Subversion Repositories EngineBay2

Rev

Rev 54 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
38 mjames 1
/* USER CODE BEGIN Header */
2
/**
3
 ******************************************************************************
4
 * @file           : main.c
5
 * @brief          : Main program body
6
 ******************************************************************************
7
 * @attention
8
 *
9
 * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
10
 * All rights reserved.</center></h2>
11
 *
12
 * This software component is licensed by ST under BSD 3-Clause license,
13
 * the "License"; You may not use this file except in compliance with the
14
 * License. You may obtain a copy of the License at:
15
 *                        opensource.org/licenses/BSD-3-Clause
16
 *
17
 ******************************************************************************
18
 */
19
/* USER CODE END Header */
20
/* Includes ------------------------------------------------------------------*/
21
#include "main.h"
22
 
23
/* Private includes ----------------------------------------------------------*/
24
/* USER CODE BEGIN Includes */
49 mjames 25
#include <string.h>
55 mjames 26
#include <math.h>
38 mjames 27
#include "libSerial/serial.h"
28
#include "libPLX/plx.h"
50 mjames 29
#include "libPLX/commsLib.h"
38 mjames 30
#include "misc.h"
31
 
48 mjames 32
#include "libIgnTiming/rpm.h"
33
 
55 mjames 34
 
35
 
38 mjames 36
/* USER CODE END Includes */
37
 
38
/* Private typedef -----------------------------------------------------------*/
39
/* USER CODE BEGIN PTD */
40
 
41
/* USER CODE END PTD */
42
 
43
/* Private define ------------------------------------------------------------*/
44
/* USER CODE BEGIN PD */
45
/* USER CODE END PD */
46
 
47
/* Private macro -------------------------------------------------------------*/
48
/* USER CODE BEGIN PM */
49
#define ADC_CHANNELS 7
50
 
39 mjames 51
#define ADC_MAP_CHAN 2
52
 
53
#define ADC_PRESSURE_CHAN 3
54
 
55
#define ADC_REF_CHAN 5
56
 
57
#define ADC_TEMP_CHAN 6
58
 
38 mjames 59
// wait for about 1 second to decide whether or not starter is on
60
 
61
#define STARTER_LIMIT 10
62
 
63
/* USER CODE END PM */
64
 
65
/* Private variables ---------------------------------------------------------*/
46 mjames 66
ADC_HandleTypeDef hadc1;
38 mjames 67
DMA_HandleTypeDef hdma_adc1;
68
 
69
CAN_HandleTypeDef hcan;
70
 
53 mjames 71
IWDG_HandleTypeDef hiwdg;
72
 
38 mjames 73
SPI_HandleTypeDef hspi1;
74
 
75
TIM_HandleTypeDef htim2;
76
TIM_HandleTypeDef htim3;
77
TIM_HandleTypeDef htim4;
78
 
79
UART_HandleTypeDef huart1;
80
 
81
/* USER CODE BEGIN PV */
82
 
53 mjames 83
// Storage for USART
84
#define USART_TX_BUFF_SIZE 256
85
#define USART_RX_BUFF_SIZE 256
86
uint8_t usartTxBuff[USART_TX_BUFF_SIZE];
87
uint8_t usartRxBuff[USART_RX_BUFF_SIZE];
88
 
38 mjames 89
// storage for ADC
45 mjames 90
uint16_t ADC_Samples[ADC_CHANNELS] = {[0 ... ADC_CHANNELS - 1] = 0};
38 mjames 91
 
45 mjames 92
uint32_t FILT_Samples[ADC_CHANNELS] = {[0 ... ADC_CHANNELS - 1] = 0}; // filtered ADC samples * Scale
38 mjames 93
 
39 mjames 94
#define NOM_VREF 3.3
95
// initial ADC vref
45 mjames 96
float adc_vref = NOM_VREF;
39 mjames 97
 
98
// internal bandgap voltage reference
45 mjames 99
const float STM32REF = 1.2; // 1.2V typical
39 mjames 100
 
101
// scale factor initially assuming
45 mjames 102
float ADC_Scale = 1 / (Scale * 4096) * NOM_VREF;
39 mjames 103
 
38 mjames 104
unsigned int Coded_RPM = 0;
105
unsigned int Coded_CHT = 0;
106
 
42 mjames 107
uint32_t PowerTempTimer;
38 mjames 108
 
109
uint16_t Starter_Debounce = 0;
110
 
111
/* USER CODE END PV */
112
 
113
/* Private function prototypes -----------------------------------------------*/
114
void SystemClock_Config(void);
115
static void MX_GPIO_Init(void);
116
static void MX_DMA_Init(void);
117
static void MX_ADC1_Init(void);
118
static void MX_CAN_Init(void);
119
static void MX_SPI1_Init(void);
120
static void MX_TIM2_Init(void);
121
static void MX_TIM3_Init(void);
122
static void MX_TIM4_Init(void);
123
static void MX_USART1_UART_Init(void);
53 mjames 124
static void MX_IWDG_Init(void);
38 mjames 125
/* USER CODE BEGIN PFP */
126
 
127
/* USER CODE END PFP */
128
 
129
/* Private user code ---------------------------------------------------------*/
130
/* USER CODE BEGIN 0 */
53 mjames 131
void libPLXcallbackRecievedData(PLX_SensorInfo * data)
132
{
133
  (void )data;
38 mjames 134
 
