Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 2 | mjames | 1 | /* ---------------------------------------------------------------------- |
| 2 | * Copyright (C) 2010-2012 ARM Limited. All rights reserved. |
||
| 3 | * |
||
| 4 | * $Date: 17. January 2013 |
||
| 5 | * $Revision: V1.4.0 |
||
| 6 | * |
||
| 7 | * Project: CMSIS DSP Library |
||
| 8 | * Title: arm_convolution_example_f32.c |
||
| 9 | * |
||
| 10 | * Description: Example code demonstrating Convolution of two input signals using fft. |
||
| 11 | * |
||
| 12 | * Target Processor: Cortex-M4/Cortex-M3 |
||
| 13 | * |
||
| 14 | * Redistribution and use in source and binary forms, with or without |
||
| 15 | * modification, are permitted provided that the following conditions |
||
| 16 | * are met: |
||
| 17 | * - Redistributions of source code must retain the above copyright |
||
| 18 | * notice, this list of conditions and the following disclaimer. |
||
| 19 | * - Redistributions in binary form must reproduce the above copyright |
||
| 20 | * notice, this list of conditions and the following disclaimer in |
||
| 21 | * the documentation and/or other materials provided with the |
||
| 22 | * distribution. |
||
| 23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
||
| 24 | * may be used to endorse or promote products derived from this |
||
| 25 | * software without specific prior written permission. |
||
| 26 | * |
||
| 27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||
| 28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||
| 29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||
| 30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||
| 31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||
| 33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||
| 34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||
| 35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||
| 36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||
| 37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||
| 38 | * POSSIBILITY OF SUCH DAMAGE. |
||
| 39 | * -------------------------------------------------------------------- */ |
||
| 40 | |||
| 41 | /** |
||
| 42 | * @ingroup groupExamples |
||
| 43 | */ |
||
| 44 | |||
| 45 | /** |
||
| 46 | * @defgroup ConvolutionExample Convolution Example |
||
| 47 | * |
||
| 48 | * \par Description: |
||
| 49 | * \par |
||
| 50 | * Demonstrates the convolution theorem with the use of the Complex FFT, Complex-by-Complex |
||
| 51 | * Multiplication, and Support Functions. |
||
| 52 | * |
||
| 53 | * \par Algorithm: |
||
| 54 | * \par |
||
| 55 | * The convolution theorem states that convolution in the time domain corresponds to |
||
| 56 | * multiplication in the frequency domain. Therefore, the Fourier transform of the convoution of |
||
| 57 | * two signals is equal to the product of their individual Fourier transforms. |
||
| 58 | * The Fourier transform of a signal can be evaluated efficiently using the Fast Fourier Transform (FFT). |
||
| 59 | * \par |
||
| 60 | * Two input signals, <code>a[n]</code> and <code>b[n]</code>, with lengths \c n1 and \c n2 respectively, |
||
| 61 | * are zero padded so that their lengths become \c N, which is greater than or equal to <code>(n1+n2-1)</code> |
