Subversion Repositories dashGPS

Rev

Rev 2 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 mjames 1
/* ----------------------------------------------------------------------
2
 * Project:      CMSIS DSP Library
3
 * Title:        arm_rfft_q15.c
4
 * Description:  RFFT & RIFFT Q15 process function
5
 *
6
 * $Date:        27. January 2017
7
 * $Revision:    V.1.5.1
8
 *
9
 * Target Processor: Cortex-M cores
10
 * -------------------------------------------------------------------- */
11
/*
12
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
13
 *
14
 * SPDX-License-Identifier: Apache-2.0
15
 *
16
 * Licensed under the Apache License, Version 2.0 (the License); you may
17
 * not use this file except in compliance with the License.
18
 * You may obtain a copy of the License at
19
 *
20
 * www.apache.org/licenses/LICENSE-2.0
21
 *
22
 * Unless required by applicable law or agreed to in writing, software
23
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25
 * See the License for the specific language governing permissions and
26
 * limitations under the License.
27
 */
28
 
29
#include "arm_math.h"
30
 
31
/* ----------------------------------------------------------------------
32
 * Internal functions prototypes
33
 * -------------------------------------------------------------------- */
34
 
35
void arm_split_rfft_q15(
36
    q15_t * pSrc,
37
    uint32_t fftLen,
38
    q15_t * pATable,
39
    q15_t * pBTable,
40
    q15_t * pDst,
41
    uint32_t modifier);
42
 
43
void arm_split_rifft_q15(
44
    q15_t * pSrc,
45
    uint32_t fftLen,
46
    q15_t * pATable,
47
    q15_t * pBTable,
48
    q15_t * pDst,
49
    uint32_t modifier);
50
 
51
/**
52
* @addtogroup RealFFT
53
* @{
54
*/
55
 
56
/**
57
* @brief Processing function for the Q15 RFFT/RIFFT.
58
* @param[in]  *S    points to an instance of the Q15 RFFT/RIFFT structure.
59
* @param[in]  *pSrc points to the input buffer.
60
* @param[out] *pDst points to the output buffer.
61
* @return none.
62
*
63
* \par Input an output formats:
64
* \par
65
* Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
66
* Hence the output format is different for different RFFT sizes.
67
* The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
68
* \par
69
* \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"
70
* \par
71
* \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"
72
*/
73
 
74
void arm_rfft_q15(
75
    const arm_rfft_instance_q15 * S,
76
    q15_t * pSrc,
77
    q15_t * pDst)
78
{
79
    const arm_cfft_instance_q15 *S_CFFT = S->pCfft;
80
    uint32_t i;
81
    uint32_t L2 = S->fftLenReal >> 1;
82
 
83
    /* Calculation of RIFFT of input */
84
    if (S->ifftFlagR == 1U)
85
    {
86
        /*  Real IFFT core process */
87
        arm_split_rifft_q15(pSrc, L2, S->pTwiddleAReal,
88
                            S->pTwiddleBReal, pDst, S->twidCoefRModifier);
89
 
90
        /* Complex IFFT process */
91
        arm_cfft_q15(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
92
 
93
        for(i=0;i<S->fftLenReal;i++)
94
        {
95
            pDst[i] = pDst[i] << 1;
96
        }
97
    }
98
    else
99
    {
100
        /* Calculation of RFFT of input */
101
 
102
        /* Complex FFT process */
103
        arm_cfft_q15(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);
104
 
105
        /*  Real FFT core process */
106
        arm_split_rfft_q15(pSrc, L2, S->pTwiddleAReal,
107
                            S->pTwiddleBReal, pDst, S->twidCoefRModifier);
108
    }
109
}
110
 
111
/**
112
* @} end of RealFFT group
113
*/
114
 
115
/**
116
* @brief  Core Real FFT process
117
* @param  *pSrc                                 points to the input buffer.
118
* @param  fftLen                                length of FFT.
119
* @param  *pATable                      points to the A twiddle Coef buffer.
120
* @param  *pBTable                      points to the B twiddle Coef buffer.
121
* @param  *pDst                                 points to the output buffer.
122
* @param  modifier              twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
123
* @return none.
124
* The function implements a Real FFT
125
*/
126
 
