Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 1 | mjames | 1 | /* RCS revision control |
| 2 | $Header: c:/cvsroot/bart/rt_task.c,v 1.4 2004/03/09 22:09:10 mjames Exp $ |
||
| 3 | */ |
||
| 4 | |||
| 5 | /* RCS Log file |
||
| 6 | |||
| 7 | $Log: rt_task.c,v $ |
||
| 8 | Revision 1.4 2004/03/09 22:09:10 mjames |
||
| 9 | Hardware flow control implemented |
||
| 10 | |||
| 11 | Revision 1.3 2004/03/09 00:45:20 mjames |
||
| 12 | Corrected mistakes, made task numbers visible |
||
| 13 | |||
| 14 | Revision 1.2 2004/03/06 12:17:48 mjames |
||
| 15 | Moved headers around, made it clearer that there are no configurable |
||
| 16 | parts to the OS unless it is rebuilt |
||
| 17 | |||
| 18 | Revision 1.1.1.1 2004/03/03 22:54:33 mjames |
||
| 19 | no message |
||
| 20 | |||
| 21 | */ |
||
| 22 | |||
| 23 | |||
| 24 | |||
| 25 | /******************* |
||
| 26 | * INCLUDE FILES * |
||
| 27 | ********************/ |
||
| 28 | #include "mcs51reg.h" |
||
| 29 | |||
| 30 | #include "rt_int.h" |
||
| 31 | #include "rt_ext.h" |
||
| 32 | |||
| 33 | |||
| 34 | /******************* |
||
| 35 | * LOCAL MACROS * |
||
| 36 | ********************/ |
||
| 37 | |||
| 38 | |||
| 39 | /** compute timer rolling over for T0 */ |
||
| 40 | #define ROLLOVER_RATE (PRESCALE2/8192) |
||
| 41 | /* this is 112.5 Hz */ |
||
| 42 | |||
| 43 | #define INT_TASK_BIT(tasknum) (1<<(tasknum)) |
||
| 44 | |||
| 45 | /* this code is for the main uart of the 8051 */ |
||
| 46 | /* timer registers used by T0 IRQ */ |
||
| 47 | /* 11.25Hz counter bank */ |
||
| 48 | volatile unsigned char T0ctr; |
||
| 49 | |||
| 50 | /* this 'register' is exported */ |
||
| 51 | volatile unsigned char T100ms; |
||
| 52 | |||
| 53 | |||
| 54 | volatile unsigned char T10sec; |
||
| 55 | |||
| 56 | /* first idata */ |
||
| 57 | STACK_TYPE stack0[STACK0SIZE]; |
||
| 58 | STACK_TYPE stack1[STACK1SIZE]; |
||
| 59 | #if TASKS >=3 |
||
| 60 | STACK_TYPE stack2[STACK2SIZE]; |
||
| 61 | #endif |
||
| 62 | #if TASKS >=4 |
||
| 63 | STACK_TYPE stack3[STACK3SIZE]; |
||
| 64 | #endif |
||
| 65 | volatile STACK_PTR_TYPE stack_save[TASKS]; |
||
| 66 | volatile SIGNAL_TYPE task_signals[TASKS]; |
||
| 67 | volatile SIGNAL_TYPE task_masks[TASKS]; |
||
| 68 | volatile TIMER_TYPE task_timer[TASKS]; |
||
| 69 | volatile TASKID_TYPE ready ; |
||
| 70 | volatile TASKID_TYPE run ; |
||
| 71 | |||
| 72 | |||
| 73 | |||
| 74 | /* almost round robin with a modulo-4 task counter */ |
||
| 75 | #define RUN_TOG 0x10 |
||
| 76 | #define RUN_MASK 0x3F |
||
| 77 | |||
| 78 | /* 3 tasks including idle */ |
||
| 79 | #if TASKS == 3 |
||
| 80 | const STACK_PTR_TYPE start_stack[]={ |
||
| 81 | stack0, |
||
| 82 | stack1, |
||
| 83 | stack2}; |
||
| 84 | |||
| 85 | |||
| 86 | #define VALID_TASK_NUM |
||
| 87 | #endif |
||
| 88 | |||
| 89 | #if TASKS == 4 |
||
| 90 | const STACK_PTR_TYPE start_stack[]={ |
||
| 91 | stack0, |
||
| 92 | stack1, |
||
| 93 | stack2, |
||
| 94 | stack3}; |
||
| 95 | |||
| 96 | |||
| 97 | #define VALID_TASK_NUM |
||
| 98 | #endif |
||
| 99 | |||
| 100 | #if !defined VALID_TASK_NUM |
||
| 101 | #error Invalid TASK_NUM declaration |
