Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | /* ---------------------------------------------------------------------- |
| 2 | * Copyright (C) 2010-2012 ARM Limited. All rights reserved. |
||
| 3 | * |
||
| 4 | * $Date: 17. January 2013 |
||
| 5 | * $Revision: V1.4.0 |
||
| 6 | * |
||
| 7 | * Project: CMSIS DSP Library |
||
| 8 | * Title: arm_fir_example_f32.c |
||
| 9 | * |
||
| 10 | * Description: Example code demonstrating how an FIR filter can be used |
||
| 11 | * as a low pass filter. |
||
| 12 | * |
||
| 13 | * Target Processor: Cortex-M4/Cortex-M3 |
||
| 14 | * |
||
| 15 | * Redistribution and use in source and binary forms, with or without |
||
| 16 | * modification, are permitted provided that the following conditions |
||
| 17 | * are met: |
||
| 18 | * - Redistributions of source code must retain the above copyright |
||
| 19 | * notice, this list of conditions and the following disclaimer. |
||
| 20 | * - Redistributions in binary form must reproduce the above copyright |
||
| 21 | * notice, this list of conditions and the following disclaimer in |
||
| 22 | * the documentation and/or other materials provided with the |
||
| 23 | * distribution. |
||
| 24 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
| 25 | * may be used to endorse or promote products derived from this |
||
| 26 | * software without specific prior written permission. |
||
| 27 | * |
||
| 28 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
| 29 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
| 30 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
| 31 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
| 32 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 33 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
| 34 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
| 35 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
| 36 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
| 37 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
| 38 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
| 39 | * POSSIBILITY OF SUCH DAMAGE. |
||
| 40 | * -------------------------------------------------------------------- */ |
||
| 41 | |||
| 42 | /** |
||
| 43 | * @ingroup groupExamples |
||
| 44 | */ |
||
| 45 | |||
| 46 | /** |
||
| 47 | * @defgroup FIRLPF FIR Lowpass Filter Example |
||
| 48 | * |
||
| 49 | * \par Description: |
||
| 50 | * \par |
||
| 51 | * Removes high frequency signal components from the input using an FIR lowpass filter. |
||
| 52 | * The example demonstrates how to configure an FIR filter and then pass data through |
||
| 53 | * it in a block-by-block fashion. |
||
| 54 | * \image html FIRLPF_signalflow.gif |
||
| 55 | * |
||
| 56 | * \par Algorithm: |
||
| 57 | * \par |
||
| 58 | * The input signal is a sum of two sine waves: 1 kHz and 15 kHz. |
||
| 59 | * This is processed by an FIR lowpass filter with cutoff frequency 6 kHz. |
||
| 60 | * The lowpass filter eliminates the 15 kHz signal leaving only the 1 kHz sine wave at the output. |
||
| 61 | * \par |
||
| 62 | * The lowpass filter was designed using MATLAB with a sample rate of 48 kHz and |
||
| 63 | * a length of 29 points. |
||
| 64 | * The MATLAB code to generate the filter coefficients is shown below: |
||
| 65 | * <pre> |
||
| 66 | * h = fir1(28, 6/24); |
||
| 67 | * </pre> |
||
| 68 | * The first argument is the "order" of the filter and is always one less than the desired length. |
||
| 69 | * The second argument is the normalized cutoff frequency. This is in the range 0 (DC) to 1.0 (Nyquist). |
||
| 70 | * A 6 kHz cutoff with a Nyquist frequency of 24 kHz lies at a normalized frequency of 6/24 = 0.25. |
||
| 71 | * The CMSIS FIR filter function requires the coefficients to be in time reversed order. |
