 | */ |
||
5026 | void arm_q7_to_q31( |
||
5027 | q7_t * pSrc, |
||
5028 | q31_t * pDst, |
||
5029 | uint32_t blockSize); |
||
5030 | |||
5031 | |||
5032 | |||
5033 | /** |
||
5034 | * @ingroup groupController |
||
5035 | */ |
||
5036 | |||
5037 | /** |
||
5038 | * @defgroup inv_clarke Vector Inverse Clarke Transform |
||
5039 | * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. |
||
5040 | * |
||
5041 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
5042 | * The library provides separate functions for Q31 and floating-point data types. |
||
5043 | * \par Algorithm |
||
5044 | * \image html clarkeInvFormula.gif |
||
5045 | * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and |
||
5046 | * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. |
||
5047 | * \par Fixed-Point Behavior |
||
5048 | * Care must be taken when using the Q31 version of the Clarke transform. |
||
5049 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
5050 | * Refer to the function specific documentation below for usage guidelines. |
||
5051 | */ |
||
5052 | |||
5053 | /** |
||
5054 | * @addtogroup inv_clarke |
||
5055 | * @{ |
||
5056 | */ |
||
5057 | |||
5058 | /** |
||
5059 | * @brief Floating-point Inverse Clarke transform |
||
5060 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha |
||
5061 | * @param[in] Ibeta input two-phase orthogonal vector axis beta |
||
5062 | * @param[out] pIa points to output three-phase coordinate <code>a</code> |
||
5063 | * @param[out] pIb points to output three-phase coordinate <code>b</code> |
||
5064 | */ |
||
5065 | CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_f32( |
||
5066 | float32_t Ialpha, |
||
5067 | float32_t Ibeta, |
||
5068 | float32_t * pIa, |
||
5069 | float32_t * pIb) |
||
5070 | { |
||
5071 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
||
5072 | *pIa = Ialpha; |
||
5073 | |||
5074 | /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ |
||
5075 | *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; |
||
5076 | } |
||
5077 | |||
5078 | |||
5079 | /** |
||
5080 | * @brief Inverse Clarke transform for Q31 version |
||
5081 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha |
||
5082 | * @param[in] Ibeta input two-phase orthogonal vector axis beta |
||
5083 | * @param[out] pIa points to output three-phase coordinate <code>a</code> |
||
5084 | * @param[out] pIb points to output three-phase coordinate <code>b</code> |
||
5085 | * |
||
5086 | * <b>Scaling and Overflow Behavior:</b> |
||
5087 | * \par |
||
5088 | * The function is implemented using an internal 32-bit accumulator. |
||
5089 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
5090 | * There is saturation on the subtraction, hence there is no risk of overflow. |
||
5091 | */ |
||
5092 | CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_q31( |
||
5093 | q31_t Ialpha, |
||
5094 | q31_t Ibeta, |
||
5095 | q31_t * pIa, |
||
5096 | q31_t * pIb) |
||
5097 | { |
||
5098 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5099 | |||
5100 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
||
5101 | *pIa = Ialpha; |
||
5102 | |||
5103 | /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ |
||
5104 | product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); |
||
5105 | |||
5106 | /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ |
||
5107 | product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); |
||
5108 | |||
5109 | /* pIb is calculated by subtracting the products */ |
||
5110 | *pIb = __QSUB(product2, product1); |
||
5111 | } |
||
5112 | |||
5113 | /** |
||
5114 | * @} end of inv_clarke group |
||
5115 | */ |
||
5116 | |||
5117 | /** |
||
5118 | * @brief Converts the elements of the Q7 vector to Q15 vector. |
||
5119 | * @param[in] pSrc input pointer |
||
5120 | * @param[out] pDst output pointer |
||
5121 | * @param[in] blockSize number of samples to process |
||
5122 | */ |
||
5123 | void arm_q7_to_q15( |
||
5124 | q7_t * pSrc, |
||
5125 | q15_t * pDst, |
||
5126 | uint32_t blockSize); |
||
5127 | |||
5128 | |||
5129 | |||
5130 | /** |
||
5131 | * @ingroup groupController |
||
5132 | */ |
||
5133 | |||
5134 | /** |
||
5135 | * @defgroup park Vector Park Transform |
||
5136 | * |
||
5137 | * Forward Park transform converts the input two-coordinate vector to flux and torque components. |
||
5138 | * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents |
||
5139 | * from the stationary to the moving reference frame and control the spatial relationship between |
||
5140 | * the stator vector current and rotor flux vector. |
||
5141 | * If we consider the d axis aligned with the rotor flux, the diagram below shows the |
||
5142 | * current vector and the relationship from the two reference frames: |
||
5143 | * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" |
||
5144 | * |
||
5145 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
5146 | * The library provides separate functions for Q31 and floating-point data types. |
||
5147 | * \par Algorithm |
||
5148 | * \image html parkFormula.gif |
||
5149 | * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, |
||
5150 | * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
||
5151 | * cosine and sine values of theta (rotor flux position). |
||
5152 | * \par Fixed-Point Behavior |
||
5153 | * Care must be taken when using the Q31 version of the Park transform. |
||
5154 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
5155 | * Refer to the function specific documentation below for usage guidelines. |
||
5156 | */ |
||
5157 | |||
5158 | /** |
||
5159 | * @addtogroup park |
||
5160 | * @{ |
||
5161 | */ |
||
5162 | |||
5163 | /** |
||
5164 | * @brief Floating-point Park transform |
||
5165 | * @param[in] Ialpha input two-phase vector coordinate alpha |
||
5166 | * @param[in] Ibeta input two-phase vector coordinate beta |
||
5167 | * @param[out] pId points to output rotor reference frame d |
||
5168 | * @param[out] pIq points to output rotor reference frame q |
||
5169 | * @param[in] sinVal sine value of rotation angle theta |
||
5170 | * @param[in] cosVal cosine value of rotation angle theta |
||
5171 | * |
||
5172 | * The function implements the forward Park transform. |
||
5173 | * |
||
5174 | */ |
||
5175 | CMSIS_INLINE __STATIC_INLINE void arm_park_f32( |
||
5176 | float32_t Ialpha, |
||
5177 | float32_t Ibeta, |
||
5178 | float32_t * pId, |
||
5179 | float32_t * pIq, |
||
5180 | float32_t sinVal, |
||
5181 | float32_t cosVal) |
||
5182 | { |
||
5183 | /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ |
||
5184 | *pId = Ialpha * cosVal + Ibeta * sinVal; |
||
5185 | |||
5186 | /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ |
||
5187 | *pIq = -Ialpha * sinVal + Ibeta * cosVal; |
||
5188 | } |
||
5189 | |||
5190 | |||
5191 | /** |
||
5192 | * @brief Park transform for Q31 version |
||
5193 | * @param[in] Ialpha input two-phase vector coordinate alpha |
||
5194 | * @param[in] Ibeta input two-phase vector coordinate beta |
||
5195 | * @param[out] pId points to output rotor reference frame d |
||
5196 | * @param[out] pIq points to output rotor reference frame q |
||
5197 | * @param[in] sinVal sine value of rotation angle theta |
||
5198 | * @param[in] cosVal cosine value of rotation angle theta |
||
5199 | * |
||
5200 | * <b>Scaling and Overflow Behavior:</b> |
||
5201 | * \par |
||
5202 | * The function is implemented using an internal 32-bit accumulator. |
||
5203 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
5204 | * There is saturation on the addition and subtraction, hence there is no risk of overflow. |
||
5205 | */ |
||
5206 | CMSIS_INLINE __STATIC_INLINE void arm_park_q31( |
||
5207 | q31_t Ialpha, |
||
5208 | q31_t Ibeta, |
||
5209 | q31_t * pId, |
||
5210 | q31_t * pIq, |
||
5211 | q31_t sinVal, |
||
5212 | q31_t cosVal) |
||
5213 | { |
||
5214 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5215 | q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
||
5216 | |||
5217 | /* Intermediate product is calculated by (Ialpha * cosVal) */ |
||
5218 | product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); |
||
5219 | |||
5220 | /* Intermediate product is calculated by (Ibeta * sinVal) */ |
||
5221 | product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); |
||
5222 | |||
5223 | |||
5224 | /* Intermediate product is calculated by (Ialpha * sinVal) */ |
||
5225 | product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); |
||
5226 | |||
5227 | /* Intermediate product is calculated by (Ibeta * cosVal) */ |
||
5228 | product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); |
||
5229 | |||
5230 | /* Calculate pId by adding the two intermediate products 1 and 2 */ |
||
5231 | *pId = __QADD(product1, product2); |
||
5232 | |||
5233 | /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ |
||
5234 | *pIq = __QSUB(product4, product3); |
||
5235 | } |
||
5236 | |||
5237 | /** |
||
5238 | * @} end of park group |
||
5239 | */ |
||
5240 | |||
5241 | /** |
||
5242 | * @brief Converts the elements of the Q7 vector to floating-point vector. |
||
5243 | * @param[in] pSrc is input pointer |
||
5244 | * @param[out] pDst is output pointer |
||
5245 | * @param[in] blockSize is the number of samples to process |
||
5246 | */ |
||
5247 | void arm_q7_to_float( |
||
5248 | q7_t * pSrc, |
||
5249 | float32_t * pDst, |
||
5250 | uint32_t blockSize); |
||
5251 | |||
5252 | |||
5253 | /** |
||
5254 | * @ingroup groupController |
||
5255 | */ |
||
5256 | |||
5257 | /** |
||
5258 | * @defgroup inv_park Vector Inverse Park transform |
||
5259 | * Inverse Park transform converts the input flux and torque components to two-coordinate vector. |
||
5260 | * |
||
5261 | * The function operates on a single sample of data and each call to the function returns the processed output. |
||
5262 | * The library provides separate functions for Q31 and floating-point data types. |