||
| 102 | #endif |
||
| 103 | |||
| 104 | /** This task table describes a round robin with priority : |
||
| 105 | there are 4 phases to the round robin |
||
| 106 | regardless of the number of tasks , so one task wins more often |
||
| 107 | with 3 tasks tasks 1 and 2 are high priority, |
||
| 108 | task 3 runs when 1 and 2 are not running. If there are less than 4 tasks then |
||
| 109 | this table will still apply . */ |
||
| 110 | const char priotab[] = |
||
| 111 | { |
||
| 112 | /** round 00 : leftmost task bit wins*/ |
||
| 113 | /*T3210 */ |
||
| 114 | 0,0,1,1, /**< 0000,0001,0010,0011 */ |
||
| 115 | 2,2,2,2, /**< 0100,0101,0110,0111 */ |
||
| 116 | 3,3,3,3, /**< 1000,1001,1010,1011 */ |
||
| 117 | 3,3,3,3, /**< 1100,1101,1110,1111 */ |
||
| 118 | /** round 01 : second task bit wins */ |
||
| 119 | /*T3210 */ |
||
| 120 | 0,0,1,0, /**< 0000,0001,0010,0011 */ |
||
| 121 | 2,0,1,1, /**< 0100,0101,0110,0111 */ |
||
| 122 | 3,0,1,1, /**< 1000,1001,1010,1011 */ |
||
| 123 | 2,2,2,2, /**< 1100,1101,1110,1111 */ |
||
| 124 | /** round 10 : third task bit wins */ |
||
| 125 | /*T3210 */ |
||
| 126 | 0,0,1,1, /**< 0000,0001,0010,0011 */ |
||
| 127 | 2,2,2,0, /**< 0100,0101,0110,0111 */ |
||
| 128 | 3,3,3,0, /**< 1000,1001,1010,1011 */ |
||
| 129 | 3,0,1,1, /**< 1100,1101,1110,1111 */ |
||
| 130 | /** round 11 : fourth or cycle again */ |
||
| 131 | /*T3210 */ |
||
| 132 | 0,0,1,0, /**< 0000,0001,0010,0011 */ |
||
| 133 | 2,0,1,2, /**< 0100,0101,0110,0111 */ |
||
| 134 | 3,0,1,3, /**< 1000,1001,1010,1011 */ |
||
| 135 | 2,3,3,0, /**< 1100,1101,1110,1111 */ |
||
| 136 | }; |
||
| 137 | |||
| 138 | |||
| 139 | |||
| 140 | /** Sets up the scheduler state variables to a clean initial state, but indicate a |
||
| 141 | task identified as MAIN_TASK_ID (the task under which main() will run) |
||
| 142 | is actually running and ready to run. Use with EA off !!*/ |
||
| 143 | void rt_tasks_init (void) |
||
| 144 | { |
||
| 145 | char i; |
||
| 146 | run = MAIN_TASK_ID; |
||
| 147 | ready = TASK_BIT(MAIN_TASK_ID); |
||
| 148 | |||
| 149 | for(i=0;i<TASKS;i++) |
||
| 150 | { |
||
| 151 | stack_save[i] = 0; |
||
| 152 | task_signals[i]=0; |
||
| 153 | task_masks[i] =0; |
||
| 154 | task_timer[i] =0; |
||
| 155 | } |
||
| 156 | |||
| 157 | } |
||
| 158 | |||
| 159 | |||
| 160 | |||
| 161 | |||
| 162 | |||
| 163 | /** the 100ms counter is one every 11.25 timeouts of the T0 counter |
||
| 164 | * so we will count 12 timeouts when T100ms MOD 4 = 0 and 11 otherwise |
||
| 165 | * this means that 10 counts of T100ms are almost exactly 1 second */ |
||
| 166 | |||
| 167 | /** Timer interrupt running about once every 10ms */ |
||
| 168 | bit T0_interrupt_ea; |
||
| 169 | |||
| 170 | void T0Interrupt(void) interrupt T0_INTVEC using T0_INTERRUPT_BANK |
||
| 171 | { |
||
| 172 | /* TF0 = 0; This Interrupt is cleared automatically by jumping down this vector */ |
||
| 173 | T0ctr--; |
||
| 174 | if(T0ctr==0) |
||
| 175 | { |
||
| 176 | int i; |
||
| 177 | T100ms++; |
||
| 178 | if(T100ms & 3) |
||
| 179 | T0ctr= 11;/* 01,10,11 */ |
||
| 180 | else |
||
| 181 | T0ctr= 12;/* 00 */ |
