Subversion Repositories EngineBay2

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/**
2
  ******************************************************************************
3
  * @file    stm32l1xx_hal_uart.c
4
  * @author  MCD Application Team
5
  * @brief   UART HAL module driver.
28 mjames 6
  *          This file provides firmware functions to manage the following
7
  *          functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
2 mjames 8
  *           + Initialization and de-initialization functions
9
  *           + IO operation functions
28 mjames 10
  *           + Peripheral Control functions
11
  *           + Peripheral State and Errors functions
2 mjames 12
  @verbatim
13
  ==============================================================================
14
                        ##### How to use this driver #####
15
  ==============================================================================
16
  [..]
17
    The UART HAL driver can be used as follows:
18
 
28 mjames 19
    (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart).
2 mjames 20
    (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
21
        (##) Enable the USARTx interface clock.
22
        (##) UART pins configuration:
23
            (+++) Enable the clock for the UART GPIOs.
28 mjames 24
            (+++) Configure these UART pins (TX as alternate function pull-up, RX as alternate function Input).
2 mjames 25
        (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
26
             and HAL_UART_Receive_IT() APIs):
27
            (+++) Configure the USARTx interrupt priority.
28
            (+++) Enable the NVIC USART IRQ handle.
29
        (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
30
             and HAL_UART_Receive_DMA() APIs):
31
            (+++) Declare a DMA handle structure for the Tx/Rx channel.
32
            (+++) Enable the DMAx interface clock.
28 mjames 33
            (+++) Configure the declared DMA handle structure with the required
34
                  Tx/Rx parameters.
2 mjames 35
            (+++) Configure the DMA Tx/Rx channel.
36
            (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
28 mjames 37
            (+++) Configure the priority and enable the NVIC for the transfer complete
2 mjames 38
                  interrupt on the DMA Tx/Rx channel.
39
            (+++) Configure the USARTx interrupt priority and enable the NVIC USART IRQ handle
40
                  (used for last byte sending completion detection in DMA non circular mode)
41
 
28 mjames 42
    (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware
2 mjames 43
        flow control and Mode(Receiver/Transmitter) in the huart Init structure.
44
 
45
    (#) For the UART asynchronous mode, initialize the UART registers by calling
46
        the HAL_UART_Init() API.
47
 
28 mjames 48
    (#) For the UART Half duplex mode, initialize the UART registers by calling
2 mjames 49
        the HAL_HalfDuplex_Init() API.
50
 
51
    (#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API.
52
 
28 mjames 53
    (#) For the Multi-Processor mode, initialize the UART registers by calling
2 mjames 54
        the HAL_MultiProcessor_Init() API.
55
 
28 mjames 56
     [..]
57
       (@) The specific UART interrupts (Transmission complete interrupt,
2 mjames 58
            RXNE interrupt and Error Interrupts) will be managed using the macros
28 mjames 59
            __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit
2 mjames 60
            and receive process.
61
 
28 mjames 62
     [..]
63
       (@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the
64
            low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized
2 mjames 65
            HAL_UART_MspInit() API.
66
 
28 mjames 67
    ##### Callback registration #####
68
    ==================================
69
 
70
    [..]
71
    The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1
72
    allows the user to configure dynamically the driver callbacks.
73
 
74
    [..]
75
    Use Function @ref HAL_UART_RegisterCallback() to register a user callback.
76
    Function @ref HAL_UART_RegisterCallback() allows to register following callbacks:
77
    (+) TxHalfCpltCallback        : Tx Half Complete Callback.
78
    (+) TxCpltCallback            : Tx Complete Callback.
79
    (+) RxHalfCpltCallback        : Rx Half Complete Callback.
80
    (+) RxCpltCallback            : Rx Complete Callback.
81
    (+) ErrorCallback             : Error Callback.
82
    (+) AbortCpltCallback         : Abort Complete Callback.
83
    (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
84
    (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
85
    (+) MspInitCallback           : UART MspInit.
86
    (+) MspDeInitCallback         : UART MspDeInit.
87
    This function takes as parameters the HAL peripheral handle, the Callback ID
88
    and a pointer to the user callback function.
89
 
90
    [..]
91
    Use function @ref HAL_UART_UnRegisterCallback() to reset a callback to the default
92
    weak (surcharged) function.
93
    @ref HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
94
    and the Callback ID.
95
    This function allows to reset following callbacks:
96
    (+) TxHalfCpltCallback        : Tx Half Complete Callback.
97
    (+) TxCpltCallback            : Tx Complete Callback.
98
    (+) RxHalfCpltCallback        : Rx Half Complete Callback.
99
    (+) RxCpltCallback            : Rx Complete Callback.
100
    (+) ErrorCallback             : Error Callback.
101
    (+) AbortCpltCallback         : Abort Complete Callback.
102
    (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
103
    (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
104
    (+) MspInitCallback           : UART MspInit.
105
    (+) MspDeInitCallback         : UART MspDeInit.
106
 
107
    [..]
108
    By default, after the @ref HAL_UART_Init() and when the state is HAL_UART_STATE_RESET
109
    all callbacks are set to the corresponding weak (surcharged) functions:
110
    examples @ref HAL_UART_TxCpltCallback(), @ref HAL_UART_RxHalfCpltCallback().
111
    Exception done for MspInit and MspDeInit functions that are respectively
112
    reset to the legacy weak (surcharged) functions in the @ref HAL_UART_Init()
113
    and @ref HAL_UART_DeInit() only when these callbacks are null (not registered beforehand).
114
    If not, MspInit or MspDeInit are not null, the @ref HAL_UART_Init() and @ref HAL_UART_DeInit()
115
    keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
116
 
117
    [..]
118
    Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only.
119
    Exception done MspInit/MspDeInit that can be registered/unregistered
120
    in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user)
121
    MspInit/DeInit callbacks can be used during the Init/DeInit.
122
    In that case first register the MspInit/MspDeInit user callbacks
123
    using @ref HAL_UART_RegisterCallback() before calling @ref HAL_UART_DeInit()
124
    or @ref HAL_UART_Init() function.
125
 
126
    [..]
127
    When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or
128
    not defined, the callback registration feature is not available
129
    and weak (surcharged) callbacks are used.
130
 
131
     [..]
2 mjames 132
        Three operation modes are available within this driver :
133
 
134
     *** Polling mode IO operation ***
135
     =================================
28 mjames 136
     [..]
137
       (+) Send an amount of data in blocking mode using HAL_UART_Transmit()
2 mjames 138
       (+) Receive an amount of data in blocking mode using HAL_UART_Receive()
28 mjames 139
 
2 mjames 140
     *** Interrupt mode IO operation ***
141
     ===================================
142
     [..]
28 mjames 143
       (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT()
144
       (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
2 mjames 145
            add his own code by customization of function pointer HAL_UART_TxCpltCallback
28 mjames 146
       (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT()
147
       (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
2 mjames 148
            add his own code by customization of function pointer HAL_UART_RxCpltCallback
28 mjames 149
       (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
2 mjames 150
            add his own code by customization of function pointer HAL_UART_ErrorCallback
151
 
152
     *** DMA mode IO operation ***
153
     ==============================
28 mjames 154
     [..]
155
       (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA()
156
       (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can
157
            add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback
158
       (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
2 mjames 159
            add his own code by customization of function pointer HAL_UART_TxCpltCallback
28 mjames 160
       (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA()
161
       (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can
162
            add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback
163
       (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
2 mjames 164
            add his own code by customization of function pointer HAL_UART_RxCpltCallback
28 mjames 165
       (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
2 mjames 166
            add his own code by customization of function pointer HAL_UART_ErrorCallback
167
       (+) Pause the DMA Transfer using HAL_UART_DMAPause()
168
       (+) Resume the DMA Transfer using HAL_UART_DMAResume()
169
       (+) Stop the DMA Transfer using HAL_UART_DMAStop()
170
 
171
     *** UART HAL driver macros list ***
172
     =============================================
173
     [..]
174
       Below the list of most used macros in UART HAL driver.
175
 
28 mjames 176
      (+) __HAL_UART_ENABLE: Enable the UART peripheral
2 mjames 177
      (+) __HAL_UART_DISABLE: Disable the UART peripheral
178
      (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not
179
      (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag
180
      (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt
181
      (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt
182
      (+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not
183
 
184
     [..]
28 mjames 185
       (@) You can refer to the UART HAL driver header file for more useful macros
186
 
2 mjames 187
  @endverbatim
28 mjames 188
     [..]
189
       (@) Additionnal remark: If the parity is enabled, then the MSB bit of the data written
190
           in the data register is transmitted but is changed by the parity bit.
191
           Depending on the frame length defined by the M bit (8-bits or 9-bits),
192
           the possible UART frame formats are as listed in the following table:
193
    +-------------------------------------------------------------+
194
    |   M bit |  PCE bit  |            UART frame                 |
195
    |---------------------|---------------------------------------|
196
    |    0    |    0      |    | SB | 8 bit data | STB |          |
197
    |---------|-----------|---------------------------------------|
198
    |    0    |    1      |    | SB | 7 bit data | PB | STB |     |
199
    |---------|-----------|---------------------------------------|
200
    |    1    |    0      |    | SB | 9 bit data | STB |          |
201
    |---------|-----------|---------------------------------------|
202
    |    1    |    1      |    | SB | 8 bit data | PB | STB |     |
203
    +-------------------------------------------------------------+
2 mjames 204
  ******************************************************************************
205
  * @attention
206
  *
28 mjames 207
  * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
208
  * All rights reserved.</center></h2>
2 mjames 209
  *
28 mjames 210
  * This software component is licensed by ST under BSD 3-Clause license,
211
  * the "License"; You may not use this file except in compliance with the
212
  * License. You may obtain a copy of the License at:
213
  *                        opensource.org/licenses/BSD-3-Clause
2 mjames 214
  *
215
  ******************************************************************************
216
  */
217
 
218
/* Includes ------------------------------------------------------------------*/
219
#include "stm32l1xx_hal.h"
220
 
221
/** @addtogroup STM32L1xx_HAL_Driver
222
  * @{
223
  */
224
 
225
/** @defgroup UART UART
226
  * @brief HAL UART module driver
227
  * @{
228
  */
229
#ifdef HAL_UART_MODULE_ENABLED
28 mjames 230
 
2 mjames 231
/* Private typedef -----------------------------------------------------------*/
232
/* Private define ------------------------------------------------------------*/
28 mjames 233
/** @addtogroup UART_Private_Constants
234
  * @{
235
  */
236
/**
237
  * @}
238
  */
239
/* Private macro -------------------------------------------------------------*/
2 mjames 240
/* Private variables ---------------------------------------------------------*/
241
/* Private function prototypes -----------------------------------------------*/
28 mjames 242
/** @addtogroup UART_Private_Functions  UART Private Functions
2 mjames 243
  * @{
244
  */
28 mjames 245
 
246
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
247
void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart);
248
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
249
static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
250
static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
251
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
252
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
253
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
254
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
255
static void UART_DMAError(DMA_HandleTypeDef *hdma);
256
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
257
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
258
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
259
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
260
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
2 mjames 261
static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart);
262
static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart);
263
static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart);
28 mjames 264
static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout);
265
static void UART_SetConfig(UART_HandleTypeDef *huart);
266
 
2 mjames 267
/**
268
  * @}
269
  */
270
 
271
/* Exported functions ---------------------------------------------------------*/
272
/** @defgroup UART_Exported_Functions UART Exported Functions
273
  * @{
274
  */
275
 
28 mjames 276
/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
277
  *  @brief    Initialization and Configuration functions
2 mjames 278
  *
279
@verbatim
28 mjames 280
 ===============================================================================
2 mjames 281
            ##### Initialization and Configuration functions #####
28 mjames 282
 ===============================================================================
2 mjames 283
    [..]
28 mjames 284
    This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
2 mjames 285
    in asynchronous mode.
28 mjames 286
      (+) For the asynchronous mode only these parameters can be configured:
2 mjames 287
        (++) Baud Rate
28 mjames 288
        (++) Word Length
2 mjames 289
        (++) Stop Bit
28 mjames 290
        (++) Parity: If the parity is enabled, then the MSB bit of the data written
291
             in the data register is transmitted but is changed by the parity bit.
292
             Depending on the frame length defined by the M bit (8-bits or 9-bits),
293
             please refer to Reference manual for possible UART frame formats.
2 mjames 294
        (++) Hardware flow control
295
        (++) Receiver/transmitter modes
28 mjames 296
        (++) Over Sampling Method
2 mjames 297
    [..]
28 mjames 298
    The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs
299
    follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor configuration
300
    procedures (details for the procedures are available in reference manual (RM0038)).
2 mjames 301
 
302
@endverbatim
303
  * @{
304
  */
305
 
306
/**
307
  * @brief  Initializes the UART mode according to the specified parameters in
308
  *         the UART_InitTypeDef and create the associated handle.
28 mjames 309
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 310
  *                the configuration information for the specified UART module.
311
  * @retval HAL status
312
  */
313
HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
314
{
315
  /* Check the UART handle allocation */
28 mjames 316
  if (huart == NULL)
2 mjames 317
  {
318
    return HAL_ERROR;
319
  }
320
 
321
  /* Check the parameters */
28 mjames 322
  if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
2 mjames 323
  {
28 mjames 324
    /* The hardware flow control is available only for USART1, USART2 and USART3 */
2 mjames 325
    assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
326
    assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
327
  }
328
  else
329
  {
330
    assert_param(IS_UART_INSTANCE(huart->Instance));
331
  }
332
  assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
333
  assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
28 mjames 334
 
335
  if (huart->gState == HAL_UART_STATE_RESET)
336
  {
2 mjames 337
    /* Allocate lock resource and initialize it */
338
    huart->Lock = HAL_UNLOCKED;
339
 
28 mjames 340
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
341
    UART_InitCallbacksToDefault(huart);
342
 