||
5263 | * \par Algorithm |
||
5264 | * \image html parkInvFormula.gif |
||
5265 | * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, |
||
5266 | * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
||
5267 | * cosine and sine values of theta (rotor flux position). |
||
5268 | * \par Fixed-Point Behavior |
||
5269 | * Care must be taken when using the Q31 version of the Park transform. |
||
5270 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
||
5271 | * Refer to the function specific documentation below for usage guidelines. |
||
5272 | */ |
||
5273 | |||
5274 | /** |
||
5275 | * @addtogroup inv_park |
||
5276 | * @{ |
||
5277 | */ |
||
5278 | |||
5279 | /** |
||
5280 | * @brief Floating-point Inverse Park transform |
||
5281 | * @param[in] Id input coordinate of rotor reference frame d |
||
5282 | * @param[in] Iq input coordinate of rotor reference frame q |
||
5283 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
5284 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
5285 | * @param[in] sinVal sine value of rotation angle theta |
||
5286 | * @param[in] cosVal cosine value of rotation angle theta |
||
5287 | */ |
||
5288 | CMSIS_INLINE __STATIC_INLINE void arm_inv_park_f32( |
||
5289 | float32_t Id, |
||
5290 | float32_t Iq, |
||
5291 | float32_t * pIalpha, |
||
5292 | float32_t * pIbeta, |
||
5293 | float32_t sinVal, |
||
5294 | float32_t cosVal) |
||
5295 | { |
||
5296 | /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ |
||
5297 | *pIalpha = Id * cosVal - Iq * sinVal; |
||
5298 | |||
5299 | /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ |
||
5300 | *pIbeta = Id * sinVal + Iq * cosVal; |
||
5301 | } |
||
5302 | |||
5303 | |||
5304 | /** |
||
5305 | * @brief Inverse Park transform for Q31 version |
||
5306 | * @param[in] Id input coordinate of rotor reference frame d |
||
5307 | * @param[in] Iq input coordinate of rotor reference frame q |
||
5308 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
||
5309 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
||
5310 | * @param[in] sinVal sine value of rotation angle theta |
||
5311 | * @param[in] cosVal cosine value of rotation angle theta |
||
5312 | * |
||
5313 | * <b>Scaling and Overflow Behavior:</b> |
||
5314 | * \par |
||
5315 | * The function is implemented using an internal 32-bit accumulator. |
||
5316 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
||
5317 | * There is saturation on the addition, hence there is no risk of overflow. |
||
5318 | */ |
||
5319 | CMSIS_INLINE __STATIC_INLINE void arm_inv_park_q31( |
||
5320 | q31_t Id, |
||
5321 | q31_t Iq, |
||
5322 | q31_t * pIalpha, |
||
5323 | q31_t * pIbeta, |
||
5324 | q31_t sinVal, |
||
5325 | q31_t cosVal) |
||
5326 | { |
||
5327 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
||
5328 | q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
||
5329 | |||
5330 | /* Intermediate product is calculated by (Id * cosVal) */ |
||
5331 | product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); |
||
5332 | |||
5333 | /* Intermediate product is calculated by (Iq * sinVal) */ |
||
5334 | product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); |
||
5335 | |||
5336 | |||
5337 | /* Intermediate product is calculated by (Id * sinVal) */ |
||
5338 | product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); |
||
5339 | |||
5340 | /* Intermediate product is calculated by (Iq * cosVal) */ |
||
5341 | product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); |
||
5342 | |||
5343 | /* Calculate pIalpha by using the two intermediate products 1 and 2 */ |
||
5344 | *pIalpha = __QSUB(product1, product2); |
||
5345 | |||
5346 | /* Calculate pIbeta by using the two intermediate products 3 and 4 */ |
||
5347 | *pIbeta = __QADD(product4, product3); |
||
5348 | } |
||
5349 | |||
5350 | /** |
||
5351 | * @} end of Inverse park group |
||
5352 | */ |
||
5353 | |||
5354 | |||
5355 | /** |
||
5356 | * @brief Converts the elements of the Q31 vector to floating-point vector. |
||
5357 | * @param[in] pSrc is input pointer |
||
5358 | * @param[out] pDst is output pointer |
||
5359 | * @param[in] blockSize is the number of samples to process |
||
5360 | */ |
||
5361 | void arm_q31_to_float( |
||
5362 | q31_t * pSrc, |
||
5363 | float32_t * pDst, |
||
5364 | uint32_t blockSize); |
||
5365 | |||
5366 | /** |
||
5367 | * @ingroup groupInterpolation |
||
5368 | */ |
||
5369 | |||
5370 | /** |
||
5371 | * @defgroup LinearInterpolate Linear Interpolation |
||
5372 | * |
||
5373 | * Linear interpolation is a method of curve fitting using linear polynomials. |
||
5374 | * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line |
||
5375 | * |
||
5376 | * \par |
||
5377 | * \image html LinearInterp.gif "Linear interpolation" |
||
5378 | * |
||
5379 | * \par |
||
5380 | * A Linear Interpolate function calculates an output value(y), for the input(x) |
||
5381 | * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) |
||
5382 | * |
||
5383 | * \par Algorithm: |
||
5384 | * <pre> |
||
5385 | * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) |
||
5386 | * where x0, x1 are nearest values of input x |
||
5387 | * y0, y1 are nearest values to output y |
||
5388 | * </pre> |
||
5389 | * |
||
5390 | * \par |
||
5391 | * This set of functions implements Linear interpolation process |
||
5392 | * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single |
||
5393 | * sample of data and each call to the function returns a single processed value. |
||
5394 | * <code>S</code> points to an instance of the Linear Interpolate function data structure. |
||
5395 | * <code>x</code> is the input sample value. The functions returns the output value. |
||
5396 | * |
||
5397 | * \par |
||
5398 | * if x is outside of the table boundary, Linear interpolation returns first value of the table |
||
5399 | * if x is below input range and returns last value of table if x is above range. |
||
5400 | */ |
||
5401 | |||
5402 | /** |
||
5403 | * @addtogroup LinearInterpolate |
||
5404 | * @{ |
||
5405 | */ |
||
5406 | |||
5407 | /** |
||
5408 | * @brief Process function for the floating-point Linear Interpolation Function. |
||
5409 | * @param[in,out] S is an instance of the floating-point Linear Interpolation structure |
||
5410 | * @param[in] x input sample to process |
||
5411 | * @return y processed output sample. |
||
5412 | * |
||
5413 | */ |
||
5414 | CMSIS_INLINE __STATIC_INLINE float32_t arm_linear_interp_f32( |
||
5415 | arm_linear_interp_instance_f32 * S, |
||
5416 | float32_t x) |
||
5417 | { |
||
5418 | float32_t y; |
||
5419 | float32_t x0, x1; /* Nearest input values */ |
||
5420 | float32_t y0, y1; /* Nearest output values */ |
||
5421 | float32_t xSpacing = S->xSpacing; /* spacing between input values */ |
||
5422 | int32_t i; /* Index variable */ |
||
5423 | float32_t *pYData = S->pYData; /* pointer to output table */ |
||
5424 | |||
5425 | /* Calculation of index */ |
||
5426 | i = (int32_t) ((x - S->x1) / xSpacing); |
||
5427 | |||
5428 | if (i < 0) |
||
5429 | { |
||
5430 | /* Iniatilize output for below specified range as least output value of table */ |
||
5431 | y = pYData[0]; |
||
5432 | } |
||
5433 | else if ((uint32_t)i >= S->nValues) |
||
5434 | { |
||
5435 | /* Iniatilize output for above specified range as last output value of table */ |
||
5436 | y = pYData[S->nValues - 1]; |
||
5437 | } |
||
5438 | else |
||
5439 | { |
||
5440 | /* Calculation of nearest input values */ |
||
5441 | x0 = S->x1 + i * xSpacing; |
||
5442 | x1 = S->x1 + (i + 1) * xSpacing; |
||
5443 | |||
5444 | /* Read of nearest output values */ |
||
5445 | y0 = pYData[i]; |
||
5446 | y1 = pYData[i + 1]; |
||
5447 | |||
5448 | /* Calculation of output */ |
||
5449 | y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); |
||
5450 | |||
5451 | } |
||
5452 | |||
5453 | /* returns output value */ |
||
5454 | return (y); |
||
5455 | } |
||
5456 | |||
5457 | |||
5458 | /** |
||
5459 | * |
||
5460 | * @brief Process function for the Q31 Linear Interpolation Function. |
||
5461 | * @param[in] pYData pointer to Q31 Linear Interpolation table |
||
5462 | * @param[in] x input sample to process |
||
5463 | * @param[in] nValues number of table values |
||
5464 | * @return y processed output sample. |
||
5465 | * |
||
5466 | * \par |
||
5467 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
5468 | * This function can support maximum of table size 2^12. |
||
5469 | * |
||
5470 | */ |
||
5471 | CMSIS_INLINE __STATIC_INLINE q31_t arm_linear_interp_q31( |
||
5472 | q31_t * pYData, |
||
5473 | q31_t x, |
||
5474 | uint32_t nValues) |
||
5475 | { |
||
5476 | q31_t y; /* output */ |
||
5477 | q31_t y0, y1; /* Nearest output values */ |
||
5478 | q31_t fract; /* fractional part */ |
||
5479 | int32_t index; /* Index to read nearest output values */ |
||
5480 | |||
5481 | /* Input is in 12.20 format */ |
||
5482 | /* 12 bits for the table index */ |
||
5483 | /* Index value calculation */ |
||
5484 | index = ((x & (q31_t)0xFFF00000) >> 20); |
||
5485 | |||
5486 | if (index >= (int32_t)(nValues - 1)) |
||
5487 | { |
||
5488 | return (pYData[nValues - 1]); |
||
5489 | } |
||
5490 | else if (index < 0) |
||
5491 | { |
||
5492 | return (pYData[0]); |
||
5493 | } |
||
5494 | else |
||
5495 | { |
||
5496 | /* 20 bits for the fractional part */ |
||
5497 | /* shift left by 11 to keep fract in 1.31 format */ |
||
5498 | fract = (x & 0x000FFFFF) << 11; |
||
5499 | |||
5500 | /* Read two nearest output values from the index in 1.31(q31) format */ |
||
5501 | y0 = pYData[index]; |
||
5502 | y1 = pYData[index + 1]; |
||
5503 | |||
5504 | /* Calculation of y0 * (1-fract) and y is in 2.30 format */ |
||
5505 | y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); |
||
5506 | |||
5507 | /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ |
||
5508 | y += ((q31_t) (((q63_t) y1 * fract) >> 32)); |
||
5509 | |||