||
| 72 | * <pre> |
||
| 73 | * fliplr(h) |
||
| 74 | * </pre> |
||
| 75 | * The resulting filter coefficients and are shown below. |
||
| 76 | * Note that the filter is symmetric (a property of linear phase FIR filters) |
||
| 77 | * and the point of symmetry is sample 14. Thus the filter will have a delay of |
||
| 78 | * 14 samples for all frequencies. |
||
| 79 | * \par |
||
| 80 | * \image html FIRLPF_coeffs.gif |
||
| 81 | * \par |
||
| 82 | * The frequency response of the filter is shown next. |
||
| 83 | * The passband gain of the filter is 1.0 and it reaches 0.5 at the cutoff frequency 6 kHz. |
||
| 84 | * \par |
||
| 85 | * \image html FIRLPF_response.gif |
||
| 86 | * \par |
||
| 87 | * The input signal is shown below. |
||
| 88 | * The left hand side shows the signal in the time domain while the right hand side is a frequency domain representation. |
||
| 89 | * The two sine wave components can be clearly seen. |
||
| 90 | * \par |
||
| 91 | * \image html FIRLPF_input.gif |
||
| 92 | * \par |
||
| 93 | * The output of the filter is shown below. The 15 kHz component has been eliminated. |
||
| 94 | * \par |
||
| 95 | * \image html FIRLPF_output.gif |
||
| 96 | * |
||
| 97 | * \par Variables Description: |
||
| 98 | * \par |
||
| 99 | * \li \c testInput_f32_1kHz_15kHz points to the input data |
||
| 100 | * \li \c refOutput points to the reference output data |
||
| 101 | * \li \c testOutput points to the test output data |
||
| 102 | * \li \c firStateF32 points to state buffer |
||
| 103 | * \li \c firCoeffs32 points to coefficient buffer |
||
| 104 | * \li \c blockSize number of samples processed at a time |
||
| 105 | * \li \c numBlocks number of frames |
||
| 106 | * |
||
| 107 | * \par CMSIS DSP Software Library Functions Used: |
||
| 108 | * \par |
||
| 109 | * - arm_fir_init_f32() |
||
| 110 | * - arm_fir_f32() |
||
| 111 | * |
||
| 112 | * <b> Refer </b> |
||
| 113 | * \link arm_fir_example_f32.c \endlink |
||
| 114 | * |
||
| 115 | */ |
||
| 116 | |||
| 117 | |||
| 118 | /** \example arm_fir_example_f32.c |
||
| 119 | */ |
||
| 120 | |||
| 121 | /* ---------------------------------------------------------------------- |
||
| 122 | ** Include Files |
||
| 123 | ** ------------------------------------------------------------------- */ |
||
| 124 | |||
| 125 | #include "arm_math.h" |
||
| 126 | #include "math_helper.h" |
||
| 127 | |||
| 128 | /* ---------------------------------------------------------------------- |
||
| 129 | ** Macro Defines |
||
| 130 | ** ------------------------------------------------------------------- */ |
||
| 131 | |||
| 132 | #define TEST_LENGTH_SAMPLES 320 |
||
| 133 | #define SNR_THRESHOLD_F32 140.0f |
||
| 134 | #define BLOCK_SIZE 32 |
||
| 135 | #define NUM_TAPS 29 |
||
| 136 | |||
| 137 | /* ------------------------------------------------------------------- |
||
| 138 | * The input signal and reference output (computed with MATLAB) |
||
| 139 | * are defined externally in arm_fir_lpf_data.c. |
||
| 140 | * ------------------------------------------------------------------- */ |
||
| 141 | |||
| 142 | extern float32_t testInput_f32_1kHz_15kHz[TEST_LENGTH_SAMPLES]; |
||
| 143 | extern float32_t refOutput[TEST_LENGTH_SAMPLES]; |
||
| 144 | |||
| 145 | /* ------------------------------------------------------------------- |
||
| 146 | * Declare Test output buffer |
||
| 147 | * ------------------------------------------------------------------- */ |
||
| 148 | |||
| 149 | static float32_t testOutput[TEST_LENGTH_SAMPLES]; |
||
| 150 | |||
| 151 | /* ------------------------------------------------------------------- |
||
| 152 | * Declare State buffer of size (numTaps + blockSize - 1) |
||
