Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | mjames | 1 | /* |
2 | * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. |
||
3 | * |
||
4 | * SPDX-License-Identifier: Apache-2.0 |
||
5 | * |
||
6 | * Licensed under the Apache License, Version 2.0 (the License); you may |
||
7 | * not use this file except in compliance with the License. |
||
8 | * You may obtain a copy of the License at |
||
9 | * |
||
10 | * www.apache.org/licenses/LICENSE-2.0 |
||
11 | * |
||
12 | * Unless required by applicable law or agreed to in writing, software |
||
13 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
||
14 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||
15 | * See the License for the specific language governing permissions and |
||
16 | * limitations under the License. |
||
17 | */ |
||
18 | |||
19 | /* ---------------------------------------------------------------------- |
||
20 | * Project: CMSIS NN Library |
||
21 | * Title: arm_nnfunctions.h |
||
22 | * Description: Public header file for CMSIS NN Library |
||
23 | * |
||
24 | * $Date: 13. July 2018 |
||
25 | * $Revision: V.1.0.0 |
||
26 | * |
||
27 | * Target Processor: Cortex-M cores |
||
28 | * -------------------------------------------------------------------- */ |
||
29 | |||
30 | /** |
||
31 | \mainpage CMSIS NN Software Library |
||
32 | * |
||
33 | * Introduction |
||
34 | * ------------ |
||
35 | * |
||
36 | * This user manual describes the CMSIS NN software library, |
||
37 | * a collection of efficient neural network kernels developed to maximize the |
||
38 | * performance and minimize the memory footprint of neural networks on Cortex-M processor cores. |
||
39 | * |
||
40 | * The library is divided into a number of functions each covering a specific category: |
||
41 | * - Neural Network Convolution Functions |
||
42 | * - Neural Network Activation Functions |
||
43 | * - Fully-connected Layer Functions |
||
44 | * - Neural Network Pooling Functions |
||
45 | * - Softmax Functions |
||
46 | * - Neural Network Support Functions |
||
47 | * |
||
48 | * The library has separate functions for operating on different weight and activation data |
||
49 | * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the |
||
50 | * kernels are included in the function description. The implementation details are also |
||
51 | * described in this paper [1]. |
||
52 | * |
||
53 | * Block Diagram |
||
54 | * -------- |
||
55 | * \image html CMSIS-NN-OVERVIEW.PNG |
||
56 | * |
||
57 | * Examples |
||
58 | * -------- |
||
59 | * |
||
60 | * The library ships with a number of examples which demonstrate how to use the library functions. |
||
61 | * |
||
62 | * Pre-processor Macros |
||
63 | * ------------ |
||
64 | * |
||
65 | * Each library project have differant pre-processor macros. |
||
66 | * |
||
67 | * - ARM_MATH_DSP: |
||
68 | * |
||
69 | * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions. |
||
70 | * |
||
71 | * - ARM_MATH_BIG_ENDIAN: |
||
72 | * |
||
73 | * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. |
||
74 | * |
||
75 | * - ARM_NN_TRUNCATE: |
||
76 | * |
||
77 | * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation. |
||
78 | * |
||
79 | * Copyright Notice |
||
80 | * ------------ |
||
81 | * |
||
82 | * Copyright (C) 2010-2018 Arm Limited. All rights reserved. |
||
83 | * |
||
84 | * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601 |
||
85 | */ |
||
86 | |||
87 | /** |
||
88 | * @defgroup groupNN Neural Network Functions |
||
89 | * These functions perform basic operations for neural network layers. |
||
90 | */ |
||
91 | |||
92 | #ifndef _ARM_NNFUNCTIONS_H |
||
93 | #define _ARM_NNFUNCTIONS_H |
||
94 | |||
95 | #include "arm_nnsupportfunctions.h" |
||
96 | #include "arm_nn_tables.h" |
||
97 | |||
98 | #define USE_INTRINSIC |
||
99 | |||
100 | //#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */ |
||
101 | |||
102 | #ifdef __cplusplus |
||
103 | extern "C" |
||
104 | { |
||
105 | #endif |
||
106 | |||
107 | /** |
||
108 | * @defgroup NNConv Neural Network Convolution Functions |
||
109 | * |
||
110 | * Perform convolution layer |
||
111 | * |
||
112 | * The convolution is implemented in 2 steps: im2col and GEMM |
||
113 | * |
||
114 | * im2col is a process of converting each patch of image data into |
||
115 | * a column. After im2col, the convolution is computed as matrix-matrix |
||
116 | * multiplication. |
||
117 | * |
||
118 | * To reduce the memory footprint, the im2col is performed partially. |
||
119 | * Each iteration, only a few column (i.e., patches) are generated and |
||
120 | * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions. |
||
121 | * |
||
122 | */ |
||
123 | |||
124 | /** |
||
125 | * @brief Basic Q7 convolution function |
||
126 | * @param[in] Im_in pointer to input tensor |
||
127 | * @param[in] dim_im_in input tensor dimention |
||
128 | * @param[in] ch_im_in number of input tensor channels |
||
129 | * @param[in] wt pointer to kernel weights |
||
130 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
131 | * @param[in] dim_kernel filter kernel size |
||
132 | * @param[in] padding padding sizes |
||
133 | * @param[in] stride convolution stride |
||
134 | * @param[in] bias pointer to bias |