127
void arm_split_rfft_q15(
128
    q15_t * pSrc,
129
    uint32_t fftLen,
130
    q15_t * pATable,
131
    q15_t * pBTable,
132
    q15_t * pDst,
133
    uint32_t modifier)
134
{
135
    uint32_t i;                                    /* Loop Counter */
136
    q31_t outR, outI;                              /* Temporary variables for output */
137
    q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
138
    q15_t *pSrc1, *pSrc2;
139
#if defined (ARM_MATH_DSP)
140
    q15_t *pD1, *pD2;
141
#endif
142
 
143
    //  pSrc[2U * fftLen] = pSrc[0];
144
    //  pSrc[(2U * fftLen) + 1U] = pSrc[1];
145
 
146
    pCoefA = &pATable[modifier * 2U];
147
    pCoefB = &pBTable[modifier * 2U];
148
 
149
    pSrc1 = &pSrc[2];
150
    pSrc2 = &pSrc[(2U * fftLen) - 2U];
151
 
152
#if defined (ARM_MATH_DSP)
153
 
154
    /* Run the below code for Cortex-M4 and Cortex-M3 */
155
    i = 1U;
156
    pD1 = pDst + 2;
157
    pD2 = pDst + (4U * fftLen) - 2;
158
 
159
    for(i = fftLen - 1; i > 0; i--)
160
    {
161
        /*
162
        outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
163
        + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
164
        pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
165
        */
166
 
167
        /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
168
        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
169
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
170
 
171
 
172
#ifndef ARM_MATH_BIG_ENDIAN
173
 
174
        /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
175
        outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));
176
 
177
#else
178
 
179
        /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
180
        outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));
181
 
182
#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
183
 
184
        /* pSrc[2 * n - 2 * i] * pBTable[2 * i] +
185
        pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
186
        outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 16U;
187
 
188
        /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
189
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
190
 
191
#ifndef ARM_MATH_BIG_ENDIAN
192
 
193
        outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
194
 
195
#else
196
 
197
        outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);
198
 
199
#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
200
 
201
        /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
202
        outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);
203
 
204
        /* write output */
205
        *pD1++ = (q15_t) outR;
206
        *pD1++ = outI >> 16U;
207
 
208
        /* write complex conjugate output */
209
        pD2[0] = (q15_t) outR;
210
        pD2[1] = -(outI >> 16U);
211
        pD2 -= 2;
212
 
213
        /* update coefficient pointer */
214
        pCoefB = pCoefB + (2U * modifier);
215
        pCoefA = pCoefA + (2U * modifier);
216
    }
217
 
218
    pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
219
    pDst[(2U * fftLen) + 1U] = 0;
220
 
221
    pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
222
    pDst[1] = 0;
223
 
224
#else
225
 
226
    /* Run the below code for Cortex-M0 */
227
    i = 1U;
228
 
229
    while (i < fftLen)
230
    {
231
        /*
232
        outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
233
        + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
234
        pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
235
        */
236
 
237
        outR = *pSrc1 * *pCoefA;
238
        outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
239
        outR = outR + (*pSrc2 * *pCoefB);
240
        outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16;
241
 
242
 
243
        /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
244
        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
245
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
246
        */
247
 
248
        outI = *pSrc2 * *(pCoefB + 1);
249
        outI = outI - (*(pSrc2 + 1) * *pCoefB);
250
        outI = outI + (*(pSrc1 + 1) * *pCoefA);
251
        outI = outI + (*pSrc1 * *(pCoefA + 1));
252
 
253
        /* update input pointers */
254
        pSrc1 += 2U;
255
        pSrc2 -= 2U;
256
 
257
        /* write output */
258
        pDst[2U * i] = (q15_t) outR;
259
        pDst[(2U * i) + 1U] = outI >> 16U;
260
 
261
        /* write complex conjugate output */
262
        pDst[(4U * fftLen) - (2U * i)] = (q15_t) outR;
263
        pDst[((4U * fftLen) - (2U * i)) + 1U] = -(outI >> 16U);
264
 
265
        /* update coefficient pointer */
266
        pCoefB = pCoefB + (2U * modifier);
267
        pCoefA = pCoefA + (2U * modifier);
268
 
269
        i++;
270
    }
271
 
272
    pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
273
    pDst[(2U * fftLen) + 1U] = 0;
274
 
275
    pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
276
    pDst[1] = 0;
277
 