343
    if (huart->MspInitCallback == NULL)
344
    {
345
      huart->MspInitCallback = HAL_UART_MspInit;
346
    }
347
 
2 mjames 348
    /* Init the low level hardware */
28 mjames 349
    huart->MspInitCallback(huart);
350
#else
351
    /* Init the low level hardware : GPIO, CLOCK */
2 mjames 352
    HAL_UART_MspInit(huart);
28 mjames 353
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
2 mjames 354
  }
355
 
28 mjames 356
  huart->gState = HAL_UART_STATE_BUSY;
2 mjames 357
 
358
  /* Disable the peripheral */
359
  __HAL_UART_DISABLE(huart);
28 mjames 360
 
2 mjames 361
  /* Set the UART Communication parameters */
362
  UART_SetConfig(huart);
28 mjames 363
 
364
  /* In asynchronous mode, the following bits must be kept cleared:
2 mjames 365
     - LINEN and CLKEN bits in the USART_CR2 register,
366
     - SCEN, HDSEL and IREN  bits in the USART_CR3 register.*/
367
  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
368
  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
28 mjames 369
 
2 mjames 370
  /* Enable the peripheral */
371
  __HAL_UART_ENABLE(huart);
28 mjames 372
 
2 mjames 373
  /* Initialize the UART state */
374
  huart->ErrorCode = HAL_UART_ERROR_NONE;
28 mjames 375
  huart->gState = HAL_UART_STATE_READY;
376
  huart->RxState = HAL_UART_STATE_READY;
377
 
2 mjames 378
  return HAL_OK;
379
}
380
 
381
/**
382
  * @brief  Initializes the half-duplex mode according to the specified
383
  *         parameters in the UART_InitTypeDef and create the associated handle.
28 mjames 384
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 385
  *                the configuration information for the specified UART module.
386
  * @retval HAL status
387
  */
388
HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
389
{
390
  /* Check the UART handle allocation */
28 mjames 391
  if (huart == NULL)
2 mjames 392
  {
393
    return HAL_ERROR;
394
  }
28 mjames 395
 
396
  /* Check the parameters */
2 mjames 397
  assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
398
  assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
399
  assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
400
 
28 mjames 401
  if (huart->gState == HAL_UART_STATE_RESET)
402
  {
2 mjames 403
    /* Allocate lock resource and initialize it */
404
    huart->Lock = HAL_UNLOCKED;
405
 
28 mjames 406
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
407
    UART_InitCallbacksToDefault(huart);
408
 
409
    if (huart->MspInitCallback == NULL)
410
    {
411
      huart->MspInitCallback = HAL_UART_MspInit;
412
    }
413
 
2 mjames 414
    /* Init the low level hardware */
28 mjames 415
    huart->MspInitCallback(huart);
416
#else
417
    /* Init the low level hardware : GPIO, CLOCK */
2 mjames 418
    HAL_UART_MspInit(huart);
28 mjames 419
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
2 mjames 420
  }
421
 
28 mjames 422
  huart->gState = HAL_UART_STATE_BUSY;
2 mjames 423
 
424
  /* Disable the peripheral */
425
  __HAL_UART_DISABLE(huart);
28 mjames 426
 
2 mjames 427
  /* Set the UART Communication parameters */
428
  UART_SetConfig(huart);
28 mjames 429
 
430
  /* In half-duplex mode, the following bits must be kept cleared:
2 mjames 431
     - LINEN and CLKEN bits in the USART_CR2 register,
432
     - SCEN and IREN bits in the USART_CR3 register.*/
433
  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
434
  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
28 mjames 435
 
2 mjames 436
  /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
437
  SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
28 mjames 438
 
2 mjames 439
  /* Enable the peripheral */
440
  __HAL_UART_ENABLE(huart);
28 mjames 441
 
2 mjames 442
  /* Initialize the UART state*/
443
  huart->ErrorCode = HAL_UART_ERROR_NONE;
28 mjames 444
  huart->gState = HAL_UART_STATE_READY;
445
  huart->RxState = HAL_UART_STATE_READY;
446
 
2 mjames 447
  return HAL_OK;
448
}
449
 
450
/**
451
  * @brief  Initializes the LIN mode according to the specified
452
  *         parameters in the UART_InitTypeDef and create the associated handle.
28 mjames 453
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 454
  *                the configuration information for the specified UART module.
28 mjames 455
  * @param  BreakDetectLength Specifies the LIN break detection length.
2 mjames 456
  *         This parameter can be one of the following values:
457
  *            @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection
458
  *            @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection
459
  * @retval HAL status
460
  */
461
HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
462
{
463
  /* Check the UART handle allocation */
28 mjames 464
  if (huart == NULL)
2 mjames 465
  {
466
    return HAL_ERROR;
467
  }
28 mjames 468
 
469
  /* Check the LIN UART instance */
2 mjames 470
  assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
28 mjames 471
 
2 mjames 472
  /* Check the Break detection length parameter */
473
  assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
474
  assert_param(IS_UART_LIN_WORD_LENGTH(huart->Init.WordLength));
475
  assert_param(IS_UART_LIN_OVERSAMPLING(huart->Init.OverSampling));
28 mjames 476
 
477
  if (huart->gState == HAL_UART_STATE_RESET)
478
  {
2 mjames 479
    /* Allocate lock resource and initialize it */
480
    huart->Lock = HAL_UNLOCKED;
481
 
28 mjames 482
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
483
    UART_InitCallbacksToDefault(huart);
484
 
485
    if (huart->MspInitCallback == NULL)
486
    {
487
      huart->MspInitCallback = HAL_UART_MspInit;
488
    }
489
 
2 mjames 490
    /* Init the low level hardware */
28 mjames 491
    huart->MspInitCallback(huart);
492
#else
493
    /* Init the low level hardware : GPIO, CLOCK */
2 mjames 494
    HAL_UART_MspInit(huart);
28 mjames 495
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
2 mjames 496
  }
497
 
28 mjames 498
  huart->gState = HAL_UART_STATE_BUSY;
2 mjames 499
 
500
  /* Disable the peripheral */
501
  __HAL_UART_DISABLE(huart);
28 mjames 502
 
2 mjames 503
  /* Set the UART Communication parameters */
504
  UART_SetConfig(huart);
28 mjames 505
 
506
  /* In LIN mode, the following bits must be kept cleared:
2 mjames 507
     - CLKEN bits in the USART_CR2 register,
28 mjames 508
     - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
509
  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_CLKEN));
2 mjames 510
  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
28 mjames 511
 
2 mjames 512
  /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
513
  SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
28 mjames 514
 
2 mjames 515
  /* Set the USART LIN Break detection length. */
28 mjames 516
  CLEAR_BIT(huart->Instance->CR2, USART_CR2_LBDL);
517
  SET_BIT(huart->Instance->CR2, BreakDetectLength);
518
 
2 mjames 519
  /* Enable the peripheral */
520
  __HAL_UART_ENABLE(huart);
28 mjames 521
 
2 mjames 522
  /* Initialize the UART state*/
523
  huart->ErrorCode = HAL_UART_ERROR_NONE;
28 mjames 524
  huart->gState = HAL_UART_STATE_READY;
525
  huart->RxState = HAL_UART_STATE_READY;
526
 
2 mjames 527
  return HAL_OK;
528
}
529
 
530
/**
531
  * @brief  Initializes the Multi-Processor mode according to the specified
532
  *         parameters in the UART_InitTypeDef and create the associated handle.
28 mjames 533
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 534
  *                the configuration information for the specified UART module.
28 mjames 535
  * @param  Address USART address
536
  * @param  WakeUpMethod specifies the USART wake-up method.
2 mjames 537
  *         This parameter can be one of the following values:
28 mjames 538
  *            @arg UART_WAKEUPMETHOD_IDLELINE: Wake-up by an idle line detection
539
  *            @arg UART_WAKEUPMETHOD_ADDRESSMARK: Wake-up by an address mark
2 mjames 540
  * @retval HAL status
541
  */
542
HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
543
{
544
  /* Check the UART handle allocation */
28 mjames 545
  if (huart == NULL)
2 mjames 546
  {
547
    return HAL_ERROR;
548
  }
549
 
28 mjames 550
  /* Check the parameters */
2 mjames 551
  assert_param(IS_UART_MULTIPROCESSOR_INSTANCE(huart->Instance));
552
 
553
  /* Check the Address & wake up method parameters */
554
  assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
555
  assert_param(IS_UART_ADDRESS(Address));
556
  assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
557
  assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
558
 
28 mjames 559
  if (huart->gState == HAL_UART_STATE_RESET)
560
  {
2 mjames 561
    /* Allocate lock resource and initialize it */
562
    huart->Lock = HAL_UNLOCKED;
563
 
28 mjames 564
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
565
    UART_InitCallbacksToDefault(huart);
566
 
567
    if (huart->MspInitCallback == NULL)
568
    {
569
      huart->MspInitCallback = HAL_UART_MspInit;
570
    }
571
 
2 mjames 572
    /* Init the low level hardware */
28 mjames 573
    huart->MspInitCallback(huart);
574
#else
575
    /* Init the low level hardware : GPIO, CLOCK */
2 mjames 576
    HAL_UART_MspInit(huart);
28 mjames 577
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
2 mjames 578
  }
579
 
28 mjames 580
  huart->gState = HAL_UART_STATE_BUSY;
2 mjames 581
 
582
  /* Disable the peripheral */
583
  __HAL_UART_DISABLE(huart);
28 mjames 584
 
2 mjames 585
  /* Set the UART Communication parameters */
586
  UART_SetConfig(huart);
28 mjames 587
 
588
  /* In Multi-Processor mode, the following bits must be kept cleared:
2 mjames 589
     - LINEN and CLKEN bits in the USART_CR2 register,
590
     - SCEN, HDSEL and IREN  bits in the USART_CR3 register */
591
  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
592
  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
28 mjames 593
 
2 mjames 594
  /* Set the USART address node */
28 mjames 595
  CLEAR_BIT(huart->Instance->CR2, USART_CR2_ADD);
596
  SET_BIT(huart->Instance->CR2, Address);
597
 
2 mjames 598
  /* Set the wake up method by setting the WAKE bit in the CR1 register */
28 mjames 599
  CLEAR_BIT(huart->Instance->CR1, USART_CR1_WAKE);
600
  SET_BIT(huart->Instance->CR1, WakeUpMethod);
601
 
2 mjames 602
  /* Enable the peripheral */
603
  __HAL_UART_ENABLE(huart);
28 mjames 604
 
2 mjames 605
  /* Initialize the UART state */
606
  huart->ErrorCode = HAL_UART_ERROR_NONE;
28 mjames 607
  huart->gState = HAL_UART_STATE_READY;
608
  huart->RxState = HAL_UART_STATE_READY;
609
 
2 mjames 610
  return HAL_OK;
611
}
612
 
613
/**
28 mjames 614
  * @brief  DeInitializes the UART peripheral.
615
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 616
  *                the configuration information for the specified UART module.
617
  * @retval HAL status
618
  */
619
HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
620
{
621
  /* Check the UART handle allocation */
28 mjames 622
  if (huart == NULL)
2 mjames 623
  {
624
    return HAL_ERROR;
625
  }
28 mjames 626
 
2 mjames 627
  /* Check the parameters */
628
  assert_param(IS_UART_INSTANCE(huart->Instance));
629
 
28 mjames 630
  huart->gState = HAL_UART_STATE_BUSY;
631
 
2 mjames 632
  /* Disable the Peripheral */
633
  __HAL_UART_DISABLE(huart);
28 mjames 634
 
635
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
636
  if (huart->MspDeInitCallback == NULL)
637
  {
638
    huart->MspDeInitCallback = HAL_UART_MspDeInit;
639
  }
2 mjames 640
  /* DeInit the low level hardware */
28 mjames 641
  huart->MspDeInitCallback(huart);
642
#else
643
  /* DeInit the low level hardware */
2 mjames 644
  HAL_UART_MspDeInit(huart);
28 mjames 645
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
2 mjames 646
 
647
  huart->ErrorCode = HAL_UART_ERROR_NONE;
28 mjames 648
  huart->gState = HAL_UART_STATE_RESET;
649
  huart->RxState = HAL_UART_STATE_RESET;
2 mjames 650
 
651
  /* Process Unlock */
652
  __HAL_UNLOCK(huart);
653
 
654
  return HAL_OK;
655
}
656
 
657
/**
658
  * @brief  UART MSP Init.
28 mjames 659
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 660
  *                the configuration information for the specified UART module.
661
  * @retval None
662
  */
28 mjames 663
__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
2 mjames 664
{
665
  /* Prevent unused argument(s) compilation warning */
666
  UNUSED(huart);
667
  /* NOTE: This function should not be modified, when the callback is needed,
28 mjames 668
           the HAL_UART_MspInit could be implemented in the user file
669
   */
2 mjames 670
}
671
 
672
/**
673
  * @brief  UART MSP DeInit.
28 mjames 674
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 675
  *                the configuration information for the specified UART module.
676
  * @retval None
677
  */
28 mjames 678
__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
2 mjames 679
{
680
  /* Prevent unused argument(s) compilation warning */
681
  UNUSED(huart);
682
  /* NOTE: This function should not be modified, when the callback is needed,
28 mjames 683
           the HAL_UART_MspDeInit could be implemented in the user file
684
   */
2 mjames 685
}
686
 
28 mjames 687
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2 mjames 688
/**
28 mjames 689
  * @brief  Register a User UART Callback
690
  *         To be used instead of the weak predefined callback
691
  * @param  huart uart handle
692
  * @param  CallbackID ID of the callback to be registered
693
  *         This parameter can be one of the following values:
694
  *           @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
695
  *           @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
696
  *           @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
697
  *           @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
698
  *           @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
699
  *           @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
700
  *           @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
701
  *           @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
702
  *           @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
703
  *           @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
704
  * @param  pCallback pointer to the Callback function
705
  * @retval HAL status
706
  */
707
HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID, pUART_CallbackTypeDef pCallback)
708
{
709
  HAL_StatusTypeDef status = HAL_OK;
710
 