||
135 | * @param[in] bias_shift amount of left-shift for bias |
||
136 | * @param[in] out_shift amount of right-shift for output |
||
137 | * @param[in,out] Im_out pointer to output tensor |
||
138 | * @param[in] dim_im_out output tensor dimension |
||
139 | * @param[in,out] bufferA pointer to buffer space for input |
||
140 | * @param[in,out] bufferB pointer to buffer space for output |
||
141 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
||
142 | * |
||
143 | */ |
||
144 | |||
145 | arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in, |
||
146 | const uint16_t dim_im_in, |
||
147 | const uint16_t ch_im_in, |
||
148 | const q7_t * wt, |
||
149 | const uint16_t ch_im_out, |
||
150 | const uint16_t dim_kernel, |
||
151 | const uint16_t padding, |
||
152 | const uint16_t stride, |
||
153 | const q7_t * bias, |
||
154 | const uint16_t bias_shift, |
||
155 | const uint16_t out_shift, |
||
156 | q7_t * Im_out, |
||
157 | const uint16_t dim_im_out, |
||
158 | q15_t * bufferA, |
||
159 | q7_t * bufferB); |
||
160 | |||
161 | /** |
||
162 | * @brief Basic Q7 convolution function (non-sqaure shape) |
||
163 | * @param[in] Im_in pointer to input tensor |
||
164 | * @param[in] dim_im_in_x input tensor dimention x |
||
165 | * @param[in] dim_im_in_y input tensor dimention y |
||
166 | * @param[in] ch_im_in number of input tensor channels |
||
167 | * @param[in] wt pointer to kernel weights |
||
168 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
169 | * @param[in] dim_kernel_x filter kernel size x |
||
170 | * @param[in] dim_kernel_y filter kernel size y |
||
171 | * @param[in] padding_x padding size x |
||
172 | * @param[in] padding_y padding size y |
||
173 | * @param[in] stride_x convolution stride x |
||
174 | * @param[in] stride_y convolution stride y |
||
175 | * @param[in] bias pointer to bias |
||
176 | * @param[in] bias_shift amount of left-shift for bias |
||
177 | * @param[in] out_shift amount of right-shift for output |
||
178 | * @param[in,out] Im_out pointer to output tensor |
||
179 | * @param[in] dim_im_out_x output tensor dimension x |
||
180 | * @param[in] dim_im_out_y output tensor dimension y |
||
181 | * @param[in,out] bufferA pointer to buffer space for input |
||
182 | * @param[in,out] bufferB pointer to buffer space for output |
||
183 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
||
184 | */ |
||
185 | |||
186 | arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in, |
||
187 | const uint16_t dim_im_in_x, |
||
188 | const uint16_t dim_im_in_y, |
||
189 | const uint16_t ch_im_in, |
||
190 | const q7_t * wt, |
||
191 | const uint16_t ch_im_out, |
||
192 | const uint16_t dim_kernel_x, |
||
193 | const uint16_t dim_kernel_y, |
||
194 | const uint16_t padding_x, |
||
195 | const uint16_t padding_y, |
||
196 | const uint16_t stride_x, |
||
197 | const uint16_t stride_y, |
||
198 | const q7_t * bias, |
||
199 | const uint16_t bias_shift, |
||
200 | const uint16_t out_shift, |
||
201 | q7_t * Im_out, |
||
202 | const uint16_t dim_im_out_x, |
||
203 | const uint16_t dim_im_out_y, |
||
204 | q15_t * bufferA, |
||
205 | q7_t * bufferB); |
||
206 | |||
207 | /** |
||
208 | * @brief Basic Q15 convolution function |
||
209 | * @param[in] Im_in pointer to input tensor |
||
210 | * @param[in] dim_im_in input tensor dimention |
||
211 | * @param[in] ch_im_in number of input tensor channels |
||
212 | * @param[in] wt pointer to kernel weights |
||
213 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
214 | * @param[in] dim_kernel filter kernel size |
||
215 | * @param[in] padding padding sizes |
||
216 | * @param[in] stride convolution stride |
||
217 | * @param[in] bias pointer to bias |
||
218 | * @param[in] bias_shift amount of left-shift for bias |
||
219 | * @param[in] out_shift amount of right-shift for output |
||
220 | * @param[in,out] Im_out pointer to output tensor |
||
221 | * @param[in] dim_im_out output tensor dimension |
||
222 | * @param[in,out] bufferA pointer to buffer space for input |
||
223 | * @param[in,out] bufferB pointer to buffer space for output |
||
224 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
||
225 | * |
||
226 | */ |
||
227 | |||
228 | arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in, |
||
229 | const uint16_t dim_im_in, |
||
230 | const uint16_t ch_im_in, |
||
231 | const q15_t * wt, |
||
232 | const uint16_t ch_im_out, |
||
233 | const uint16_t dim_kernel, |
||
234 | const uint16_t padding, |
||
235 | const uint16_t stride, |
||
236 | const q15_t * bias, |
||
237 | const uint16_t bias_shift, |
||
238 | const uint16_t out_shift, |
||
239 | q15_t * Im_out, |
||
240 | const uint16_t dim_im_out, |
||
241 | q15_t * bufferA, |
||
242 | q7_t * bufferB); |
||
243 | |||
244 | /** |
||
245 | * @brief Fast Q7 convolution function |
||
246 | * @param[in] Im_in pointer to input tensor |
||
247 | * @param[in] dim_im_in input tensor dimention |
||
248 | * @param[in] ch_im_in number of input tensor channels |
||
249 | * @param[in] wt pointer to kernel weights |
||
250 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
251 | * @param[in] dim_kernel filter kernel size |
||
252 | * @param[in] padding padding sizes |
||