5510 | /* Convert y to 1.31 format */ |
||
5511 | return (y << 1U); |
||
5512 | } |
||
5513 | } |
||
5514 | |||
5515 | |||
5516 | /** |
||
5517 | * |
||
5518 | * @brief Process function for the Q15 Linear Interpolation Function. |
||
5519 | * @param[in] pYData pointer to Q15 Linear Interpolation table |
||
5520 | * @param[in] x input sample to process |
||
5521 | * @param[in] nValues number of table values |
||
5522 | * @return y processed output sample. |
||
5523 | * |
||
5524 | * \par |
||
5525 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
5526 | * This function can support maximum of table size 2^12. |
||
5527 | * |
||
5528 | */ |
||
5529 | CMSIS_INLINE __STATIC_INLINE q15_t arm_linear_interp_q15( |
||
5530 | q15_t * pYData, |
||
5531 | q31_t x, |
||
5532 | uint32_t nValues) |
||
5533 | { |
||
5534 | q63_t y; /* output */ |
||
5535 | q15_t y0, y1; /* Nearest output values */ |
||
5536 | q31_t fract; /* fractional part */ |
||
5537 | int32_t index; /* Index to read nearest output values */ |
||
5538 | |||
5539 | /* Input is in 12.20 format */ |
||
5540 | /* 12 bits for the table index */ |
||
5541 | /* Index value calculation */ |
||
5542 | index = ((x & (int32_t)0xFFF00000) >> 20); |
||
5543 | |||
5544 | if (index >= (int32_t)(nValues - 1)) |
||
5545 | { |
||
5546 | return (pYData[nValues - 1]); |
||
5547 | } |
||
5548 | else if (index < 0) |
||
5549 | { |
||
5550 | return (pYData[0]); |
||
5551 | } |
||
5552 | else |
||
5553 | { |
||
5554 | /* 20 bits for the fractional part */ |
||
5555 | /* fract is in 12.20 format */ |
||
5556 | fract = (x & 0x000FFFFF); |
||
5557 | |||
5558 | /* Read two nearest output values from the index */ |
||
5559 | y0 = pYData[index]; |
||
5560 | y1 = pYData[index + 1]; |
||
5561 | |||
5562 | /* Calculation of y0 * (1-fract) and y is in 13.35 format */ |
||
5563 | y = ((q63_t) y0 * (0xFFFFF - fract)); |
||
5564 | |||
5565 | /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ |
||
5566 | y += ((q63_t) y1 * (fract)); |
||
5567 | |||
5568 | /* convert y to 1.15 format */ |
||
5569 | return (q15_t) (y >> 20); |
||
5570 | } |
||
5571 | } |
||
5572 | |||
5573 | |||
5574 | /** |
||
5575 | * |
||
5576 | * @brief Process function for the Q7 Linear Interpolation Function. |
||
5577 | * @param[in] pYData pointer to Q7 Linear Interpolation table |
||
5578 | * @param[in] x input sample to process |
||
5579 | * @param[in] nValues number of table values |
||
5580 | * @return y processed output sample. |
||
5581 | * |
||
5582 | * \par |
||
5583 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
||
5584 | * This function can support maximum of table size 2^12. |
||
5585 | */ |
||
5586 | CMSIS_INLINE __STATIC_INLINE q7_t arm_linear_interp_q7( |
||
5587 | q7_t * pYData, |
||
5588 | q31_t x, |
||
5589 | uint32_t nValues) |
||
5590 | { |
||
5591 | q31_t y; /* output */ |
||
5592 | q7_t y0, y1; /* Nearest output values */ |
||
5593 | q31_t fract; /* fractional part */ |
||
5594 | uint32_t index; /* Index to read nearest output values */ |
||
5595 | |||
5596 | /* Input is in 12.20 format */ |
||
5597 | /* 12 bits for the table index */ |
||
5598 | /* Index value calculation */ |
||
5599 | if (x < 0) |
||
5600 | { |
||
5601 | return (pYData[0]); |
||
5602 | } |
||
5603 | index = (x >> 20) & 0xfff; |
||
5604 | |||
5605 | if (index >= (nValues - 1)) |
||
5606 | { |
||
5607 | return (pYData[nValues - 1]); |
||
5608 | } |
||
5609 | else |
||
5610 | { |
||
5611 | /* 20 bits for the fractional part */ |
||
5612 | /* fract is in 12.20 format */ |
||
5613 | fract = (x & 0x000FFFFF); |
||
5614 | |||
5615 | /* Read two nearest output values from the index and are in 1.7(q7) format */ |
||
5616 | y0 = pYData[index]; |
||
5617 | y1 = pYData[index + 1]; |
||
5618 | |||
5619 | /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ |
||
5620 | y = ((y0 * (0xFFFFF - fract))); |
||
5621 | |||
5622 | /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ |
||
5623 | y += (y1 * fract); |
||
5624 | |||
5625 | /* convert y to 1.7(q7) format */ |
||
5626 | return (q7_t) (y >> 20); |
||
5627 | } |
||
5628 | } |
||
5629 | |||
5630 | /** |
||
5631 | * @} end of LinearInterpolate group |
||
5632 | */ |
||
5633 | |||
5634 | /** |
||
5635 | * @brief Fast approximation to the trigonometric sine function for floating-point data. |
||
5636 | * @param[in] x input value in radians. |
||
5637 | * @return sin(x). |
||
5638 | */ |
||
5639 | float32_t arm_sin_f32( |
||
5640 | float32_t x); |
||
5641 | |||
5642 | |||
5643 | /** |
||
5644 | * @brief Fast approximation to the trigonometric sine function for Q31 data. |
||
5645 | * @param[in] x Scaled input value in radians. |
||
5646 | * @return sin(x). |
||
5647 | */ |
||
5648 | q31_t arm_sin_q31( |
||
5649 | q31_t x); |
||
5650 | |||
5651 | |||
5652 | /** |
||
5653 | * @brief Fast approximation to the trigonometric sine function for Q15 data. |
||
5654 | * @param[in] x Scaled input value in radians. |
||
5655 | * @return sin(x). |
||
5656 | */ |
||
5657 | q15_t arm_sin_q15( |
||
5658 | q15_t x); |
||
5659 | |||
5660 | |||
5661 | /** |
||
5662 | * @brief Fast approximation to the trigonometric cosine function for floating-point data. |
||
5663 | * @param[in] x input value in radians. |
||
5664 | * @return cos(x). |
||
5665 | */ |
||
5666 | float32_t arm_cos_f32( |
||
5667 | float32_t x); |
||
5668 | |||
5669 | |||
5670 | /** |
||
5671 | * @brief Fast approximation to the trigonometric cosine function for Q31 data. |
||
5672 | * @param[in] x Scaled input value in radians. |
||
5673 | * @return cos(x). |
||
5674 | */ |
||
5675 | q31_t arm_cos_q31( |
||
5676 | q31_t x); |
||
5677 | |||
5678 | |||
5679 | /** |
||
5680 | * @brief Fast approximation to the trigonometric cosine function for Q15 data. |
||
5681 | * @param[in] x Scaled input value in radians. |
||
5682 | * @return cos(x). |
||
5683 | */ |
||
5684 | q15_t arm_cos_q15( |
||
5685 | q15_t x); |
||
5686 | |||
5687 | |||
5688 | /** |
||
5689 | * @ingroup groupFastMath |
||
5690 | */ |
||
5691 | |||
5692 | |||
5693 | /** |
||
5694 | * @defgroup SQRT Square Root |
||
5695 | * |
||
5696 | * Computes the square root of a number. |
||
5697 | * There are separate functions for Q15, Q31, and floating-point data types. |
||
5698 | * The square root function is computed using the Newton-Raphson algorithm. |
||
5699 | * This is an iterative algorithm of the form: |
||
5700 | * <pre> |
||
5701 | * x1 = x0 - f(x0)/f'(x0) |
||
5702 | * </pre> |
||
5703 | * where <code>x1</code> is the current estimate, |
||
5704 | * <code>x0</code> is the previous estimate, and |
||
5705 | * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. |
||
5706 | * For the square root function, the algorithm reduces to: |
||
5707 | * <pre> |
||
5708 | * x0 = in/2 [initial guess] |
||
5709 | * x1 = 1/2 * ( x0 + in / x0) [each iteration] |
||
5710 | * </pre> |
||
5711 | */ |
||
5712 | |||
5713 | |||
5714 | /** |
||
5715 | * @addtogroup SQRT |
||
5716 | * @{ |
||
5717 | */ |
||
5718 | |||
5719 | /** |
||
5720 | * @brief Floating-point square root function. |
||
5721 | * @param[in] in input value. |
||
5722 | * @param[out] pOut square root of input value. |
||
5723 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
||
5724 | * <code>in</code> is negative value and returns zero output for negative values. |
||
5725 | */ |
||
5726 | CMSIS_INLINE __STATIC_INLINE arm_status arm_sqrt_f32( |
||
5727 | float32_t in, |
||
5728 | float32_t * pOut) |
||
5729 | { |
||
5730 | if (in >= 0.0f) |
||
5731 | { |
||
5732 | |||
5733 | #if (__FPU_USED == 1) && defined ( __CC_ARM ) |
||
5734 | *pOut = __sqrtf(in); |
||
5735 | #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) |
||
5736 | *pOut = __builtin_sqrtf(in); |
||
5737 | #elif (__FPU_USED == 1) && defined(__GNUC__) |
||
5738 | *pOut = __builtin_sqrtf(in); |
||
5739 | #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000) |
||
5740 | __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); |
||
5741 | #else |
||
5742 | *pOut = sqrtf(in); |
||
5743 | #endif |
||
5744 | |||
5745 | return (ARM_MATH_SUCCESS); |
||
5746 | } |
||
5747 | else |
||
5748 | { |
||
5749 | *pOut = 0.0f; |
||
5750 | return (ARM_MATH_ARGUMENT_ERROR); |
||
5751 | } |
||
5752 | } |
||
5753 | |||
5754 | |||
5755 | /** |
||
5756 | * @brief Q31 square root function. |
||
5757 | * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. |
||
5758 | * @param[out] pOut square root of input value. |
||
5759 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
||
5760 | * <code>in</code> is negative value and returns zero output for negative values. |
||
5761 | */ |
||
5762 | arm_status arm_sqrt_q31( |
||
5763 | q31_t in, |
||
5764 | q31_t * pOut); |
||
5765 | |||
5766 | |||
5767 | /** |
||
5768 | * @brief Q15 square root function. |
||
5769 | * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. |
||
5770 | * @param[out] pOut square root of input value. |
||
5771 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
||
5772 | * <code>in</code> is negative value and returns zero output for negative values. |
||
5773 | */ |
||
5774 | arm_status arm_sqrt_q15( |
||
5775 | q15_t in, |
||
5776 | q15_t * pOut); |
||
5777 | |||
5778 | /** |
||
5779 | * @} end of SQRT group |
||
5780 | */ |
||
5781 | |||
5782 | |||
5783 | /** |
||
5784 | * @brief floating-point Circular write function. |
||
5785 | */ |
||
5786 | CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_f32( |
||
5787 | int32_t * circBuffer, |
||
5788 | int32_t L, |
||
5789 | uint16_t * writeOffset, |
||
5790 | int32_t bufferInc, |
||
5791 | const int32_t * src, |
||
5792 | int32_t srcInc, |
||
5793 | uint32_t blockSize) |
||
5794 | { |
||
5795 | uint32_t i = 0U; |
||
5796 | int32_t wOffset; |
||
5797 | |||
5798 | /* Copy the value of Index pointer that points |
||
5799 | * to the current location where the input samples to be copied */ |
||
5800 | wOffset = *writeOffset; |
||
5801 | |||