||
| 182 | /* and now decrement all of the 100 ms timers */ |
||
| 183 | for (i=0;i<TASKS;i++) |
||
| 184 | { |
||
| 185 | if (task_timer[i] != 0) |
||
| 186 | { |
||
| 187 | task_timer[i]--; |
||
| 188 | if (task_timer[i] == 0) |
||
| 189 | { |
||
| 190 | task_signals[i] |= TIMER_SIG; |
||
| 191 | if(task_signals[i] & task_masks[i]) |
||
| 192 | { |
||
| 193 | ready |= TASK_BIT(i); /* Mapping here */ |
||
| 194 | } |
||
| 195 | } |
||
| 196 | } |
||
| 197 | } |
||
| 198 | /* wrap T100ms around an integer number of seconds |
||
| 199 | The wrap value should be divisible by 4 because of |
||
| 200 | the fractional N counting */ |
||
| 201 | if(T100ms>=MAXT100ms) |
||
| 202 | { |
||
| 203 | T10sec++; |
||
| 204 | T100ms=0; |
||
| 205 | } |
||
| 206 | } |
||
| 207 | /* use this interrupt to repetitively sample the flow |
||
| 208 | control lines for the primary UART */ |
||
| 209 | #if defined HARD_FLOW |
||
| 210 | /* if nCTS goes low and we are not watching it then retrigger TI */ |
||
| 211 | if(!SIO1_CTS && !SIO1_TxBusy && SIO1_TxCount) |
||
| 212 | { |
||
| 213 | TI=1; |
||
| 214 | } |
||
| 215 | #endif |
||
| 216 | |||
| 217 | |||
| 218 | |||
| 219 | #if !defined NO_IRQ_SCHEDULE |
||
| 220 | |||
| 221 | _asm |
||
| 222 | ; use assembler form of atomic operation for keeping ea |
||
| 223 | jbc ea,0001$ |
||
| 224 | clr _T0_interrupt_ea |
||
| 225 | sjmp 0002$ |
||
| 226 | 0001$: |
||
| 227 | setb _T0_interrupt_ea |
||
| 228 | 0002$: |
||
| 229 | |||
| 230 | |||
| 231 | |||
| 232 | ; These are in bank 0 |
||
| 233 | push 7 |
||
| 234 | push 6 |
||
| 235 | push 5 |
||
| 236 | push 4 |
||
| 237 | push 3 |
||
| 238 | push 2 |
||
| 239 | push 1 |
||
| 240 | push 0 |
||
| 241 | ; |
||
| 242 | ; |
||
| 243 | ; Determine which task was running |
||
| 244 | ; and save the task SP |
||
| 245 | ; |
||
| 246 | mov a,_run |
||
| 247 | add a,#_stack_save |
||
| 248 | mov r0,a |
||
| 249 | mov a,sp |
||
| 250 | mov @r0,a |
||
| 251 | |||
| 252 | ; *********** SCHEDULE CODE HERE |
||
| 253 | ; |
||
| 254 | ; look at the task ready flags |
||
| 255 | mov a,_ready |
||
| 256 | add a,#RUN_TOG |
||
| 257 | anl a,#RUN_MASK |
||
| 258 | mov _ready,a |
||
| 259 | ; |
||
| 260 | ; get new running task ID |
||
| 261 | ; |
||
| 262 | mov dptr,#_priotab |
||
| 263 | movc a,@a+dptr |
||
| 264 | ; |
||
| 265 | mov _run,a |
||
| 266 | ; |
||
| 267 | add a,#_stack_save |
||
| 268 | mov r0,a |
||
| 269 | mov a,@r0 |
||
| 270 | mov sp,a |
||
| 271 | ; |
||
| 272 | |||
| 273 | ; |
||
| 274 | ; Bank 0 registers in use here |
||
| 275 | ; |
||
| 276 | pop 0 |
||
| 277 | pop 1 |
||
| 278 | pop 2 |
||
| 279 | pop 3 |
||
| 280 | pop 4 |
||
| 281 | pop 5 |
||
| 282 | pop 6 |
||
| 283 | pop 7 |
||
| 284 | ; |
||
| 285 | ; this is done in the ISR |
||
| 286 | ; pop psw |
||
| 287 | ; pop dph |
||
| 288 | ; pop dpl |
||
| 289 | ; pop b |
||
| 290 | ; pop acc |
||
| 291 | ; |
||
| 292 | ; |
||
| 293 | ; |
||
| 294 | jnb _T0_interrupt_ea,0010$ |
||
| 295 | setb ea |
||
| 296 | 0010$: |
||
| 297 | _endasm; |
||
| 298 | |||
| 299 | #endif |
||
| 300 | |||
| 301 | } |
||
| 302 | |||