253 | * @param[in] stride convolution stride |
||
254 | * @param[in] bias pointer to bias |
||
255 | * @param[in] bias_shift amount of left-shift for bias |
||
256 | * @param[in] out_shift amount of right-shift for output |
||
257 | * @param[in,out] Im_out pointer to output tensor |
||
258 | * @param[in] dim_im_out output tensor dimension |
||
259 | * @param[in,out] bufferA pointer to buffer space for input |
||
260 | * @param[in,out] bufferB pointer to buffer space for output |
||
261 | * @return The function returns either |
||
262 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
263 | * |
||
264 | * This function is the version with full list of optimization tricks, but with |
||
265 | * some contraints: |
||
266 | * ch_im_in is multiple of 4 |
||
267 | * ch_im_out is multiple of 2 |
||
268 | */ |
||
269 | |||
270 | arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in, |
||
271 | const uint16_t dim_im_in, |
||
272 | const uint16_t ch_im_in, |
||
273 | const q7_t * wt, |
||
274 | const uint16_t ch_im_out, |
||
275 | const uint16_t dim_kernel, |
||
276 | const uint16_t padding, |
||
277 | const uint16_t stride, |
||
278 | const q7_t * bias, |
||
279 | const uint16_t bias_shift, |
||
280 | const uint16_t out_shift, |
||
281 | q7_t * Im_out, |
||
282 | const uint16_t dim_im_out, |
||
283 | q15_t * bufferA, |
||
284 | q7_t * bufferB); |
||
285 | |||
286 | /** |
||
287 | * @brief Fast Q7 convolution function (non-sqaure shape) |
||
288 | * @param[in] Im_in pointer to input tensor |
||
289 | * @param[in] dim_im_in_x input tensor dimention x |
||
290 | * @param[in] dim_im_in_y input tensor dimention y |
||
291 | * @param[in] ch_im_in number of input tensor channels |
||
292 | * @param[in] wt pointer to kernel weights |
||
293 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
294 | * @param[in] dim_kernel_x filter kernel size x |
||
295 | * @param[in] dim_kernel_y filter kernel size y |
||
296 | * @param[in] padding_x padding size x |
||
297 | * @param[in] padding_y padding size y |
||
298 | * @param[in] stride_x convolution stride x |
||
299 | * @param[in] stride_y convolution stride y |
||
300 | * @param[in] bias pointer to bias |
||
301 | * @param[in] bias_shift amount of left-shift for bias |
||
302 | * @param[in] out_shift amount of right-shift for output |
||
303 | * @param[in,out] Im_out pointer to output tensor |
||
304 | * @param[in] dim_im_out_x output tensor dimension x |
||
305 | * @param[in] dim_im_out_y output tensor dimension y |
||
306 | * @param[in,out] bufferA pointer to buffer space for input |
||
307 | * @param[in,out] bufferB pointer to buffer space for output |
||
308 | * @return The function returns either |
||
309 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
310 | * |
||
311 | * This function is the version with full list of optimization tricks, but with |
||
312 | * some contraints: |
||
313 | * ch_im_in is multiple of 4 |
||
314 | * ch_im_out is multiple of 2 |
||
315 | */ |
||
316 | |||
317 | arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in, |
||
318 | const uint16_t dim_im_in_x, |
||
319 | const uint16_t dim_im_in_y, |
||
320 | const uint16_t ch_im_in, |
||
321 | const q7_t * wt, |
||
322 | const uint16_t ch_im_out, |
||
323 | const uint16_t dim_kernel_x, |
||
324 | const uint16_t dim_kernel_y, |
||
325 | const uint16_t padding_x, |
||
326 | const uint16_t padding_y, |
||
327 | const uint16_t stride_x, |
||
328 | const uint16_t stride_y, |
||
329 | const q7_t * bias, |
||
330 | const uint16_t bias_shift, |
||
331 | const uint16_t out_shift, |
||
332 | q7_t * Im_out, |
||
333 | const uint16_t dim_im_out_x, |
||
334 | const uint16_t dim_im_out_y, |
||
335 | q15_t * bufferA, |
||
336 | q7_t * bufferB); |
||
337 | |||
338 | /** |
||
339 | * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) |
||
340 | * @param[in] Im_in pointer to input tensor |
||
341 | * @param[in] dim_im_in_x input tensor dimention x |
||
342 | * @param[in] dim_im_in_y input tensor dimention y |
||
343 | * @param[in] ch_im_in number of input tensor channels |
||
344 | * @param[in] wt pointer to kernel weights |
||
345 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
346 | * @param[in] dim_kernel_x filter kernel size x |
||
347 | * @param[in] dim_kernel_y filter kernel size y |
||
348 | * @param[in] padding_x padding size x |
||
349 | * @param[in] padding_y padding size y |
||
350 | * @param[in] stride_x convolution stride x |
||
351 | * @param[in] stride_y convolution stride y |
||
352 | * @param[in] bias pointer to bias |
||
353 | * @param[in] bias_shift amount of left-shift for bias |
||
354 | * @param[in] out_shift amount of right-shift for output |
||
355 | * @param[in,out] Im_out pointer to output tensor |
||
356 | * @param[in] dim_im_out_x output tensor dimension x |
||
357 | * @param[in] dim_im_out_y output tensor dimension y |
||
358 | * @param[in,out] bufferA pointer to buffer space for input |
||
359 | * @param[in,out] bufferB pointer to buffer space for output |
||
360 | * @return The function returns either |
||
361 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
362 | * |
||
363 | * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1 |
||
364 | * and dim_kernel_y=1). It can be used for |
||