5802 | /* Loop over the blockSize */ |
||
5803 | i = blockSize; |
||
5804 | |||
5805 | while (i > 0U) |
||
5806 | { |
||
5807 | /* copy the input sample to the circular buffer */ |
||
5808 | circBuffer[wOffset] = *src; |
||
5809 | |||
5810 | /* Update the input pointer */ |
||
5811 | src += srcInc; |
||
5812 | |||
5813 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
5814 | wOffset += bufferInc; |
||
5815 | if (wOffset >= L) |
||
5816 | wOffset -= L; |
||
5817 | |||
5818 | /* Decrement the loop counter */ |
||
5819 | i--; |
||
5820 | } |
||
5821 | |||
5822 | /* Update the index pointer */ |
||
5823 | *writeOffset = (uint16_t)wOffset; |
||
5824 | } |
||
5825 | |||
5826 | |||
5827 | |||
5828 | /** |
||
5829 | * @brief floating-point Circular Read function. |
||
5830 | */ |
||
5831 | CMSIS_INLINE __STATIC_INLINE void arm_circularRead_f32( |
||
5832 | int32_t * circBuffer, |
||
5833 | int32_t L, |
||
5834 | int32_t * readOffset, |
||
5835 | int32_t bufferInc, |
||
5836 | int32_t * dst, |
||
5837 | int32_t * dst_base, |
||
5838 | int32_t dst_length, |
||
5839 | int32_t dstInc, |
||
5840 | uint32_t blockSize) |
||
5841 | { |
||
5842 | uint32_t i = 0U; |
||
5843 | int32_t rOffset, dst_end; |
||
5844 | |||
5845 | /* Copy the value of Index pointer that points |
||
5846 | * to the current location from where the input samples to be read */ |
||
5847 | rOffset = *readOffset; |
||
5848 | dst_end = (int32_t) (dst_base + dst_length); |
||
5849 | |||
5850 | /* Loop over the blockSize */ |
||
5851 | i = blockSize; |
||
5852 | |||
5853 | while (i > 0U) |
||
5854 | { |
||
5855 | /* copy the sample from the circular buffer to the destination buffer */ |
||
5856 | *dst = circBuffer[rOffset]; |
||
5857 | |||
5858 | /* Update the input pointer */ |
||
5859 | dst += dstInc; |
||
5860 | |||
5861 | if (dst == (int32_t *) dst_end) |
||
5862 | { |
||
5863 | dst = dst_base; |
||
5864 | } |
||
5865 | |||
5866 | /* Circularly update rOffset. Watch out for positive and negative value */ |
||
5867 | rOffset += bufferInc; |
||
5868 | |||
5869 | if (rOffset >= L) |
||
5870 | { |
||
5871 | rOffset -= L; |
||
5872 | } |
||
5873 | |||
5874 | /* Decrement the loop counter */ |
||
5875 | i--; |
||
5876 | } |
||
5877 | |||
5878 | /* Update the index pointer */ |
||
5879 | *readOffset = rOffset; |
||
5880 | } |
||
5881 | |||
5882 | |||
5883 | /** |
||
5884 | * @brief Q15 Circular write function. |
||
5885 | */ |
||
5886 | CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q15( |
||
5887 | q15_t * circBuffer, |
||
5888 | int32_t L, |
||
5889 | uint16_t * writeOffset, |
||
5890 | int32_t bufferInc, |
||
5891 | const q15_t * src, |
||
5892 | int32_t srcInc, |
||
5893 | uint32_t blockSize) |
||
5894 | { |
||
5895 | uint32_t i = 0U; |
||
5896 | int32_t wOffset; |
||
5897 | |||
5898 | /* Copy the value of Index pointer that points |
||
5899 | * to the current location where the input samples to be copied */ |
||
5900 | wOffset = *writeOffset; |
||
5901 | |||
5902 | /* Loop over the blockSize */ |
||
5903 | i = blockSize; |
||
5904 | |||
5905 | while (i > 0U) |
||
5906 | { |
||
5907 | /* copy the input sample to the circular buffer */ |
||
5908 | circBuffer[wOffset] = *src; |
||
5909 | |||
5910 | /* Update the input pointer */ |
||
5911 | src += srcInc; |
||
5912 | |||
5913 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
5914 | wOffset += bufferInc; |
||
5915 | if (wOffset >= L) |
||
5916 | wOffset -= L; |
||
5917 | |||
5918 | /* Decrement the loop counter */ |
||
5919 | i--; |
||
5920 | } |
||
5921 | |||
5922 | /* Update the index pointer */ |
||
5923 | *writeOffset = (uint16_t)wOffset; |
||
5924 | } |
||
5925 | |||
5926 | |||
5927 | /** |
||
5928 | * @brief Q15 Circular Read function. |
||
5929 | */ |
||
5930 | CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q15( |
||
5931 | q15_t * circBuffer, |
||
5932 | int32_t L, |
||
5933 | int32_t * readOffset, |
||
5934 | int32_t bufferInc, |
||
5935 | q15_t * dst, |
||
5936 | q15_t * dst_base, |
||
5937 | int32_t dst_length, |
||
5938 | int32_t dstInc, |
||
5939 | uint32_t blockSize) |
||
5940 | { |
||
5941 | uint32_t i = 0; |
||
5942 | int32_t rOffset, dst_end; |
||
5943 | |||
5944 | /* Copy the value of Index pointer that points |
||
5945 | * to the current location from where the input samples to be read */ |
||
5946 | rOffset = *readOffset; |
||
5947 | |||
5948 | dst_end = (int32_t) (dst_base + dst_length); |
||
5949 | |||
5950 | /* Loop over the blockSize */ |
||
5951 | i = blockSize; |
||
5952 | |||
5953 | while (i > 0U) |
||
5954 | { |
||
5955 | /* copy the sample from the circular buffer to the destination buffer */ |
||
5956 | *dst = circBuffer[rOffset]; |
||
5957 | |||
5958 | /* Update the input pointer */ |
||
5959 | dst += dstInc; |
||
5960 | |||
5961 | if (dst == (q15_t *) dst_end) |
||
5962 | { |
||
5963 | dst = dst_base; |
||
5964 | } |
||
5965 | |||
5966 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
5967 | rOffset += bufferInc; |
||
5968 | |||
5969 | if (rOffset >= L) |
||
5970 | { |
||
5971 | rOffset -= L; |
||
5972 | } |
||
5973 | |||
5974 | /* Decrement the loop counter */ |
||
5975 | i--; |
||
5976 | } |
||
5977 | |||
5978 | /* Update the index pointer */ |
||
5979 | *readOffset = rOffset; |
||
5980 | } |
||
5981 | |||
5982 | |||
5983 | /** |
||
5984 | * @brief Q7 Circular write function. |
||
5985 | */ |
||
5986 | CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q7( |
||
5987 | q7_t * circBuffer, |
||
5988 | int32_t L, |
||
5989 | uint16_t * writeOffset, |
||
5990 | int32_t bufferInc, |
||
5991 | const q7_t * src, |
||
5992 | int32_t srcInc, |
||
5993 | uint32_t blockSize) |
||
5994 | { |
||
5995 | uint32_t i = 0U; |
||
5996 | int32_t wOffset; |
||
5997 | |||
5998 | /* Copy the value of Index pointer that points |
||
5999 | * to the current location where the input samples to be copied */ |
||
6000 | wOffset = *writeOffset; |
||
6001 | |||
6002 | /* Loop over the blockSize */ |
||
6003 | i = blockSize; |
||
6004 | |||
6005 | while (i > 0U) |
||
6006 | { |
||
6007 | /* copy the input sample to the circular buffer */ |
||
6008 | circBuffer[wOffset] = *src; |
||
6009 | |||
6010 | /* Update the input pointer */ |
||
6011 | src += srcInc; |
||
6012 | |||
6013 | /* Circularly update wOffset. Watch out for positive and negative value */ |
||
6014 | wOffset += bufferInc; |
||
6015 | if (wOffset >= L) |
||
6016 | wOffset -= L; |
||
6017 | |||
6018 | /* Decrement the loop counter */ |
||
6019 | i--; |
||
6020 | } |
||
6021 | |||
6022 | /* Update the index pointer */ |
||
6023 | *writeOffset = (uint16_t)wOffset; |
||
6024 | } |
||
6025 | |||
6026 | |||
6027 | /** |
||
6028 | * @brief Q7 Circular Read function. |
||
6029 | */ |
||
6030 | CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q7( |
||
6031 | q7_t * circBuffer, |
||
6032 | int32_t L, |
||
6033 | int32_t * readOffset, |
||
6034 | int32_t bufferInc, |
||
6035 | q7_t * dst, |
||
6036 | q7_t * dst_base, |
||
6037 | int32_t dst_length, |
||
6038 | int32_t dstInc, |
||
6039 | uint32_t blockSize) |
||
6040 | { |
||
6041 | uint32_t i = 0; |
||
6042 | int32_t rOffset, dst_end; |
||
6043 | |||
6044 | /* Copy the value of Index pointer that points |
||
6045 | * to the current location from where the input samples to be read */ |
||
6046 | rOffset = *readOffset; |
||
6047 | |||
6048 | dst_end = (int32_t) (dst_base + dst_length); |
||
6049 | |||
6050 | /* Loop over the blockSize */ |
||
6051 | i = blockSize; |
||
6052 | |||
6053 | while (i > 0U) |
||
6054 | { |
||
6055 | /* copy the sample from the circular buffer to the destination buffer */ |
||
6056 | *dst = circBuffer[rOffset]; |
||
6057 | |||
6058 | /* Update the input pointer */ |
||
6059 | dst += dstInc; |
||
6060 | |||
6061 | if (dst == (q7_t *) dst_end) |
||
6062 | { |
||
6063 | dst = dst_base; |
||
6064 | } |
||
6065 | |||
6066 | /* Circularly update rOffset. Watch out for positive and negative value */ |
||
6067 | rOffset += bufferInc; |
||
6068 | |||
6069 | if (rOffset >= L) |
||
6070 | { |
||
6071 | rOffset -= L; |
||
6072 | } |
||
6073 | |||
6074 | /* Decrement the loop counter */ |
||
6075 | i--; |
||
6076 | } |
||
6077 | |||
6078 | /* Update the index pointer */ |
||
6079 | *readOffset = rOffset; |
||
6080 | } |
||
6081 | |||
6082 | |||
6083 | /** |
||
6084 | * @brief Sum of the squares of the elements of a Q31 vector. |
||
6085 | * @param[in] pSrc is input pointer |
||
6086 | * @param[in] blockSize is the number of samples to process |
||
6087 | * @param[out] pResult is output value. |
||
6088 | */ |
||
6089 | void arm_power_q31( |
||
6090 | q31_t * pSrc, |
||
6091 | uint32_t blockSize, |
||
6092 | q63_t * pResult); |
||
6093 | |||
6094 | |||
6095 | /** |
||
6096 | * @brief Sum of the squares of the elements of a floating-point vector. |
||
6097 | * @param[in] pSrc is input pointer |
||
6098 | * @param[in] blockSize is the number of samples to process |
||
6099 | * @param[out] pResult is output value. |
||
6100 | */ |
||
6101 | void arm_power_f32( |
||
6102 | float32_t * pSrc, |
||
6103 | uint32_t blockSize, |
||
6104 | float32_t * pResult); |
||
6105 | |||
6106 | |||
6107 | /** |
||
6108 | * @brief Sum of the squares of the elements of a Q15 vector. |
||
6109 | * @param[in] pSrc is input pointer |
||
6110 | * @param[in] blockSize is the number of samples to process |
||
6111 | * @param[out] pResult is output value. |
||
6112 | */ |
||
6113 | void arm_power_q15( |
||
6114 | q15_t * pSrc, |
||
6115 | uint32_t blockSize, |
||
6116 | q63_t * pResult); |
||
6117 | |||
6118 | |||
6119 | /** |
||
6120 | * @brief Sum of the squares of the elements of a Q7 vector. |
||
6121 | * @param[in] pSrc is input pointer |
||
6122 | * @param[in] blockSize is the number of samples to process |
||
6123 | * @param[out] pResult is output value. |
||
6124 | */ |
||
6125 | void arm_power_q7( |
||
6126 | q7_t * pSrc, |
||
6127 | uint32_t blockSize, |
||
6128 | q31_t * pResult); |