135
}
136
 
53 mjames 137
 
45 mjames 138
void filter_ADC_samples()
38 mjames 139
{
140
  int i;
141
  for (i = 0; i < ADC_CHANNELS; i++)
45 mjames 142
  {
143
    FILT_Samples[i] += (ADC_Samples[i] * Scale - FILT_Samples[i]) / 2;
144
  }
38 mjames 145
}
146
 
39 mjames 147
/****!
148
 * @brief this reads the reference voltage within the STM32L151
149
 * Powers up reference voltage and temperature sensor, waits 3mS  and takes reading
150
 * Requires that the ADC be powered up
151
 */
152
 
45 mjames 153
void CalibrateADC(void)
39 mjames 154
{
45 mjames 155
  float adc_val = FILT_Samples[ADC_REF_CHAN]; // as set up in device config
39 mjames 156
 
45 mjames 157
  float adc_vref = STM32REF * (4096.0 * Scale) / adc_val; // the estimate for checking
39 mjames 158
 
45 mjames 159
  ADC_Scale = 1 / (Scale * 4096) * adc_vref;
39 mjames 160
}
161
 
54 mjames 162
void ProcessRPM(struct usart_ctl * handle)
38 mjames 163
{
48 mjames 164
  static unsigned int Coded_RPM = 0;
165
  int32_t rpm = CalculateRPM();
53 mjames 166
  // suppress the EDIS "heartbeat" 90 RPM
167
  if (rpm >= 100)
48 mjames 168
    Coded_RPM = rpm / 19.55;
46 mjames 169
 
45 mjames 170
  // send the current RPM *calculation
54 mjames 171
  sendPlxInfo(handle, PLX_RPM, Coded_RPM/ Scale);
38 mjames 172
}
173
 
174
// this uses a MAX6675 which is a simple 16 bit read
175
// SPI is configured for 8 bits so I can use an OLED display if I need it
176
// must wait > 0.22 seconds between conversion attempts as this is the measurement time
177
//
178
 
179
FunctionalState CHT_Enable = ENABLE;
180
 
181
#define CORR 3
182
 
183
 
55 mjames 184
typedef struct  
185
{
186
  uint16_t store[TEMP_CORR];
187
  uint16_t result;
188
} tempObservation_t;
189
 
190
tempObservation_t Temp_Observations[NUM_SPI_TEMP_SENS];
191
 
192
void ResetTemp()
193
{
194
  int i,j;
195
  for (i=0;i<NUM_SPI_TEMP_SENS;i++)
196
  {
197
    Temp_Observations[i].result = 0;
198
    for (j=0;j<TEMP_CORR;j++)
199
      Temp_Observations[i].store[j]=0;
200
  }
201
}
202
 
203
void AddTempReading(uint16_t reading, int channel)
204
{
205
  int j;
206
  for (j=TEMP_CORR-1; j>=1 ; j--)
207
  {
208
    Temp_Observations[channel].store[j] = Temp_Observations[channel].store[j-1];
209
  }
210
  Temp_Observations[channel].store[0] = reading;
211
 
212
  // are all the stored values close to the current reading, if so allow it through
213
  // the check here is for 5 degrees C 
214
  char good = 1;
215
  for (j=1; j<TEMP_CORR; j++)
216
    if (abs((int)Temp_Observations[channel].store[j]- (int)reading)>5)
217
      good = 0;
218
 
219
  if (good)
220
    Temp_Observations[channel].result = reading;
221
}
222
 
223
 
42 mjames 224
/// \param item The array index to send
225
/// \param type the code to use for this observation
54 mjames 226
void ProcessTemp(struct usart_ctl * handle,char item, enum PLX_Observations type)
38 mjames 227
{
42 mjames 228
  if (item > NUM_SPI_TEMP_SENS)
229
    return;
53 mjames 230
 
55 mjames 231
  sendPlxInfo(handle, type , Temp_Observations[(int)item].result);
53 mjames 232
 
38 mjames 233
}
234
 
42 mjames 235
/// \brief Reset the temperature chip select system
236
void resetTempCS(void)
237
{
45 mjames 238
  HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_SET);
239
  HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
240
                    GPIO_PIN_SET);
42 mjames 241
 
45 mjames 242
  for (int i = 0; i < 8; i++)
243
  {
244
    HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
245
                      GPIO_PIN_RESET);
246
    HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
247
                      GPIO_PIN_SET);
248
  }
42 mjames 249
 
45 mjames 250
  // prepare for selecting next pin
251
  HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_RESET);
42 mjames 252
}
253
 
254
void nextTempCS(void)
255
{
45 mjames 256
  HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
257
                    GPIO_PIN_RESET);
258
  HAL_GPIO_WritePin(SPI_CS_Clk_GPIO_Port, SPI_CS_Clk_Pin,
259
                    GPIO_PIN_SET);
260
  HAL_GPIO_WritePin(SPI_CS_D_GPIO_Port, SPI_CS_D_Pin, GPIO_PIN_SET);
42 mjames 261
}
262
 