711
  if (pCallback == NULL)
712
  {
713
    /* Update the error code */
714
    huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
715
 
716
    return HAL_ERROR;
717
  }
718
  /* Process locked */
719
  __HAL_LOCK(huart);
720
 
721
  if (huart->gState == HAL_UART_STATE_READY)
722
  {
723
    switch (CallbackID)
724
    {
725
      case HAL_UART_TX_HALFCOMPLETE_CB_ID :
726
        huart->TxHalfCpltCallback = pCallback;
727
        break;
728
 
729
      case HAL_UART_TX_COMPLETE_CB_ID :
730
        huart->TxCpltCallback = pCallback;
731
        break;
732
 
733
      case HAL_UART_RX_HALFCOMPLETE_CB_ID :
734
        huart->RxHalfCpltCallback = pCallback;
735
        break;
736
 
737
      case HAL_UART_RX_COMPLETE_CB_ID :
738
        huart->RxCpltCallback = pCallback;
739
        break;
740
 
741
      case HAL_UART_ERROR_CB_ID :
742
        huart->ErrorCallback = pCallback;
743
        break;
744
 
745
      case HAL_UART_ABORT_COMPLETE_CB_ID :
746
        huart->AbortCpltCallback = pCallback;
747
        break;
748
 
749
      case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
750
        huart->AbortTransmitCpltCallback = pCallback;
751
        break;
752
 
753
      case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
754
        huart->AbortReceiveCpltCallback = pCallback;
755
        break;
756
 
757
      case HAL_UART_MSPINIT_CB_ID :
758
        huart->MspInitCallback = pCallback;
759
        break;
760
 
761
      case HAL_UART_MSPDEINIT_CB_ID :
762
        huart->MspDeInitCallback = pCallback;
763
        break;
764
 
765
      default :
766
        /* Update the error code */
767
        huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
768
 
769
        /* Return error status */
770
        status =  HAL_ERROR;
771
        break;
772
    }
773
  }
774
  else if (huart->gState == HAL_UART_STATE_RESET)
775
  {
776
    switch (CallbackID)
777
    {
778
      case HAL_UART_MSPINIT_CB_ID :
779
        huart->MspInitCallback = pCallback;
780
        break;
781
 
782
      case HAL_UART_MSPDEINIT_CB_ID :
783
        huart->MspDeInitCallback = pCallback;
784
        break;
785
 
786
      default :
787
        /* Update the error code */
788
        huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
789
 
790
        /* Return error status */
791
        status =  HAL_ERROR;
792
        break;
793
    }
794
  }
795
  else
796
  {
797
    /* Update the error code */
798
    huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
799
 
800
    /* Return error status */
801
    status =  HAL_ERROR;
802
  }
803
 
804
  /* Release Lock */
805
  __HAL_UNLOCK(huart);
806
 
807
  return status;
808
}
809
 
810
/**
811
  * @brief  Unregister an UART Callback
812
  *         UART callaback is redirected to the weak predefined callback
813
  * @param  huart uart handle
814
  * @param  CallbackID ID of the callback to be unregistered
815
  *         This parameter can be one of the following values:
816
  *           @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
817
  *           @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
818
  *           @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
819
  *           @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
820
  *           @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
821
  *           @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
822
  *           @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
823
  *           @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
824
  *           @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
825
  *           @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
826
  * @retval HAL status
827
  */
828
HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID)
829
{
830
  HAL_StatusTypeDef status = HAL_OK;
831
 
832
  /* Process locked */
833
  __HAL_LOCK(huart);
834
 
835
  if (HAL_UART_STATE_READY == huart->gState)
836
  {
837
    switch (CallbackID)
838
    {
839
      case HAL_UART_TX_HALFCOMPLETE_CB_ID :
840
        huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback;               /* Legacy weak  TxHalfCpltCallback       */
841
        break;
842
 
843
      case HAL_UART_TX_COMPLETE_CB_ID :
844
        huart->TxCpltCallback = HAL_UART_TxCpltCallback;                       /* Legacy weak TxCpltCallback            */
845
        break;
846
 
847
      case HAL_UART_RX_HALFCOMPLETE_CB_ID :
848
        huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback;               /* Legacy weak RxHalfCpltCallback        */
849
        break;
850
 
851
      case HAL_UART_RX_COMPLETE_CB_ID :
852
        huart->RxCpltCallback = HAL_UART_RxCpltCallback;                       /* Legacy weak RxCpltCallback            */
853
        break;
854
 
855
      case HAL_UART_ERROR_CB_ID :
856
        huart->ErrorCallback = HAL_UART_ErrorCallback;                         /* Legacy weak ErrorCallback             */
857
        break;
858
 
859
      case HAL_UART_ABORT_COMPLETE_CB_ID :
860
        huart->AbortCpltCallback = HAL_UART_AbortCpltCallback;                 /* Legacy weak AbortCpltCallback         */
861
        break;
862
 
863
      case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
864
        huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
865
        break;
866
 
867
      case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
868
        huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback;   /* Legacy weak AbortReceiveCpltCallback  */
869
        break;
870
 
871
      case HAL_UART_MSPINIT_CB_ID :
872
        huart->MspInitCallback = HAL_UART_MspInit;                             /* Legacy weak MspInitCallback           */
873
        break;
874
 
875
      case HAL_UART_MSPDEINIT_CB_ID :
876
        huart->MspDeInitCallback = HAL_UART_MspDeInit;                         /* Legacy weak MspDeInitCallback         */
877
        break;
878
 
879
      default :
880
        /* Update the error code */
881
        huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
882
 
883
        /* Return error status */
884
        status =  HAL_ERROR;
885
        break;
886
    }
887
  }
888
  else if (HAL_UART_STATE_RESET == huart->gState)
889
  {
890
    switch (CallbackID)
891
    {
892
      case HAL_UART_MSPINIT_CB_ID :
893
        huart->MspInitCallback = HAL_UART_MspInit;
894
        break;
895
 
896
      case HAL_UART_MSPDEINIT_CB_ID :
897
        huart->MspDeInitCallback = HAL_UART_MspDeInit;
898
        break;
899
 
900
      default :
901
        /* Update the error code */
902
        huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
903
 
904
        /* Return error status */
905
        status =  HAL_ERROR;
906
        break;
907
    }
908
  }
909
  else
910
  {
911
    /* Update the error code */
912
    huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
913
 
914
    /* Return error status */
915
    status =  HAL_ERROR;
916
  }
917
 
918
  /* Release Lock */
919
  __HAL_UNLOCK(huart);
920
 
921
  return status;
922
}
923
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
924
 
925
/**
2 mjames 926
  * @}
927
  */
928
 
28 mjames 929
/** @defgroup UART_Exported_Functions_Group2 IO operation functions
930
  *  @brief UART Transmit and Receive functions
2 mjames 931
  *
932
@verbatim
28 mjames 933
 ===============================================================================
2 mjames 934
                      ##### IO operation functions #####
28 mjames 935
 ===============================================================================
2 mjames 936
    This subsection provides a set of functions allowing to manage the UART asynchronous
937
    and Half duplex data transfers.
938
 
939
    (#) There are two modes of transfer:
28 mjames 940
       (+) Blocking mode: The communication is performed in polling mode.
941
           The HAL status of all data processing is returned by the same function
942
           after finishing transfer.
943
       (+) Non-Blocking mode: The communication is performed using Interrupts
944
           or DMA, these API's return the HAL status.
945
           The end of the data processing will be indicated through the
946
           dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
947
           using DMA mode.
948
           The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
949
           will be executed respectively at the end of the transmit or receive process
950
           The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected.
2 mjames 951
 
28 mjames 952
    (#) Blocking mode API's are :
953
        (+) HAL_UART_Transmit()
954
        (+) HAL_UART_Receive()
2 mjames 955
 
28 mjames 956
    (#) Non-Blocking mode API's with Interrupt are :
957
        (+) HAL_UART_Transmit_IT()
958
        (+) HAL_UART_Receive_IT()
959
        (+) HAL_UART_IRQHandler()
2 mjames 960
 
28 mjames 961
    (#) Non-Blocking mode API's with DMA are :
962
        (+) HAL_UART_Transmit_DMA()
963
        (+) HAL_UART_Receive_DMA()
964
        (+) HAL_UART_DMAPause()
965
        (+) HAL_UART_DMAResume()
966
        (+) HAL_UART_DMAStop()
2 mjames 967
 
28 mjames 968
    (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode:
969
        (+) HAL_UART_TxHalfCpltCallback()
970
        (+) HAL_UART_TxCpltCallback()
971
        (+) HAL_UART_RxHalfCpltCallback()
972
        (+) HAL_UART_RxCpltCallback()
973
        (+) HAL_UART_ErrorCallback()
2 mjames 974
 
28 mjames 975
    (#) Non-Blocking mode transfers could be aborted using Abort API's :
976
        (+) HAL_UART_Abort()
977
        (+) HAL_UART_AbortTransmit()
978
        (+) HAL_UART_AbortReceive()
979
        (+) HAL_UART_Abort_IT()
980
        (+) HAL_UART_AbortTransmit_IT()
981
        (+) HAL_UART_AbortReceive_IT()
982
 
983
    (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
984
        (+) HAL_UART_AbortCpltCallback()
985
        (+) HAL_UART_AbortTransmitCpltCallback()
986
        (+) HAL_UART_AbortReceiveCpltCallback()
987
 
988
    (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
989
        Errors are handled as follows :
990
       (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
991
           to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception .
992
           Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type,
993
           and HAL_UART_ErrorCallback() user callback is executed. Transfer is kept ongoing on UART side.
994
           If user wants to abort it, Abort services should be called by user.
995
       (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
996
           This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
997
           Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback() user callback is executed.
998
 
999
    -@- In the Half duplex communication, it is forbidden to run the transmit
1000
        and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
1001
 
2 mjames 1002
@endverbatim
1003
  * @{
1004
  */
1005
 
1006
/**
28 mjames 1007
  * @brief  Sends an amount of data in blocking mode.
1008
  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1009
  *         the sent data is handled as a set of u16. In this case, Size must indicate the number
1010
  *         of u16 provided through pData.
1011
  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1012
  *               the configuration information for the specified UART module.
1013
  * @param  pData Pointer to data buffer (u8 or u16 data elements).
1014
  * @param  Size  Amount of data elements (u8 or u16) to be sent
1015
  * @param  Timeout Timeout duration
2 mjames 1016
  * @retval HAL status
1017
  */
1018
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
1019
{
28 mjames 1020
  uint16_t *tmp;
1021
  uint32_t tickstart = 0U;
1022
 
1023
  /* Check that a Tx process is not already ongoing */
1024
  if (huart->gState == HAL_UART_STATE_READY)
2 mjames 1025
  {
28 mjames 1026
    if ((pData == NULL) || (Size == 0U))
2 mjames 1027
    {
1028
      return  HAL_ERROR;
1029
    }
1030
 
1031
    /* Process Locked */
1032
    __HAL_LOCK(huart);
1033
 
1034
    huart->ErrorCode = HAL_UART_ERROR_NONE;
28 mjames 1035
    huart->gState = HAL_UART_STATE_BUSY_TX;
2 mjames 1036
 
28 mjames 1037
    /* Init tickstart for timeout managment */
1038
    tickstart = HAL_GetTick();
1039
 
2 mjames 1040
    huart->TxXferSize = Size;
1041
    huart->TxXferCount = Size;
28 mjames 1042
 
1043
    /* Process Unlocked */
1044
    __HAL_UNLOCK(huart);
1045
 
1046
    while (huart->TxXferCount > 0U)
2 mjames 1047
    {
1048
      huart->TxXferCount--;
28 mjames 1049
      if (huart->Init.WordLength == UART_WORDLENGTH_9B)
2 mjames 1050
      {
28 mjames 1051
        if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
2 mjames 1052
        {
1053
          return HAL_TIMEOUT;
1054
        }
28 mjames 1055
        tmp = (uint16_t *) pData;
2 mjames 1056
        huart->Instance->DR = (*tmp & (uint16_t)0x01FF);
28 mjames 1057
        if (huart->Init.Parity == UART_PARITY_NONE)
2 mjames 1058
        {
28 mjames 1059
          pData += 2U;
2 mjames 1060
        }
1061
        else
28 mjames 1062
        {
1063
          pData += 1U;
2 mjames 1064
        }
28 mjames 1065
      }
2 mjames 1066
      else
1067
      {
28 mjames 1068
        if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
2 mjames 1069
        {
1070
          return HAL_TIMEOUT;
1071
        }
1072
        huart->Instance->DR = (*pData++ & (uint8_t)0xFF);
1073
      }
1074
    }
1075
 
28 mjames 1076
    if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
1077
    {
2 mjames 1078
      return HAL_TIMEOUT;
1079
    }
1080
 
28 mjames 1081
    /* At end of Tx process, restore huart->gState to Ready */
1082
    huart->gState = HAL_UART_STATE_READY;
2 mjames 1083
 
1084
    return HAL_OK;
1085
  }
1086
  else
1087
  {
1088
    return HAL_BUSY;
1089
  }
1090
}
1091
 
1092
/**
28 mjames 1093
  * @brief  Receives an amount of data in blocking mode.
1094
  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1095
  *         the received data is handled as a set of u16. In this case, Size must indicate the number
1096
  *         of u16 available through pData.
1097
  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1098
  *               the configuration information for the specified UART module.
1099
  * @param  pData Pointer to data buffer (u8 or u16 data elements).
1100
  * @param  Size  Amount of data elements (u8 or u16) to be received.
1101
  * @param  Timeout Timeout duration
2 mjames 1102
  * @retval HAL status
1103
  */
1104
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
1105
{
28 mjames 1106
  uint16_t *tmp;
1107
  uint32_t tickstart = 0U;
2 mjames 1108
 