||
| 62 | * and is a power of 4 as FFT implementation is radix-4. |
||
| 63 | * The convolution of <code>a[n]</code> and <code>b[n]</code> is obtained by taking the FFT of the input |
||
| 64 | * signals, multiplying the Fourier transforms of the two signals, and taking the inverse FFT of |
||
| 65 | * the multiplied result. |
||
| 66 | * \par |
||
| 67 | * This is denoted by the following equations: |
||
| 68 | * <pre> A[k] = FFT(a[n],N) |
||
| 69 | * B[k] = FFT(b[n],N) |
||
| 70 | * conv(a[n], b[n]) = IFFT(A[k] * B[k], N)</pre> |
||
| 71 | * where <code>A[k]</code> and <code>B[k]</code> are the N-point FFTs of the signals <code>a[n]</code> |
||
| 72 | * and <code>b[n]</code> respectively. |
||
| 73 | * The length of the convolved signal is <code>(n1+n2-1)</code>. |
||
| 74 | * |
||
| 75 | * \par Block Diagram: |
||
| 76 | * \par |
||
| 77 | * \image html Convolution.gif |
||
| 78 | * |
||
| 79 | * \par Variables Description: |
||
| 80 | * \par |
||
| 81 | * \li \c testInputA_f32 points to the first input sequence |
||
| 82 | * \li \c srcALen length of the first input sequence |
||
| 83 | * \li \c testInputB_f32 points to the second input sequence |
||
| 84 | * \li \c srcBLen length of the second input sequence |
||
| 85 | * \li \c outLen length of convolution output sequence, <code>(srcALen + srcBLen - 1)</code> |
||
| 86 | * \li \c AxB points to the output array where the product of individual FFTs of inputs is stored. |
||
| 87 | * |
||
| 88 | * \par CMSIS DSP Software Library Functions Used: |
||
| 89 | * \par |
||
| 90 | * - arm_fill_f32() |
||
| 91 | * - arm_copy_f32() |
||
| 92 | * - arm_cfft_radix4_init_f32() |
||
| 93 | * - arm_cfft_radix4_f32() |
||
| 94 | * - arm_cmplx_mult_cmplx_f32() |
||
| 95 | * |
||
| 96 | * <b> Refer </b> |
||
| 97 | * \link arm_convolution_example_f32.c \endlink |
||
| 98 | * |
||
| 99 | */ |
||
| 100 | |||
| 101 | |||
| 102 | /** \example arm_convolution_example_f32.c |
||
| 103 | */ |
||
| 104 | |||
| 105 | #include "arm_math.h" |
||
| 106 | #include "math_helper.h" |
||
| 107 | |||
| 108 | /* ---------------------------------------------------------------------- |
||
| 109 | * Defines each of the tests performed |
||
| 110 | * ------------------------------------------------------------------- */ |
||
| 111 | #define MAX_BLOCKSIZE 128 |
||
| 112 | #define DELTA (0.000001f) |
||
| 113 | #define SNR_THRESHOLD 90 |
||
| 114 | |||
| 115 | /* ---------------------------------------------------------------------- |
||
| 116 | * Declare I/O buffers |
||
| 117 | * ------------------------------------------------------------------- */ |
||
| 118 | float32_t Ak[MAX_BLOCKSIZE]; /* Input A */ |
||
| 119 | float32_t Bk[MAX_BLOCKSIZE]; /* Input B */ |
||
| 120 | float32_t AxB[MAX_BLOCKSIZE * 2]; /* Output */ |
||
| 121 | |||
| 122 | /* ---------------------------------------------------------------------- |
||
| 123 | * Test input data for Floating point Convolution example for 32-blockSize |
||
| 124 | * Generated by the MATLAB randn() function |
||
| 125 | * ------------------------------------------------------------------- */ |
||
| 126 | float32_t testInputA_f32[64] = |
||
| 127 | { |