45 mjames 263
void EnableTempSensors(FunctionalState state)
38 mjames 264
 
265
{
266
  GPIO_InitTypeDef GPIO_InitStruct;
267
 
268
  CHT_Enable = state;
269
 
270
  /* enable SPI in live mode : assume it and its GPIOs are already initialised in SPI mode */
271
  if (state == ENABLE)
45 mjames 272
  {
273
    HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_SET);
38 mjames 274
 
45 mjames 275
    resetTempCS();
42 mjames 276
 
45 mjames 277
    /* put the SPI pins back into SPI AF mode */
278
    GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
279
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
280
    GPIO_InitStruct.Pull = GPIO_NOPULL;
281
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
282
    HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
283
  }
38 mjames 284
  else
45 mjames 285
  {
286
    /*  Power down the SPI interface taking signals all low */
287
    HAL_GPIO_WritePin(ENA_AUX_5V_GPIO_Port, ENA_AUX_5V_Pin, GPIO_PIN_RESET);
38 mjames 288
 
45 mjames 289
    HAL_GPIO_WritePin(SPI1_SCK_GPIO_Port,
290
                      SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin,
291
                      GPIO_PIN_RESET);
38 mjames 292
 
45 mjames 293
    /* put the SPI pins back into GPIO mode */
294
    GPIO_InitStruct.Pin = SPI1_MOSI_Pin | SPI1_MISO_Pin | SPI1_SCK_Pin;
295
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
296
    GPIO_InitStruct.Pull = GPIO_NOPULL;
297
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
298
    HAL_GPIO_Init(SPI1_SCK_GPIO_Port, &GPIO_InitStruct);
299
  }
38 mjames 300
}
301
 
302
// 1023 is 20.00 volts.
49 mjames 303
/// \param item - used to lookup the index of the local reading
54 mjames 304
void ProcessBatteryVoltage(struct usart_ctl * handle, int item)
38 mjames 305
{
49 mjames 306
  float reading = FILT_Samples[item] * ADC_Scale;
38 mjames 307
  reading = reading * 7.8125; // real voltage
45 mjames 308
  reading = reading * 51.15;  // PLC scaling =  1023/20
38 mjames 309
 
54 mjames 310
  sendPlxInfo(handle, PLX_Volts, reading);
53 mjames 311
 
38 mjames 312
}
313
 
54 mjames 314
void ProcessCPUTemperature(struct usart_ctl * handle)
38 mjames 315
{
45 mjames 316
  // this is defined in the STM32F103 reference manual . #
39 mjames 317
  // V25 = 1.43 volts
318
  // Avg_slope = 4.3mV /degree C
319
  // temperature = {(V25 - VSENSE) / Avg_Slope} + 25
38 mjames 320
 
321
  /* get the ADC reading corresponding to ADC channel 16 after turning on the ADC */
322
 
39 mjames 323
  float temp_val = FILT_Samples[ADC_TEMP_CHAN] * ADC_Scale;
38 mjames 324
  /* renormalise temperature value to account for different ADC Vref  : normalise to that which we would get for a 3000mV reference */
45 mjames 325
  temp_val = (1.43 - temp_val) / 4.3e-3 + 25;
38 mjames 326
 
45 mjames 327
  int32_t result = temp_val;
38 mjames 328
 
54 mjames 329
  sendPlxInfo(handle, PLX_FluidTemp, result);
39 mjames 330
 
38 mjames 331
}
332
 
333
// the MAP sensor is giving us a reading of
334
// 4.6 volts for 1019mB or 2.27 volts at the ADC input (resistive divider by 2.016)
335
// I believe the sensor reads  4.5V at 1000kPa and 0.5V at  0kPa
336
// Calibration is a bit off
337
// Real   Displayed
338
// 989    968
339
// 994.1    986
340
// 992.3  984
341
 
54 mjames 342
void ProcessMAP(struct usart_ctl * handle)
38 mjames 343
{
45 mjames 344
  // Using ADC_Samples[3] as the MAP input
39 mjames 345
  float reading = FILT_Samples[ADC_MAP_CHAN] * ADC_Scale;
45 mjames 346
  reading = reading * 2.016; // real voltage
38 mjames 347
  // values computed from slope / intercept of map.ods
45 mjames 348
  // reading = (reading) * 56.23 + 743.2; // do not assume 0.5 volt offset : reading from 0 to 4.5 instead of 0.5 to 4.5
38 mjames 349
  // using a pressure gauge.
53 mjames 350
  reading = (reading) * 150 + 326;
351
 
54 mjames 352
  sendPlxInfo(handle, PLX_MAP, reading);
38 mjames 353
 
354
}
355
 
356
// the Oil pressi sensor is giving us a reading of
357
// 4.5 volts for 100 PSI or  2.25 volts at the ADC input (resistive divider by 2.016)
358
// I believe the sensor reads  4.5V at 100PSI and 0.5V at  0PSI
359
// an observation of 1024 is 200PSI, so observation of 512 is 100 PSI.
360
 
54 mjames 361
void ProcessOilPress(struct usart_ctl * handle)
38 mjames 362
{
45 mjames 363
  // Using ADC_Samples[2] as the MAP input
39 mjames 364
  float reading = FILT_Samples[ADC_PRESSURE_CHAN] * ADC_Scale;
45 mjames 365
  reading = reading * 2.00;            // real voltage
366
  reading = (reading - 0.5) * 512 / 4; // this is 1023 * 100/200
38 mjames 367
 