365 | * second half of MobileNets after depthwise separable convolution. |
||
366 | * |
||
367 | * This function is the version with full list of optimization tricks, but with |
||
368 | * some contraints: |
||
369 | * ch_im_in is multiple of 4 |
||
370 | * ch_im_out is multiple of 2 |
||
371 | */ |
||
372 | arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, |
||
373 | const uint16_t dim_im_in_x, |
||
374 | const uint16_t dim_im_in_y, |
||
375 | const uint16_t ch_im_in, |
||
376 | const q7_t * wt, |
||
377 | const uint16_t ch_im_out, |
||
378 | const uint16_t dim_kernel_x, |
||
379 | const uint16_t dim_kernel_y, |
||
380 | const uint16_t padding_x, |
||
381 | const uint16_t padding_y, |
||
382 | const uint16_t stride_x, |
||
383 | const uint16_t stride_y, |
||
384 | const q7_t * bias, |
||
385 | const uint16_t bias_shift, |
||
386 | const uint16_t out_shift, |
||
387 | q7_t * Im_out, |
||
388 | const uint16_t dim_im_out_x, |
||
389 | const uint16_t dim_im_out_y, |
||
390 | q15_t * bufferA, |
||
391 | q7_t * bufferB); |
||
392 | |||
393 | /** |
||
394 | * @brief Q7 version of convolution for RGB image |
||
395 | * @param[in] Im_in pointer to input tensor |
||
396 | * @param[in] dim_im_in input tensor dimention |
||
397 | * @param[in] ch_im_in number of input tensor channels |
||
398 | * @param[in] wt pointer to kernel weights |
||
399 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
400 | * @param[in] dim_kernel filter kernel size |
||
401 | * @param[in] padding padding sizes |
||
402 | * @param[in] stride convolution stride |
||
403 | * @param[in] bias pointer to bias |
||
404 | * @param[in] bias_shift amount of left-shift for bias |
||
405 | * @param[in] out_shift amount of right-shift for output |
||
406 | * @param[in,out] Im_out pointer to output tensor |
||
407 | * @param[in] dim_im_out output tensor dimension |
||
408 | * @param[in,out] bufferA pointer to buffer space for input |
||
409 | * @param[in,out] bufferB pointer to buffer space for output |
||
410 | * @return The function returns either |
||
411 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
412 | * |
||
413 | * This kernel is written exclusively for convolution with ch_im_in |
||
414 | * equals 3. This applies on the first layer of CNNs which has input |
||
415 | * image with RGB format. |
||
416 | */ |
||
417 | |||
418 | arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in, |
||
419 | const uint16_t dim_im_in, |
||
420 | const uint16_t ch_im_in, |
||
421 | const q7_t * wt, |
||
422 | const uint16_t ch_im_out, |
||
423 | const uint16_t dim_kernel, |
||
424 | const uint16_t padding, |
||
425 | const uint16_t stride, |
||
426 | const q7_t * bias, |
||
427 | const uint16_t bias_shift, |
||
428 | const uint16_t out_shift, |
||
429 | q7_t * Im_out, |
||
430 | const uint16_t dim_im_out, |
||
431 | q15_t * bufferA, |
||
432 | q7_t * bufferB); |
||
433 | |||
434 | /** |
||
435 | * @brief Fast Q15 convolution function |
||
436 | * @param[in] Im_in pointer to input tensor |
||
437 | * @param[in] dim_im_in input tensor dimention |
||
438 | * @param[in] ch_im_in number of input tensor channels |
||
439 | * @param[in] wt pointer to kernel weights |
||
440 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
441 | * @param[in] dim_kernel filter kernel size |
||
442 | * @param[in] padding padding sizes |
||
443 | * @param[in] stride convolution stride |
||
444 | * @param[in] bias pointer to bias |
||
445 | * @param[in] bias_shift amount of left-shift for bias |
||
446 | * @param[in] out_shift amount of right-shift for output |
||
447 | * @param[in,out] Im_out pointer to output tensor |
||
448 | * @param[in] dim_im_out output tensor dimension |
||
449 | * @param[in,out] bufferA pointer to buffer space for input |
||
450 | * @param[in,out] bufferB pointer to buffer space for output |
||
451 | * @return The function returns either |
||
452 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
453 | * |
||
454 | * This function is the version with full list of optimization tricks, but with |
||
455 | * some contraints: |
||
456 | * ch_im_in is multiple of 2 |
||
457 | * ch_im_out is multiple of 2 |
||
458 | */ |
||
459 | |||
460 | arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in, |
||
461 | const uint16_t dim_im_in, |
||
462 | const uint16_t ch_im_in, |
||
463 | const q15_t * wt, |
||
464 | const uint16_t ch_im_out, |
||
465 | const uint16_t dim_kernel, |
||
466 | const uint16_t padding, |
||
467 | const uint16_t stride, |
||
468 | const q15_t * bias, |
||
469 | const uint16_t bias_shift, |
||
470 | const uint16_t out_shift, |
||
471 | q15_t * Im_out, |
||
472 | const uint16_t dim_im_out, |
||
473 | q15_t * bufferA, |
||
474 | q7_t * bufferB); |
||
475 | |||
476 | /** |
||
477 | * @brief Fast Q15 convolution function (non-sqaure shape) |
||
478 | * @param[in] Im_in pointer to input tensor |
||
479 | * @param[in] dim_im_in_x input tensor dimention x |
||
480 | * @param[in] dim_im_in_y input tensor dimention y |
||
481 | * @param[in] ch_im_in number of input tensor channels |
||
482 | * @param[in] wt pointer to kernel weights |
||
483 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
484 | * @param[in] dim_kernel_x filter kernel size x |
||