28 mjames 1109
  /* Check that a Rx process is not already ongoing */
1110
  if (huart->RxState == HAL_UART_STATE_READY)
2 mjames 1111
  {
28 mjames 1112
    if ((pData == NULL) || (Size == 0U))
2 mjames 1113
    {
1114
      return  HAL_ERROR;
1115
    }
1116
 
1117
    /* Process Locked */
1118
    __HAL_LOCK(huart);
1119
 
1120
    huart->ErrorCode = HAL_UART_ERROR_NONE;
28 mjames 1121
    huart->RxState = HAL_UART_STATE_BUSY_RX;
2 mjames 1122
 
28 mjames 1123
    /* Init tickstart for timeout managment */
1124
    tickstart = HAL_GetTick();
1125
 
2 mjames 1126
    huart->RxXferSize = Size;
1127
    huart->RxXferCount = Size;
1128
 
28 mjames 1129
    /* Process Unlocked */
1130
    __HAL_UNLOCK(huart);
1131
 
2 mjames 1132
    /* Check the remain data to be received */
28 mjames 1133
    while (huart->RxXferCount > 0U)
2 mjames 1134
    {
1135
      huart->RxXferCount--;
28 mjames 1136
      if (huart->Init.WordLength == UART_WORDLENGTH_9B)
2 mjames 1137
      {
28 mjames 1138
        if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
2 mjames 1139
        {
1140
          return HAL_TIMEOUT;
1141
        }
28 mjames 1142
        tmp = (uint16_t *) pData;
1143
        if (huart->Init.Parity == UART_PARITY_NONE)
2 mjames 1144
        {
1145
          *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
28 mjames 1146
          pData += 2U;
2 mjames 1147
        }
1148
        else
1149
        {
1150
          *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x00FF);
28 mjames 1151
          pData += 1U;
2 mjames 1152
        }
1153
 
1154
      }
1155
      else
1156
      {
28 mjames 1157
        if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
2 mjames 1158
        {
1159
          return HAL_TIMEOUT;
1160
        }
28 mjames 1161
        if (huart->Init.Parity == UART_PARITY_NONE)
2 mjames 1162
        {
1163
          *pData++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
1164
        }
1165
        else
1166
        {
1167
          *pData++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
1168
        }
1169
 
1170
      }
1171
    }
1172
 
28 mjames 1173
    /* At end of Rx process, restore huart->RxState to Ready */
1174
    huart->RxState = HAL_UART_STATE_READY;
2 mjames 1175
 
1176
    return HAL_OK;
1177
  }
1178
  else
1179
  {
1180
    return HAL_BUSY;
1181
  }
1182
}
1183
 
1184
/**
1185
  * @brief  Sends an amount of data in non blocking mode.
28 mjames 1186
  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1187
  *         the sent data is handled as a set of u16. In this case, Size must indicate the number
1188
  *         of u16 provided through pData.
1189
  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1190
  *               the configuration information for the specified UART module.
1191
  * @param  pData Pointer to data buffer (u8 or u16 data elements).
1192
  * @param  Size  Amount of data elements (u8 or u16) to be sent
2 mjames 1193
  * @retval HAL status
1194
  */
1195
HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1196
{
28 mjames 1197
  /* Check that a Tx process is not already ongoing */
1198
  if (huart->gState == HAL_UART_STATE_READY)
2 mjames 1199
  {
28 mjames 1200
    if ((pData == NULL) || (Size == 0U))
2 mjames 1201
    {
1202
      return HAL_ERROR;
1203
    }
28 mjames 1204
 
2 mjames 1205
    /* Process Locked */
1206
    __HAL_LOCK(huart);
28 mjames 1207
 
2 mjames 1208
    huart->pTxBuffPtr = pData;
1209
    huart->TxXferSize = Size;
1210
    huart->TxXferCount = Size;
1211
 
1212
    huart->ErrorCode = HAL_UART_ERROR_NONE;
28 mjames 1213
    huart->gState = HAL_UART_STATE_BUSY_TX;
2 mjames 1214
 
1215
    /* Process Unlocked */
1216
    __HAL_UNLOCK(huart);
1217
 
1218
    /* Enable the UART Transmit data register empty Interrupt */
1219
    __HAL_UART_ENABLE_IT(huart, UART_IT_TXE);
28 mjames 1220
 
2 mjames 1221
    return HAL_OK;
1222
  }
1223
  else
1224
  {
1225
    return HAL_BUSY;
1226
  }
1227
}
1228
 
1229
/**
28 mjames 1230
  * @brief  Receives an amount of data in non blocking mode.
1231
  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1232
  *         the received data is handled as a set of u16. In this case, Size must indicate the number
1233
  *         of u16 available through pData.
1234
  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1235
  *               the configuration information for the specified UART module.
1236
  * @param  pData Pointer to data buffer (u8 or u16 data elements).
1237
  * @param  Size  Amount of data elements (u8 or u16) to be received.
2 mjames 1238
  * @retval HAL status
1239
  */
1240
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1241
{
28 mjames 1242
  /* Check that a Rx process is not already ongoing */
1243
  if (huart->RxState == HAL_UART_STATE_READY)
2 mjames 1244
  {
28 mjames 1245
    if ((pData == NULL) || (Size == 0U))
2 mjames 1246
    {
1247
      return HAL_ERROR;
1248
    }
1249
 
1250
    /* Process Locked */
1251
    __HAL_LOCK(huart);
1252
 
1253
    huart->pRxBuffPtr = pData;
1254
    huart->RxXferSize = Size;
1255
    huart->RxXferCount = Size;
1256
 
1257
    huart->ErrorCode = HAL_UART_ERROR_NONE;
28 mjames 1258
    huart->RxState = HAL_UART_STATE_BUSY_RX;
2 mjames 1259
 
1260
    /* Process Unlocked */
1261
    __HAL_UNLOCK(huart);
1262
 
1263
    /* Enable the UART Parity Error Interrupt */
1264
    __HAL_UART_ENABLE_IT(huart, UART_IT_PE);
1265
 
1266
    /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
1267
    __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);
1268
 
1269
    /* Enable the UART Data Register not empty Interrupt */
1270
    __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
1271
 
1272
    return HAL_OK;
1273
  }
1274
  else
1275
  {
1276
    return HAL_BUSY;
1277
  }
1278
}
1279
 
1280
/**
28 mjames 1281
  * @brief  Sends an amount of data in DMA mode.
1282
  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1283
  *         the sent data is handled as a set of u16. In this case, Size must indicate the number
1284
  *         of u16 provided through pData.
1285
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 1286
  *                the configuration information for the specified UART module.
28 mjames 1287
  * @param  pData Pointer to data buffer (u8 or u16 data elements).
1288
  * @param  Size  Amount of data elements (u8 or u16) to be sent
2 mjames 1289
  * @retval HAL status
1290
  */
1291
HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1292
{
1293
  uint32_t *tmp;
1294
 
28 mjames 1295
  /* Check that a Tx process is not already ongoing */
1296
  if (huart->gState == HAL_UART_STATE_READY)
2 mjames 1297
  {
28 mjames 1298
    if ((pData == NULL) || (Size == 0U))
2 mjames 1299
    {
1300
      return HAL_ERROR;
1301
    }
1302
 
1303
    /* Process Locked */
1304
    __HAL_LOCK(huart);
1305
 
1306
    huart->pTxBuffPtr = pData;
1307
    huart->TxXferSize = Size;
1308
    huart->TxXferCount = Size;
1309
 
1310
    huart->ErrorCode = HAL_UART_ERROR_NONE;
28 mjames 1311
    huart->gState = HAL_UART_STATE_BUSY_TX;
2 mjames 1312
 
1313
    /* Set the UART DMA transfer complete callback */
1314
    huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
1315
 
1316
    /* Set the UART DMA Half transfer complete callback */
1317
    huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
1318
 
1319
    /* Set the DMA error callback */
1320
    huart->hdmatx->XferErrorCallback = UART_DMAError;
1321
 
28 mjames 1322
    /* Set the DMA abort callback */
1323
    huart->hdmatx->XferAbortCallback = NULL;
1324
 
2 mjames 1325
    /* Enable the UART transmit DMA channel */
28 mjames 1326
    tmp = (uint32_t *)&pData;
1327
    HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t *)tmp, (uint32_t)&huart->Instance->DR, Size);
2 mjames 1328
 
1329
    /* Clear the TC flag in the SR register by writing 0 to it */
1330
    __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
1331
 
28 mjames 1332
    /* Process Unlocked */
1333
    __HAL_UNLOCK(huart);
1334
 
2 mjames 1335
    /* Enable the DMA transfer for transmit request by setting the DMAT bit
1336
       in the UART CR3 register */
1337
    SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1338
 
1339
    return HAL_OK;
1340
  }
1341
  else
1342
  {
1343
    return HAL_BUSY;
1344
  }
1345
}
1346
 
1347
/**
28 mjames 1348
  * @brief  Receives an amount of data in DMA mode.
1349
  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1350
  *         the received data is handled as a set of u16. In this case, Size must indicate the number
1351
  *         of u16 available through pData.
1352
  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
1353
  *               the configuration information for the specified UART module.
1354
  * @param  pData Pointer to data buffer (u8 or u16 data elements).
1355
  * @param  Size  Amount of data elements (u8 or u16) to be received.
1356
  * @note   When the UART parity is enabled (PCE = 1) the received data contains the parity bit.
2 mjames 1357
  * @retval HAL status
1358
  */
1359
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1360
{
1361
  uint32_t *tmp;
1362
 
28 mjames 1363
  /* Check that a Rx process is not already ongoing */
1364
  if (huart->RxState == HAL_UART_STATE_READY)
2 mjames 1365
  {
28 mjames 1366
    if ((pData == NULL) || (Size == 0U))
2 mjames 1367
    {
1368
      return HAL_ERROR;
1369
    }
1370
 
1371
    /* Process Locked */
1372
    __HAL_LOCK(huart);
1373
 
1374
    huart->pRxBuffPtr = pData;
1375
    huart->RxXferSize = Size;
1376
 
1377
    huart->ErrorCode = HAL_UART_ERROR_NONE;
28 mjames 1378
    huart->RxState = HAL_UART_STATE_BUSY_RX;
2 mjames 1379
 
1380
    /* Set the UART DMA transfer complete callback */
1381
    huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
1382
 
1383
    /* Set the UART DMA Half transfer complete callback */
1384
    huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
1385
 
1386
    /* Set the DMA error callback */
1387
    huart->hdmarx->XferErrorCallback = UART_DMAError;
1388
 
28 mjames 1389
    /* Set the DMA abort callback */
1390
    huart->hdmarx->XferAbortCallback = NULL;
1391
 
2 mjames 1392
    /* Enable the DMA channel */
28 mjames 1393
    tmp = (uint32_t *)&pData;
1394
    HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->DR, *(uint32_t *)tmp, Size);
2 mjames 1395
 
28 mjames 1396
    /* Clear the Overrun flag just before enabling the DMA Rx request: can be mandatory for the second transfer */
1397
    __HAL_UART_CLEAR_OREFLAG(huart);
2 mjames 1398
 
1399
    /* Process Unlocked */
1400
    __HAL_UNLOCK(huart);
1401
 
28 mjames 1402
    /* Enable the UART Parity Error Interrupt */
1403
    SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
1404
 
1405
    /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
1406
    SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
1407
 
1408
    /* Enable the DMA transfer for the receiver request by setting the DMAR bit
1409
    in the UART CR3 register */
1410
    SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1411
 
2 mjames 1412
    return HAL_OK;
1413
  }
1414
  else
1415
  {
1416
    return HAL_BUSY;
1417
  }
1418
}
28 mjames 1419
 
2 mjames 1420
/**
1421
  * @brief Pauses the DMA Transfer.
28 mjames 1422
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 1423
  *                the configuration information for the specified UART module.
1424
  * @retval HAL status
1425
  */
1426
HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
1427
{
28 mjames 1428
  uint32_t dmarequest = 0x00U;
1429
 
2 mjames 1430
  /* Process Locked */
1431
  __HAL_LOCK(huart);
28 mjames 1432
 
1433
  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
1434
  if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
2 mjames 1435
  {
1436
    /* Disable the UART DMA Tx request */
1437
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1438
  }
28 mjames 1439
 
1440
  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
1441
  if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
2 mjames 1442
  {
28 mjames 1443
    /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1444
    CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
1445
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1446
 
2 mjames 1447
    /* Disable the UART DMA Rx request */
1448
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1449
  }
28 mjames 1450
 
2 mjames 1451
  /* Process Unlocked */
1452
  __HAL_UNLOCK(huart);
1453
 
28 mjames 1454
  return HAL_OK;
2 mjames 1455
}
1456
 
1457
/**
1458
  * @brief Resumes the DMA Transfer.
28 mjames 1459
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 1460
  *                the configuration information for the specified UART module.
1461
  * @retval HAL status
1462
  */
1463
HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
1464
{
1465
  /* Process Locked */
1466
  __HAL_LOCK(huart);
1467
 
28 mjames 1468
  if (huart->gState == HAL_UART_STATE_BUSY_TX)
2 mjames 1469
  {
1470
    /* Enable the UART DMA Tx request */
1471
    SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1472
  }
28 mjames 1473
 
1474
  if (huart->RxState == HAL_UART_STATE_BUSY_RX)
2 mjames 1475
  {
28 mjames 1476
    /* Clear the Overrun flag before resuming the Rx transfer*/
2 mjames 1477
    __HAL_UART_CLEAR_OREFLAG(huart);
28 mjames 1478
 
1479
    /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */
1480
    SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
1481
    SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
1482
 
2 mjames 1483
    /* Enable the UART DMA Rx request */
1484
    SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1485
  }
1486
 