54 mjames 368
  sendPlxInfo(handle, PLX_FluidPressure, reading);
38 mjames 369
 
370
}
371
 
50 mjames 372
 
54 mjames 373
void libPLXcallbackSendUserData(struct usart_ctl * handle)
50 mjames 374
{
375
  // send the observations
54 mjames 376
  ProcessRPM(handle);
377
  ProcessTemp(handle,0, PLX_X_CHT);
378
  ProcessTemp(handle,1, PLX_X_CHT);
379
  ProcessTemp(handle,2, PLX_AIT);
380
  ProcessTemp(handle,3, PLX_AIT);
381
  ProcessBatteryVoltage(handle,0); // Batt 1
382
  ProcessBatteryVoltage(handle,1); // Batt 2
383
  ProcessCPUTemperature(handle);  //  built in temperature sensor
50 mjames 384
 
54 mjames 385
  ProcessMAP(handle);
386
  ProcessOilPress(handle);
50 mjames 387
}
38 mjames 388
/* USER CODE END 0 */
389
 
390
/**
55 mjames 391
  * @brief  The application entry point.
392
  * @retval int
393
  */
38 mjames 394
int main(void)
395
{
55 mjames 396
 
38 mjames 397
  /* USER CODE BEGIN 1 */
398
 
399
  /* USER CODE END 1 */
400
 
401
  /* MCU Configuration--------------------------------------------------------*/
402
 
403
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
404
  HAL_Init();
405
 
406
  /* USER CODE BEGIN Init */
407
 
408
  /* USER CODE END Init */
409
 
410
  /* Configure the system clock */
411
  SystemClock_Config();
412
 
413
  /* USER CODE BEGIN SysInit */
414
 
415
  /* USER CODE END SysInit */
416
 
417
  /* Initialize all configured peripherals */
418
  MX_GPIO_Init();
419
  MX_DMA_Init();
420
  MX_ADC1_Init();
421
  MX_CAN_Init();
422
  MX_SPI1_Init();
423
  MX_TIM2_Init();
424
  MX_TIM3_Init();
425
  MX_TIM4_Init();
426
  MX_USART1_UART_Init();
53 mjames 427
  MX_IWDG_Init();
38 mjames 428
  /* USER CODE BEGIN 2 */
45 mjames 429
  HAL_MspInit();
38 mjames 430
 
431
  // Not using HAL USART code
45 mjames 432
  __HAL_RCC_USART1_CLK_ENABLE(); // PLX comms port
38 mjames 433
  /* setup the USART control blocks */
53 mjames 434
  init_usart_ctl(&uc1, &huart1,
435
                 usartTxBuff,
436
                 usartRxBuff,
437
                 USART_TX_BUFF_SIZE,
438
                 USART_RX_BUFF_SIZE);
38 mjames 439
 
45 mjames 440
  EnableSerialRxInterrupt(&uc1);
38 mjames 441
 
45 mjames 442
  HAL_SPI_MspInit(&hspi1);
38 mjames 443
 
45 mjames 444
  HAL_ADC_MspInit(&hadc1);
38 mjames 445
 
45 mjames 446
  HAL_ADC_Start_DMA(&hadc1, (uint32_t *)ADC_Samples, ADC_CHANNELS);
38 mjames 447
 
45 mjames 448
  HAL_ADC_Start_IT(&hadc1);
38 mjames 449
 
55 mjames 450
    ResetTemp(); // reset temperature store 
451
 
45 mjames 452
  HAL_TIM_Base_MspInit(&htim4);
453
  HAL_TIM_Base_Start_IT(&htim4);
38 mjames 454
 
455
  // initialise all the STMCubeMX stuff
45 mjames 456
  HAL_TIM_Base_MspInit(&htim2);
38 mjames 457
  // Start the counter
45 mjames 458
  HAL_TIM_Base_Start(&htim2);
41 mjames 459
  // Start the input capture and the rising edge interrupt
45 mjames 460
  HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
41 mjames 461
  // Start the input capture and the falling edge interrupt
45 mjames 462
  HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_2);
38 mjames 463
 
45 mjames 464
  HAL_TIM_Base_MspInit(&htim3);
38 mjames 465
  __HAL_TIM_ENABLE_IT(&htim3, TIM_IT_UPDATE);
45 mjames 466
  uint32_t Ticks = HAL_GetTick() + 100;
38 mjames 467
  int CalCounter = 0;
468
 
45 mjames 469
  PowerTempTimer = HAL_GetTick() + 1000; /* wait 10 seconds before powering up the CHT sensor */
38 mjames 470
 
45 mjames 471
  ResetRxBuffer(&uc1);
49 mjames 472
 
50 mjames 473
  resetPLX();
38 mjames 474
  /* USER CODE END 2 */
475
 
476
  /* Infinite loop */
477
  /* USER CODE BEGIN WHILE */
478
  while (1)
45 mjames 479
  {
38 mjames 480
    /* USER CODE END WHILE */
481
 