278
#endif /* #if defined (ARM_MATH_DSP) */
279
}
280
 
281
 
282
/**
283
* @brief  Core Real IFFT process
284
* @param[in]   *pSrc                            points to the input buffer.
285
* @param[in]   fftLen               length of FFT.
286
* @param[in]   *pATable                         points to the twiddle Coef A buffer.
287
* @param[in]   *pBTable                         points to the twiddle Coef B buffer.
288
* @param[out]  *pDst                            points to the output buffer.
289
* @param[in]   modifier                 twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
290
* @return none.
291
* The function implements a Real IFFT
292
*/
293
void arm_split_rifft_q15(
294
    q15_t * pSrc,
295
    uint32_t fftLen,
296
    q15_t * pATable,
297
    q15_t * pBTable,
298
    q15_t * pDst,
299
    uint32_t modifier)
300
{
301
    uint32_t i;                                    /* Loop Counter */
302
    q31_t outR, outI;                              /* Temporary variables for output */
303
    q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
304
    q15_t *pSrc1, *pSrc2;
305
    q15_t *pDst1 = &pDst[0];
306
 
307
    pCoefA = &pATable[0];
308
    pCoefB = &pBTable[0];
309
 
310
    pSrc1 = &pSrc[0];
311
    pSrc2 = &pSrc[2U * fftLen];
312
 
313
#if defined (ARM_MATH_DSP)
314
 
315
    /* Run the below code for Cortex-M4 and Cortex-M3 */
316
    i = fftLen;
317
 
318
    while (i > 0U)
319
    {
320
        /*
321
        outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
322
        pIn[2 * n - 2 * i] * pBTable[2 * i] -
323
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
324
 
325
        outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
326
        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
327
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
328
        */
329
 
330
 
331
#ifndef ARM_MATH_BIG_ENDIAN
332
 
333
        /* pIn[2 * n - 2 * i] * pBTable[2 * i] -
334
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
335
        outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));
336
 
337
#else
338
 
339
        /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +
340
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
341
        outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));
342
 
343
#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
344
 
345
        /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
346
        pIn[2 * n - 2 * i] * pBTable[2 * i] */
347
        outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 16U;
348
 
349
        /*
350
        -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +
351
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
352
        outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
353
 
354
        /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
355
 
356
#ifndef ARM_MATH_BIG_ENDIAN
357
 
358
        outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);
359
 
360
#else
361
 
362
        outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);
363
 
364
#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
365
        /* write output */
366
 
367
#ifndef ARM_MATH_BIG_ENDIAN
368
 
369
        *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 16U), 16);
370
 
371
#else
372
 
373
        *__SIMD32(pDst1)++ = __PKHBT((outI >> 16U), outR, 16);
374
 
375
#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
376
 
377
        /* update coefficient pointer */
378
        pCoefB = pCoefB + (2U * modifier);
379
        pCoefA = pCoefA + (2U * modifier);
380
 
381
        i--;
382
    }
383
#else
384
    /* Run the below code for Cortex-M0 */
385
    i = fftLen;
386
 
387
    while (i > 0U)
388
    {
389
        /*
390
        outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
391
        pIn[2 * n - 2 * i] * pBTable[2 * i] -
392
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
393
        */
394
 
395
        outR = *pSrc2 * *pCoefB;
396
        outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
397
        outR = outR + (*pSrc1 * *pCoefA);
398
        outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16;
399
 
400
        /*
401
        outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
402
        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
403
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
404
        */
405
 
406
        outI = *(pSrc1 + 1) * *pCoefA;
407
        outI = outI - (*pSrc1 * *(pCoefA + 1));
408
        outI = outI - (*pSrc2 * *(pCoefB + 1));
409
        outI = outI - (*(pSrc2 + 1) * *(pCoefB));
410
 
411
        /* update input pointers */
412
        pSrc1 += 2U;
413
        pSrc2 -= 2U;
414
 
415
        /* write output */
416
        *pDst1++ = (q15_t) outR;
417
        *pDst1++ = (q15_t) (outI >> 16);
418
 
419
        /* update coefficient pointer */
420
        pCoefB = pCoefB + (2U * modifier);
421
        pCoefA = pCoefA + (2U * modifier);
422
 
423
        i--;
424
    }
425
#endif /* #if defined (ARM_MATH_DSP) */
426
}