1487
  /* Process Unlocked */
1488
  __HAL_UNLOCK(huart);
1489
 
1490
  return HAL_OK;
1491
}
1492
 
1493
/**
1494
  * @brief Stops the DMA Transfer.
28 mjames 1495
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 1496
  *                the configuration information for the specified UART module.
1497
  * @retval HAL status
1498
  */
1499
HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
1500
{
28 mjames 1501
  uint32_t dmarequest = 0x00U;
2 mjames 1502
  /* The Lock is not implemented on this API to allow the user application
1503
     to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback():
1504
     when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
1505
     and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback()
1506
     */
28 mjames 1507
 
1508
  /* Stop UART DMA Tx request if ongoing */
1509
  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
1510
  if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
2 mjames 1511
  {
28 mjames 1512
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1513
 
1514
    /* Abort the UART DMA Tx channel */
1515
    if (huart->hdmatx != NULL)
1516
    {
1517
      HAL_DMA_Abort(huart->hdmatx);
1518
    }
1519
    UART_EndTxTransfer(huart);
2 mjames 1520
  }
28 mjames 1521
 
1522
  /* Stop UART DMA Rx request if ongoing */
1523
  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
1524
  if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
2 mjames 1525
  {
28 mjames 1526
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1527
 
1528
    /* Abort the UART DMA Rx channel */
1529
    if (huart->hdmarx != NULL)
1530
    {
1531
      HAL_DMA_Abort(huart->hdmarx);
1532
    }
1533
    UART_EndRxTransfer(huart);
2 mjames 1534
  }
28 mjames 1535
 
2 mjames 1536
  return HAL_OK;
1537
}
1538
 
1539
/**
28 mjames 1540
  * @brief  Abort ongoing transfers (blocking mode).
1541
  * @param  huart UART handle.
1542
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1543
  *         This procedure performs following operations :
1544
  *           - Disable UART Interrupts (Tx and Rx)
1545
  *           - Disable the DMA transfer in the peripheral register (if enabled)
1546
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1547
  *           - Set handle State to READY
1548
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1549
  * @retval HAL status
1550
*/
1551
HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
1552
{
1553
  /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1554
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
1555
  CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1556
 
1557
  /* Disable the UART DMA Tx request if enabled */
1558
  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1559
  {
1560
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1561
 
1562
    /* Abort the UART DMA Tx channel: use blocking DMA Abort API (no callback) */
1563
    if (huart->hdmatx != NULL)
1564
    {
1565
      /* Set the UART DMA Abort callback to Null.
1566
         No call back execution at end of DMA abort procedure */
1567
      huart->hdmatx->XferAbortCallback = NULL;
1568
 
1569
      if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
1570
      {
1571
        if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1572
        {
1573
          /* Set error code to DMA */
1574
          huart->ErrorCode = HAL_UART_ERROR_DMA;
1575
 
1576
          return HAL_TIMEOUT;
1577
        }
1578
      }
1579
    }
1580
  }
1581
 
1582
  /* Disable the UART DMA Rx request if enabled */
1583
  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1584
  {
1585
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1586
 
1587
    /* Abort the UART DMA Rx channel: use blocking DMA Abort API (no callback) */
1588
    if (huart->hdmarx != NULL)
1589
    {
1590
      /* Set the UART DMA Abort callback to Null.
1591
         No call back execution at end of DMA abort procedure */
1592
      huart->hdmarx->XferAbortCallback = NULL;
1593
 
1594
      if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
1595
      {
1596
        if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1597
        {
1598
          /* Set error code to DMA */
1599
          huart->ErrorCode = HAL_UART_ERROR_DMA;
1600
 
1601
          return HAL_TIMEOUT;
1602
        }
1603
      }
1604
    }
1605
  }
1606
 
1607
  /* Reset Tx and Rx transfer counters */
1608
  huart->TxXferCount = 0x00U;
1609
  huart->RxXferCount = 0x00U;
1610
 
1611
  /* Reset ErrorCode */
1612
  huart->ErrorCode = HAL_UART_ERROR_NONE;
1613
 
1614
  /* Restore huart->RxState and huart->gState to Ready */
1615
  huart->RxState = HAL_UART_STATE_READY;
1616
  huart->gState = HAL_UART_STATE_READY;
1617
 
1618
  return HAL_OK;
1619
}
1620
 
1621
/**
1622
  * @brief  Abort ongoing Transmit transfer (blocking mode).
1623
  * @param  huart UART handle.
1624
  * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
1625
  *         This procedure performs following operations :
1626
  *           - Disable UART Interrupts (Tx)
1627
  *           - Disable the DMA transfer in the peripheral register (if enabled)
1628
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1629
  *           - Set handle State to READY
1630
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1631
  * @retval HAL status
1632
*/
1633
HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
1634
{
1635
  /* Disable TXEIE and TCIE interrupts */
1636
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
1637
 
1638
  /* Disable the UART DMA Tx request if enabled */
1639
  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1640
  {
1641
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1642
 
1643
    /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
1644
    if (huart->hdmatx != NULL)
1645
    {
1646
      /* Set the UART DMA Abort callback to Null.
1647
         No call back execution at end of DMA abort procedure */
1648
      huart->hdmatx->XferAbortCallback = NULL;
1649
 
1650
      if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
1651
      {
1652
        if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1653
        {
1654
          /* Set error code to DMA */
1655
          huart->ErrorCode = HAL_UART_ERROR_DMA;
1656
 
1657
          return HAL_TIMEOUT;
1658
        }
1659
      }
1660
    }
1661
  }
1662
 
1663
  /* Reset Tx transfer counter */
1664
  huart->TxXferCount = 0x00U;
1665
 
1666
  /* Restore huart->gState to Ready */
1667
  huart->gState = HAL_UART_STATE_READY;
1668
 
1669
  return HAL_OK;
1670
}
1671
 
1672
/**
1673
  * @brief  Abort ongoing Receive transfer (blocking mode).
1674
  * @param  huart UART handle.
1675
  * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
1676
  *         This procedure performs following operations :
1677
  *           - Disable UART Interrupts (Rx)
1678
  *           - Disable the DMA transfer in the peripheral register (if enabled)
1679
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1680
  *           - Set handle State to READY
1681
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1682
  * @retval HAL status
1683
*/
1684
HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
1685
{
1686
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1687
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
1688
  CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1689
 
1690
  /* Disable the UART DMA Rx request if enabled */
1691
  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1692
  {
1693
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1694
 
1695
    /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
1696
    if (huart->hdmarx != NULL)
1697
    {
1698
      /* Set the UART DMA Abort callback to Null.
1699
         No call back execution at end of DMA abort procedure */
1700
      huart->hdmarx->XferAbortCallback = NULL;
1701
 
1702
      if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
1703
      {
1704
        if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1705
        {
1706
          /* Set error code to DMA */
1707
          huart->ErrorCode = HAL_UART_ERROR_DMA;
1708
 
1709
          return HAL_TIMEOUT;
1710
        }
1711
      }
1712
    }
1713
  }
1714
 
1715
  /* Reset Rx transfer counter */
1716
  huart->RxXferCount = 0x00U;
1717
 
1718
  /* Restore huart->RxState to Ready */
1719
  huart->RxState = HAL_UART_STATE_READY;
1720
 
1721
  return HAL_OK;
1722
}
1723
 
1724
/**
1725
  * @brief  Abort ongoing transfers (Interrupt mode).
1726
  * @param  huart UART handle.
1727
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1728
  *         This procedure performs following operations :
1729
  *           - Disable UART Interrupts (Tx and Rx)
1730
  *           - Disable the DMA transfer in the peripheral register (if enabled)
1731
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1732
  *           - Set handle State to READY
1733
  *           - At abort completion, call user abort complete callback
1734
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
1735
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
1736
  * @retval HAL status
1737
*/
1738
HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
1739
{
1740
  uint32_t AbortCplt = 0x01U;
1741
 
1742
  /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1743
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
1744
  CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1745
 
1746
  /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
1747
     before any call to DMA Abort functions */
1748
  /* DMA Tx Handle is valid */
1749
  if (huart->hdmatx != NULL)
1750
  {
1751
    /* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
1752
       Otherwise, set it to NULL */
1753
    if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1754
    {
1755
      huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
1756
    }
1757
    else
1758
    {
1759
      huart->hdmatx->XferAbortCallback = NULL;
1760
    }
1761
  }
1762
  /* DMA Rx Handle is valid */
1763
  if (huart->hdmarx != NULL)
1764
  {
1765
    /* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
1766
       Otherwise, set it to NULL */
1767
    if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1768
    {
1769
      huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
1770
    }
1771
    else
1772
    {
1773
      huart->hdmarx->XferAbortCallback = NULL;
1774
    }
1775
  }
1776
 
1777
  /* Disable the UART DMA Tx request if enabled */
1778
  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1779
  {
1780
    /* Disable DMA Tx at UART level */
1781
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1782
 
1783
    /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
1784
    if (huart->hdmatx != NULL)
1785
    {
1786
      /* UART Tx DMA Abort callback has already been initialised :
1787
         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
1788
 
1789
      /* Abort DMA TX */
1790
      if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
1791
      {
1792
        huart->hdmatx->XferAbortCallback = NULL;
1793
      }
1794
      else
1795
      {
1796
        AbortCplt = 0x00U;
1797
      }
1798
    }
1799
  }
1800
 
1801
  /* Disable the UART DMA Rx request if enabled */
1802
  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1803
  {
1804
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1805
 
1806
    /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
1807
    if (huart->hdmarx != NULL)
1808
    {
1809
      /* UART Rx DMA Abort callback has already been initialised :
1810
         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
1811
 
1812
      /* Abort DMA RX */
1813
      if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
1814
      {
1815
        huart->hdmarx->XferAbortCallback = NULL;
1816
        AbortCplt = 0x01U;
1817
      }
1818
      else
1819
      {
1820
        AbortCplt = 0x00U;
1821
      }
1822
    }
1823
  }
1824
 
1825
  /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
1826
  if (AbortCplt == 0x01U)
1827
  {
1828
    /* Reset Tx and Rx transfer counters */
1829
    huart->TxXferCount = 0x00U;
1830
    huart->RxXferCount = 0x00U;
1831
 
1832
    /* Reset ErrorCode */
1833
    huart->ErrorCode = HAL_UART_ERROR_NONE;
1834
 
1835
    /* Restore huart->gState and huart->RxState to Ready */
1836
    huart->gState  = HAL_UART_STATE_READY;
1837
    huart->RxState = HAL_UART_STATE_READY;
1838
 
1839
    /* As no DMA to be aborted, call directly user Abort complete callback */
1840
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
1841
    /* Call registered Abort complete callback */
1842
    huart->AbortCpltCallback(huart);
1843
#else
1844
    /* Call legacy weak Abort complete callback */
1845
    HAL_UART_AbortCpltCallback(huart);
1846
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
1847
  }
1848
 
1849
  return HAL_OK;
1850
}
1851
 
1852
/**
1853
  * @brief  Abort ongoing Transmit transfer (Interrupt mode).
1854
  * @param  huart UART handle.
1855
  * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
1856
  *         This procedure performs following operations :
1857
  *           - Disable UART Interrupts (Tx)
1858
  *           - Disable the DMA transfer in the peripheral register (if enabled)
1859
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1860
  *           - Set handle State to READY
1861
  *           - At abort completion, call user abort complete callback
1862
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
1863
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
1864
  * @retval HAL status
1865
*/
1866
HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
1867
{
1868
  /* Disable TXEIE and TCIE interrupts */
1869
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
1870
 
1871
  /* Disable the UART DMA Tx request if enabled */
1872
  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1873
  {
1874
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1875
 
1876
    /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
1877
    if (huart->hdmatx != NULL)
1878
    {
1879
      /* Set the UART DMA Abort callback :
1880
         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
1881
      huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;
1882
 
1883
      /* Abort DMA TX */
1884
      if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
1885
      {
1886
        /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
1887
        huart->hdmatx->XferAbortCallback(huart->hdmatx);
1888
      }
1889
    }
1890
    else
1891
    {
1892
      /* Reset Tx transfer counter */
1893
      huart->TxXferCount = 0x00U;
1894
 
1895
      /* Restore huart->gState to Ready */
1896
      huart->gState = HAL_UART_STATE_READY;
1897
 
1898
      /* As no DMA to be aborted, call directly user Abort complete callback */
1899
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
1900
      /* Call registered Abort Transmit Complete Callback */
1901
      huart->AbortTransmitCpltCallback(huart);
1902
#else
1903
      /* Call legacy weak Abort Transmit Complete Callback */
1904
      HAL_UART_AbortTransmitCpltCallback(huart);
1905
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
1906
    }
1907
  }
1908
  else
1909
  {
1910
    /* Reset Tx transfer counter */
1911
    huart->TxXferCount = 0x00U;
1912
 
1913
    /* Restore huart->gState to Ready */
1914
    huart->gState = HAL_UART_STATE_READY;
1915
 
1916
    /* As no DMA to be aborted, call directly user Abort complete callback */
1917
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
1918
    /* Call registered Abort Transmit Complete Callback */
1919
    huart->AbortTransmitCpltCallback(huart);
1920
#else
1921
    /* Call legacy weak Abort Transmit Complete Callback */
1922
    HAL_UART_AbortTransmitCpltCallback(huart);
1923
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
1924
  }
1925
 
1926
  return HAL_OK;
1927
}
1928
 
1929
/**
1930
  * @brief  Abort ongoing Receive transfer (Interrupt mode).
1931
  * @param  huart UART handle.
1932
  * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
1933
  *         This procedure performs following operations :
1934
  *           - Disable UART Interrupts (Rx)
1935
  *           - Disable the DMA transfer in the peripheral register (if enabled)
1936
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1937
  *           - Set handle State to READY
1938
  *           - At abort completion, call user abort complete callback
1939
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
1940
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
1941
  * @retval HAL status
1942
*/
1943
HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
1944
{
1945
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1946
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
1947
  CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1948
 
1949
  /* Disable the UART DMA Rx request if enabled */
1950
  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1951
  {
1952
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1953
 
1954
    /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
1955
    if (huart->hdmarx != NULL)
1956
    {
1957
      /* Set the UART DMA Abort callback :
1958
         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
1959
      huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;
1960
 