| 303 | /******************************************************************************** |
||
| 304 | ** Name : reschedule |
||
| 305 | This function determines which task to run, by using the ready variable as |
||
| 306 | an index into the scheduler table. Each call to reschedule increments the upper |
||
| 307 | 2 bits of the ready variable, so as to use a different part of the table on each call. |
||
| 308 | This allows a round-robin with priority scheduling to take place. |
||
| 309 | \break |
||
| 310 | To set a bit in the ready variable, the task's signal (task_signal[task]) variable is |
||
| 311 | masked with the task's mask (task_masks[task]) variable. If the result is non-zero then the |
||
| 312 | bit corresponding to the tasks ID number is set in the ready variable. |
||
| 313 | \break |
||
| 314 | Task timers reaching zero from a non-zero value will assert the TIMER_SIG signal |
||
| 315 | in the task's signal variable. If the mask in task's masks has TIMER_SIG set at that time |
||
| 316 | then the task will have its bit set in the ready variable. |
||
| 317 | \break |
||
| 318 | A task will never run again if it has a zero task_masks variable and a zero task_timer |
||
| 319 | variable, and its ready bit is zero. In all other cases the task will run again in the |
||
| 320 | future |
||
| 321 | |||
| 322 | |||
| 323 | |||
| 324 | *********************************************************************************/ |
||
| 325 | |||
| 326 | |||
| 327 | bit reschedule_ea; |
||
| 328 | void reschedule(void) |
||
| 329 | { |
||
| 330 | _asm |
||
| 331 | ; use assembler form of atomic operation for keeping ea |
||
| 332 | jbc ea,0001$ |
||
| 333 | clr _reschedule_ea |
||
| 334 | sjmp 0002$ |
||
| 335 | 0001$: |
||
| 336 | setb _reschedule_ea |
||
| 337 | 0002$: |
||
| 338 | |||
| 339 | ; this is done in any ISR |
||
| 340 | push acc |
||
| 341 | push b |
||
| 342 | push dpl |
||
| 343 | push dph |
||
| 344 | push psw |
||
| 345 | |||
| 346 | ; |
||
| 347 | ; These are in bank 0 |
||
| 348 | ; |
||
| 349 | push 7 |
||
| 350 | push 6 |
||
| 351 | push 5 |
||
| 352 | push 4 |
||
| 353 | push 3 |
||
| 354 | push 2 |
||
| 355 | push 1 |
||
| 356 | push 0 |
||
| 357 | ; |
||
| 358 | ; |
||
| 359 | ; |
||
| 360 | ; Determine which task was running |
||
| 361 | ; and save the task SP |
||
| 362 | ; |
||
| 363 | mov a,_run |
||
| 364 | add a,#_stack_save |
||
| 365 | mov r0,a |
||
| 366 | mov a,sp |
||
| 367 | mov @r0,a |
||
| 368 | |||
| 369 | ; *********** SCHEDULE CODE HERE |
||
| 370 | ; |
||
| 371 | ; look at the task ready flags |
||
| 372 | mov a,_ready |
||
| 373 | add a,#RUN_TOG |
||
| 374 | anl a,#RUN_MASK |
||
| 375 | mov _ready,a |
||
| 376 | ; |
||
| 377 | ; get new running task ID |
||
| 378 | ; |
||
| 379 | mov dptr,#_priotab |
||
| 380 | movc a,@a+dptr |
||
| 381 | ; |
||
| 382 | mov _run,a |
||
| 383 | ; |
||
| 384 | add a,#_stack_save |
||
| 385 | mov r0,a |
||
| 386 | mov a,@r0 |
||
| 387 | mov sp,a |
||
| 388 | ; |
||
| 389 | ; |
||
| 390 | ; Bank 0 registers in use here |
||
| 391 | ; |
||
| 392 | pop 0 |
||
| 393 | pop 1 |
||
| 394 | pop 2 |
||
| 395 | pop 3 |
||