485 | * @param[in] dim_kernel_y filter kernel size y |
||
486 | * @param[in] padding_x padding size x |
||
487 | * @param[in] padding_y padding size y |
||
488 | * @param[in] stride_x convolution stride x |
||
489 | * @param[in] stride_y convolution stride y |
||
490 | * @param[in] bias pointer to bias |
||
491 | * @param[in] bias_shift amount of left-shift for bias |
||
492 | * @param[in] out_shift amount of right-shift for output |
||
493 | * @param[in,out] Im_out pointer to output tensor |
||
494 | * @param[in] dim_im_out_x output tensor dimension x |
||
495 | * @param[in] dim_im_out_y output tensor dimension y |
||
496 | * @param[in,out] bufferA pointer to buffer space for input |
||
497 | * @param[in,out] bufferB pointer to buffer space for output |
||
498 | * @return The function returns either |
||
499 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
500 | * |
||
501 | * @details |
||
502 | * |
||
503 | * <b>Buffer size:</b> |
||
504 | * |
||
505 | * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel |
||
506 | * |
||
507 | * bufferB size: 0 |
||
508 | * |
||
509 | * <b>Input dimension constraints:</b> |
||
510 | * |
||
511 | * ch_im_in is multiple of 2 |
||
512 | * |
||
513 | * ch_im_out is multipe of 2 |
||
514 | * |
||
515 | */ |
||
516 | |||
517 | arm_status |
||
518 | arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, |
||
519 | const uint16_t dim_im_in_x, |
||
520 | const uint16_t dim_im_in_y, |
||
521 | const uint16_t ch_im_in, |
||
522 | const q15_t * wt, |
||
523 | const uint16_t ch_im_out, |
||
524 | const uint16_t dim_kernel_x, |
||
525 | const uint16_t dim_kernel_y, |
||
526 | const uint16_t padding_x, |
||
527 | const uint16_t padding_y, |
||
528 | const uint16_t stride_x, |
||
529 | const uint16_t stride_y, |
||
530 | const q15_t * bias, |
||
531 | const uint16_t bias_shift, |
||
532 | const uint16_t out_shift, |
||
533 | q15_t * Im_out, |
||
534 | const uint16_t dim_im_out_x, |
||
535 | const uint16_t dim_im_out_y, |
||
536 | q15_t * bufferA, |
||
537 | q7_t * bufferB); |
||
538 | |||
539 | /** |
||
540 | * @brief Q7 depthwise separable convolution function |
||
541 | * @param[in] Im_in pointer to input tensor |
||
542 | * @param[in] dim_im_in input tensor dimention |
||
543 | * @param[in] ch_im_in number of input tensor channels |
||
544 | * @param[in] wt pointer to kernel weights |
||
545 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
546 | * @param[in] dim_kernel filter kernel size |
||
547 | * @param[in] padding padding sizes |
||
548 | * @param[in] stride convolution stride |
||
549 | * @param[in] bias pointer to bias |
||
550 | * @param[in] bias_shift amount of left-shift for bias |
||
551 | * @param[in] out_shift amount of right-shift for output |
||
552 | * @param[in,out] Im_out pointer to output tensor |
||
553 | * @param[in] dim_im_out output tensor dimension |
||
554 | * @param[in,out] bufferA pointer to buffer space for input |
||
555 | * @param[in,out] bufferB pointer to buffer space for output |
||
556 | * @return The function returns either |
||
557 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
558 | * |
||
559 | * This function is the version with full list of optimization tricks, but with |
||
560 | * some contraints: |
||
561 | * ch_im_in is multiple of 2 |
||
562 | * ch_im_out is multiple of 2 |
||
563 | */ |
||
564 | |||
565 | arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in, |
||
566 | const uint16_t dim_im_in, |
||
567 | const uint16_t ch_im_in, |
||
568 | const q7_t * wt, |
||
569 | const uint16_t ch_im_out, |
||
570 | const uint16_t dim_kernel, |
||
571 | const uint16_t padding, |
||
572 | const uint16_t stride, |
||
573 | const q7_t * bias, |
||
574 | const uint16_t bias_shift, |
||
575 | const uint16_t out_shift, |
||
576 | q7_t * Im_out, |
||
577 | const uint16_t dim_im_out, |
||
578 | q15_t * bufferA, |
||
579 | q7_t * bufferB); |
||
580 | |||
581 | /** |
||
582 | * @brief Q7 depthwise separable convolution function (non-square shape) |
||
583 | * @param[in] Im_in pointer to input tensor |
||
584 | * @param[in] dim_im_in_x input tensor dimention x |
||
585 | * @param[in] dim_im_in_y input tensor dimention y |
||
586 | * @param[in] ch_im_in number of input tensor channels |
||
587 | * @param[in] wt pointer to kernel weights |
||
588 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
||
589 | * @param[in] dim_kernel_x filter kernel size x |
||
590 | * @param[in] dim_kernel_y filter kernel size y |
||
591 | * @param[in] padding_x padding sizes x |
||
592 | * @param[in] padding_y padding sizes y |
||
593 | * @param[in] stride_x convolution stride x |
||
594 | * @param[in] stride_y convolution stride y |
||
595 | * @param[in] bias pointer to bias |
||
596 | * @param[in] bias_shift amount of left-shift for bias |
||
597 | * @param[in] out_shift amount of right-shift for output |
||
598 | * @param[in,out] Im_out pointer to output tensor |
||
599 | * @param[in] dim_im_out_x output tensor dimension x |
||
600 | * @param[in] dim_im_out_y output tensor dimension y |
||
601 | * @param[in,out] bufferA pointer to buffer space for input |
||
602 | * @param[in,out] bufferB pointer to buffer space for output |
||
603 | * @return The function returns either |