1961
      /* Abort DMA RX */
1962
      if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
1963
      {
1964
        /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
1965
        huart->hdmarx->XferAbortCallback(huart->hdmarx);
1966
      }
1967
    }
1968
    else
1969
    {
1970
      /* Reset Rx transfer counter */
1971
      huart->RxXferCount = 0x00U;
1972
 
1973
      /* Restore huart->RxState to Ready */
1974
      huart->RxState = HAL_UART_STATE_READY;
1975
 
1976
      /* As no DMA to be aborted, call directly user Abort complete callback */
1977
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
1978
      /* Call registered Abort Receive Complete Callback */
1979
      huart->AbortReceiveCpltCallback(huart);
1980
#else
1981
      /* Call legacy weak Abort Receive Complete Callback */
1982
      HAL_UART_AbortReceiveCpltCallback(huart);
1983
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
1984
    }
1985
  }
1986
  else
1987
  {
1988
    /* Reset Rx transfer counter */
1989
    huart->RxXferCount = 0x00U;
1990
 
1991
    /* Restore huart->RxState to Ready */
1992
    huart->RxState = HAL_UART_STATE_READY;
1993
 
1994
    /* As no DMA to be aborted, call directly user Abort complete callback */
1995
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
1996
    /* Call registered Abort Receive Complete Callback */
1997
    huart->AbortReceiveCpltCallback(huart);
1998
#else
1999
    /* Call legacy weak Abort Receive Complete Callback */
2000
    HAL_UART_AbortReceiveCpltCallback(huart);
2001
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2002
  }
2003
 
2004
  return HAL_OK;
2005
}
2006
 
2007
/**
2 mjames 2008
  * @brief  This function handles UART interrupt request.
28 mjames 2009
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2010
  *                the configuration information for the specified UART module.
2011
  * @retval None
2012
  */
2013
void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
2014
{
28 mjames 2015
  uint32_t isrflags   = READ_REG(huart->Instance->SR);
2016
  uint32_t cr1its     = READ_REG(huart->Instance->CR1);
2017
  uint32_t cr3its     = READ_REG(huart->Instance->CR3);
2018
  uint32_t errorflags = 0x00U;
2019
  uint32_t dmarequest = 0x00U;
2 mjames 2020
 
28 mjames 2021
  /* If no error occurs */
2022
  errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE));
2023
  if (errorflags == RESET)
2 mjames 2024
  {
28 mjames 2025
    /* UART in mode Receiver -------------------------------------------------*/
2026
    if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
2027
    {
2028
      UART_Receive_IT(huart);
2029
      return;
2030
    }
2 mjames 2031
  }
28 mjames 2032
 
2033
  /* If some errors occur */
2034
  if ((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET) || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET)))
2 mjames 2035
  {
28 mjames 2036
    /* UART parity error interrupt occurred ----------------------------------*/
2037
    if (((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET))
2038
    {
2039
      huart->ErrorCode |= HAL_UART_ERROR_PE;
2040
    }
2041
 
2042
    /* UART noise error interrupt occurred -----------------------------------*/
2043
    if (((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
2044
    {
2045
      huart->ErrorCode |= HAL_UART_ERROR_NE;
2046
    }
2047
 
2048
    /* UART frame error interrupt occurred -----------------------------------*/
2049
    if (((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
2050
    {
2051
      huart->ErrorCode |= HAL_UART_ERROR_FE;
2052
    }
2053
 
2054
    /* UART Over-Run interrupt occurred --------------------------------------*/
2055
    if (((isrflags & USART_SR_ORE) != RESET) && (((cr1its & USART_CR1_RXNEIE) != RESET) || ((cr3its & USART_CR3_EIE) != RESET)))
2056
    {
2057
      huart->ErrorCode |= HAL_UART_ERROR_ORE;
2058
    }
2059
 
2060
    /* Call UART Error Call back function if need be --------------------------*/
2061
    if (huart->ErrorCode != HAL_UART_ERROR_NONE)
2062
    {
2063
      /* UART in mode Receiver -----------------------------------------------*/
2064
      if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
2065
      {
2066
        UART_Receive_IT(huart);
2067
      }
2068
 
2069
      /* If Overrun error occurs, or if any error occurs in DMA mode reception,
2070
         consider error as blocking */
2071
      dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
2072
      if (((huart->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || dmarequest)
2073
      {
2074
        /* Blocking error : transfer is aborted
2075
           Set the UART state ready to be able to start again the process,
2076
           Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
2077
        UART_EndRxTransfer(huart);
2078
 
2079
        /* Disable the UART DMA Rx request if enabled */
2080
        if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2081
        {
2082
          CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2083
 
2084
          /* Abort the UART DMA Rx channel */
2085
          if (huart->hdmarx != NULL)
2086
          {
2087
            /* Set the UART DMA Abort callback :
2088
               will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
2089
            huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
2090
            if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2091
            {
2092
              /* Call Directly XferAbortCallback function in case of error */
2093
              huart->hdmarx->XferAbortCallback(huart->hdmarx);
2094
            }
2095
          }
2096
          else
2097
          {
2098
            /* Call user error callback */
2099
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2100
            /*Call registered error callback*/
2101
            huart->ErrorCallback(huart);
2102
#else
2103
            /*Call legacy weak error callback*/
2104
            HAL_UART_ErrorCallback(huart);
2105
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2106
          }
2107
        }
2108
        else
2109
        {
2110
          /* Call user error callback */
2111
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2112
          /*Call registered error callback*/
2113
          huart->ErrorCallback(huart);
2114
#else
2115
          /*Call legacy weak error callback*/
2116
          HAL_UART_ErrorCallback(huart);
2117
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2118
        }
2119
      }
2120
      else
2121
      {
2122
        /* Non Blocking error : transfer could go on.
2123
           Error is notified to user through user error callback */
2124
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2125
        /*Call registered error callback*/
2126
        huart->ErrorCallback(huart);
2127
#else
2128
        /*Call legacy weak error callback*/
2129
        HAL_UART_ErrorCallback(huart);
2130
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2131
 
2132
        huart->ErrorCode = HAL_UART_ERROR_NONE;
2133
      }
2134
    }
2135
    return;
2136
  } /* End if some error occurs */
2137
 
2 mjames 2138
  /* UART in mode Transmitter ------------------------------------------------*/
28 mjames 2139
  if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
2 mjames 2140
  {
2141
    UART_Transmit_IT(huart);
28 mjames 2142
    return;
2 mjames 2143
  }
2144
 
2145
  /* UART in mode Transmitter end --------------------------------------------*/
28 mjames 2146
  if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET))
2 mjames 2147
  {
2148
    UART_EndTransmit_IT(huart);
28 mjames 2149
    return;
2150
  }
2 mjames 2151
}
2152
 
2153
/**
2154
  * @brief  Tx Transfer completed callbacks.
28 mjames 2155
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2156
  *                the configuration information for the specified UART module.
2157
  * @retval None
2158
  */
28 mjames 2159
__weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
2 mjames 2160
{
2161
  /* Prevent unused argument(s) compilation warning */
2162
  UNUSED(huart);
2163
  /* NOTE: This function should not be modified, when the callback is needed,
28 mjames 2164
           the HAL_UART_TxCpltCallback could be implemented in the user file
2165
   */
2 mjames 2166
}
2167
 
2168
/**
2169
  * @brief  Tx Half Transfer completed callbacks.
28 mjames 2170
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2171
  *                the configuration information for the specified UART module.
2172
  * @retval None
2173
  */
28 mjames 2174
__weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
2 mjames 2175
{
2176
  /* Prevent unused argument(s) compilation warning */
2177
  UNUSED(huart);
2178
  /* NOTE: This function should not be modified, when the callback is needed,
28 mjames 2179
           the HAL_UART_TxHalfCpltCallback could be implemented in the user file
2180
   */
2 mjames 2181
}
2182
 
2183
/**
2184
  * @brief  Rx Transfer completed callbacks.
28 mjames 2185
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2186
  *                the configuration information for the specified UART module.
2187
  * @retval None
2188
  */
2189
__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
2190
{
2191
  /* Prevent unused argument(s) compilation warning */
2192
  UNUSED(huart);
2193
  /* NOTE: This function should not be modified, when the callback is needed,
28 mjames 2194
           the HAL_UART_RxCpltCallback could be implemented in the user file
2 mjames 2195
   */
2196
}
2197
 
2198
/**
2199
  * @brief  Rx Half Transfer completed callbacks.
28 mjames 2200
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2201
  *                the configuration information for the specified UART module.
2202
  * @retval None
2203
  */
2204
__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
2205
{
2206
  /* Prevent unused argument(s) compilation warning */
2207
  UNUSED(huart);
2208
  /* NOTE: This function should not be modified, when the callback is needed,
28 mjames 2209
           the HAL_UART_RxHalfCpltCallback could be implemented in the user file
2 mjames 2210
   */
2211
}
2212
 
2213
/**
2214
  * @brief  UART error callbacks.
28 mjames 2215
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2216
  *                the configuration information for the specified UART module.
2217
  * @retval None
2218
  */
28 mjames 2219
__weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
2 mjames 2220
{
2221
  /* Prevent unused argument(s) compilation warning */
2222
  UNUSED(huart);
2223
  /* NOTE: This function should not be modified, when the callback is needed,
28 mjames 2224
           the HAL_UART_ErrorCallback could be implemented in the user file
2225
   */
2 mjames 2226
}
2227
 
2228
/**
28 mjames 2229
  * @brief  UART Abort Complete callback.
2230
  * @param  huart UART handle.
2231
  * @retval None
2232
  */
2233
__weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart)
2234
{
2235
  /* Prevent unused argument(s) compilation warning */
2236
  UNUSED(huart);
2237
 
2238
  /* NOTE : This function should not be modified, when the callback is needed,
2239
            the HAL_UART_AbortCpltCallback can be implemented in the user file.
2240
   */
2241
}
2242
 
2243
/**
2244
  * @brief  UART Abort Complete callback.
2245
  * @param  huart UART handle.
2246
  * @retval None
2247
  */
2248
__weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart)
2249
{
2250
  /* Prevent unused argument(s) compilation warning */
2251
  UNUSED(huart);
2252
 
2253
  /* NOTE : This function should not be modified, when the callback is needed,
2254
            the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
2255
   */
2256
}
2257
 
2258
/**
2259
  * @brief  UART Abort Receive Complete callback.
2260
  * @param  huart UART handle.
2261
  * @retval None
2262
  */
2263
__weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart)
2264
{
2265
  /* Prevent unused argument(s) compilation warning */
2266
  UNUSED(huart);
2267
 
2268
  /* NOTE : This function should not be modified, when the callback is needed,
2269
            the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
2270
   */
2271
}
2272
 
2273
/**
2 mjames 2274
  * @}
2275
  */
2276
 
28 mjames 2277
/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
2278
  *  @brief   UART control functions
2 mjames 2279
  *
28 mjames 2280
@verbatim
2 mjames 2281
  ==============================================================================
2282
                      ##### Peripheral Control functions #####
28 mjames 2283
  ==============================================================================
2 mjames 2284
  [..]
2285
    This subsection provides a set of functions allowing to control the UART:
2286
    (+) HAL_LIN_SendBreak() API can be helpful to transmit the break character.
28 mjames 2287
    (+) HAL_MultiProcessor_EnterMuteMode() API can be helpful to enter the UART in mute mode.
2 mjames 2288
    (+) HAL_MultiProcessor_ExitMuteMode() API can be helpful to exit the UART mute mode by software.
2289
    (+) HAL_HalfDuplex_EnableTransmitter() API to enable the UART transmitter and disables the UART receiver in Half Duplex mode
2290
    (+) HAL_HalfDuplex_EnableReceiver() API to enable the UART receiver and disables the UART transmitter in Half Duplex mode
28 mjames 2291
 
2 mjames 2292
@endverbatim
2293
  * @{
2294
  */
2295
 
2296
/**
2297
  * @brief  Transmits break characters.
28 mjames 2298
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2299
  *                the configuration information for the specified UART module.
2300
  * @retval HAL status
2301
  */
2302
HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
2303
{
2304
  /* Check the parameters */
28 mjames 2305
  assert_param(IS_UART_INSTANCE(huart->Instance));
2306
 
2 mjames 2307
  /* Process Locked */
2308
  __HAL_LOCK(huart);
28 mjames 2309
 
2310
  huart->gState = HAL_UART_STATE_BUSY;
2311
 
2 mjames 2312
  /* Send break characters */
2313
  SET_BIT(huart->Instance->CR1, USART_CR1_SBK);
28 mjames 2314
 
2315
  huart->gState = HAL_UART_STATE_READY;
2316
 
2 mjames 2317
  /* Process Unlocked */
2318
  __HAL_UNLOCK(huart);
28 mjames 2319
 
2320
  return HAL_OK;
2 mjames 2321
}
2322
 
2323
/**
28 mjames 2324
  * @brief  Enters the UART in mute mode.
2325
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2326
  *                the configuration information for the specified UART module.
2327
  * @retval HAL status
2328
  */
2329
HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
2330
{
2331
  /* Check the parameters */
2332
  assert_param(IS_UART_INSTANCE(huart->Instance));
28 mjames 2333
 
2 mjames 2334
  /* Process Locked */
2335
  __HAL_LOCK(huart);
28 mjames 2336
 
2337
  huart->gState = HAL_UART_STATE_BUSY;
2338
 
2 mjames 2339
  /* Enable the USART mute mode  by setting the RWU bit in the CR1 register */
2340
  SET_BIT(huart->Instance->CR1, USART_CR1_RWU);
28 mjames 2341
 
2342
  huart->gState = HAL_UART_STATE_READY;
2343
 
2 mjames 2344
  /* Process Unlocked */
2345
  __HAL_UNLOCK(huart);
28 mjames 2346
 