| 396 | pop 4 |
||
| 397 | pop 5 |
||
| 398 | pop 6 |
||
| 399 | pop 7 |
||
| 400 | |||
| 401 | ; |
||
| 402 | ; this is done in the ISR |
||
| 403 | pop psw |
||
| 404 | pop dph |
||
| 405 | pop dpl |
||
| 406 | pop b |
||
| 407 | pop acc |
||
| 408 | ; |
||
| 409 | jnb _reschedule_ea,0010$ |
||
| 410 | setb ea |
||
| 411 | 0010$: |
||
| 412 | ; |
||
| 413 | _endasm; |
||
| 414 | |||
| 415 | } |
||
| 416 | |||
| 417 | |||
| 418 | /******************************************************************************** |
||
| 419 | ** Name : start_task |
||
| 420 | * the stack for the task is built and then its run flag is set |
||
| 421 | * This uses the real task code for the task |
||
| 422 | *********************************************************************************/ |
||
| 423 | |||
| 424 | start_rc start_task(task_p f,char tasknum) |
||
| 425 | { |
||
| 426 | short fp; |
||
| 427 | STACK_PTR_TYPE csp; |
||
| 428 | USE_CRITICAL; |
||
| 429 | if (tasknum >= TASKS) |
||
| 430 | return FAILED; |
||
| 431 | |||
| 432 | BEGIN_CRITICAL; |
||
| 433 | csp = start_stack[tasknum]; |
||
| 434 | stack_save[tasknum] = (STACK_PTR_TYPE)csp+16 ; |
||
| 435 | /* catch task return by pointing it at fallback termination function */ |
||
| 436 | fp = (int)&end_run_task; |
||
| 437 | *csp++ = (char)(fp & 0xff); |
||
| 438 | *csp++ = (char)(fp >> 8) ; |
||
| 439 | /* and put a pointer to the return address which is function to call */ |
||
| 440 | fp = (int)f; |
||
| 441 | *csp++ = (char)(fp &0xff); |
||
| 442 | *csp++ = (char)(fp >> 8) ; |
||
| 443 | |||
| 444 | /* then zero out the PSW image otherwise there will be a strange crash |
||
| 445 | as code tries to run in a random register bank .... */ |
||
| 446 | *csp++ = 0; /* csp[4] = acc could pass argument here */ |
||
| 447 | *csp++ = 0; /* csp[5] = b */ |
||
| 448 | *csp++ = 0; /* csp[6] = dpl */ |
||
| 449 | *csp++ = 0; /* csp[7] = dph */ |
||
| 450 | *csp++ = 0; /* psw VITAL */ |
||
| 451 | *csp++ = 0; /* csp [9] = r7 */ |
||
| 452 | *csp++ = 0; /* csp [10] = r6 */ |
||
| 453 | *csp++ = 0; /* csp [11] = r5 */ |
||
| 454 | *csp++ = 0; /* csp [12] = r4 */ |
||
| 455 | *csp++ = 0; /* csp [13] = r3 */ |
||
| 456 | *csp++ = 0; /* csp [14] = r2 */ |
||
| 457 | *csp++ = 0; /* csp [15] = r1 */ |
||
| 458 | *csp = 0; /* csp [16] = r0 */ |
||
| 459 | |||
| 460 | |||
| 461 | /* Set its task state as ready to run */ |
||
| 462 | ready |= TASK_BIT(tasknum); |
||
| 463 | END_CRITICAL; |
||
| 464 | return STARTED; |
||
| 465 | } |
||
| 466 | |||
| 467 | |||
| 468 | /******************************************************************************** |
||
| 469 | ** Name : end_run_task |
||
| 470 | *********************************************************************************/ |
||
| 471 | void end_run_task(void) |
||
| 472 | { |
||
| 473 | USE_CRITICAL; |
||
| 474 | /* whatever is running, stop it */ |
||
| 475 | BEGIN_CRITICAL; |
||
| 476 | ready &= ~TASK_BIT(run); |
||
| 477 | task_masks[run] = 0; /* Stop any further signals making task ready to run */ |
||
| 478 | task_timer[run] = 0; /* kill off pending task timeout */ |
||