| 153 | * ------------------------------------------------------------------- */ |
||
| 154 | |||
| 155 | static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1]; |
||
| 156 | |||
| 157 | /* ---------------------------------------------------------------------- |
||
| 158 | ** FIR Coefficients buffer generated using fir1() MATLAB function. |
||
| 159 | ** fir1(28, 6/24) |
||
| 160 | ** ------------------------------------------------------------------- */ |
||
| 161 | |||
| 162 | const float32_t firCoeffs32[NUM_TAPS] = { |
||
| 163 | -0.0018225230f, -0.0015879294f, +0.0000000000f, +0.0036977508f, +0.0080754303f, +0.0085302217f, -0.0000000000f, -0.0173976984f, |
||
| 164 | -0.0341458607f, -0.0333591565f, +0.0000000000f, +0.0676308395f, +0.1522061835f, +0.2229246956f, +0.2504960933f, +0.2229246956f, |
||
| 165 | +0.1522061835f, +0.0676308395f, +0.0000000000f, -0.0333591565f, -0.0341458607f, -0.0173976984f, -0.0000000000f, +0.0085302217f, |
||
| 166 | +0.0080754303f, +0.0036977508f, +0.0000000000f, -0.0015879294f, -0.0018225230f |
||
| 167 | }; |
||
| 168 | |||
| 169 | /* ------------------------------------------------------------------ |
||
| 170 | * Global variables for FIR LPF Example |
||
| 171 | * ------------------------------------------------------------------- */ |
||
| 172 | |||
| 173 | uint32_t blockSize = BLOCK_SIZE; |
||
| 174 | uint32_t numBlocks = TEST_LENGTH_SAMPLES/BLOCK_SIZE; |
||
| 175 | |||
| 176 | float32_t snr; |
||
| 177 | |||
| 178 | /* ---------------------------------------------------------------------- |
||
| 179 | * FIR LPF Example |
||
| 180 | * ------------------------------------------------------------------- */ |
||
| 181 | |||
| 182 | int32_t main(void) |
||
| 183 | { |
||
| 184 | uint32_t i; |
||
| 185 | arm_fir_instance_f32 S; |
||
| 186 | arm_status status; |
||
| 187 | float32_t *inputF32, *outputF32; |
||
| 188 | |||
| 189 | /* Initialize input and output buffer pointers */ |
||
| 190 | inputF32 = &testInput_f32_1kHz_15kHz[0]; |
||
| 191 | outputF32 = &testOutput[0]; |
||
| 192 | |||
| 193 | /* Call FIR init function to initialize the instance structure. */ |
||
| 194 | arm_fir_init_f32(&S, NUM_TAPS, (float32_t *)&firCoeffs32[0], &firStateF32[0], blockSize); |
||
| 195 | |||
| 196 | /* ---------------------------------------------------------------------- |
||
| 197 | ** Call the FIR process function for every blockSize samples |
||
| 198 | ** ------------------------------------------------------------------- */ |
||
| 199 | |||
| 200 | for(i=0; i < numBlocks; i++) |
||
| 201 | { |
||
| 202 | arm_fir_f32(&S, inputF32 + (i * blockSize), outputF32 + (i * blockSize), blockSize); |
||
| 203 | } |
||
| 204 | |||
| 205 | /* ---------------------------------------------------------------------- |
||
| 206 | ** Compare the generated output against the reference output computed |
||
| 207 | ** in MATLAB. |
||
| 208 | ** ------------------------------------------------------------------- */ |
||
| 209 | |||
| 210 | snr = arm_snr_f32(&refOutput[0], &testOutput[0], TEST_LENGTH_SAMPLES); |
||
| 211 | |||
| 212 | if (snr < SNR_THRESHOLD_F32) |
||
| 213 | { |
||
| 214 | status = ARM_MATH_TEST_FAILURE; |
||
| 215 | } |
||
| 216 | else |
||
| 217 | { |
||
| 218 | status = ARM_MATH_SUCCESS; |
||
| 219 | } |
||
| 220 | |||
| 221 | /* ---------------------------------------------------------------------- |
||
| 222 | ** Loop here if the signal does not match the reference output. |
||
| 223 | ** ------------------------------------------------------------------- */ |
||
| 224 | |||
| 225 | if ( status != ARM_MATH_SUCCESS) |
||
| 226 | { |
||
| 227 | while (1); |
||
| 228 | } |
||
| 229 | |||
| 230 | while (1); /* main function does not return */ |
||
| 231 | } |
||
| 232 | |||
| 233 | /** \endlink */ |