482
    /* USER CODE BEGIN 3 */
483
 
45 mjames 484
    if (HAL_GetTick() > Ticks)
485
    {
486
      Ticks += 100;
487
      filter_ADC_samples();
488
      // delay to calibrate ADC
489
      if (CalCounter < 1000)
490
      {
491
        CalCounter += 100;
492
      }
38 mjames 493
 
45 mjames 494
      if (CalCounter == 900)
495
      {
496
        CalibrateADC();
497
      }
498
    }
499
    /* when the starter motor is on then power down the CHT sensors as they seem to fail */
38 mjames 500
 
45 mjames 501
    if (HAL_GPIO_ReadPin(STARTER_ON_GPIO_Port, STARTER_ON_Pin) == GPIO_PIN_RESET)
502
    {
503
      if (Starter_Debounce < STARTER_LIMIT)
504
      {
505
        Starter_Debounce++;
506
      }
507
    }
508
    else
509
    {
510
      if (Starter_Debounce > 0)
511
      {
512
        Starter_Debounce--;
513
      }
514
    }
38 mjames 515
 
45 mjames 516
    if (Starter_Debounce == STARTER_LIMIT)
517
    {
518
      EnableTempSensors(DISABLE);
519
      PowerTempTimer = HAL_GetTick() + 1000;
520
    }
521
    else
522
    /* if the PowerTempTimer is set then wait for it to timeout, then power up CHT */
523
    {
524
      if ((PowerTempTimer > 0) && (HAL_GetTick() > PowerTempTimer))
525
      {
526
        EnableTempSensors(ENABLE);
527
        PowerTempTimer = 0;
528
      }
529
    }
38 mjames 530
 
45 mjames 531
    // check to see if we have any incoming data, copy and append if so, if no data then create our own frames.
38 mjames 532
 
50 mjames 533
    // poll the input data and produce automatic output if the timer expires and no serial input data
52 mjames 534
    libPLXpollData(&uc1);
53 mjames 535
 
536
    HAL_IWDG_Refresh(&hiwdg);
45 mjames 537
  }
38 mjames 538
 
539
  /* USER CODE END 3 */
540
}
541
 
542
/**
55 mjames 543
  * @brief System Clock Configuration
544
  * @retval None
545
  */
38 mjames 546
void SystemClock_Config(void)
547
{
548
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
549
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
550
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
551
 
552
  /** Initializes the RCC Oscillators according to the specified parameters
55 mjames 553
  * in the RCC_OscInitTypeDef structure.
554
  */
555
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
38 mjames 556
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
557
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
558
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
53 mjames 559
  RCC_OscInitStruct.LSIState = RCC_LSI_ON;
38 mjames 560
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
561
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
562
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
563
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
564
  {
565
    Error_Handler();
566
  }
45 mjames 567
 
38 mjames 568
  /** Initializes the CPU, AHB and APB buses clocks
55 mjames 569
  */
570
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
571
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
38 mjames 572
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
573
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
574
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
575
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
576
 
577
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
578
  {
579
    Error_Handler();
580
  }
581
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
582
  PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
583
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
584
  {
585
    Error_Handler();
586
  }
587
}
588
 
589
/**
55 mjames 590
  * @brief ADC1 Initialization Function
591
  * @param None
592
  * @retval None
593
  */
38 mjames 594
static void MX_ADC1_Init(void)
595
{
596
 
597
  /* USER CODE BEGIN ADC1_Init 0 */
598
 
599
  /* USER CODE END ADC1_Init 0 */
600
 
601
  ADC_ChannelConfTypeDef sConfig = {0};
602
 
603
  /* USER CODE BEGIN ADC1_Init 1 */
604
 
605
  /* USER CODE END ADC1_Init 1 */
45 mjames 606
 
38 mjames 607
  /** Common config
55 mjames 608
  */
38 mjames 609
  hadc1.Instance = ADC1;
610
  hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
611
  hadc1.Init.ContinuousConvMode = DISABLE;
612
  hadc1.Init.DiscontinuousConvMode = DISABLE;
613
  hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
614
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
615
  hadc1.Init.NbrOfConversion = 7;
616
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
617
  {
618
    Error_Handler();
619
  }
45 mjames 620
 
38 mjames 621
  /** Configure Regular Channel
55 mjames 622
  */
38 mjames 623
  sConfig.Channel = ADC_CHANNEL_0;
624
  sConfig.Rank = ADC_REGULAR_RANK_1;
39 mjames 625
  sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
38 mjames 626
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
627
  {
628
    Error_Handler();
629
  }
45 mjames 630
 
38 mjames 631
  /** Configure Regular Channel
55 mjames 632
  */
38 mjames 633
  sConfig.Channel = ADC_CHANNEL_1;
634
  sConfig.Rank = ADC_REGULAR_RANK_2;
635
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
636
  {
637
    Error_Handler();
638
  }
45 mjames 639
 
38 mjames 640
  /** Configure Regular Channel
55 mjames 641
  */
38 mjames 642
  sConfig.Channel = ADC_CHANNEL_2;
643
  sConfig.Rank = ADC_REGULAR_RANK_3;
644
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
645
  {
646
    Error_Handler();
647
  }
45 mjames 648
 
38 mjames 649
  /** Configure Regular Channel
55 mjames 650
  */
38 mjames 651
  sConfig.Channel = ADC_CHANNEL_3;
652
  sConfig.Rank = ADC_REGULAR_RANK_4;
653
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
654
  {
655
    Error_Handler();
656
  }
45 mjames 657
 