||
604 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
||
605 | * |
||
606 | * This function is the version with full list of optimization tricks, but with |
||
607 | * some contraints: |
||
608 | * ch_im_in is multiple of 2 |
||
609 | * ch_im_out is multiple of 2 |
||
610 | */ |
||
611 | arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in, |
||
612 | const uint16_t dim_im_in_x, |
||
613 | const uint16_t dim_im_in_y, |
||
614 | const uint16_t ch_im_in, |
||
615 | const q7_t * wt, |
||
616 | const uint16_t ch_im_out, |
||
617 | const uint16_t dim_kernel_x, |
||
618 | const uint16_t dim_kernel_y, |
||
619 | const uint16_t padding_x, |
||
620 | const uint16_t padding_y, |
||
621 | const uint16_t stride_x, |
||
622 | const uint16_t stride_y, |
||
623 | const q7_t * bias, |
||
624 | const uint16_t bias_shift, |
||
625 | const uint16_t out_shift, |
||
626 | q7_t * Im_out, |
||
627 | const uint16_t dim_im_out_x, |
||
628 | const uint16_t dim_im_out_y, |
||
629 | q15_t * bufferA, |
||
630 | q7_t * bufferB); |
||
631 | |||
632 | |||
633 | /** |
||
634 | * @defgroup FC Fully-connected Layer Functions |
||
635 | * |
||
636 | * Perform fully-connected layer |
||
637 | * |
||
638 | * Fully-connected layer is basically a matrix-vector multiplication |
||
639 | * with bias. The matrix is the weights and the input/output vectors |
||
640 | * are the activation values. Supported {weight, activation} precisions |
||
641 | * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}. |
||
642 | * |
||
643 | * Here we have two types of kernel functions. The basic function |
||
644 | * implements the function using regular GEMV approach. The opt functions |
||
645 | * operates with weights in interleaved formats. |
||
646 | * |
||
647 | */ |
||
648 | |||
649 | /** |
||
650 | * @brief Q7 basic fully-connected layer function |
||
651 | * @param[in] pV pointer to input vector |
||
652 | * @param[in] pM pointer to matrix weights |
||
653 | * @param[in] dim_vec length of the vector |
||
654 | * @param[in] num_of_rows number of rows in weight matrix |
||
655 | * @param[in] bias_shift amount of left-shift for bias |
||
656 | * @param[in] out_shift amount of right-shift for output |
||
657 | * @param[in] bias pointer to bias |
||
658 | * @param[in,out] pOut pointer to output vector |
||
659 | * @param[in,out] vec_buffer pointer to buffer space for input |
||
660 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
||
661 | * |
||
662 | */ |
||
663 | |||
664 | arm_status arm_fully_connected_q7(const q7_t * pV, |
||
665 | const q7_t * pM, |
||
666 | const uint16_t dim_vec, |
||
667 | const uint16_t num_of_rows, |
||
668 | const uint16_t bias_shift, |
||
669 | const uint16_t out_shift, |
||
670 | const q7_t * bias, |
||
671 | q7_t * pOut, |
||
672 | q15_t * vec_buffer); |
||
673 | |||
674 | /** |
||
675 | * @brief Q7 opt fully-connected layer function |
||
676 | * @param[in] pV pointer to input vector |
||
677 | * @param[in] pM pointer to matrix weights |
||
678 | * @param[in] dim_vec length of the vector |
||
679 | * @param[in] num_of_rows number of rows in weight matrix |
||
680 | * @param[in] bias_shift amount of left-shift for bias |
||
681 | * @param[in] out_shift amount of right-shift for output |
||
682 | * @param[in] bias pointer to bias |
||
683 | * @param[in,out] pOut pointer to output vector |
||
684 | * @param[in,out] vec_buffer pointer to buffer space for input |
||
685 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
||
686 | * |
||
687 | */ |
||
688 | |||
689 | arm_status arm_fully_connected_q7_opt(const q7_t * pV, |
||
690 | const q7_t * pM, |
||
691 | const uint16_t dim_vec, |
||
692 | const uint16_t num_of_rows, |
||
693 | const uint16_t bias_shift, |
||
694 | const uint16_t out_shift, |
||
695 | const q7_t * bias, |
||
696 | q7_t * pOut, |
||
697 | q15_t * vec_buffer); |
||
698 | |||
699 | /** |
||
700 | * @brief Q15 basic fully-connected layer function |
||
701 | * @param[in] pV pointer to input vector |
||
702 | * @param[in] pM pointer to matrix weights |
||
703 | * @param[in] dim_vec length of the vector |
||
704 | * @param[in] num_of_rows number of rows in weight matrix |
||
705 | * @param[in] bias_shift amount of left-shift for bias |
||
706 | * @param[in] out_shift amount of right-shift for output |
||
707 | * @param[in] bias pointer to bias |
||
708 | * @param[in,out] pOut pointer to output vector |
||
709 | * @param[in,out] vec_buffer pointer to buffer space for input |
||
710 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
||
711 | * |
||
712 | */ |
||
713 | |||
714 | arm_status arm_fully_connected_q15(const q15_t * pV, |
||
715 | const q15_t * pM, |
||
716 | const uint16_t dim_vec, |
||
717 | const uint16_t num_of_rows, |
||
718 | const uint16_t bias_shift, |
||
719 | const uint16_t out_shift, |
||
720 | const q15_t * bias, |
||
721 | q15_t * pOut, |
||
722 | q15_t * vec_buffer); |
||
723 | |||
724 | /** |
||
725 | * @brief Q15 opt fully-connected layer function |
||
726 | * @param[in] pV pointer to input vector |
||
727 | * @param[in] pM pointer to matrix weights |
||
728 | * @param[in] dim_vec length of the vector |
||
729 | * @param[in] num_of_rows number of rows in weight matrix |
||