||
6129 | |||
6130 | |||
6131 | /** |
||
6132 | * @brief Mean value of a Q7 vector. |
||
6133 | * @param[in] pSrc is input pointer |
||
6134 | * @param[in] blockSize is the number of samples to process |
||
6135 | * @param[out] pResult is output value. |
||
6136 | */ |
||
6137 | void arm_mean_q7( |
||
6138 | q7_t * pSrc, |
||
6139 | uint32_t blockSize, |
||
6140 | q7_t * pResult); |
||
6141 | |||
6142 | |||
6143 | /** |
||
6144 | * @brief Mean value of a Q15 vector. |
||
6145 | * @param[in] pSrc is input pointer |
||
6146 | * @param[in] blockSize is the number of samples to process |
||
6147 | * @param[out] pResult is output value. |
||
6148 | */ |
||
6149 | void arm_mean_q15( |
||
6150 | q15_t * pSrc, |
||
6151 | uint32_t blockSize, |
||
6152 | q15_t * pResult); |
||
6153 | |||
6154 | |||
6155 | /** |
||
6156 | * @brief Mean value of a Q31 vector. |
||
6157 | * @param[in] pSrc is input pointer |
||
6158 | * @param[in] blockSize is the number of samples to process |
||
6159 | * @param[out] pResult is output value. |
||
6160 | */ |
||
6161 | void arm_mean_q31( |
||
6162 | q31_t * pSrc, |
||
6163 | uint32_t blockSize, |
||
6164 | q31_t * pResult); |
||
6165 | |||
6166 | |||
6167 | /** |
||
6168 | * @brief Mean value of a floating-point vector. |
||
6169 | * @param[in] pSrc is input pointer |
||
6170 | * @param[in] blockSize is the number of samples to process |
||
6171 | * @param[out] pResult is output value. |
||
6172 | */ |
||
6173 | void arm_mean_f32( |
||
6174 | float32_t * pSrc, |
||
6175 | uint32_t blockSize, |
||
6176 | float32_t * pResult); |
||
6177 | |||
6178 | |||
6179 | /** |
||
6180 | * @brief Variance of the elements of a floating-point vector. |
||
6181 | * @param[in] pSrc is input pointer |
||
6182 | * @param[in] blockSize is the number of samples to process |
||
6183 | * @param[out] pResult is output value. |
||
6184 | */ |
||
6185 | void arm_var_f32( |
||
6186 | float32_t * pSrc, |
||
6187 | uint32_t blockSize, |
||
6188 | float32_t * pResult); |
||
6189 | |||
6190 | |||
6191 | /** |
||
6192 | * @brief Variance of the elements of a Q31 vector. |
||
6193 | * @param[in] pSrc is input pointer |
||
6194 | * @param[in] blockSize is the number of samples to process |
||
6195 | * @param[out] pResult is output value. |
||
6196 | */ |
||
6197 | void arm_var_q31( |
||
6198 | q31_t * pSrc, |
||
6199 | uint32_t blockSize, |
||
6200 | q31_t * pResult); |
||
6201 | |||
6202 | |||
6203 | /** |
||
6204 | * @brief Variance of the elements of a Q15 vector. |
||
6205 | * @param[in] pSrc is input pointer |
||
6206 | * @param[in] blockSize is the number of samples to process |
||
6207 | * @param[out] pResult is output value. |
||
6208 | */ |
||
6209 | void arm_var_q15( |
||
6210 | q15_t * pSrc, |
||
6211 | uint32_t blockSize, |
||
6212 | q15_t * pResult); |
||
6213 | |||
6214 | |||
6215 | /** |
||
6216 | * @brief Root Mean Square of the elements of a floating-point vector. |
||
6217 | * @param[in] pSrc is input pointer |
||
6218 | * @param[in] blockSize is the number of samples to process |
||
6219 | * @param[out] pResult is output value. |
||
6220 | */ |
||
6221 | void arm_rms_f32( |
||
6222 | float32_t * pSrc, |
||
6223 | uint32_t blockSize, |
||
6224 | float32_t * pResult); |
||
6225 | |||
6226 | |||
6227 | /** |
||
6228 | * @brief Root Mean Square of the elements of a Q31 vector. |
||
6229 | * @param[in] pSrc is input pointer |
||
6230 | * @param[in] blockSize is the number of samples to process |
||
6231 | * @param[out] pResult is output value. |
||
6232 | */ |
||
6233 | void arm_rms_q31( |
||
6234 | q31_t * pSrc, |
||
6235 | uint32_t blockSize, |
||
6236 | q31_t * pResult); |
||
6237 | |||
6238 | |||
6239 | /** |
||
6240 | * @brief Root Mean Square of the elements of a Q15 vector. |
||
6241 | * @param[in] pSrc is input pointer |
||
6242 | * @param[in] blockSize is the number of samples to process |
||
6243 | * @param[out] pResult is output value. |
||
6244 | */ |
||
6245 | void arm_rms_q15( |
||
6246 | q15_t * pSrc, |
||
6247 | uint32_t blockSize, |
||
6248 | q15_t * pResult); |
||
6249 | |||
6250 | |||
6251 | /** |
||
6252 | * @brief Standard deviation of the elements of a floating-point vector. |
||
6253 | * @param[in] pSrc is input pointer |
||
6254 | * @param[in] blockSize is the number of samples to process |
||
6255 | * @param[out] pResult is output value. |
||
6256 | */ |
||
6257 | void arm_std_f32( |
||
6258 | float32_t * pSrc, |
||
6259 | uint32_t blockSize, |
||
6260 | float32_t * pResult); |
||
6261 | |||
6262 | |||
6263 | /** |
||
6264 | * @brief Standard deviation of the elements of a Q31 vector. |
||
6265 | * @param[in] pSrc is input pointer |
||
6266 | * @param[in] blockSize is the number of samples to process |
||
6267 | * @param[out] pResult is output value. |
||
6268 | */ |
||
6269 | void arm_std_q31( |
||
6270 | q31_t * pSrc, |
||
6271 | uint32_t blockSize, |
||
6272 | q31_t * pResult); |
||
6273 | |||
6274 | |||
6275 | /** |
||
6276 | * @brief Standard deviation of the elements of a Q15 vector. |
||
6277 | * @param[in] pSrc is input pointer |
||
6278 | * @param[in] blockSize is the number of samples to process |
||
6279 | * @param[out] pResult is output value. |
||
6280 | */ |
||
6281 | void arm_std_q15( |
||
6282 | q15_t * pSrc, |
||
6283 | uint32_t blockSize, |
||
6284 | q15_t * pResult); |
||
6285 | |||
6286 | |||
6287 | /** |
||
6288 | * @brief Floating-point complex magnitude |
||
6289 | * @param[in] pSrc points to the complex input vector |
||
6290 | * @param[out] pDst points to the real output vector |
||
6291 | * @param[in] numSamples number of complex samples in the input vector |
||
6292 | */ |
||
6293 | void arm_cmplx_mag_f32( |
||
6294 | float32_t * pSrc, |
||
6295 | float32_t * pDst, |
||
6296 | uint32_t numSamples); |
||
6297 | |||
6298 | |||
6299 | /** |
||
6300 | * @brief Q31 complex magnitude |
||
6301 | * @param[in] pSrc points to the complex input vector |
||
6302 | * @param[out] pDst points to the real output vector |
||
6303 | * @param[in] numSamples number of complex samples in the input vector |
||
6304 | */ |
||
6305 | void arm_cmplx_mag_q31( |
||
6306 | q31_t * pSrc, |
||
6307 | q31_t * pDst, |
||
6308 | uint32_t numSamples); |
||
6309 | |||
6310 | |||
6311 | /** |
||
6312 | * @brief Q15 complex magnitude |
||
6313 | * @param[in] pSrc points to the complex input vector |
||
6314 | * @param[out] pDst points to the real output vector |
||
6315 | * @param[in] numSamples number of complex samples in the input vector |
||
6316 | */ |
||
6317 | void arm_cmplx_mag_q15( |
||
6318 | q15_t * pSrc, |
||
6319 | q15_t * pDst, |
||
6320 | uint32_t numSamples); |
||
6321 | |||
6322 | |||
6323 | /** |
||
6324 | * @brief Q15 complex dot product |
||
6325 | * @param[in] pSrcA points to the first input vector |
||
6326 | * @param[in] pSrcB points to the second input vector |
||
6327 | * @param[in] numSamples number of complex samples in each vector |
||
6328 | * @param[out] realResult real part of the result returned here |
||
6329 | * @param[out] imagResult imaginary part of the result returned here |
||
6330 | */ |
||
6331 | void arm_cmplx_dot_prod_q15( |
||
6332 | q15_t * pSrcA, |
||
6333 | q15_t * pSrcB, |
||
6334 | uint32_t numSamples, |
||
6335 | q31_t * realResult, |
||
6336 | q31_t * imagResult); |
||
6337 | |||
6338 | |||
6339 | /** |
||
6340 | * @brief Q31 complex dot product |
||
6341 | * @param[in] pSrcA points to the first input vector |
||
6342 | * @param[in] pSrcB points to the second input vector |
||
6343 | * @param[in] numSamples number of complex samples in each vector |
||
6344 | * @param[out] realResult real part of the result returned here |
||
6345 | * @param[out] imagResult imaginary part of the result returned here |
||
6346 | */ |
||
6347 | void arm_cmplx_dot_prod_q31( |
||
6348 | q31_t * pSrcA, |
||
6349 | q31_t * pSrcB, |
||
6350 | uint32_t numSamples, |
||
6351 | q63_t * realResult, |
||
6352 | q63_t * imagResult); |
||
6353 | |||
6354 | |||
6355 | /** |
||
6356 | * @brief Floating-point complex dot product |
||
6357 | * @param[in] pSrcA points to the first input vector |
||
6358 | * @param[in] pSrcB points to the second input vector |
||
6359 | * @param[in] numSamples number of complex samples in each vector |
||
6360 | * @param[out] realResult real part of the result returned here |
||
6361 | * @param[out] imagResult imaginary part of the result returned here |
||
6362 | */ |
||
6363 | void arm_cmplx_dot_prod_f32( |
||
6364 | float32_t * pSrcA, |
||
6365 | float32_t * pSrcB, |
||
6366 | uint32_t numSamples, |
||
6367 | float32_t * realResult, |
||
6368 | float32_t * imagResult); |
||
6369 | |||
6370 | |||
6371 | /** |
||
6372 | * @brief Q15 complex-by-real multiplication |
||
6373 | * @param[in] pSrcCmplx points to the complex input vector |
||
6374 | * @param[in] pSrcReal points to the real input vector |
||
6375 | * @param[out] pCmplxDst points to the complex output vector |
||
6376 | * @param[in] numSamples number of samples in each vector |
||
6377 | */ |
||
6378 | void arm_cmplx_mult_real_q15( |
||
6379 | q15_t * pSrcCmplx, |
||
6380 | q15_t * pSrcReal, |
||
6381 | q15_t * pCmplxDst, |
||
6382 | uint32_t numSamples); |
||
6383 | |||
6384 | |||
6385 | /** |
||
6386 | * @brief Q31 complex-by-real multiplication |
||
6387 | * @param[in] pSrcCmplx points to the complex input vector |
||
6388 | * @param[in] pSrcReal points to the real input vector |
||
6389 | * @param[out] pCmplxDst points to the complex output vector |
||
6390 | * @param[in] numSamples number of samples in each vector |
||
6391 | */ |
||
6392 | void arm_cmplx_mult_real_q31( |
||
6393 | q31_t * pSrcCmplx, |
||
6394 | q31_t * pSrcReal, |
||
6395 | q31_t * pCmplxDst, |
||
6396 | uint32_t numSamples); |
||
6397 | |||
6398 | |||
6399 | /** |
||
6400 | * @brief Floating-point complex-by-real multiplication |
||
6401 | * @param[in] pSrcCmplx points to the complex input vector |