||
| 128 | -0.808920, 1.357369, 1.180861, -0.504544, 1.762637, -0.703285, |
||
| 129 | 1.696966, 0.620571, -0.151093, -0.100235, -0.872382, -0.403579, |
||
| 130 | -0.860749, -0.382648, -1.052338, 0.128113, -0.646269, 1.093377, |
||
| 131 | -2.209198, 0.471706, 0.408901, 1.266242, 0.598252, 1.176827, |
||
| 132 | -0.203421, 0.213596, -0.851964, -0.466958, 0.021841, -0.698938, |
||
| 133 | -0.604107, 0.461778, -0.318219, 0.942520, 0.577585, 0.417619, |
||
| 134 | 0.614665, 0.563679, -1.295073, -0.764437, 0.952194, -0.859222, |
||
| 135 | -0.618554, -2.268542, -1.210592, 1.655853, -2.627219, -0.994249, |
||
| 136 | -1.374704, 0.343799, 0.025619, 1.227481, -0.708031, 0.069355, |
||
| 137 | -1.845228, -1.570886, 1.010668, -1.802084, 1.630088, 1.286090, |
||
| 138 | -0.161050, -0.940794, 0.367961, 0.291907 |
||
| 139 | |||
| 140 | }; |
||
| 141 | |||
| 142 | float32_t testInputB_f32[64] = |
||
| 143 | { |
||
| 144 | 0.933724, 0.046881, 1.316470, 0.438345, 0.332682, 2.094885, |
||
| 145 | 0.512081, 0.035546, 0.050894, -2.320371, 0.168711, -1.830493, |
||
| 146 | -0.444834, -1.003242, -0.531494, -1.365600, -0.155420, -0.757692, |
||
| 147 | -0.431880, -0.380021, 0.096243, -0.695835, 0.558850, -1.648962, |
||
| 148 | 0.020369, -0.363630, 0.887146, 0.845503, -0.252864, -0.330397, |
||
| 149 | 1.269131, -1.109295, -1.027876, 0.135940, 0.116721, -0.293399, |
||
| 150 | -1.349799, 0.166078, -0.802201, 0.369367, -0.964568, -2.266011, |
||
| 151 | 0.465178, 0.651222, -0.325426, 0.320245, -0.784178, -0.579456, |
||
| 152 | 0.093374, 0.604778, -0.048225, 0.376297, -0.394412, 0.578182, |
||
| 153 | -1.218141, -1.387326, 0.692462, -0.631297, 0.153137, -0.638952, |
||
| 154 | 0.635474, -0.970468, 1.334057, -0.111370 |
||
| 155 | }; |
||
| 156 | |||
| 157 | const float testRefOutput_f32[127] = |
||
| 158 | { |
||
| 159 | -0.818943, 1.229484, -0.533664, 1.016604, 0.341875, -1.963656, |
||
| 160 | 5.171476, 3.478033, 7.616361, 6.648384, 0.479069, 1.792012, |
||
| 161 | -1.295591, -7.447818, 0.315830, -10.657445, -2.483469, -6.524236, |
||
| 162 | -7.380591, -3.739005, -8.388957, 0.184147, -1.554888, 3.786508, |
||
| 163 | -1.684421, 5.400610, -1.578126, 7.403361, 8.315999, 2.080267, |
||
| 164 | 11.077776, 2.749673, 7.138962, 2.748762, 0.660363, 0.981552, |
||
| 165 | 1.442275, 0.552721, -2.576892, 4.703989, 0.989156, 8.759344, |
||
| 166 | -0.564825, -3.994680, 0.954710, -5.014144, 6.592329, 1.599488, |
||
| 167 | -13.979146, -0.391891, -4.453369, -2.311242, -2.948764, 1.761415, |
||
| 168 | -0.138322, 10.433007, -2.309103, 4.297153, 8.535523, 3.209462, |
||
| 169 | 8.695819, 5.569919, 2.514304, 5.582029, 2.060199, 0.642280, |
||
| 170 | 7.024616, 1.686615, -6.481756, 1.343084, -3.526451, 1.099073, |
||
| 171 | -2.965764, -0.173723, -4.111484, 6.528384, -6.965658, 1.726291, |
||
| 172 | 1.535172, 11.023435, 2.338401, -4.690188, 1.298210, 3.943885, |
||
| 173 | 8.407885, 5.168365, 0.684131, 1.559181, 1.859998, 2.852417, |
||
| 174 | 8.574070, -6.369078, 6.023458, 11.837963, -6.027632, 4.469678, |
||
| 175 | -6.799093, -2.674048, 6.250367, -6.809971, -3.459360, 9.112410, |
||
| 176 | -2.711621, -1.336678, 1.564249, -1.564297, -1.296760, 8.904013, |
||