730 | * @param[in] bias_shift amount of left-shift for bias |
||
731 | * @param[in] out_shift amount of right-shift for output |
||
732 | * @param[in] bias pointer to bias |
||
733 | * @param[in,out] pOut pointer to output vector |
||
734 | * @param[in,out] vec_buffer pointer to buffer space for input |
||
735 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
||
736 | * |
||
737 | */ |
||
738 | |||
739 | arm_status arm_fully_connected_q15_opt(const q15_t * pV, |
||
740 | const q15_t * pM, |
||
741 | const uint16_t dim_vec, |
||
742 | const uint16_t num_of_rows, |
||
743 | const uint16_t bias_shift, |
||
744 | const uint16_t out_shift, |
||
745 | const q15_t * bias, |
||
746 | q15_t * pOut, |
||
747 | q15_t * vec_buffer); |
||
748 | |||
749 | /** |
||
750 | * @brief Mixed Q15-Q7 fully-connected layer function |
||
751 | * @param[in] pV pointer to input vector |
||
752 | * @param[in] pM pointer to matrix weights |
||
753 | * @param[in] dim_vec length of the vector |
||
754 | * @param[in] num_of_rows number of rows in weight matrix |
||
755 | * @param[in] bias_shift amount of left-shift for bias |
||
756 | * @param[in] out_shift amount of right-shift for output |
||
757 | * @param[in] bias pointer to bias |
||
758 | * @param[in,out] pOut pointer to output vector |
||
759 | * @param[in,out] vec_buffer pointer to buffer space for input |
||
760 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
||
761 | * |
||
762 | */ |
||
763 | |||
764 | arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV, |
||
765 | const q7_t * pM, |
||
766 | const uint16_t dim_vec, |
||
767 | const uint16_t num_of_rows, |
||
768 | const uint16_t bias_shift, |
||
769 | const uint16_t out_shift, |
||
770 | const q7_t * bias, |
||
771 | q15_t * pOut, |
||
772 | q15_t * vec_buffer); |
||
773 | |||
774 | /** |
||
775 | * @brief Mixed Q15-Q7 opt fully-connected layer function |
||
776 | * @param[in] pV pointer to input vector |
||
777 | * @param[in] pM pointer to matrix weights |
||
778 | * @param[in] dim_vec length of the vector |
||
779 | * @param[in] num_of_rows number of rows in weight matrix |
||
780 | * @param[in] bias_shift amount of left-shift for bias |
||
781 | * @param[in] out_shift amount of right-shift for output |
||
782 | * @param[in] bias pointer to bias |
||
783 | * @param[in,out] pOut pointer to output vector |
||
784 | * @param[in,out] vec_buffer pointer to buffer space for input |
||
785 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
||
786 | * |
||
787 | */ |
||
788 | |||
789 | arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV, |
||
790 | const q7_t * pM, |
||
791 | const uint16_t dim_vec, |
||
792 | const uint16_t num_of_rows, |
||
793 | const uint16_t bias_shift, |
||
794 | const uint16_t out_shift, |
||
795 | const q7_t * bias, |
||
796 | q15_t * pOut, |
||
797 | q15_t * vec_buffer); |
||
798 | |||
799 | /** |
||
800 | * @brief Matrix-Multiplication Kernels for Convolution |
||
801 | * |
||
802 | * These functions are used within convolution layer functions for |
||
803 | * matrix multiplication. |
||
804 | * |
||
805 | * The implementation is similar to CMSIS-DSP arm_mat_mult functions |
||
806 | * with one Q7 and one Q15 operands. The Q15 operand is the im2col |
||
807 | * output which is always with 2 columns. |
||
808 | * |
||
809 | */ |
||
810 | |||
811 | /** |
||
812 | * @brief Matrix-multiplication function for convolution |
||
813 | * @param[in] pA pointer to operand A |
||
814 | * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors |
||
815 | * @param[in] ch_im_out numRow of A |
||
816 | * @param[in] numCol_A numCol of A |
||
817 | * @param[in] bias_shift amount of left-shift for bias |
||
818 | * @param[in] out_shift amount of right-shift for output |
||
819 | * @param[in] bias the bias |
||
820 | * @param[in,out] pOut pointer to output |
||
821 | * @return The function returns the incremented output pointer |
||
822 | */ |
||
823 | |||
824 | q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA, |
||
825 | const q15_t * pInBuffer, |
||
826 | const uint16_t ch_im_out, |
||
827 | const uint16_t numCol_A, |
||
828 | const uint16_t bias_shift, |
||
829 | const uint16_t out_shift, |
||
830 | const q7_t * bias, |
||
831 | q7_t * pOut); |
||
832 | |||
833 | /** |
||
834 | * @brief Matrix-multiplication function for convolution with reordered columns |
||
835 | * @param[in] pA pointer to operand A |
||
836 | * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors |
||
837 | * @param[in] ch_im_out numRow of A |
||
838 | * @param[in] numCol_A numCol of A |
||
839 | * @param[in] bias_shift amount of left-shift for bias |
||
840 | * @param[in] out_shift amount of right-shift for output |
||
841 | * @param[in] bias the bias |
||
842 | * @param[in,out] pOut pointer to output |
||
843 | * @return The function returns the incremented output pointer |
||
844 | */ |
||
845 | |||
846 | q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA, |
||
847 | const q15_t * pInBuffer, |
||
848 | const uint16_t ch_im_out, |
||
849 | const uint16_t numCol_A, |
||
850 | const uint16_t bias_shift, |
||
851 | const uint16_t out_shift, |
||
852 | const q7_t * bias, |
||
853 | q7_t * pOut); |
||
854 | |||
855 | #ifdef __cplusplus |
||
856 | } |