38 mjames 658
  /** Configure Regular Channel
55 mjames 659
  */
39 mjames 660
  sConfig.Channel = ADC_CHANNEL_4;
38 mjames 661
  sConfig.Rank = ADC_REGULAR_RANK_5;
662
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
663
  {
664
    Error_Handler();
665
  }
45 mjames 666
 
38 mjames 667
  /** Configure Regular Channel
55 mjames 668
  */
38 mjames 669
  sConfig.Channel = ADC_CHANNEL_VREFINT;
670
  sConfig.Rank = ADC_REGULAR_RANK_6;
671
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
672
  {
673
    Error_Handler();
674
  }
45 mjames 675
 
38 mjames 676
  /** Configure Regular Channel
55 mjames 677
  */
39 mjames 678
  sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
38 mjames 679
  sConfig.Rank = ADC_REGULAR_RANK_7;
680
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
681
  {
682
    Error_Handler();
683
  }
684
  /* USER CODE BEGIN ADC1_Init 2 */
685
 
686
  /* USER CODE END ADC1_Init 2 */
55 mjames 687
 
38 mjames 688
}
689
 
690
/**
55 mjames 691
  * @brief CAN Initialization Function
692
  * @param None
693
  * @retval None
694
  */
38 mjames 695
static void MX_CAN_Init(void)
696
{
697
 
698
  /* USER CODE BEGIN CAN_Init 0 */
699
 
700
  /* USER CODE END CAN_Init 0 */
701
 
702
  /* USER CODE BEGIN CAN_Init 1 */
703
 
704
  /* USER CODE END CAN_Init 1 */
705
  hcan.Instance = CAN1;
706
  hcan.Init.Prescaler = 16;
707
  hcan.Init.Mode = CAN_MODE_NORMAL;
708
  hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
709
  hcan.Init.TimeSeg1 = CAN_BS1_1TQ;
710
  hcan.Init.TimeSeg2 = CAN_BS2_1TQ;
711
  hcan.Init.TimeTriggeredMode = DISABLE;
712
  hcan.Init.AutoBusOff = DISABLE;
713
  hcan.Init.AutoWakeUp = DISABLE;
714
  hcan.Init.AutoRetransmission = DISABLE;
715
  hcan.Init.ReceiveFifoLocked = DISABLE;
716
  hcan.Init.TransmitFifoPriority = DISABLE;
717
  if (HAL_CAN_Init(&hcan) != HAL_OK)
718
  {
719
    Error_Handler();
720
  }
721
  /* USER CODE BEGIN CAN_Init 2 */
722
 
723
  /* USER CODE END CAN_Init 2 */
55 mjames 724
 
38 mjames 725
}
726
 
727
/**
55 mjames 728
  * @brief IWDG Initialization Function
729
  * @param None
730
  * @retval None
731
  */
53 mjames 732
static void MX_IWDG_Init(void)
733
{
734
 
735
  /* USER CODE BEGIN IWDG_Init 0 */
736
 
737
  /* USER CODE END IWDG_Init 0 */
738
 
739
  /* USER CODE BEGIN IWDG_Init 1 */
740
 
741
  /* USER CODE END IWDG_Init 1 */
742
  hiwdg.Instance = IWDG;
743
  hiwdg.Init.Prescaler = IWDG_PRESCALER_64;
744
  hiwdg.Init.Reload = 4095;
745
  if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
746
  {
747
    Error_Handler();
748
  }
749
  /* USER CODE BEGIN IWDG_Init 2 */
750
 
751
  /* USER CODE END IWDG_Init 2 */
55 mjames 752
 
53 mjames 753
}
754
 
755
/**
55 mjames 756
  * @brief SPI1 Initialization Function
757
  * @param None
758
  * @retval None
759
  */
38 mjames 760
static void MX_SPI1_Init(void)
761
{
762
 
763
  /* USER CODE BEGIN SPI1_Init 0 */
764
 
765
  /* USER CODE END SPI1_Init 0 */
766
 
767
  /* USER CODE BEGIN SPI1_Init 1 */
768
 
769
  /* USER CODE END SPI1_Init 1 */
770
  /* SPI1 parameter configuration*/
771
  hspi1.Instance = SPI1;
772
  hspi1.Init.Mode = SPI_MODE_MASTER;
773
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
774
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
775
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
776
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
777
  hspi1.Init.NSS = SPI_NSS_SOFT;
41 mjames 778
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
38 mjames 779
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
780
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
781
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
782
  hspi1.Init.CRCPolynomial = 10;
783
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
784
  {
785
    Error_Handler();
786
  }
787
  /* USER CODE BEGIN SPI1_Init 2 */
788
 
789
  /* USER CODE END SPI1_Init 2 */
55 mjames 790
 
38 mjames 791
}
792
 
793
/**
55 mjames 794
  * @brief TIM2 Initialization Function
795
  * @param None
796
  * @retval None
797
  */
38 mjames 798
static void MX_TIM2_Init(void)
799
{
800
 