||
6402 | * @param[in] pSrcReal points to the real input vector |
||
6403 | * @param[out] pCmplxDst points to the complex output vector |
||
6404 | * @param[in] numSamples number of samples in each vector |
||
6405 | */ |
||
6406 | void arm_cmplx_mult_real_f32( |
||
6407 | float32_t * pSrcCmplx, |
||
6408 | float32_t * pSrcReal, |
||
6409 | float32_t * pCmplxDst, |
||
6410 | uint32_t numSamples); |
||
6411 | |||
6412 | |||
6413 | /** |
||
6414 | * @brief Minimum value of a Q7 vector. |
||
6415 | * @param[in] pSrc is input pointer |
||
6416 | * @param[in] blockSize is the number of samples to process |
||
6417 | * @param[out] result is output pointer |
||
6418 | * @param[in] index is the array index of the minimum value in the input buffer. |
||
6419 | */ |
||
6420 | void arm_min_q7( |
||
6421 | q7_t * pSrc, |
||
6422 | uint32_t blockSize, |
||
6423 | q7_t * result, |
||
6424 | uint32_t * index); |
||
6425 | |||
6426 | |||
6427 | /** |
||
6428 | * @brief Minimum value of a Q15 vector. |
||
6429 | * @param[in] pSrc is input pointer |
||
6430 | * @param[in] blockSize is the number of samples to process |
||
6431 | * @param[out] pResult is output pointer |
||
6432 | * @param[in] pIndex is the array index of the minimum value in the input buffer. |
||
6433 | */ |
||
6434 | void arm_min_q15( |
||
6435 | q15_t * pSrc, |
||
6436 | uint32_t blockSize, |
||
6437 | q15_t * pResult, |
||
6438 | uint32_t * pIndex); |
||
6439 | |||
6440 | |||
6441 | /** |
||
6442 | * @brief Minimum value of a Q31 vector. |
||
6443 | * @param[in] pSrc is input pointer |
||
6444 | * @param[in] blockSize is the number of samples to process |
||
6445 | * @param[out] pResult is output pointer |
||
6446 | * @param[out] pIndex is the array index of the minimum value in the input buffer. |
||
6447 | */ |
||
6448 | void arm_min_q31( |
||
6449 | q31_t * pSrc, |
||
6450 | uint32_t blockSize, |
||
6451 | q31_t * pResult, |
||
6452 | uint32_t * pIndex); |
||
6453 | |||
6454 | |||
6455 | /** |
||
6456 | * @brief Minimum value of a floating-point vector. |
||
6457 | * @param[in] pSrc is input pointer |
||
6458 | * @param[in] blockSize is the number of samples to process |
||
6459 | * @param[out] pResult is output pointer |
||
6460 | * @param[out] pIndex is the array index of the minimum value in the input buffer. |
||
6461 | */ |
||
6462 | void arm_min_f32( |
||
6463 | float32_t * pSrc, |
||
6464 | uint32_t blockSize, |
||
6465 | float32_t * pResult, |
||
6466 | uint32_t * pIndex); |
||
6467 | |||
6468 | |||
6469 | /** |
||
6470 | * @brief Maximum value of a Q7 vector. |
||
6471 | * @param[in] pSrc points to the input buffer |
||
6472 | * @param[in] blockSize length of the input vector |
||
6473 | * @param[out] pResult maximum value returned here |
||
6474 | * @param[out] pIndex index of maximum value returned here |
||
6475 | */ |
||
6476 | void arm_max_q7( |
||
6477 | q7_t * pSrc, |
||
6478 | uint32_t blockSize, |
||
6479 | q7_t * pResult, |
||
6480 | uint32_t * pIndex); |
||
6481 | |||
6482 | |||
6483 | /** |
||
6484 | * @brief Maximum value of a Q15 vector. |
||
6485 | * @param[in] pSrc points to the input buffer |
||
6486 | * @param[in] blockSize length of the input vector |
||
6487 | * @param[out] pResult maximum value returned here |
||
6488 | * @param[out] pIndex index of maximum value returned here |
||
6489 | */ |
||
6490 | void arm_max_q15( |
||
6491 | q15_t * pSrc, |
||
6492 | uint32_t blockSize, |
||
6493 | q15_t * pResult, |
||
6494 | uint32_t * pIndex); |
||
6495 | |||
6496 | |||
6497 | /** |
||
6498 | * @brief Maximum value of a Q31 vector. |
||
6499 | * @param[in] pSrc points to the input buffer |
||
6500 | * @param[in] blockSize length of the input vector |
||
6501 | * @param[out] pResult maximum value returned here |
||
6502 | * @param[out] pIndex index of maximum value returned here |
||
6503 | */ |
||
6504 | void arm_max_q31( |
||
6505 | q31_t * pSrc, |
||
6506 | uint32_t blockSize, |
||
6507 | q31_t * pResult, |
||
6508 | uint32_t * pIndex); |
||
6509 | |||
6510 | |||
6511 | /** |
||
6512 | * @brief Maximum value of a floating-point vector. |
||
6513 | * @param[in] pSrc points to the input buffer |
||
6514 | * @param[in] blockSize length of the input vector |
||
6515 | * @param[out] pResult maximum value returned here |
||
6516 | * @param[out] pIndex index of maximum value returned here |
||
6517 | */ |
||
6518 | void arm_max_f32( |
||
6519 | float32_t * pSrc, |
||
6520 | uint32_t blockSize, |
||
6521 | float32_t * pResult, |
||
6522 | uint32_t * pIndex); |
||
6523 | |||
6524 | |||
6525 | /** |
||
6526 | * @brief Q15 complex-by-complex multiplication |
||
6527 | * @param[in] pSrcA points to the first input vector |
||
6528 | * @param[in] pSrcB points to the second input vector |
||
6529 | * @param[out] pDst points to the output vector |
||
6530 | * @param[in] numSamples number of complex samples in each vector |
||
6531 | */ |
||
6532 | void arm_cmplx_mult_cmplx_q15( |
||
6533 | q15_t * pSrcA, |
||
6534 | q15_t * pSrcB, |
||
6535 | q15_t * pDst, |
||
6536 | uint32_t numSamples); |
||
6537 | |||
6538 | |||
6539 | /** |
||
6540 | * @brief Q31 complex-by-complex multiplication |
||
6541 | * @param[in] pSrcA points to the first input vector |
||
6542 | * @param[in] pSrcB points to the second input vector |
||
6543 | * @param[out] pDst points to the output vector |
||
6544 | * @param[in] numSamples number of complex samples in each vector |
||
6545 | */ |
||
6546 | void arm_cmplx_mult_cmplx_q31( |
||
6547 | q31_t * pSrcA, |
||
6548 | q31_t * pSrcB, |
||
6549 | q31_t * pDst, |
||
6550 | uint32_t numSamples); |
||
6551 | |||
6552 | |||
6553 | /** |
||
6554 | * @brief Floating-point complex-by-complex multiplication |
||
6555 | * @param[in] pSrcA points to the first input vector |
||
6556 | * @param[in] pSrcB points to the second input vector |
||
6557 | * @param[out] pDst points to the output vector |
||
6558 | * @param[in] numSamples number of complex samples in each vector |
||
6559 | */ |
||
6560 | void arm_cmplx_mult_cmplx_f32( |
||
6561 | float32_t * pSrcA, |
||
6562 | float32_t * pSrcB, |
||
6563 | float32_t * pDst, |
||
6564 | uint32_t numSamples); |
||
6565 | |||
6566 | |||
6567 | /** |
||
6568 | * @brief Converts the elements of the floating-point vector to Q31 vector. |
||
6569 | * @param[in] pSrc points to the floating-point input vector |
||
6570 | * @param[out] pDst points to the Q31 output vector |
||
6571 | * @param[in] blockSize length of the input vector |
||
6572 | */ |
||
6573 | void arm_float_to_q31( |
||
6574 | float32_t * pSrc, |
||
6575 | q31_t * pDst, |
||
6576 | uint32_t blockSize); |
||
6577 | |||
6578 | |||
6579 | /** |
||
6580 | * @brief Converts the elements of the floating-point vector to Q15 vector. |
||
6581 | * @param[in] pSrc points to the floating-point input vector |
||
6582 | * @param[out] pDst points to the Q15 output vector |
||
6583 | * @param[in] blockSize length of the input vector |
||
6584 | */ |
||
6585 | void arm_float_to_q15( |
||
6586 | float32_t * pSrc, |
||
6587 | q15_t * pDst, |
||
6588 | uint32_t blockSize); |
||
6589 | |||
6590 | |||
6591 | /** |
||
6592 | * @brief Converts the elements of the floating-point vector to Q7 vector. |
||
6593 | * @param[in] pSrc points to the floating-point input vector |
||
6594 | * @param[out] pDst points to the Q7 output vector |
||
6595 | * @param[in] blockSize length of the input vector |
||
6596 | */ |
||
6597 | void arm_float_to_q7( |
||
6598 | float32_t * pSrc, |
||
6599 | q7_t * pDst, |
||
6600 | uint32_t blockSize); |
||
6601 | |||
6602 | |||
6603 | /** |
||
6604 | * @brief Converts the elements of the Q31 vector to Q15 vector. |
||
6605 | * @param[in] pSrc is input pointer |
||
6606 | * @param[out] pDst is output pointer |
||
6607 | * @param[in] blockSize is the number of samples to process |
||
6608 | */ |
||
6609 | void arm_q31_to_q15( |
||
6610 | q31_t * pSrc, |
||
6611 | q15_t * pDst, |
||
6612 | uint32_t blockSize); |
||
6613 | |||
6614 | |||
6615 | /** |
||
6616 | * @brief Converts the elements of the Q31 vector to Q7 vector. |
||
6617 | * @param[in] pSrc is input pointer |
||
6618 | * @param[out] pDst is output pointer |
||
6619 | * @param[in] blockSize is the number of samples to process |
||
6620 | */ |
||
6621 | void arm_q31_to_q7( |
||
6622 | q31_t * pSrc, |
||
6623 | q7_t * pDst, |
||
6624 | uint32_t blockSize); |
||
6625 | |||
6626 | |||
6627 | /** |
||
6628 | * @brief Converts the elements of the Q15 vector to floating-point vector. |
||
6629 | * @param[in] pSrc is input pointer |
||
6630 | * @param[out] pDst is output pointer |
||
6631 | * @param[in] blockSize is the number of samples to process |
||
6632 | */ |
||
6633 | void arm_q15_to_float( |
||
6634 | q15_t * pSrc, |
||
6635 | float32_t * pDst, |
||
6636 | uint32_t blockSize); |
||
6637 | |||
6638 | |||
6639 | /** |
||
6640 | * @brief Converts the elements of the Q15 vector to Q31 vector. |
||
6641 | * @param[in] pSrc is input pointer |
||
6642 | * @param[out] pDst is output pointer |
||
6643 | * @param[in] blockSize is the number of samples to process |
||
6644 | */ |
||
6645 | void arm_q15_to_q31( |
||
6646 | q15_t * pSrc, |
||
6647 | q31_t * pDst, |
||
6648 | uint32_t blockSize); |
||
6649 | |||
6650 | |||
6651 | /** |
||
6652 | * @brief Converts the elements of the Q15 vector to Q7 vector. |
||
6653 | * @param[in] pSrc is input pointer |
||
6654 | * @param[out] pDst is output pointer |
||
6655 | * @param[in] blockSize is the number of samples to process |
||
6656 | */ |
||
6657 | void arm_q15_to_q7( |
||
6658 | q15_t * pSrc, |
||
6659 | q7_t * pDst, |
||
6660 | uint32_t blockSize); |
||
6661 | |||
6662 | |||
6663 | /** |
||
6664 | * @ingroup groupInterpolation |
||
6665 | */ |
||
6666 | |||
6667 | /** |
||
6668 | * @defgroup BilinearInterpolate Bilinear Interpolation |
||
6669 | * |
||
6670 | * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. |
||