||
857 | #endif |
||
858 | |||
859 | /* |
||
860 | * Other functions |
||
861 | * These layers are typically not timing critical |
||
862 | * Basic implementation is supported here |
||
863 | */ |
||
864 | |||
865 | #ifdef __cplusplus |
||
866 | extern "C" |
||
867 | { |
||
868 | #endif |
||
869 | |||
870 | /** |
||
871 | * @defgroup Acti Neural Network Activation Functions |
||
872 | * |
||
873 | * Perform activation layers, including ReLU (Rectified Linear Unit), |
||
874 | * sigmoid and tanh |
||
875 | * |
||
876 | */ |
||
877 | |||
878 | /** |
||
879 | * @brief Q7 RELU function |
||
880 | * @param[in,out] data pointer to input |
||
881 | * @param[in] size number of elements |
||
882 | * @return none. |
||
883 | */ |
||
884 | |||
885 | void arm_relu_q7(q7_t * data, uint16_t size); |
||
886 | |||
887 | /** |
||
888 | * @brief Q15 RELU function |
||
889 | * @param[in,out] data pointer to input |
||
890 | * @param[in] size number of elements |
||
891 | * @return none. |
||
892 | */ |
||
893 | |||
894 | void arm_relu_q15(q15_t * data, uint16_t size); |
||
895 | |||
896 | /** |
||
897 | * @brief Q7 neural network activation function using direct table look-up |
||
898 | * @param[in,out] data pointer to input |
||
899 | * @param[in] size number of elements |
||
900 | * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 |
||
901 | * @param[in] type type of activation functions |
||
902 | * @return none. |
||
903 | */ |
||
904 | |||
905 | void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, |
||
906 | arm_nn_activation_type type); |
||
907 | |||
908 | /** |
||
909 | * @brief Q15 neural network activation function using direct table look-up |
||
910 | * @param[in,out] data pointer to input |
||
911 | * @param[in] size number of elements |
||
912 | * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 |
||
913 | * @param[in] type type of activation functions |
||
914 | * @return none. |
||
915 | */ |
||
916 | |||
917 | void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, |
||
918 | arm_nn_activation_type type); |
||
919 | |||
920 | /** |
||
921 | * @defgroup Pooling Neural Network Pooling Functions |
||
922 | * |
||
923 | * Perform pooling functions, including max pooling and average pooling |
||
924 | * |
||
925 | */ |
||
926 | |||
927 | /** |
||
928 | * @brief Q7 max pooling function |
||
929 | * @param[in] Im_in pointer to input tensor |
||
930 | * @param[in] dim_im_in input tensor dimention |
||
931 | * @param[in] ch_im_in number of input tensor channels |
||
932 | * @param[in] dim_kernel filter kernel size |
||
933 | * @param[in] padding padding sizes |
||
934 | * @param[in] stride convolution stride |
||
935 | * @param[in] dim_im_out output tensor dimension |
||
936 | * @param[in,out] bufferA pointer to buffer space for input |
||
937 | * @param[in,out] Im_out pointer to output tensor |
||
938 | * @return none. |
||
939 | * |
||
940 | */ |
||
941 | |||
942 | void arm_maxpool_q7_HWC(q7_t * Im_in, |
||
943 | const uint16_t dim_im_in, |
||
944 | const uint16_t ch_im_in, |
||
945 | const uint16_t dim_kernel, |
||
946 | const uint16_t padding, |
||
947 | const uint16_t stride, |
||
948 | const uint16_t dim_im_out, |
||
949 | q7_t * bufferA, |
||
950 | q7_t * Im_out); |
||
951 | |||
952 | /** |
||
953 | * @brief Q7 average pooling function |
||
954 | * @param[in] Im_in pointer to input tensor |
||
955 | * @param[in] dim_im_in input tensor dimention |
||
956 | * @param[in] ch_im_in number of input tensor channels |
||
957 | * @param[in] dim_kernel filter kernel size |
||
958 | * @param[in] padding padding sizes |
||
959 | * @param[in] stride convolution stride |
||
960 | * @param[in] dim_im_out output tensor dimension |
||
961 | * @param[in,out] bufferA pointer to buffer space for input |
||
962 | * @param[in,out] Im_out pointer to output tensor |
||
963 | * @return none. |
||
964 | * |
||
965 | */ |
||
966 | |||
967 | void arm_avepool_q7_HWC(q7_t * Im_in, |
||
968 | const uint16_t dim_im_in, |
||
969 | const uint16_t ch_im_in, |
||
970 | const uint16_t dim_kernel, |
||
971 | const uint16_t padding, |
||
972 | const uint16_t stride, |
||
973 | const uint16_t dim_im_out, |
||
974 | q7_t * bufferA, |
||
975 | q7_t * Im_out); |
||
976 | |||
977 | /** |
||
978 | * @defgroup Softmax Softmax Functions |
||
979 | * |
||
980 | * EXP(2) based softmax function |
||
981 | * |
||
982 | */ |
||
983 | |||
984 | /** |
||
985 | * @brief Q7 softmax function |
||
986 | * @param[in] vec_in pointer to input vector |
||
987 | * @param[in] dim_vec input vector dimention |
||
988 | * @param[out] p_out pointer to output vector |
||
989 | * @return none. |
||
990 | * |
||
991 | */ |
||
992 | |||
993 | void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out); |
||
994 | |||
995 | /** |
||
996 | * @brief Q15 softmax function |
||
997 | * @param[in] vec_in pointer to input vector |
||
998 | * @param[in] dim_vec input vector dimention |
||
999 | * @param[out] p_out pointer to output vector |
||
1000 | * @return none. |
||
1001 | * |
||
1002 | */ |
||
1003 | |||
1004 | void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out); |
||
1005 | |||
1006 | #ifdef __cplusplus |
||
1007 | } |
||
1008 | #endif |
||
1009 | |||
1010 | #endif |