| 177 | -3.230109, 6.878013, -7.819823, 3.369909, -1.657410, -2.007358, |
||
| 178 | -4.112825, 1.370685, -3.420525, -6.276605, 3.244873, -3.352638, |
||
| 179 | 1.545372, 0.902211, 0.197489, -1.408732, 0.523390, 0.348440, 0 |
||
| 180 | }; |
||
| 181 | |||
| 182 | |||
| 183 | /* ---------------------------------------------------------------------- |
||
| 184 | * Declare Global variables |
||
| 185 | * ------------------------------------------------------------------- */ |
||
| 186 | uint32_t srcALen = 64; /* Length of Input A */ |
||
| 187 | uint32_t srcBLen = 64; /* Length of Input B */ |
||
| 188 | uint32_t outLen; /* Length of convolution output */ |
||
| 189 | float32_t snr; /* output SNR */ |
||
| 190 | |||
| 191 | int32_t main(void) |
||
| 192 | { |
||
| 193 | arm_status status; /* Status of the example */ |
||
| 194 | arm_cfft_radix4_instance_f32 cfft_instance; /* CFFT Structure instance */ |
||
| 195 | |||
| 196 | /* CFFT Structure instance pointer */ |
||
| 197 | arm_cfft_radix4_instance_f32 *cfft_instance_ptr = |
||
| 198 | (arm_cfft_radix4_instance_f32*) &cfft_instance; |
||
| 199 | |||
| 200 | /* output length of convolution */ |
||
| 201 | outLen = srcALen + srcBLen - 1; |
||
| 202 | |||
| 203 | /* Initialise the fft input buffers with all zeros */ |
||
| 204 | arm_fill_f32(0.0, Ak, MAX_BLOCKSIZE); |
||
| 205 | arm_fill_f32(0.0, Bk, MAX_BLOCKSIZE); |
||
| 206 | |||
| 207 | /* Copy the input values to the fft input buffers */ |
||
| 208 | arm_copy_f32(testInputA_f32, Ak, MAX_BLOCKSIZE/2); |
||
| 209 | arm_copy_f32(testInputB_f32, Bk, MAX_BLOCKSIZE/2); |
||
| 210 | |||
| 211 | /* Initialize the CFFT function to compute 64 point fft */ |
||
| 212 | status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 0, 1); |
||
| 213 | |||
| 214 | /* Transform input a[n] from time domain to frequency domain A[k] */ |
||
| 215 | arm_cfft_radix4_f32(cfft_instance_ptr, Ak); |
||
| 216 | /* Transform input b[n] from time domain to frequency domain B[k] */ |
||
| 217 | arm_cfft_radix4_f32(cfft_instance_ptr, Bk); |
||
| 218 | |||
| 219 | /* Complex Multiplication of the two input buffers in frequency domain */ |
||
| 220 | arm_cmplx_mult_cmplx_f32(Ak, Bk, AxB, MAX_BLOCKSIZE/2); |
||
| 221 | |||
| 222 | /* Initialize the CIFFT function to compute 64 point ifft */ |
||
| 223 | status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 1, 1); |
||
| 224 | |||
| 225 | /* Transform the multiplication output from frequency domain to time domain, |
||
| 226 | that gives the convolved output */ |
||
| 227 | arm_cfft_radix4_f32(cfft_instance_ptr, AxB); |
||
| 228 | |||
| 229 | /* SNR Calculation */ |
||
| 230 | snr = arm_snr_f32((float32_t *)testRefOutput_f32, AxB, srcALen + srcBLen - 1); |
||
| 231 | |||
| 232 | /* Compare the SNR with threshold to test whether the |
||
| 233 | computed output is matched with the reference output values. */ |
||
| 234 | if ( snr > SNR_THRESHOLD) |
||
| 235 | { |
||
| 236 | status = ARM_MATH_SUCCESS; |
||
| 237 | } |
||
| 238 | |||
| 239 | if ( status != ARM_MATH_SUCCESS) |
||
| 240 | { |
||
| 241 | while (1); |
||
| 242 | } |
||
| 243 | |||
| 244 | while (1); /* main function does not return */ |
||
| 245 | } |
||
| 246 | |||
| 247 | /** \endlink */ |