2347
  return HAL_OK;
2 mjames 2348
}
2349
 
2350
/**
28 mjames 2351
  * @brief  Exits the UART mute mode: wake up software.
2352
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2353
  *                the configuration information for the specified UART module.
2354
  * @retval HAL status
2355
  */
2356
HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart)
2357
{
2358
  /* Check the parameters */
2359
  assert_param(IS_UART_INSTANCE(huart->Instance));
28 mjames 2360
 
2 mjames 2361
  /* Process Locked */
2362
  __HAL_LOCK(huart);
28 mjames 2363
 
2364
  huart->gState = HAL_UART_STATE_BUSY;
2365
 
2 mjames 2366
  /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */
2367
  CLEAR_BIT(huart->Instance->CR1, USART_CR1_RWU);
28 mjames 2368
 
2369
  huart->gState = HAL_UART_STATE_READY;
2370
 
2 mjames 2371
  /* Process Unlocked */
2372
  __HAL_UNLOCK(huart);
28 mjames 2373
 
2374
  return HAL_OK;
2 mjames 2375
}
2376
 
2377
/**
2378
  * @brief  Enables the UART transmitter and disables the UART receiver.
28 mjames 2379
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2380
  *                the configuration information for the specified UART module.
2381
  * @retval HAL status
2382
  */
2383
HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
2384
{
28 mjames 2385
  uint32_t tmpreg = 0x00U;
2386
 
2 mjames 2387
  /* Process Locked */
2388
  __HAL_LOCK(huart);
2389
 
28 mjames 2390
  huart->gState = HAL_UART_STATE_BUSY;
2391
 
2 mjames 2392
  /*-------------------------- USART CR1 Configuration -----------------------*/
28 mjames 2393
  tmpreg = huart->Instance->CR1;
2394
 
2 mjames 2395
  /* Clear TE and RE bits */
28 mjames 2396
  tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
2397
 
2 mjames 2398
  /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
28 mjames 2399
  tmpreg |= (uint32_t)USART_CR1_TE;
2400
 
2401
  /* Write to USART CR1 */
2402
  WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
2403
 
2404
  huart->gState = HAL_UART_STATE_READY;
2405
 
2 mjames 2406
  /* Process Unlocked */
2407
  __HAL_UNLOCK(huart);
28 mjames 2408
 
2409
  return HAL_OK;
2 mjames 2410
}
2411
 
2412
/**
2413
  * @brief  Enables the UART receiver and disables the UART transmitter.
28 mjames 2414
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2415
  *                the configuration information for the specified UART module.
2416
  * @retval HAL status
2417
  */
2418
HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
2419
{
28 mjames 2420
  uint32_t tmpreg = 0x00U;
2421
 
2 mjames 2422
  /* Process Locked */
2423
  __HAL_LOCK(huart);
2424
 
28 mjames 2425
  huart->gState = HAL_UART_STATE_BUSY;
2426
 
2 mjames 2427
  /*-------------------------- USART CR1 Configuration -----------------------*/
28 mjames 2428
  tmpreg = huart->Instance->CR1;
2429
 
2 mjames 2430
  /* Clear TE and RE bits */
28 mjames 2431
  tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
2432
 
2 mjames 2433
  /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
28 mjames 2434
  tmpreg |= (uint32_t)USART_CR1_RE;
2435
 
2436
  /* Write to USART CR1 */
2437
  WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
2438
 
2439
  huart->gState = HAL_UART_STATE_READY;
2440
 
2 mjames 2441
  /* Process Unlocked */
2442
  __HAL_UNLOCK(huart);
28 mjames 2443
 
2444
  return HAL_OK;
2 mjames 2445
}
2446
 
2447
/**
2448
  * @}
2449
  */
2450
 
28 mjames 2451
/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions
2452
  *  @brief   UART State and Errors functions
2 mjames 2453
  *
28 mjames 2454
@verbatim
2 mjames 2455
  ==============================================================================
2456
                 ##### Peripheral State and Errors functions #####
28 mjames 2457
  ==============================================================================
2 mjames 2458
 [..]
28 mjames 2459
   This subsection provides a set of functions allowing to return the State of
2460
   UART communication process, return Peripheral Errors occurred during communication
2 mjames 2461
   process
2462
   (+) HAL_UART_GetState() API can be helpful to check in run-time the state of the UART peripheral.
28 mjames 2463
   (+) HAL_UART_GetError() check in run-time errors that could be occurred during communication.
2 mjames 2464
 
2465
@endverbatim
2466
  * @{
2467
  */
28 mjames 2468
 
2 mjames 2469
/**
2470
  * @brief  Returns the UART state.
28 mjames 2471
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2472
  *                the configuration information for the specified UART module.
2473
  * @retval HAL state
2474
  */
2475
HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart)
2476
{
28 mjames 2477
  uint32_t temp1 = 0x00U, temp2 = 0x00U;
2478
  temp1 = huart->gState;
2479
  temp2 = huart->RxState;
2480
 
2481
  return (HAL_UART_StateTypeDef)(temp1 | temp2);
2 mjames 2482
}
2483
 
2484
/**
28 mjames 2485
  * @brief  Return the UART error code
2486
  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
2487
  *               the configuration information for the specified UART.
2488
  * @retval UART Error Code
2489
  */
2 mjames 2490
uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart)
2491
{
2492
  return huart->ErrorCode;
2493
}
2494
 
2495
/**
2496
  * @}
2497
  */
2498
 
2499
/**
2500
  * @}
2501
  */
2502
 
28 mjames 2503
/** @defgroup UART_Private_Functions UART Private Functions
2 mjames 2504
  * @{
2505
  */
28 mjames 2506
 
2 mjames 2507
/**
28 mjames 2508
  * @brief  Initialize the callbacks to their default values.
2509
  * @param  huart UART handle.
2510
  * @retval none
2511
  */
2512
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2513
void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart)
2514
{
2515
  /* Init the UART Callback settings */
2516
  huart->TxHalfCpltCallback        = HAL_UART_TxHalfCpltCallback;        /* Legacy weak TxHalfCpltCallback        */
2517
  huart->TxCpltCallback            = HAL_UART_TxCpltCallback;            /* Legacy weak TxCpltCallback            */
2518
  huart->RxHalfCpltCallback        = HAL_UART_RxHalfCpltCallback;        /* Legacy weak RxHalfCpltCallback        */
2519
  huart->RxCpltCallback            = HAL_UART_RxCpltCallback;            /* Legacy weak RxCpltCallback            */
2520
  huart->ErrorCallback             = HAL_UART_ErrorCallback;             /* Legacy weak ErrorCallback             */
2521
  huart->AbortCpltCallback         = HAL_UART_AbortCpltCallback;         /* Legacy weak AbortCpltCallback         */
2522
  huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
2523
  huart->AbortReceiveCpltCallback  = HAL_UART_AbortReceiveCpltCallback;  /* Legacy weak AbortReceiveCpltCallback  */
2524
 
2525
}
2526
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2527
 
2528
/**
2529
  * @brief  DMA UART transmit process complete callback.
2530
  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2 mjames 2531
  *               the configuration information for the specified DMA module.
2532
  * @retval None
2533
  */
28 mjames 2534
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
2 mjames 2535
{
28 mjames 2536
  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2 mjames 2537
  /* DMA Normal mode*/
28 mjames 2538
  if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
2 mjames 2539
  {
28 mjames 2540
    huart->TxXferCount = 0x00U;
2 mjames 2541
 
2542
    /* Disable the DMA transfer for transmit request by setting the DMAT bit
2543
       in the UART CR3 register */
2544
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
2545
 
28 mjames 2546
    /* Enable the UART Transmit Complete Interrupt */
2547
    SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
2548
 
2 mjames 2549
  }
2550
  /* DMA Circular mode */
2551
  else
2552
  {
28 mjames 2553
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2554
    /*Call registered Tx complete callback*/
2555
    huart->TxCpltCallback(huart);
2556
#else
2557
    /*Call legacy weak Tx complete callback*/
2 mjames 2558
    HAL_UART_TxCpltCallback(huart);
28 mjames 2559
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2 mjames 2560
  }
2561
}
2562
 
2563
/**
28 mjames 2564
  * @brief DMA UART transmit process half complete callback
2565
  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2 mjames 2566
  *               the configuration information for the specified DMA module.
2567
  * @retval None
2568
  */
2569
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
2570
{
28 mjames 2571
  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2 mjames 2572
 
28 mjames 2573
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2574
  /*Call registered Tx complete callback*/
2575
  huart->TxHalfCpltCallback(huart);
2576
#else
2577
  /*Call legacy weak Tx complete callback*/
2 mjames 2578
  HAL_UART_TxHalfCpltCallback(huart);
28 mjames 2579
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2 mjames 2580
}
2581
 
2582
/**
28 mjames 2583
  * @brief  DMA UART receive process complete callback.
2584
  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2 mjames 2585
  *               the configuration information for the specified DMA module.
2586
  * @retval None
2587
  */
28 mjames 2588
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
2 mjames 2589
{
28 mjames 2590
  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2 mjames 2591
  /* DMA Normal mode*/
28 mjames 2592
  if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
2 mjames 2593
  {
28 mjames 2594
    huart->RxXferCount = 0U;
2595
 
2596
    /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
2597
    CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
2598
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2599
 
2600
    /* Disable the DMA transfer for the receiver request by setting the DMAR bit
2 mjames 2601
       in the UART CR3 register */
2602
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2603
 
28 mjames 2604
    /* At end of Rx process, restore huart->RxState to Ready */
2605
    huart->RxState = HAL_UART_STATE_READY;
2 mjames 2606
  }
28 mjames 2607
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2608
  /*Call registered Rx complete callback*/
2609
  huart->RxCpltCallback(huart);
2610
#else
2611
  /*Call legacy weak Rx complete callback*/
2 mjames 2612
  HAL_UART_RxCpltCallback(huart);
28 mjames 2613
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2 mjames 2614
}
2615
 
2616
/**
28 mjames 2617
  * @brief DMA UART receive process half complete callback
2618
  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2 mjames 2619
  *               the configuration information for the specified DMA module.
2620
  * @retval None
2621
  */
2622
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
2623
{
28 mjames 2624
  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2 mjames 2625
 
28 mjames 2626
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2627
  /*Call registered Rx Half complete callback*/
2628
  huart->RxHalfCpltCallback(huart);
2629
#else
2630
  /*Call legacy weak Rx Half complete callback*/
2631
  HAL_UART_RxHalfCpltCallback(huart);
2632
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2 mjames 2633
}
2634
 
2635
/**
2636
  * @brief  DMA UART communication error callback.
28 mjames 2637
  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2 mjames 2638
  *               the configuration information for the specified DMA module.
2639
  * @retval None
2640
  */
28 mjames 2641
static void UART_DMAError(DMA_HandleTypeDef *hdma)
2 mjames 2642
{
28 mjames 2643
  uint32_t dmarequest = 0x00U;
2644
  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2645
 
2646
  /* Stop UART DMA Tx request if ongoing */
2647
  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
2648
  if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
2649
  {
2650
    huart->TxXferCount = 0x00U;
2651
    UART_EndTxTransfer(huart);
2652
  }
2653
 
2654
  /* Stop UART DMA Rx request if ongoing */
2655
  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
2656
  if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
2657
  {
2658
    huart->RxXferCount = 0x00U;
2659
    UART_EndRxTransfer(huart);
2660
  }
2661
 
2 mjames 2662
  huart->ErrorCode |= HAL_UART_ERROR_DMA;
28 mjames 2663
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2664
  /*Call registered error callback*/
2665
  huart->ErrorCallback(huart);
2666
#else
2667
  /*Call legacy weak error callback*/
2 mjames 2668
  HAL_UART_ErrorCallback(huart);
28 mjames 2669
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2 mjames 2670
}
2671
 
2672
/**
2673
  * @brief  This function handles UART Communication Timeout.
28 mjames 2674
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2675
  *                the configuration information for the specified UART module.
28 mjames 2676
  * @param  Flag specifies the UART flag to check.
2677
  * @param  Status The new Flag status (SET or RESET).
2678
  * @param  Tickstart Tick start value
2679
  * @param  Timeout Timeout duration
2 mjames 2680
  * @retval HAL status
2681
  */
28 mjames 2682
static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout)
2 mjames 2683
{
2684
  /* Wait until flag is set */
28 mjames 2685
  while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status)
2 mjames 2686
  {
28 mjames 2687
    /* Check for the Timeout */
2688
    if (Timeout != HAL_MAX_DELAY)
2 mjames 2689
    {
28 mjames 2690
      if ((Timeout == 0U) || ((HAL_GetTick() - Tickstart) > Timeout))
2 mjames 2691
      {
28 mjames 2692
        /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
2693
        CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
2694
        CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2 mjames 2695
 
28 mjames 2696
        huart->gState  = HAL_UART_STATE_READY;
2697
        huart->RxState = HAL_UART_STATE_READY;
2 mjames 2698
 
28 mjames 2699
        /* Process Unlocked */
2700
        __HAL_UNLOCK(huart);
2 mjames 2701
 
28 mjames 2702
        return HAL_TIMEOUT;
2 mjames 2703
      }
2704
    }
2705
  }
28 mjames 2706
  return HAL_OK;
2707
}
2708
 
2709
/**
2710
  * @brief  End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
2711
  * @param  huart UART handle.
2712
  * @retval None
2713
  */
2714
static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
2715
{
2716
  /* Disable TXEIE and TCIE interrupts */
2717
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
2718
 
2719
  /* At end of Tx process, restore huart->gState to Ready */
2720
  huart->gState = HAL_UART_STATE_READY;
2721
}
2722
 
2723
/**
2724
  * @brief  End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
2725
  * @param  huart UART handle.
2726
  * @retval None
2727
  */
2728
static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
2729
{
2730
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
2731
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
2732
  CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2733
 
2734
  /* At end of Rx process, restore huart->RxState to Ready */
2735
  huart->RxState = HAL_UART_STATE_READY;
2736
}
2737
 