801
  /* USER CODE BEGIN TIM2_Init 0 */
802
 
803
  /* USER CODE END TIM2_Init 0 */
804
 
805
  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
806
  TIM_MasterConfigTypeDef sMasterConfig = {0};
807
  TIM_IC_InitTypeDef sConfigIC = {0};
808
 
809
  /* USER CODE BEGIN TIM2_Init 1 */
810
 
811
  /* USER CODE END TIM2_Init 1 */
812
  htim2.Instance = TIM2;
41 mjames 813
  htim2.Init.Prescaler = 719;
38 mjames 814
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
815
  htim2.Init.Period = 65535;
816
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
817
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
818
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
819
  {
820
    Error_Handler();
821
  }
822
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
823
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
824
  {
825
    Error_Handler();
826
  }
827
  if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
828
  {
829
    Error_Handler();
830
  }
831
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
832
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
833
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
834
  {
835
    Error_Handler();
836
  }
837
  sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
838
  sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
839
  sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
840
  sConfigIC.ICFilter = 15;
841
  if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
842
  {
843
    Error_Handler();
844
  }
41 mjames 845
  sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
846
  sConfigIC.ICSelection = TIM_ICSELECTION_INDIRECTTI;
847
  sConfigIC.ICFilter = 0;
848
  if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK)
849
  {
850
    Error_Handler();
851
  }
38 mjames 852
  /* USER CODE BEGIN TIM2_Init 2 */
853
 
854
  /* USER CODE END TIM2_Init 2 */
55 mjames 855
 
38 mjames 856
}
857
 
858
/**
55 mjames 859
  * @brief TIM3 Initialization Function
860
  * @param None
861
  * @retval None
862
  */
38 mjames 863
static void MX_TIM3_Init(void)
864
{
865
 
866
  /* USER CODE BEGIN TIM3_Init 0 */
867
 
868
  /* USER CODE END TIM3_Init 0 */
869
 
870
  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
871
  TIM_MasterConfigTypeDef sMasterConfig = {0};
872
  TIM_OC_InitTypeDef sConfigOC = {0};
873
 
874
  /* USER CODE BEGIN TIM3_Init 1 */
875
 
876
  /* USER CODE END TIM3_Init 1 */
877
  htim3.Instance = TIM3;
41 mjames 878
  htim3.Init.Prescaler = 719;
38 mjames 879
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
41 mjames 880
  htim3.Init.Period = 199;
38 mjames 881
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
882
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
883
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
884
  {
885
    Error_Handler();
886
  }
887
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
888
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
889
  {
890
    Error_Handler();
891
  }
892
  if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
893
  {
894
    Error_Handler();
895
  }
896
  if (HAL_TIM_OnePulse_Init(&htim3, TIM_OPMODE_SINGLE) != HAL_OK)
897
  {
898
    Error_Handler();
899
  }
900
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC1;
901
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
902
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
903
  {
904
    Error_Handler();
905
  }
906
  sConfigOC.OCMode = TIM_OCMODE_TIMING;
41 mjames 907
  sConfigOC.Pulse = 198;
38 mjames 908
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
909
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
910
  if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
911
  {
912
    Error_Handler();
913
  }
914
  /* USER CODE BEGIN TIM3_Init 2 */
915
 
916
  /* USER CODE END TIM3_Init 2 */
55 mjames 917
 
38 mjames 918
}
919
 
920
/**
55 mjames 921
  * @brief TIM4 Initialization Function
922
  * @param None
923
  * @retval None
924
  */
38 mjames 925
static void MX_TIM4_Init(void)
926
{
927
 
928
  /* USER CODE BEGIN TIM4_Init 0 */
929
 
930
  /* USER CODE END TIM4_Init 0 */
931
 
932
  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
933
  TIM_MasterConfigTypeDef sMasterConfig = {0};
934
 
935
  /* USER CODE BEGIN TIM4_Init 1 */
936
 
937
  /* USER CODE END TIM4_Init 1 */
938
  htim4.Instance = TIM4;
41 mjames 939
  htim4.Init.Prescaler = 719;
38 mjames 940
  htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
941
  htim4.Init.Period = 9999;
942
  htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
943
  htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
944
  if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
945
  {
946
    Error_Handler();
947
  }
948
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
949
  if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
950
  {
951
    Error_Handler();
952
  }
953
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
954
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
955
  if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
956
  {
957
    Error_Handler();
958
  }
959
  /* USER CODE BEGIN TIM4_Init 2 */
960
 
961
  /* USER CODE END TIM4_Init 2 */
55 mjames 962
 
38 mjames 963
}
964
 
965
/**
55 mjames 966
  * @brief USART1 Initialization Function
967
  * @param None
968
  * @retval None
969
  */
38 mjames 970
static void MX_USART1_UART_Init(void)
971
{
972
 
973
  /* USER CODE BEGIN USART1_Init 0 */
974
 
975
  /* USER CODE END USART1_Init 0 */
976
 
977
  /* USER CODE BEGIN USART1_Init 1 */
978
 
979
  /* USER CODE END USART1_Init 1 */
980
  huart1.Instance = USART1;
981
  huart1.Init.BaudRate = 19200;
982
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
983
  huart1.Init.StopBits = UART_STOPBITS_1;
984
  huart1.Init.Parity = UART_PARITY_NONE;
985
  huart1.Init.Mode = UART_MODE_TX_RX;
986
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
987
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
988
  if (HAL_UART_Init(&huart1) != HAL_OK)
989
  {
990
    Error_Handler();
991
  }
992
  /* USER CODE BEGIN USART1_Init 2 */
993
 