6671 | * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process |
||
6672 | * determines values between the grid points. |
||
6673 | * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. |
||
6674 | * Bilinear interpolation is often used in image processing to rescale images. |
||
6675 | * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. |
||
6676 | * |
||
6677 | * <b>Algorithm</b> |
||
6678 | * \par |
||
6679 | * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. |
||
6680 | * For floating-point, the instance structure is defined as: |
||
6681 | * <pre> |
||
6682 | * typedef struct |
||
6683 | * { |
||
6684 | * uint16_t numRows; |
||
6685 | * uint16_t numCols; |
||
6686 | * float32_t *pData; |
||
6687 | * } arm_bilinear_interp_instance_f32; |
||
6688 | * </pre> |
||
6689 | * |
||
6690 | * \par |
||
6691 | * where <code>numRows</code> specifies the number of rows in the table; |
||
6692 | * <code>numCols</code> specifies the number of columns in the table; |
||
6693 | * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. |
||
6694 | * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. |
||
6695 | * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. |
||
6696 | * |
||
6697 | * \par |
||
6698 | * Let <code>(x, y)</code> specify the desired interpolation point. Then define: |
||
6699 | * <pre> |
||
6700 | * XF = floor(x) |
||
6701 | * YF = floor(y) |
||
6702 | * </pre> |
||
6703 | * \par |
||
6704 | * The interpolated output point is computed as: |
||
6705 | * <pre> |
||
6706 | * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) |
||
6707 | * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) |
||
6708 | * + f(XF, YF+1) * (1-(x-XF))*(y-YF) |
||
6709 | * + f(XF+1, YF+1) * (x-XF)*(y-YF) |
||
6710 | * </pre> |
||
6711 | * Note that the coordinates (x, y) contain integer and fractional components. |
||
6712 | * The integer components specify which portion of the table to use while the |
||
6713 | * fractional components control the interpolation processor. |
||
6714 | * |
||
6715 | * \par |
||
6716 | * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. |
||
6717 | */ |
||
6718 | |||
6719 | /** |
||
6720 | * @addtogroup BilinearInterpolate |
||
6721 | * @{ |
||
6722 | */ |
||
6723 | |||
6724 | |||
6725 | /** |
||
6726 | * |
||
6727 | * @brief Floating-point bilinear interpolation. |
||
6728 | * @param[in,out] S points to an instance of the interpolation structure. |
||
6729 | * @param[in] X interpolation coordinate. |
||
6730 | * @param[in] Y interpolation coordinate. |
||
6731 | * @return out interpolated value. |
||
6732 | */ |
||
6733 | CMSIS_INLINE __STATIC_INLINE float32_t arm_bilinear_interp_f32( |
||
6734 | const arm_bilinear_interp_instance_f32 * S, |
||
6735 | float32_t X, |
||
6736 | float32_t Y) |
||
6737 | { |
||
6738 | float32_t out; |
||
6739 | float32_t f00, f01, f10, f11; |
||
6740 | float32_t *pData = S->pData; |
||
6741 | int32_t xIndex, yIndex, index; |
||
6742 | float32_t xdiff, ydiff; |
||
6743 | float32_t b1, b2, b3, b4; |
||
6744 | |||
6745 | xIndex = (int32_t) X; |
||
6746 | yIndex = (int32_t) Y; |
||
6747 | |||
6748 | /* Care taken for table outside boundary */ |
||
6749 | /* Returns zero output when values are outside table boundary */ |
||
6750 | if (xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) |
||
6751 | { |
||
6752 | return (0); |
||
6753 | } |
||
6754 | |||
6755 | /* Calculation of index for two nearest points in X-direction */ |
||
6756 | index = (xIndex - 1) + (yIndex - 1) * S->numCols; |
||
6757 | |||
6758 | |||
6759 | /* Read two nearest points in X-direction */ |
||
6760 | f00 = pData[index]; |
||
6761 | f01 = pData[index + 1]; |
||
6762 | |||
6763 | /* Calculation of index for two nearest points in Y-direction */ |
||
6764 | index = (xIndex - 1) + (yIndex) * S->numCols; |
||
6765 | |||
6766 | |||
6767 | /* Read two nearest points in Y-direction */ |
||
6768 | f10 = pData[index]; |
||
6769 | f11 = pData[index + 1]; |
||
6770 | |||
6771 | /* Calculation of intermediate values */ |
||
6772 | b1 = f00; |
||
6773 | b2 = f01 - f00; |
||
6774 | b3 = f10 - f00; |
||
6775 | b4 = f00 - f01 - f10 + f11; |
||
6776 | |||
6777 | /* Calculation of fractional part in X */ |
||
6778 | xdiff = X - xIndex; |
||
6779 | |||
6780 | /* Calculation of fractional part in Y */ |
||
6781 | ydiff = Y - yIndex; |
||
6782 | |||
6783 | /* Calculation of bi-linear interpolated output */ |
||
6784 | out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; |
||
6785 | |||
6786 | /* return to application */ |
||
6787 | return (out); |
||
6788 | } |
||
6789 | |||
6790 | |||
6791 | /** |
||
6792 | * |
||
6793 | * @brief Q31 bilinear interpolation. |
||
6794 | * @param[in,out] S points to an instance of the interpolation structure. |
||
6795 | * @param[in] X interpolation coordinate in 12.20 format. |
||
6796 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
6797 | * @return out interpolated value. |
||
6798 | */ |
||
6799 | CMSIS_INLINE __STATIC_INLINE q31_t arm_bilinear_interp_q31( |
||
6800 | arm_bilinear_interp_instance_q31 * S, |
||
6801 | q31_t X, |
||
6802 | q31_t Y) |
||
6803 | { |
||
6804 | q31_t out; /* Temporary output */ |
||
6805 | q31_t acc = 0; /* output */ |
||
6806 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
6807 | q31_t x1, x2, y1, y2; /* Nearest output values */ |
||
6808 | int32_t rI, cI; /* Row and column indices */ |
||
6809 | q31_t *pYData = S->pData; /* pointer to output table values */ |
||
6810 | uint32_t nCols = S->numCols; /* num of rows */ |
||
6811 | |||
6812 | /* Input is in 12.20 format */ |
||
6813 | /* 12 bits for the table index */ |
||
6814 | /* Index value calculation */ |
||
6815 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
||
6816 | |||
6817 | /* Input is in 12.20 format */ |
||
6818 | /* 12 bits for the table index */ |
||
6819 | /* Index value calculation */ |
||
6820 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
||
6821 | |||
6822 | /* Care taken for table outside boundary */ |
||
6823 | /* Returns zero output when values are outside table boundary */ |
||
6824 | if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
6825 | { |
||
6826 | return (0); |
||
6827 | } |
||
6828 | |||
6829 | /* 20 bits for the fractional part */ |
||
6830 | /* shift left xfract by 11 to keep 1.31 format */ |
||
6831 | xfract = (X & 0x000FFFFF) << 11U; |
||
6832 | |||
6833 | /* Read two nearest output values from the index */ |
||
6834 | x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; |
||
6835 | x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; |
||
6836 | |||
6837 | /* 20 bits for the fractional part */ |
||
6838 | /* shift left yfract by 11 to keep 1.31 format */ |
||
6839 | yfract = (Y & 0x000FFFFF) << 11U; |
||
6840 | |||
6841 | /* Read two nearest output values from the index */ |
||
6842 | y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; |
||
6843 | y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; |
||
6844 | |||
6845 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ |
||
6846 | out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); |
||
6847 | acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); |
||
6848 | |||
6849 | /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ |
||
6850 | out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); |
||
6851 | acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); |
||
6852 | |||
6853 | /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ |
||
6854 | out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); |
||
6855 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
||
6856 | |||
6857 | /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ |
||
6858 | out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); |
||
6859 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
||
6860 | |||
6861 | /* Convert acc to 1.31(q31) format */ |
||
6862 | return ((q31_t)(acc << 2)); |
||
6863 | } |
||
6864 | |||
6865 | |||
6866 | /** |
||
6867 | * @brief Q15 bilinear interpolation. |
||
6868 | * @param[in,out] S points to an instance of the interpolation structure. |
||
6869 | * @param[in] X interpolation coordinate in 12.20 format. |
||
6870 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
6871 | * @return out interpolated value. |
||
6872 | */ |
||
6873 | CMSIS_INLINE __STATIC_INLINE q15_t arm_bilinear_interp_q15( |
||
6874 | arm_bilinear_interp_instance_q15 * S, |
||
6875 | q31_t X, |
||
6876 | q31_t Y) |
||
6877 | { |
||
6878 | q63_t acc = 0; /* output */ |
||
6879 | q31_t out; /* Temporary output */ |
||
6880 | q15_t x1, x2, y1, y2; /* Nearest output values */ |
||
6881 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
6882 | int32_t rI, cI; /* Row and column indices */ |
||
6883 | q15_t *pYData = S->pData; /* pointer to output table values */ |
||
6884 | uint32_t nCols = S->numCols; /* num of rows */ |
||
6885 | |||
6886 | /* Input is in 12.20 format */ |
||
6887 | /* 12 bits for the table index */ |
||
6888 | /* Index value calculation */ |
||
6889 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
||
6890 | |||
6891 | /* Input is in 12.20 format */ |
||
6892 | /* 12 bits for the table index */ |
||
6893 | /* Index value calculation */ |
||
6894 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
||
6895 | |||
6896 | /* Care taken for table outside boundary */ |
||
6897 | /* Returns zero output when values are outside table boundary */ |
||
6898 | if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
6899 | { |
||
6900 | return (0); |
||
6901 | } |
||
6902 | |||
6903 | /* 20 bits for the fractional part */ |
||
6904 | /* xfract should be in 12.20 format */ |
||
6905 | xfract = (X & 0x000FFFFF); |
||
6906 | |||
6907 | /* Read two nearest output values from the index */ |
||
6908 | x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; |
||
6909 | x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; |