2738
/**
2739
  * @brief  DMA UART communication abort callback, when initiated by HAL services on Error
2740
  *         (To be called at end of DMA Abort procedure following error occurrence).
2741
  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2742
  *               the configuration information for the specified DMA module.
2743
  * @retval None
2744
  */
2745
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
2746
{
2747
  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2748
  huart->RxXferCount = 0x00U;
2749
  huart->TxXferCount = 0x00U;
2750
 
2751
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2752
  /*Call registered error callback*/
2753
  huart->ErrorCallback(huart);
2754
#else
2755
  /*Call legacy weak error callback*/
2756
  HAL_UART_ErrorCallback(huart);
2757
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2758
}
2759
 
2760
/**
2761
  * @brief  DMA UART Tx communication abort callback, when initiated by user
2762
  *         (To be called at end of DMA Tx Abort procedure following user abort request).
2763
  * @note   When this callback is executed, User Abort complete call back is called only if no
2764
  *         Abort still ongoing for Rx DMA Handle.
2765
  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2766
  *               the configuration information for the specified DMA module.
2767
  * @retval None
2768
  */
2769
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
2770
{
2771
  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2772
 
2773
  huart->hdmatx->XferAbortCallback = NULL;
2774
 
2775
  /* Check if an Abort process is still ongoing */
2776
  if (huart->hdmarx != NULL)
2 mjames 2777
  {
28 mjames 2778
    if (huart->hdmarx->XferAbortCallback != NULL)
2 mjames 2779
    {
28 mjames 2780
      return;
2781
    }
2782
  }
2 mjames 2783
 
28 mjames 2784
  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
2785
  huart->TxXferCount = 0x00U;
2786
  huart->RxXferCount = 0x00U;
2 mjames 2787
 
28 mjames 2788
  /* Reset ErrorCode */
2789
  huart->ErrorCode = HAL_UART_ERROR_NONE;
2 mjames 2790
 
28 mjames 2791
  /* Restore huart->gState and huart->RxState to Ready */
2792
  huart->gState  = HAL_UART_STATE_READY;
2793
  huart->RxState = HAL_UART_STATE_READY;
2794
 
2795
  /* Call user Abort complete callback */
2796
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2797
  /* Call registered Abort complete callback */
2798
  huart->AbortCpltCallback(huart);
2799
#else
2800
  /* Call legacy weak Abort complete callback */
2801
  HAL_UART_AbortCpltCallback(huart);
2802
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2803
}
2804
 
2805
/**
2806
  * @brief  DMA UART Rx communication abort callback, when initiated by user
2807
  *         (To be called at end of DMA Rx Abort procedure following user abort request).
2808
  * @note   When this callback is executed, User Abort complete call back is called only if no
2809
  *         Abort still ongoing for Tx DMA Handle.
2810
  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2811
  *               the configuration information for the specified DMA module.
2812
  * @retval None
2813
  */
2814
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
2815
{
2816
  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2817
 
2818
  huart->hdmarx->XferAbortCallback = NULL;
2819
 
2820
  /* Check if an Abort process is still ongoing */
2821
  if (huart->hdmatx != NULL)
2822
  {
2823
    if (huart->hdmatx->XferAbortCallback != NULL)
2824
    {
2825
      return;
2 mjames 2826
    }
2827
  }
28 mjames 2828
 
2829
  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
2830
  huart->TxXferCount = 0x00U;
2831
  huart->RxXferCount = 0x00U;
2832
 
2833
  /* Reset ErrorCode */
2834
  huart->ErrorCode = HAL_UART_ERROR_NONE;
2835
 
2836
  /* Restore huart->gState and huart->RxState to Ready */
2837
  huart->gState  = HAL_UART_STATE_READY;
2838
  huart->RxState = HAL_UART_STATE_READY;
2839
 
2840
  /* Call user Abort complete callback */
2841
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2842
  /* Call registered Abort complete callback */
2843
  huart->AbortCpltCallback(huart);
2844
#else
2845
  /* Call legacy weak Abort complete callback */
2846
  HAL_UART_AbortCpltCallback(huart);
2847
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2 mjames 2848
}
2849
 
2850
/**
28 mjames 2851
  * @brief  DMA UART Tx communication abort callback, when initiated by user by a call to
2852
  *         HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
2853
  *         (This callback is executed at end of DMA Tx Abort procedure following user abort request,
2854
  *         and leads to user Tx Abort Complete callback execution).
2855
  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2856
  *               the configuration information for the specified DMA module.
2857
  * @retval None
2858
  */
2859
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
2860
{
2861
  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2862
 
2863
  huart->TxXferCount = 0x00U;
2864
 
2865
  /* Restore huart->gState to Ready */
2866
  huart->gState = HAL_UART_STATE_READY;
2867
 
2868
  /* Call user Abort complete callback */
2869
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2870
  /* Call registered Abort Transmit Complete Callback */
2871
  huart->AbortTransmitCpltCallback(huart);
2872
#else
2873
  /* Call legacy weak Abort Transmit Complete Callback */
2874
  HAL_UART_AbortTransmitCpltCallback(huart);
2875
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2876
}
2877
 
2878
/**
2879
  * @brief  DMA UART Rx communication abort callback, when initiated by user by a call to
2880
  *         HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
2881
  *         (This callback is executed at end of DMA Rx Abort procedure following user abort request,
2882
  *         and leads to user Rx Abort Complete callback execution).
2883
  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
2884
  *               the configuration information for the specified DMA module.
2885
  * @retval None
2886
  */
2887
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
2888
{
2889
  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2890
 
2891
  huart->RxXferCount = 0x00U;
2892
 
2893
  /* Restore huart->RxState to Ready */
2894
  huart->RxState = HAL_UART_STATE_READY;
2895
 
2896
  /* Call user Abort complete callback */
2897
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2898
  /* Call registered Abort Receive Complete Callback */
2899
  huart->AbortReceiveCpltCallback(huart);
2900
#else
2901
  /* Call legacy weak Abort Receive Complete Callback */
2902
  HAL_UART_AbortReceiveCpltCallback(huart);
2903
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2904
}
2905
 
2906
/**
2 mjames 2907
  * @brief  Sends an amount of data in non blocking mode.
28 mjames 2908
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2909
  *                the configuration information for the specified UART module.
2910
  * @retval HAL status
2911
  */
2912
static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart)
2913
{
28 mjames 2914
  uint16_t *tmp;
2915
 
2916
  /* Check that a Tx process is ongoing */
2917
  if (huart->gState == HAL_UART_STATE_BUSY_TX)
2 mjames 2918
  {
28 mjames 2919
    if (huart->Init.WordLength == UART_WORDLENGTH_9B)
2 mjames 2920
    {
28 mjames 2921
      tmp = (uint16_t *) huart->pTxBuffPtr;
2 mjames 2922
      huart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF);
28 mjames 2923
      if (huart->Init.Parity == UART_PARITY_NONE)
2 mjames 2924
      {
28 mjames 2925
        huart->pTxBuffPtr += 2U;
2 mjames 2926
      }
2927
      else
2928
      {
28 mjames 2929
        huart->pTxBuffPtr += 1U;
2 mjames 2930
      }
28 mjames 2931
    }
2 mjames 2932
    else
2933
    {
2934
      huart->Instance->DR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0x00FF);
2935
    }
2936
 
28 mjames 2937
    if (--huart->TxXferCount == 0U)
2 mjames 2938
    {
2939
      /* Disable the UART Transmit Complete Interrupt */
2940
      __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
2941
 
28 mjames 2942
      /* Enable the UART Transmit Complete Interrupt */
2 mjames 2943
      __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
2944
    }
2945
    return HAL_OK;
2946
  }
2947
  else
2948
  {
2949
    return HAL_BUSY;
2950
  }
2951
}
2952
 
2953
/**
2954
  * @brief  Wraps up transmission in non blocking mode.
28 mjames 2955
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2956
  *                the configuration information for the specified UART module.
2957
  * @retval HAL status
2958
  */
2959
static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart)
2960
{
28 mjames 2961
  /* Disable the UART Transmit Complete Interrupt */
2 mjames 2962
  __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
28 mjames 2963
 
2964
  /* Tx process is ended, restore huart->gState to Ready */
2965
  huart->gState = HAL_UART_STATE_READY;
2966
 
2967
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2968
  /*Call registered Tx complete callback*/
2969
  huart->TxCpltCallback(huart);
2970
#else
2971
  /*Call legacy weak Tx complete callback*/
2 mjames 2972
  HAL_UART_TxCpltCallback(huart);
28 mjames 2973
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2974
 
2 mjames 2975
  return HAL_OK;
2976
}
2977
 
2978
/**
28 mjames 2979
  * @brief  Receives an amount of data in non blocking mode
2980
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 2981
  *                the configuration information for the specified UART module.
2982
  * @retval HAL status
2983
  */
2984
static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart)
2985
{
28 mjames 2986
  uint16_t *tmp;
2987
 
2988
  /* Check that a Rx process is ongoing */
2989
  if (huart->RxState == HAL_UART_STATE_BUSY_RX)
2 mjames 2990
  {
28 mjames 2991
    if (huart->Init.WordLength == UART_WORDLENGTH_9B)
2 mjames 2992
    {
28 mjames 2993
      tmp = (uint16_t *) huart->pRxBuffPtr;
2994
      if (huart->Init.Parity == UART_PARITY_NONE)
2 mjames 2995
      {
2996
        *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
28 mjames 2997
        huart->pRxBuffPtr += 2U;
2 mjames 2998
      }
2999
      else
3000
      {
3001
        *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x00FF);
28 mjames 3002
        huart->pRxBuffPtr += 1U;
2 mjames 3003
      }
3004
    }
3005
    else
3006
    {
28 mjames 3007
      if (huart->Init.Parity == UART_PARITY_NONE)
2 mjames 3008
      {
3009
        *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
3010
      }
3011
      else
3012
      {
3013
        *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
3014
      }
3015
    }
3016
 
28 mjames 3017
    if (--huart->RxXferCount == 0U)
2 mjames 3018
    {
28 mjames 3019
      /* Disable the UART Data Register not empty Interrupt */
2 mjames 3020
      __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
3021
 
28 mjames 3022
      /* Disable the UART Parity Error Interrupt */
3023
      __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
2 mjames 3024
 
28 mjames 3025
      /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3026
      __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
2 mjames 3027
 
28 mjames 3028
      /* Rx process is completed, restore huart->RxState to Ready */
3029
      huart->RxState = HAL_UART_STATE_READY;
3030
 
3031
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3032
      /*Call registered Rx complete callback*/
3033
      huart->RxCpltCallback(huart);
3034
#else
3035
      /*Call legacy weak Rx complete callback*/
2 mjames 3036
      HAL_UART_RxCpltCallback(huart);
28 mjames 3037
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2 mjames 3038
 
3039
      return HAL_OK;
3040
    }
3041
    return HAL_OK;
3042
  }
3043
  else
3044
  {
28 mjames 3045
    return HAL_BUSY;
2 mjames 3046
  }
3047
}
3048
 
3049
/**
28 mjames 3050
  * @brief  Configures the UART peripheral.
3051
  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
2 mjames 3052
  *                the configuration information for the specified UART module.
3053
  * @retval None
3054
  */
3055
static void UART_SetConfig(UART_HandleTypeDef *huart)
3056
{
28 mjames 3057
  uint32_t tmpreg;
3058
  uint32_t pclk;
3059
 
2 mjames 3060
  /* Check the parameters */
28 mjames 3061
  assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
2 mjames 3062
  assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
3063
  assert_param(IS_UART_PARITY(huart->Init.Parity));
3064
  assert_param(IS_UART_MODE(huart->Init.Mode));
3065
 
28 mjames 3066
  /*-------------------------- USART CR2 Configuration -----------------------*/
3067
  /* Configure the UART Stop Bits: Set STOP[13:12] bits
3068
     according to huart->Init.StopBits value */
2 mjames 3069
  MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
3070
 
28 mjames 3071
  /*-------------------------- USART CR1 Configuration -----------------------*/
3072
  /* Configure the UART Word Length, Parity and mode:
3073
     Set the M bits according to huart->Init.WordLength value
2 mjames 3074
     Set PCE and PS bits according to huart->Init.Parity value
3075
     Set TE and RE bits according to huart->Init.Mode value
3076
     Set OVER8 bit according to huart->Init.OverSampling value */
28 mjames 3077
 
2 mjames 3078
  tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling;
28 mjames 3079
  MODIFY_REG(huart->Instance->CR1,
3080
             (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8),
2 mjames 3081
             tmpreg);
28 mjames 3082
 
3083
  /*-------------------------- USART CR3 Configuration -----------------------*/
2 mjames 3084
  /* Configure the UART HFC: Set CTSE and RTSE bits according to huart->Init.HwFlowCtl value */
3085
  MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE), huart->Init.HwFlowCtl);
28 mjames 3086
 
3087
 
3088
  if((huart->Instance == USART1))
2 mjames 3089
  {
28 mjames 3090
    pclk = HAL_RCC_GetPCLK2Freq();
2 mjames 3091
  }
3092
  else
3093
  {
28 mjames 3094
    pclk = HAL_RCC_GetPCLK1Freq();
2 mjames 3095
  }
28 mjames 3096
 
3097
  /*-------------------------- USART BRR Configuration ---------------------*/
3098
  if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
3099
  {
3100
    huart->Instance->BRR = UART_BRR_SAMPLING8(pclk, huart->Init.BaudRate);
3101
  }
3102
  else
3103
  {
3104
    huart->Instance->BRR = UART_BRR_SAMPLING16(pclk, huart->Init.BaudRate);
3105
  }
2 mjames 3106
}
28 mjames 3107
 
2 mjames 3108
/**
3109
  * @}
3110
  */
3111
 
3112
#endif /* HAL_UART_MODULE_ENABLED */
3113
/**
3114
  * @}
3115
  */
3116
 
3117
/**
3118
  * @}
3119
  */
3120
 
3121
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/