994
  /* USER CODE END USART1_Init 2 */
55 mjames 995
 
38 mjames 996
}
997
 
998
/**
55 mjames 999
  * Enable DMA controller clock
1000
  */
38 mjames 1001
static void MX_DMA_Init(void)
1002
{
1003
 
1004
  /* DMA controller clock enable */
1005
  __HAL_RCC_DMA1_CLK_ENABLE();
1006
 
1007
  /* DMA interrupt init */
1008
  /* DMA1_Channel1_IRQn interrupt configuration */
1009
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
1010
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
55 mjames 1011
 
38 mjames 1012
}
1013
 
1014
/**
55 mjames 1015
  * @brief GPIO Initialization Function
1016
  * @param None
1017
  * @retval None
1018
  */
38 mjames 1019
static void MX_GPIO_Init(void)
1020
{
1021
  GPIO_InitTypeDef GPIO_InitStruct = {0};
55 mjames 1022
/* USER CODE BEGIN MX_GPIO_Init_1 */
1023
/* USER CODE END MX_GPIO_Init_1 */
38 mjames 1024
 
1025
  /* GPIO Ports Clock Enable */
1026
  __HAL_RCC_GPIOC_CLK_ENABLE();
1027
  __HAL_RCC_GPIOD_CLK_ENABLE();
1028
  __HAL_RCC_GPIOA_CLK_ENABLE();
1029
  __HAL_RCC_GPIOB_CLK_ENABLE();
1030
 
1031
  /*Configure GPIO pin Output Level */
1032
  HAL_GPIO_WritePin(LED_Blink_GPIO_Port, LED_Blink_Pin, GPIO_PIN_RESET);
1033
 
1034
  /*Configure GPIO pin Output Level */
55 mjames 1035
  HAL_GPIO_WritePin(GPIOB, SPI_CS_Clk_Pin|SPI_CS_D_Pin|ENA_AUX_5V_Pin, GPIO_PIN_RESET);
38 mjames 1036
 
1037
  /*Configure GPIO pin : LED_Blink_Pin */
1038
  GPIO_InitStruct.Pin = LED_Blink_Pin;
1039
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
1040
  GPIO_InitStruct.Pull = GPIO_NOPULL;
1041
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
1042
  HAL_GPIO_Init(LED_Blink_GPIO_Port, &GPIO_InitStruct);
1043
 
55 mjames 1044
  /*Configure GPIO pins : SPI_CS_Clk_Pin SPI_CS_D_Pin */
1045
  GPIO_InitStruct.Pin = SPI_CS_Clk_Pin|SPI_CS_D_Pin;
38 mjames 1046
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
1047
  GPIO_InitStruct.Pull = GPIO_NOPULL;
55 mjames 1048
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
38 mjames 1049
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
1050
 
1051
  /*Configure GPIO pin : STARTER_ON_Pin */
1052
  GPIO_InitStruct.Pin = STARTER_ON_Pin;
1053
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
1054
  GPIO_InitStruct.Pull = GPIO_NOPULL;
1055
  HAL_GPIO_Init(STARTER_ON_GPIO_Port, &GPIO_InitStruct);
53 mjames 1056
 
55 mjames 1057
  /*Configure GPIO pin : ENA_AUX_5V_Pin */
1058
  GPIO_InitStruct.Pin = ENA_AUX_5V_Pin;
1059
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
1060
  GPIO_InitStruct.Pull = GPIO_NOPULL;
1061
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
1062
  HAL_GPIO_Init(ENA_AUX_5V_GPIO_Port, &GPIO_InitStruct);
1063
 
1064
/* USER CODE BEGIN MX_GPIO_Init_2 */
1065
/* USER CODE END MX_GPIO_Init_2 */
38 mjames 1066
}
1067
 
1068
/* USER CODE BEGIN 4 */
1069
 
1070
/* USER CODE END 4 */
1071
 
1072
/**
55 mjames 1073
  * @brief  This function is executed in case of error occurrence.
1074
  * @retval None
1075
  */
38 mjames 1076
void Error_Handler(void)
1077
{
1078
  /* USER CODE BEGIN Error_Handler_Debug */
45 mjames 1079
  /* User can add his own implementation to report the HAL error return state */
38 mjames 1080
 
1081
  /* USER CODE END Error_Handler_Debug */
1082
}
1083
 
55 mjames 1084
#ifdef  USE_FULL_ASSERT
38 mjames 1085
/**
55 mjames 1086
  * @brief  Reports the name of the source file and the source line number
1087
  *         where the assert_param error has occurred.
1088
  * @param  file: pointer to the source file name
1089
  * @param  line: assert_param error line source number
1090
  * @retval None
1091
  */
38 mjames 1092
void assert_failed(uint8_t *file, uint32_t line)
1093
{
1094
  /* USER CODE BEGIN 6 */
1095
  /* User can add his own implementation to report the file name and line number,
1096
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
1097
  /* USER CODE END 6 */
1098
}
1099
#endif /* USE_FULL_ASSERT */