| 479 | END_CRITICAL; |
||
| 480 | reschedule(); |
||
| 481 | /* Should never get here as this task cannot be rescheduled */ |
||
| 482 | while(1); |
||
| 483 | |||
| 484 | } |
||
| 485 | |||
| 486 | |||
| 487 | /** schedules a sleep with early return on any signals. Need to include TIMER_SIG in |
||
| 488 | signal list */ |
||
| 489 | char wait_timed(char signal,char ticks) |
||
| 490 | { |
||
| 491 | USE_CRITICAL; |
||
| 492 | BEGIN_CRITICAL; |
||
| 493 | ready &= ~TASK_BIT(run); /* this task is going to sleep */ |
||
| 494 | task_timer[run] = ticks; |
||
| 495 | task_masks[run] = signal; /* accept these signals as a validto wait on */ |
||
| 496 | END_CRITICAL; |
||
| 497 | reschedule(); |
||
| 498 | return task_signals[run]; |
||
| 499 | } |
||
| 500 | |||
| 501 | /** A sleep of 0 means a reschedule call */ |
||
| 502 | void sleep(char ticks) |
||
| 503 | { |
||
| 504 | USE_CRITICAL; |
||
| 505 | |||
| 506 | |||
| 507 | if (ticks) |
||
| 508 | { |
||
| 509 | BEGIN_CRITICAL; |
||
| 510 | ready &= ~TASK_BIT(run); /* this task is going to sleep */ |
||
| 511 | task_timer[run] = ticks; |
||
| 512 | task_masks[run] = TIMER_SIG; /* accept this signal as a valid one to wait on */ |
||
| 513 | task_signals[run] &=~TIMER_SIG; |
||
| 514 | /* this is actually a virtual idle task here in the loop, allowing all tasks to sleep */ |
||
| 515 | do { |
||
| 516 | END_CRITICAL; |
||
| 517 | reschedule(); |
||
| 518 | BEGIN_CRITICAL; |
||
| 519 | } |
||
| 520 | while((task_signals[run] & TIMER_SIG) == 0); |
||
| 521 | task_signals[run] &= ~(TIMER_SIG); |
||
| 522 | task_masks[run] &= ~TIMER_SIG; /* accept this signal as a valid one to wait on */ |
||
| 523 | END_CRITICAL; |
||
| 524 | } |
||
| 525 | else |
||
| 526 | { |
||
| 527 | reschedule(); |
||
| 528 | } |
||
| 529 | |||
| 530 | } |
||
| 531 | |||
| 532 | /** the current running task acknowledges the signal bits in the argument */ |
||
| 533 | void clear_signal(char pattern) |
||
| 534 | { |
||
| 535 | USE_CRITICAL; |
||
| 536 | BEGIN_CRITICAL; |
||
| 537 | task_signals[run] &= ~(pattern); |
||
| 538 | END_CRITICAL; |
||
| 539 | } |
||
| 540 | |||
| 541 | /** Sends a signal to the task referred to. Does not actually cause rescheduling |
||
| 542 | until either a T0 interrupt, or a reschedule(), sleep() or wait_timed() |
||
| 543 | call made by this task */ |
||
| 544 | void signal(char task,char pattern) |
||
| 545 | { |
||
| 546 | USE_CRITICAL; |
||
| 547 | BEGIN_CRITICAL; |
||
| 548 | /* this used in ISR context !! */ |
||
| 549 | INT_SIGNAL(task,pattern); |
||
| 550 | |||
| 551 | END_CRITICAL; |
||
| 552 | } |
||
| 553 | |||
| 554 | |||
| 555 | |||
| 556 | /*******************************************************************/ |
||
| 557 | /* System initialisation call */ |
||
| 558 | |||
| 559 | void rt_system_init(void) |
||
| 560 | { |
||
| 561 | |||
| 562 | AUXR = M0 |XRS1 | XRS0 ; |
||
| 563 | CKCON = WdX2 | PcaX2 | SiX2 | T2X2 | T0X2 | X2; /* T1X2 bit is '0' to double UART speed */ |
||
| 564 | |||
| 565 | TMOD = 0x20; /* timer1 mode2 timer0 mode0 */ |
||
| 566 | |||
| 567 | EA = 0; |
||
| 568 | |||
| 569 | |||
| 570 | } |