||
6910 | |||
6911 | /* 20 bits for the fractional part */ |
||
6912 | /* yfract should be in 12.20 format */ |
||
6913 | yfract = (Y & 0x000FFFFF); |
||
6914 | |||
6915 | /* Read two nearest output values from the index */ |
||
6916 | y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; |
||
6917 | y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; |
||
6918 | |||
6919 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ |
||
6920 | |||
6921 | /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ |
||
6922 | /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ |
||
6923 | out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4U); |
||
6924 | acc = ((q63_t) out * (0xFFFFF - yfract)); |
||
6925 | |||
6926 | /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ |
||
6927 | out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4U); |
||
6928 | acc += ((q63_t) out * (xfract)); |
||
6929 | |||
6930 | /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ |
||
6931 | out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4U); |
||
6932 | acc += ((q63_t) out * (yfract)); |
||
6933 | |||
6934 | /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ |
||
6935 | out = (q31_t) (((q63_t) y2 * (xfract)) >> 4U); |
||
6936 | acc += ((q63_t) out * (yfract)); |
||
6937 | |||
6938 | /* acc is in 13.51 format and down shift acc by 36 times */ |
||
6939 | /* Convert out to 1.15 format */ |
||
6940 | return ((q15_t)(acc >> 36)); |
||
6941 | } |
||
6942 | |||
6943 | |||
6944 | /** |
||
6945 | * @brief Q7 bilinear interpolation. |
||
6946 | * @param[in,out] S points to an instance of the interpolation structure. |
||
6947 | * @param[in] X interpolation coordinate in 12.20 format. |
||
6948 | * @param[in] Y interpolation coordinate in 12.20 format. |
||
6949 | * @return out interpolated value. |
||
6950 | */ |
||
6951 | CMSIS_INLINE __STATIC_INLINE q7_t arm_bilinear_interp_q7( |
||
6952 | arm_bilinear_interp_instance_q7 * S, |
||
6953 | q31_t X, |
||
6954 | q31_t Y) |
||
6955 | { |
||
6956 | q63_t acc = 0; /* output */ |
||
6957 | q31_t out; /* Temporary output */ |
||
6958 | q31_t xfract, yfract; /* X, Y fractional parts */ |
||
6959 | q7_t x1, x2, y1, y2; /* Nearest output values */ |
||
6960 | int32_t rI, cI; /* Row and column indices */ |
||
6961 | q7_t *pYData = S->pData; /* pointer to output table values */ |
||
6962 | uint32_t nCols = S->numCols; /* num of rows */ |
||
6963 | |||
6964 | /* Input is in 12.20 format */ |
||
6965 | /* 12 bits for the table index */ |
||
6966 | /* Index value calculation */ |
||
6967 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
||
6968 | |||
6969 | /* Input is in 12.20 format */ |
||
6970 | /* 12 bits for the table index */ |
||
6971 | /* Index value calculation */ |
||
6972 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
||
6973 | |||
6974 | /* Care taken for table outside boundary */ |
||
6975 | /* Returns zero output when values are outside table boundary */ |
||
6976 | if (rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
||
6977 | { |
||
6978 | return (0); |
||
6979 | } |
||
6980 | |||
6981 | /* 20 bits for the fractional part */ |
||
6982 | /* xfract should be in 12.20 format */ |
||
6983 | xfract = (X & (q31_t)0x000FFFFF); |
||
6984 | |||
6985 | /* Read two nearest output values from the index */ |
||
6986 | x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; |
||
6987 | x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; |
||
6988 | |||
6989 | /* 20 bits for the fractional part */ |
||
6990 | /* yfract should be in 12.20 format */ |
||
6991 | yfract = (Y & (q31_t)0x000FFFFF); |
||
6992 | |||
6993 | /* Read two nearest output values from the index */ |
||
6994 | y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; |
||
6995 | y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; |
||
6996 | |||
6997 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ |
||
6998 | out = ((x1 * (0xFFFFF - xfract))); |
||
6999 | acc = (((q63_t) out * (0xFFFFF - yfract))); |
||
7000 | |||
7001 | /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ |
||
7002 | out = ((x2 * (0xFFFFF - yfract))); |
||
7003 | acc += (((q63_t) out * (xfract))); |
||
7004 | |||
7005 | /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ |
||
7006 | out = ((y1 * (0xFFFFF - xfract))); |
||
7007 | acc += (((q63_t) out * (yfract))); |
||
7008 | |||
7009 | /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ |
||
7010 | out = ((y2 * (yfract))); |
||
7011 | acc += (((q63_t) out * (xfract))); |
||
7012 | |||
7013 | /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ |
||
7014 | return ((q7_t)(acc >> 40)); |
||
7015 | } |
||
7016 | |||
7017 | /** |
||
7018 | * @} end of BilinearInterpolate group |
||
7019 | */ |
||
7020 | |||
7021 | |||
7022 | /* SMMLAR */ |
||
7023 | #define multAcc_32x32_keep32_R(a, x, y) \ |
||
7024 | a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) |
||
7025 | |||
7026 | /* SMMLSR */ |
||
7027 | #define multSub_32x32_keep32_R(a, x, y) \ |
||
7028 | a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) |
||
7029 | |||
7030 | /* SMMULR */ |
||
7031 | #define mult_32x32_keep32_R(a, x, y) \ |
||
7032 | a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) |
||
7033 | |||
7034 | /* SMMLA */ |
||
7035 | #define multAcc_32x32_keep32(a, x, y) \ |
||
7036 | a += (q31_t) (((q63_t) x * y) >> 32) |
||
7037 | |||
7038 | /* SMMLS */ |
||
7039 | #define multSub_32x32_keep32(a, x, y) \ |
||
7040 | a -= (q31_t) (((q63_t) x * y) >> 32) |
||
7041 | |||
7042 | /* SMMUL */ |
||
7043 | #define mult_32x32_keep32(a, x, y) \ |
||
7044 | a = (q31_t) (((q63_t) x * y ) >> 32) |
||
7045 | |||
7046 | |||
7047 | #if defined ( __CC_ARM ) |
||
7048 | /* Enter low optimization region - place directly above function definition */ |
||
7049 | #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
||
7050 | #define LOW_OPTIMIZATION_ENTER \ |
||
7051 | _Pragma ("push") \ |
||
7052 | _Pragma ("O1") |
||
7053 | #else |
||
7054 | #define LOW_OPTIMIZATION_ENTER |
||
7055 | #endif |
||
7056 | |||
7057 | /* Exit low optimization region - place directly after end of function definition */ |
||
7058 | #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) |
||
7059 | #define LOW_OPTIMIZATION_EXIT \ |
||
7060 | _Pragma ("pop") |
||
7061 | #else |
||
7062 | #define LOW_OPTIMIZATION_EXIT |
||
7063 | #endif |
||
7064 | |||
7065 | /* Enter low optimization region - place directly above function definition */ |
||
7066 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7067 | |||
7068 | /* Exit low optimization region - place directly after end of function definition */ |
||
7069 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7070 | |||
7071 | #elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) |
||
7072 | #define LOW_OPTIMIZATION_ENTER |
||
7073 | #define LOW_OPTIMIZATION_EXIT |
||
7074 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7075 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7076 | |||
7077 | #elif defined ( __GNUC__ ) |
||
7078 | #define LOW_OPTIMIZATION_ENTER \ |
||
7079 | __attribute__(( optimize("-O1") )) |
||
7080 | #define LOW_OPTIMIZATION_EXIT |
||
7081 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7082 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7083 | |||
7084 | #elif defined ( __ICCARM__ ) |
||
7085 | /* Enter low optimization region - place directly above function definition */ |
||
7086 | #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) |
||
7087 | #define LOW_OPTIMIZATION_ENTER \ |
||
7088 | _Pragma ("optimize=low") |
||
7089 | #else |
||
7090 | #define LOW_OPTIMIZATION_ENTER |
||
7091 | #endif |
||
7092 | |||
7093 | /* Exit low optimization region - place directly after end of function definition */ |
||
7094 | #define LOW_OPTIMIZATION_EXIT |
||
7095 | |||
7096 | /* Enter low optimization region - place directly above function definition */ |
||
7097 | #if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 ) |
||
7098 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ |
||
7099 | _Pragma ("optimize=low") |
||
7100 | #else |
||
7101 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7102 | #endif |
||
7103 | |||
7104 | /* Exit low optimization region - place directly after end of function definition */ |
||
7105 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7106 | |||
7107 | #elif defined ( __TI_ARM__ ) |
||
7108 | #define LOW_OPTIMIZATION_ENTER |
||
7109 | #define LOW_OPTIMIZATION_EXIT |
||
7110 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7111 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7112 | |||
7113 | #elif defined ( __CSMC__ ) |
||
7114 | #define LOW_OPTIMIZATION_ENTER |
||
7115 | #define LOW_OPTIMIZATION_EXIT |
||
7116 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7117 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7118 | |||
7119 | #elif defined ( __TASKING__ ) |
||
7120 | #define LOW_OPTIMIZATION_ENTER |
||
7121 | #define LOW_OPTIMIZATION_EXIT |
||
7122 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
||
7123 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
||
7124 | |||
7125 | #endif |
||
7126 | |||
7127 | |||
7128 | #ifdef __cplusplus |
||
7129 | } |
||
7130 | #endif |
||
7131 | |||
7132 | /* Compiler specific diagnostic adjustment */ |
||
7133 | #if defined ( __CC_ARM ) |
||
7134 | |||
7135 | #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) |
||
7136 | |||
7137 | #elif defined ( __GNUC__ ) |
||
7138 | #pragma GCC diagnostic pop |
||
7139 | |||
7140 | #elif defined ( __ICCARM__ ) |
||
7141 | |||
7142 | #elif defined ( __TI_ARM__ ) |
||
7143 | |||
7144 | #elif defined ( __CSMC__ ) |
||
7145 | |||
7146 | #elif defined ( __TASKING__ ) |
||
7147 | |||
7148 | #else |
||
7149 | #error Unknown compiler |
||
7150 | #endif |
||
7151 | |||
7152 | #endif /* _ARM_MATH_H */ |
||
7153 | |||
7154 | /** |
||
7155 | * |
||
7156 | * End of file. |
||
7157 | */ |